A BRIEF EXCURSION INTO THE MATHEMATICAL THEORY OF
MIXED FINITE ELEMENT METHODS

ENDRE SULI*

Synopsis: Motivating examples: Stokes equations; flow in porous media. Functional analytic prerequisites: Riesz
representation theorem, the Lax—Milgram theorem, Banach’s closed range theorem. Abstract mixed variational
problems: the inf-sup condition and its role in existence and uniqueness of solutions. Discrete mixed formulations
and the discrete inf-sup condition. Error bounds. Checking the inf-sup condition: Fortin’s criterion. Examples of
inf-sup unstable and inf-sup stable finite element spaces.

1. Introduction. Numerous mathematical models that arise in continuum mechanics in the
form of systems of partial differential equations involve several physically disparate quantities,
which need to be approximated simultaneously. Finite element approximations of such problems
are known as mized finite element methods. These lecture notes introduce some basic concepts
from the theory of mixed finite element methods. For further details the reader is referred to the
monographs by Boffi, Brezzi & Fortin [1], Brenner & Scott [2], Ern & Guermond [4], Gatica [6]
and Girault & Raviart [7]. For questions associated with the iterative solution of systems of linear
algebraic equations arising from mixed finite element approximations, and preconditioning these,
the reader may wish to consult the text by Elman, Silvester and Wathen [3].

In order to motivate the theoretical considerations that will follow we begin by presenting two
typical model problems that lead to mixed finite element methods.

1.1. Example 1: the Stokes equations. The Stokes equations govern the flow of a steady,
viscous, incompressible, isothermal, Newtonian fluid. They arise by simplifying the incompressible
Navier—Stokes equations through the omission of the convective derivative. This results in the
following system of linear partial differential equations:

—Au+Vp=f in £, (1.1a)
V-u=0 in Q. (1.1b)

Here € is assumed to be a bounded open set in R?, d = 2,3, with a sufficiently smooth boundary
0f); in what follows it will suffice to assume that 02 is Lipschitz continuous. The d-component
vector function u : Q — R? denotes the velocity of the fluid, p : Q@ — R is the pressure, f : Q — R?
is the density of body forces acting on the fluid (e.g. gravitational force), and the constant
kinematic viscosity of the fluid that multiplies Au has been set to unity as its actual value plays
no role in our considerations. The equation (1.1a) is called the momentum equation, while equation
(1.1b) is referred to as the continuity equation. Vector-valued functions, such as u and f, and the
associated function spaces to which vector-valued functions belong, will be displayed throughout
in boldface.

For the sake of simplicity we shall supplement the system of partial differential equations
(1.1a), (1.1b) with the following homogeneous Dirichlet boundary condition:

u=0 on 0f). (1.1c)

By taking the dot product of the momentum equation (1.1a) with a sufficiently smooth d-
component vector function v such that v|go = 0, integrating the resulting equality over 2, and
integrating by parts in both terms on the left-hand side, noting the assumed homogenous boundary
condition on v, yields

a(w,v) + b(v,p) = £r(v), (1.22)
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where a(+,-) and b(,-) are two bilinear functionals defined, respectively, by

d
a(u,v) := /szul -V, dz, (1.2b)
i=1

b(v,q) == — /Q(V -v)gdz, (1.2¢)

and £ (-) is the linear functional defined by

ly(v) = /Qf -vdz. (1.2d)

Similarly, multiplying the continuity equation (1.1b) with a sufficiently smooth function ¢ and
integrating over (2 yields

b(u,q) = 0. (1.2¢)

Motivated by the forms of the equations (1.2a) and (1.2e), we shall now state the weak
formulation of the Stokes equations, which will represent the starting point for the construction
of mixed finite element approximations for this boundary-value problem. To this end, we define
the function spaces

X := H}(Q)% = HY Q) x --- x H}(Q)

d times

and
M::L%(Q):{qeLQ(Q) : /qua::0}.

The weak formulation of the Stokes equations is then as follows: find a pair of functions (u,p) €
X x M such that

a(u,v) +b(v,p) = £s(v) Vv € X, (1.3a)
b(u,q) =0 Vg € M. (1.3b)

We shall show later that, as long as f € L2(Q)?, the problem (1.3a), (1.3b) has a unique solution
(u,p) € X x M, which we shall refer to as the weak solution of the Stokes equations. In fact, the
regularity hypothesis f € L2(Q)? on the source term can be weakened by assuming that ¢ FeX/,
where X’ denotes the dual space of X, consisting of all continuous linear functionals on X.

1.2. Example 2: flow in porous media. A simple model for fluid flow in a porous medium
occupying a bounded open set Q C R? has the form

d

> a% (aij(x) ;i’) —g(x), zeq (1.4)

4,5=1

where p :  — R is the pressure, and g € L?(Q2) is a given source term. Again, { will be assumed to
have sufficiently smooth boundary 0f; for example, it will suffice to assume for our considerations
that 09 is Lipschitz continuous. Let us suppose that the equation is uniformly elliptic on §2; that
is, there exists a positive constant cg such that

d d
> aij(@) &g =Y & VE=(&,..., L) €RY, Yz eq. (1.5)
ij=1 i=1
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Let us suppose further that a;; € L*(Q), 4,5 = 1,...,d. According to Darcy’s law the fluid
velocity u : @ — R? and the pressure gradient are related by

d
—Zaij(x)%(x):ui(x) nQ i=1,...d (1.6)
j=1 J

Let us denote by A(z) the inverse of the matrix (a;;(z)){;—; € R??. Thus we can rewrite (1.6)
in an equivalent form as

Au=-Vp in Q. (1.7)
Thanks to (1.4) we also have that
—V-u=gyg in Q. (1.8)

We shall supplement the system of equations (1.7), (1.8) with the following homogeneous oblique
deriative boundary condition:

d

0
> aya) @ mila) =0 on o9 (1.9)
ij=1 Zj
where n(z) = (n1(x),...,nq(x))T is the unit outward normal vector to 9 at the point = € 9.

By noting (1.6) we can rewrite the boundary condition (1.9) as
u-n=20 on 0N. (1.10)

The weak formulation of the system (1.7), (1.8) in conjunction with the boundary condition (1.10)
is then as follows: find (u,p) € X x M, such that

a(u,v) +b(v,p) =0 Vv € X, (1.11a)
b(u,q) =4ly(q) Vg€ M, (1.11b)

where now X and M are defined by
X = Ho(div; Q) = {v € L*(0)* : V-v € L*(Q), v - nlpq = 0}
and
M = L3(Q),
and the bilinear functionals a(-,-) and b(-,-) and the linear functional ¢,(-) are defined by
d
a(u,v) := / Z Ay uiv; de,
Q=1

b(v,q) = f/Q(V -v) qdz,
ly(q) = /ngdx.

The space X := Hy(div; ) is equipped with the norm

1

Ml = (V2@ + 1V - vilem) )

After stating some standard results from functional analysis in the next section, we shall develop
the elements of a mathematical theory, which, under suitable assumptions on the data, guarantees
the existence a unique solution to variational problems such as (1.3) and (1.11).
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2. Three preliminary results. The analysis presented in the next section requires three
classical theorems from linear functional analysis, which we state here without proofs; for further
details we refer the reader to Yosida [10].

THEOREM 2.1 (Lax—Milgram theorem). Suppose that H is a Hilbert space over the field of
real numbers, with inner product (-,-)g and induced norm || - | g defined by ||v]|3 = (v,v)n.
Suppose further that a(-,-) is a bilinear functional on H x H, ¢ is a linear functional on H, and
the following additional properties hold:

(a) The bilinear functional a is coercive; i.e., there exists a positive real number ¢, such that

a(v,v) > cqllv]|% Yv € H;
(b) The bilinear functional a is bounded; i.e., there exists a positive real number C, such that
la(w,v)| < Collwlulv]a  Yw,ve H;
(¢) The linear functional € is bounded; i.e., there exists a positive real number Cy such that
()| < Collvlle Vv € H.

Then, there exists a unique u € H such that a(u,v) = £(v) for allv € H.

The proof of the Lax—Milgram theorem is based on the following result, known as the Riesz
representation theorem:.

THEOREM 2.2 (Riesz representation theorem). Suppose that H is a Hilbert space over the field
of real numbers, with inner product (-,-) g and induced norm ||- || g defined by ||v||% := (v,v)n, and
let £: H — R be a bounded linear functional on H. Then, there exists a unique element z € H,

known as the Riesz representer of ¢, such that £(v) = (z,v)g for allv € H.

We shall require one further result, which concerns closed linear operators in Banach spaces.
Let X and Y be two Banach spaces. A linear operator T : D(T) C X — Y, with domain
D(T), is said to be closed if for every sequence (zy)nen in D(T) converging to x € X such that
Tx, -y €Y asn — oo one has x € D(T) and Tx = y.

THEOREM 2.3 (Banach’s closed range theorem). Suppose that X and Y are Banach spaces,
and T : D(T) =Y is a closed linear operator, whose domain D(T') is dense in X. Let Ker(T) :=
{x € D(T) : Tx =0} denote the kernel of T and let T' : Y’ — X' be the transpose of T, defined
by (T'y' ,x) = (y', Tx), where X' and Y’ denote the dual spaces of X andY , respectively, and (-, -)
is the duality pairing between Y' and Y, or X' and X, as the case may be. Then, the following
properties are equivalent:

(a) R(T), the range of T, is closed in'Y;

(b) R(T"), the range of T', is closed in X';

(c) R(T) = [Kex(T)]* = {y € Y : (y/,5) =0 Vy' € Ker(T")};

(d) R(T") = [Ker(T)]°:={a' € X’ : (a/,2) =0 Vz e Ker(T)}.

An important remark is in order regarding Banach’s closed range theorem, Theorem 2.3, in
the context of the discussion herein.

REMARK 1. We shall apply this theorem to bounded linear operators T : X — Y, whose
domain, D(T), is the entire space X ; any such linear operator is both closed and, trivially, densely
defined in X . Therefore the hypotheses of Theorem 2.3 are automatically satisfied in such cases.
In particular, for a bounded linear operator T : X — Y, the properties (a) to (d) above are
equivalent.

It would have been more precise to write (I"y',z)x: x = (¥, Tx)ysy in the statement of
the theorem, to highlight the fact that in the duality pairing on the left-hand side the first entry
belongs to X’ and the second to X, and in the duality-pairing on the right the first entry belongs
to Y/ and the second to Y. In the interest of simplicity of notation we have however refrained
from doing so, as the actual choice of the spaces in duality pairings will always be clear from the
context; the second entry in a duality pairing will always belong to a Banach or Hilbert space,
and the first entry will belong to the dual space of the Banach or Hilbert space in question.
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3. Abstract mixed formulation. Let us suppose that X and M are two Hilbert spaces
over the field of real numbers and consider two bilinear functionals a(-,-) : X x X — R and
b(-,-) : X x M — R. We shall assume that each of these bilinear functionals is bounded; i.e., there
exist positive constants C, and C} such that

la(u, v)|] < Cqllullx|lv]lx Yu,v € X, (3.1a)
b(v,0)| < Collvllxllallsr Vo€ X, Vg e M, (3.11)

where || -||x and || - ||as denote the norm in X and M, respectively, induced by the respective inner
products, (+,-)x and (-, -)ar, of these two Hilbert spaces.

With these assumptions in mind, we consider the following variational problem: find the pair
(u,p) € X x M such that

a(u,v) + b(v,p) = £;(v) Yo € X, (3.2a)
b(u,q) =le(q) Vg M, (3.2b)

where £y € X’ and ¢, € M’; i.e., {; and ¢, are bounded linear functionals on the Hilbert spaces
X and M, respectively.

We begin by studying problem (3.2) in the simplified setting when ¢, = 0 (i.e., £,(q) = 0 for
all ¢ € M). We shall then show how the general case, when ¢, # 0, can be reduced to the case
when £, = 0.

Case 1: The problem under consideration is then the following:

a(u,v) + b(v,p) = £;(v) Yo € X, (3.3a)
b(u,q) =0 Vg e M. (3.3b)

Let us consider the closed linear subspace V of the Hilbert space X, defined by
Vi={veX :bv,q) =0 Vge M} (3.4)
By choosing a test function v € V/(C X) in (3.3a) we then have that
a(u,v) =L(v) Yv e V. (3.5)

Since V is a Hilbert space when equipped with the inner product and norm of X, our assumptions
that a(-,-) is a bounded bilinear functional on X x X and ¢; is a bounded linear functional on X
imply that the same is true with X replaced by V. Thus, if we now additionally assume that the
bilinear functional a(-,-) is coercive on V' x V, i.e., that

dcg >0 st Yo eV a(v,v) > cqllv]|%, (3.6)

then by applying the Lax-Milgram theorem we deduce the existence of a unique v € V' such that
a(u,v) = £y(v) for all v € V. In particular, it then follows that the element w € V' thus found
automatically satisfies (3.3b).

It remains to prove the existence of a unique p € M such that (3.3a) also holds; i.e., we wish
to show the existence of a unique p € M such that b(v,p) = £f(v) — a(u,v) for all v € X, with
u € V as determined above (and considered fixed). Since b(,-) is a bounded bilinear functional
on X x M, and v — £;(v) — a(u,v) is a bounded linear functional on X (for u € V fixed), the
assumptions of the Lax—Milgram theorem motivate us to seek a generalization of the coercivity
assumption (a) to a wider setting when, instead of having a bilinear functional on the cartesian
product of a Hilbert space with itself, we have a bilinear functional on the cartesian product of
two different Hilbert spaces, X and M.

In order to identify the appropriate form of such a generalized coercivity condition, let us
re-examine condition (a) of the Lax—Milgram theorem, as stated in (3.6); it clearly implies that

a(v,v) a(w,v)

vl x

Jeg >0 s.t. Vo € X: callv]|lx < <

weX\{0} llwllx '
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Motivated by the form of the right-most expression, we shall assume that the bilinear functional
b satisfies the following generalized coercivity condition:

b
Jep >0 s.t. Vg e M: ellgllar < sup (w,q)' (3.7
weXx\{0} wlx
Equivalently, we can rewrite (3.7) as follows:
b
Jep >0 st cp < inf sup M (3.8)

= geM\{0} wex\{o} [[wllx llqllar

The condition (3.8) (or, equivalently, (3.7)) is referred to as the inf-sup condition.
Assuming that the bilinear functional b satisfies the inf-sup condition (3.8) (or, equivalently
(3.7)), let us return to the problem of finding a unique p € M such that

b(v,p) = L(v) Yo € X, (3.9)

where L(v) := £;(v) — a(u,v), with u € V as identified above (i.e., a(u,v) = £;(v) for all v € V;
and hence £(v) =0 for all v € V). As both £¢(-) and a(u, -) are bounded linear functionals on X
the same is true of £(-). We have the following crucial result.

LEMMA 3.1. Suppose that b(-,-) is a bilinear functional on the cartesian product X x M of
two Hilbert spaces X and M over the field of real numbers, such that b is bounded in the sense
that (3.1b) holds, and b satisfies the inf-sup condition in the sense that (3.7) holds. Let V be the
closed linear subspace of X defined by (3.4) and suppose that L is a bounded linear functional on
X such that L(v) =0 for allv € V.. Then, there exists a unique p € M such that

b(v,p) = L(v) Yo € X. (3.10)

We need to make some preparations before embarking on the proof of this lemma, including
the statement of an auxiliary result, Lemma 3.2, which we shall prove below. Having done so, we
shall be ready to prove Lemma 3.1.

Let B : X — M’ be the linear operator defined by

(Bv, q) = b(v,q) Vve X, VYgeM,

where M’ denotes the dual space of M, and, on the left-hand side, (,-) = (-,-)p am. Analogously,
let B’ : M — X’ denote the transpose of the operator B, where X’ denotes the dual space of X;
ie.,

(B'q,v) =bv,q) YveX, VgeM,

where now on the left-hand side (-,-) = (-,-)x/ x. As b(-,-) : X x M — R is a bounded bilinear
functional, it follows that B and B’ are bounded linear operators.

REMARK 2. Note that V = Ker(B). The coercivity assumption (3.6) is therefore frequently
referred to as coercivity on the kernel (of the operator B, that is).

We are now ready to state and prove the auxiliary result alluded to above, which we require
in our proof of Lemma 3.1.

LEMMA 3.2. Let V be defined by (3.4) and let V° :={g € X' : (g,v) =0 Vv e V}. The
following three properties are equivalent:
(a) There exists a positive constant ¢, such that

inf  sup 0D (3.11)

aeM\{0} yex\ (o} llvllx llgllar =
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(b) The operator B’ is an isomorphism from M onto V° and

1B'qllx+ > cbllql|ar Vq € M; (3.12)
(¢) The operator B is an isomorphism from VL onto M’ and

|Bollar > epllvllx Yo e VE (3.13)

Here, V* denotes the orthogonal complement of the closed linear space V' of the Hilbert
space X, where orthogonality is understood with respect to the inner product of X.

Proof.
1) Let us show that (a) < (b). Thanks to the definition of the operator B’ : M — X', (a)
is equivalent to demanding the existence of a positive constant c;, such that
(B'q,v)

sup > cpllqllm,
veXx\{o} vl x

which, in turn, is equivalent to (3.12). It remains to prove that B’ : M — V° is an
isomorphism. It follows from (3.12) that B’ is a one-to-one operator from M onto its
range R(B’). Moreover since B’ is a bounded linear operator, which, by (3.12), has a
bounded inverse (B’)~! : R(B’) — M, we deduce that B’ is an isomorphism from M onto
R(B’). Thus, in particular, R(B’) is a closed subspace! in X’. The closed range theorem
then implies that

R(B') = [Ker(B)]° = V°.

Thus we have shown that (a) < (b).

(ii) Next we show that (b) < (c). To this end it suffices to prove that V° can be identified
isometrically with (VV1)’. We prove this as follows. For v € X, let v denote the orthogo-
nal projection of v onto V+ (in the inner product of the Hilbert space X ). Then, to each
g € (V1) we associate an element § € X’ defined by

(§,0) = (g,v ) Yv e X.

As vt = 0 for each v € V, it follows that (§,v) = 0 forallv € V;i.e., § € V°. Furthermore,
the correspondence g +— § maps isometrically (V+)" onto V°. Thus we have shown that
(V1) and V° can be identified. Hence (c) follows from (b) by transposition, and vice
versa. Therefore (b) and (c) are equivalent.

That completes the proof of the auxiliary lemma. O

We are now ready to prove Lemma 3.1.

Proof. [of Lemma 3.1.] Thanks to the assumptions of the lemma, £ € V°. As the inf-sup
condition is also assumed, we deduce from the equivalence of (a) and (b) in Lemma 3.2 that B’ is
an isomorphism from M onto V°. Thus, there exists a unique element p € M such that B'p = L;
equivalently, b(v,p) = (B'p,v) = (L,v) = L(v) for all v € V. That completes the proof. O

We now move on to the general case, when ¢, # 0.

Case 2: Suppose that there is an element ug € V1 such that b(ug, q) = ¢y4(q) for all

g € M. Then, by replacing w in (3.2) with u — wug, problem (3.2) is transformed into (3.3) and the
existence of a solution to (3.2) thus follows. Uniqueness of the solution to (3.2) follows from the
fact that (0,0) is the unique solution to (3.3) with £; = 0.

IThe proof of this is simple: suppose that (gn)nen is a sequence in M such that B'q, — w in X’ as n — oo.
Then (B’gn)nen is also a Cauchy sequence in X’. By (3.12), (gn)nen is then a Cauchy sequence in M. As M is
a Hilbert space, and therefore every Cauchy sequence in M converges, it follows that there exists a ¢ € M such
that g, — q as n — co. As B’ is a bounded linear operator, it then follows that B’q, — B’q in X’ as n — oo.
However, by the uniqueness of the limit B’q must coincide with w; thus we have shown that the limit w of the
sequence (B'qn)neny C R(B’) is also contained in R(B’). Consequently, R(B’) is closed in X’.
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It remains to show that there does indeed exist an element ug € V+ such that b(ug, q) = £,(q)
for all ¢ € M. In fact, we shall show that there exists a unique such element ug. It follows from
the equivalence of (a) and (c) stated in Lemma 3.2 that the inf-sup condition (3.7) is equivalent to
B being an isomorphism from V- onto M’. Hence, the assumption of Lemma 3.1 that the inf-sup
condition (3.7) holds implies that for each ¢, € M’ there is a unique element uy € V+(C X)
such that Bug = ¢,. Thus we have shown the existence of a unique ug € V+(C X) such that
b(uo,q) = £y(q).

Having dealt with both Case 1 and Case 2, we summarize our findings in the following result.

THEOREM 3.3. Suppose that X and M are two Hilbert spaces over the field of real numbers,
with norms ||+ ||x and || ||a induced by the inner products (-,-)x and (-, ), respectively. Suppose
further that a(-,") : X x X — R and b(-,-) : X x M — R are two bounded bilinear functionals
(i.e., (3.1) holds) and £y : X — R and £, : M — R are bounded linear functionals on X and M,
respectively. Suppose further that V is defined by (3.4), that a is coercive on 'V (i.e., (3.6) holds),
and b satisfies the inf-sup condition (3.7). Then, there exists a unique pair (u,p) € X x M that
solves the variational problem (3.2).

Let us illustrate the relevance of this abstract result by applying it to a specific example, the
Stokes equations, to deduce the existence of a unique weak solution to these equations.

EXAMPLE 1. Consider the bilinear functionals a(-,-) and b(-,-) defined by (1.2b) and (1.2¢),
and the linear functional ¢ defined by (1.2d), with £ € L*(Q)%. We note that X and M, as
defined in Section 1.1, are Hilbert spaces, when equipped with the Sobolev seminorm |'|H1(Q)d =
[Vl L2(q)axa and the L*(Q) norm ||-||2(q), respectively. By the Cauchy-Schwarz inequality a(-, -)
and b(-,-) are bounded bilinear functionals, and, by Poincaré’s inequality, £¢ is a bounded linear
functional on X; i.e., £y € X'. Further, we have that

a(v,v) = \Vﬁp(sz)d = [Ivl%
for all v € X, and therefore, in particular,
a(v,v) = |Iv[k

forallveV={veX:V.-v=0}={veX:bv,q) =0 Vqe& M}. Finally, one also has the
following inf-sup condition

(V *V, Q)L2 Q
allglre < sup ——— 2O

Vg € Lj(%),
vemp@aoy [Vl @p

with a positive constant ¢y, = (), proved by Ladyzhenskaya [8] (see also [9]), which implies the
validity of (3.7). Thus we deduce the existence of a unique weak solution (u,p) € HE(Q)% x L3()
to the Stokes equations (1.1).

4. Discrete mixed formulation. Suppose that X;, € X and M, C M are (in practice,
finite-dimensional) linear subspaces of the Hilbert spaces X and M, respectively, parametrized by
a positive parameter h € (0,1). Let us consider the following approximation of problem (3.3):
find up, € X, and pp € M), such that

a(uh,vh) + b(vh,ph) = Ef(vh) Y, € Xy, (4.1&)
b(uh, qh) =0 th e My, (41b)

Let us consider the closed linear subspace V}, of the linear space X}, defined by
Vi, = {’Uh c Xy b(Uh,qh) =0 th S Mh} (42)

As 0 € V},, the set V}, is nonempty.
It is important to note at this point that since M}, is a proper subspace of M the fact that
b(vn,qn) = 0 for all g, € M}, does not imply that b(vy,q) = 0 for all ¢ € M; hence if v, € V},
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it does not follow that vy, € V. For the same reason, if the bilinear functional b(-,-) featuring in
(3.3) satisfies the inf-sup condition (3.7) it does not automatically follow that an analogous inf-sup
condition will hold with X and M replaced by X, and M} and w € X and ¢ € M replaced by
wp, € Xj, and g, € My, in (3.7). This, in turn, will be a source of difficulties in the construction of
finite element approximations to mixed variational problems, since the validity of a discrete inf-sup
condition is not inherited from the continuous problem, but has to be independently verified for
each particular choice of spaces (X}, M},). We shall return to this point later. First however we
shall derive a bound on the error between u and wy, in terms of the best approximation errors

inf — and inf -
oinf [|u—vnllx n of 1P — anlln,

which can be seen as an extension of Céa’s lemma from classical finite element theory to finite
element approximations of mixed variational problems.

THEOREM 4.1. Suppose, in addition to the assumptions of Theorem 3.3 that the bilinear
functional a is coercive on Vy, i.e.,

deg >0 st Yo € Ve a(vn,vn) > callvnl%- (4.3)

Then, there exists a unique function up € Vi, that satisfies (4.1a) for all v, € V3. Furthermore,
for such a up, € Vi, we have that

C, Cy
- <14 — ] inf — — inf — . 4.4
=l < (1452 int uonlx+ S int ol (4.4

Proof. As a(up,vp) = £y(vy) for all v, € V3, the existence of a unique u, € Vj, satisfying
(4.1a) for all v, € V}, follows from the Lax—Milgram theorem.

By taking v = wy, € V}, C X in (3.3a) and subtracting the resulting equation from (4.1a) with
vp = wp, € Vi, we have that

a(u—up,wn) = a(u, wy) —alun, wy) = Ly(wp) —b(wp, p) —a(up, wp) = —b(wn,p) = —b(wh,p—qn)
for all g, € M},. Therefore,
a(u — up,wp) + b(wp,p—qrn) =0 Ywp € V), and Vg, € My, (4.5)

Let us consider any v, € V. Then, by noting that u, € Vj, and therefore u;, — vy, € V3, and by
applying (4.3) followed by (4.5) with wy, = up, — v, we have that

callun — vnll% < alun — vn, un —vn)
= a(u — vp,up — vp) + alup, — u,up — vp)

= a(u — vp, up — va) + b(un — va,p — qn) Yan € My,

Hence, by (3.1), and dividing the resulting inequality by ¢, ||un — vi||x, we deduce that

C Cy
lun, —vpllx < ?ﬂ||u,vh||x+?“p,qh||hj Yan € Mp,.

a a

The proof is then completed by inserting this inequality into the second term on the right-hand
side of the following triangle inequality

lu —unllx < |lu—ovnllx + [lun — vallx,

and taking the infimum over all vy, € V}, and all q;, € M},. O

The main point of Theorem 4.1 is that the error w — up can be bounded in terms of the best
approximation errors inf,, ev;, ||u— v || x and infy, ear, ||[p — gnllm by assuming boundedness of the
bilinear functionals @ and b on X x X and X x M respectively, and the coercivity of a on V U V},.
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As V;, may be a rather small set (without a further assumption on b, at least, which we shall
next make in Definition 4.2), the approximation properties of V}, may be quite poor. Nevertheless,
Theorem 4.1 guarantees that, under its hypotheses, u is at least stably determined. Bounds
on p — pp on the other hand require additional assumptions; in fact, under the assumptions of
Theorem 4.1 alone, the function p, may not even be stably determined, and, as a matter of fact,
there is no reason why pj should even be unique.

DEFINITION 4.2. We shall say that the family of spaces {(Xp, Mp)}n>o satisfies the (discrete)
inf-sup condition, if there exists a constant ¢, > 0, independent of h, such that

e, < inf sup M (4.6)
gn€Mp\{0} 5, e X, \ {0} ||UhHX||QhHM

A remark is in order at this point: we have used the same symbols ¢, and ¢, for the discrete
coercivity and inf-sup constants in (4.3) and (4.6), respectively, as for their counterparts appearing
in the coercivity and inf-sup conditions (3.6) and (3.7), respectively, for the continuous problem.
This was done purely for the sake of notational simplicity: there is no reason of course why the
constants ¢, and ¢, in the ‘continuous’ coercivity and inf-sup conditions should coincide with those
in their discrete counterparts. Of course, if a(-,-) happens to be coercive on the whole of X, then
it is automatically coercive on both V and V},, with the same coercivity constant; this will be the
case with the Stokes equations (our Example 1.1), but not with the porous media equations (our
Example 1.2).

We are now in a position to show that if the discrete inf-sup condition (4.6) also holds, then
the function p, € M, is uniquely determined and the error p — py, is, much like, u — uy, bounded
in terms of the best approximation errors inf,, cv, |[u — vp||x and infy, e, [P — gnllas-

THEOREM 4.3. Suppose, in addition to the assumptions of Theorem 4.1 that the bilinear
functional b satisfies the discrete inf-sup condition (4.6). Then, there exists a unique solution
pair (up,pn) € Xp X My, to the problem (4.1). Furthermore, in addition to the bound (4.4) on
||lw — unl|x, the following bound holds:

C, C . C C, .
p—ph||M§<1+a> inf ||u—vh||X+<1+b (1—}—)) inf |lp—aqnllm.  (4.7)
Cp Cq v EVY Cp Cq qn€Mp,

Proof. The existence of a unique solution pair (up,pp) follows from Theorem (3.3), with X
and M replaced by X, and Mj,. By noting the discrete inf-sup condition (4.6), the identity (4.5),
and the bounds (3.1), we have that, for any ¢, € My,

b(w —
colgn—pala < sup XWmdn—Pn)
whexm\foy  llwallx
_ b(wn, p — pn) + b(wh, gn — p)
= sup
wh€X,\{0} |wnllx
< sup |b(wn, p — pn)| + |b(wn, gn — p)|
wieX,\{0} [|wn |l x
_ b _
—  swp |a(u — un, wn)| + [b(wn, gn — p)|
wneX,\{0} [|wn |l x

< Cullu = unllx + Cyllp — qnllnr-

Hence, by the triangle inequality,

C Cy
= pallnr < S llu— unllx + (1 T ) b= anllar.
Cp Cp

Taking the infimum over all g, € M} and substituting (4.4) into the resulting inequality then
completes the proof. O
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The aim of the next result is to show that, by virtue of the discrete inf-sup condition (4.6), the
term inf,, cv, ||u — v ||x appearing in (4.4) and (4.7) can be replaced by inf,, cx, ||[v — vn|lx. As
X}, is typically a strict superset of V4, it is expected that inf,, cx, ||[u—vp|x < inf,, ev;, |[u—vn|x-

THEOREM 4.4. Under the hypotheses of Theorem 4.3, the unique solution pair (up,pn) €
Xpn X My, to the problem (4.1) satisfies the following error bound:

_ _ <c( inf |ju—- inf ||p— , 48
o=l + I = pullar <€ (ing, = onllx + i, I~ anle ) (1.9

where C = C(cq, b, Co, Cyp) is a positive constant, independent of h.

Proof. Let vy, € Xp and choose wy, € V}, such that vy, — wy, € Vhl. Thanks to the discrete
inf-sup condition (4.6) and part (c) of Lemma 3.2, with X, M and V replaced by X3, M, and Vj,,
respectively, we have that

b _
eollwn —vallx € sup D= UniGh)
aemn(oy  llanlln

As b(wp, qn) = 0 and b(u, qn) = 0 for all ¢, € M), C M, it follows that

bu—vh h
cpllwp, —opllx < sup bu — v, gn)

< Cpllu —vn||x-
anem\{0y  llanllar

Hence, by the triangle inequality,

Cy
lu—walx < llu—vnlx +[lvn —wallx < |1+ . llw—vnllx.

Thus, in particular,

. C
1an lu —wp|lx < (l—i- Cb> llw — vnllx Yo, € Xp,.
b

whrEVh

As the left-hand side of this inequality is independent of vy, it follows that

. C .
inf ||lu—wpllx < (1+b> inf |lu—vplx.
wp €V}, Cp v €Xn

Substituting the last inequality into the right-hand sides of (4.4) and (4.7) and summing the
resulting inequalities we obtain (4.8). That completes the proof. O

5. Checking the discrete inf-sup condition. A helpful device for verifying the discrete
inf-sup condition in instances when the (continuous) inf-sup condition is already known to hold
is the following result, due to Fortin [5]. Fortin’s criterion is stated here in the case of Hilbert
spaces; a more general version, formulated in Banach spaces, and one which also shows that the
criterion is not just sufficient but also necessary for the validity of the discrete inf-sup condition,
can be found in [4].

THEOREM 5.1. Let X and M be two Hilbert spaces and suppose that b : X x M — R is a
bounded bilinear functional such that the inf-sup condition (3.7) holds. Let Xp, C X and My, C M.
Suppose that:

o There exists a constant Cy > 0 such that for each v € X there is an element II;,(v) € X},
such that b(v, gn) = b(IIx(v), qn) for all g, € My, and |11 (v)|x < Cy|lv| x-
Then, the discrete inf-sup condition (4.6) also holds.
Proof. Let qi, € My,; then,

II
sup b(Uh,Qh)2 sup b( h(v)th)_ sup b(v, qn) > 1 b(v, qn)

= > — sup .
onexn\{0} vnllx vexvior Mr(@)llx  vex\goy Ma(W)llx — Cf vexyioy Ivllx

Since the right-most expression is bounded below by (cy/Cf)||qn| s thanks to (3.7), we deduce
that the discrete inf-sup condition (4.6) also holds, with the discrete inf-sup constant defined as
the ratio of the continuous inf-sup constant and Cy. O
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6. Examples of inf-sup stable and inf-sup unstable finite element spaces for the
Stokes equations. We close our exposition with examples of finite element spaces that satisfy
the discrete inf-sup condition, and we also list examples of finite element spaces that violate it.
We start with the latter. Our exposition here is based on Sections 4.2.3-4.2.5 of [4].

6.1. Counterexamples.

1. The [Q1]?/Py pair. The most well-known example of a pair of finite element spaces that
violates the discrete inf-sup condition for the Stokes equations in two space dimensions is
that of continuous piecewise bilinear finite elements for the velocity and piecewise constant
finite elements for the pressure. Suppose that  := (0,1)? and consider a uniform square
mesh on Q of spacing h := 1/N, where N is an even integer > 2. Denote by a;; the point
in the mesh whose co-ordinates are (ih, jh), and let K;; denote the closed square in the
mesh whose bottom left corner is a;;. We then define 7, as a collection of mesh cells Kj;;,
,j=0,...,N —1. R
For a mesh cell K;; € Tj, we denote by Tk, : K — K;; the C'-diffeomorphism that maps
the canonical (or master, or reference) element K= [0,1]? onto K. Let

Xh = {Vh (S [O(Q)P : VKU (S 77L7 Vi OTK” S [Q1]2, Vh|8Q = 0},
My, = {qn € L§(Q) : VK5 € Th, pno Tk, € Po}.

In order to demonstrate failure of the discrete inf-sup condition it suffices to show the
existence of a nonzero p, € Mj, such that b(vi,pn) = — [(V - vi)prdz = 0 for all
v € Xp.

To this end, we consider any function p, € M} and denote its (constant) value over the
interior of the mesh cell Kj;; by Pivl il Then, by the divergence theorem and noting
that the trapezium rule integrates univariate affine functions exactly, we have that

J.

where u and v denote the two components of the vector function vy, and u; ; := u(ih, jh),
v;.; == v(ih, jh), and so on. Integrating over the entire domain followed by summation by
parts yields

(v.vh)phdx:pZ#%,jJr%/ vy, - nds
oK

g j

1
= 5hpip s iy (Wigny + g1 g1 + Vg0 + Vigen — Uig = Uige1 — Vig — Vig1j),

N-1
b(Vmph)Z—/ﬂ(V'Vh)Phdfz— > /K”(V'Vh)phdx

i,j=0
N—-1

=12 > (uij(O7P)is +0i5(95p)is)
Q=1

where
h 1
(Orp)ij = ﬁ(PH%,ﬂ% TPivij-1 ~Pimlj+} —Pw%,jf%)v
h 1
(029)i = g (Pigg gt T Disd jrd —Pisd -t —Piclj—1)-

We deduce that b(vy,pn) = 0 for all vj, € X, if, and only if, for all 4,5 =1,..., N — 1, we
have that

Pirgity =Pi-pi-3 304 Piogjid =Pirg -4
The set of solutions to this system of liznear algebraic equations, with N2 unknowns, is a
two-dimensional linear subspace of RY". One basis vector of this linear space is the N2-
component vector (1,1,...,1)T, corresponding to the constant field p;, = 1; however our
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assumption that M, C L2(2) demands that Jopndz = 0, and therefore the possibility
that p, = 1 (or any nonzero multiple of this function) is excluded as a solution. The
second basis vector of this two-dimensional linear space is an N2-component vector with
alternating entries +1 and —1, which corresponds to the piecewise constant, checker-board
like, field py such that pp|k,, = (—1)"*9 which is usually referred to as a spurious mode.
As the integral of such a checker-board pressure over Q is equal to zero (recall that N was
assumed to be an even integer and note that there are %N 2 mesh cells over which p;, =1
and the same number of mesh cells over which pp, = —1), it follows that p; € M \ {0}
and b(vy,,pr) = 0 for all v;, € X,. Hence,

b b
sup bV, pn) _ sup bvmrn) _g a2y = 1.

wnexn\(or IVellx  viexu\foy [Vala ()2

Thus we have shown that the inf-sup condition is violated by the pair of finite element
spaces (Xp,, Mp,).

2. The [P1]?/P; pair. Once again, we consider the open unit square Q = (0,1)?, and sub-
divide © into a square mesh of spacing h = 1/N, where N + 1 is a multiple of 3, but
we now further split each mesh square into two triangles with the diagonal of positive
slope. Let T; denote the resulting triangulation of Q. Let K denote the canonical (or
master, or reference) element defined as the right-angle triangle, with its right angle at the
point (0,0) and its other two vertices at (1,0) and (0,1). Let further Tx denote the C*
diffeomorphism that maps K onto K. We define the finite element spaces for the velocity
and the pressure as follows:

Xh = {Vh (S [C(ﬁ)]z VK € 771, vV OTK S [Pl]Q, Vh|aQ = 0},
My, :={qn € L3(Q) : VK € Ty, pro Tk € P}
Given a certain triangle K € 7, let us denote its three vertices by a1 k, a2 i, a3 xk and
consider a continuous piecewise affine pressure py such that on each triangle K € 7Ty one
has anzl Ph(am, k) = 0. This can be achieved, for example, by defining
pr(0,5h) for j=0,1,...,N as 0,+1,—1,0,4+1,—1,...,0,+1,—1;
pn(h,jh) for j=0,1,...,N as +1,-1,0,+1,—-1,0,...,4+1,—1,0;

etc.,
pn(l,jh) for j=0,1,...,N as —1,0,+1,—1,0,+1,...,~1,0,+1.
We have that, for each v, € X}, the function (V - vy )|k is constant for each K € T, and
therefore
o) = = [(Vovimds == 3= (vl [ s
Q KeTh K
3
K
== (v Vh)|K% > prlam.x) =0.
KeTy, m=1

By construction fQ prdx =0, pp, # 0, while b(vy,pr) = 0 for all v;, € Xj,. Thus we have
constructed an example of a ‘spurious pressure mode’ p, € M \ {0} that leads to the

violation of the inf-sup condition for this pair of finite element spaces.

After these two counterexamples, let us now present some examples of finite element spaces
that do satisfy the inf-sup condition. The proofs are omitted; the interested reader is referred to
sections 4.2.4-4.2.8 of [4] for further details.
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6.2. Examples.

1. The [P;-bubble]?/P; pair. The reason for the failure of the [P1]?/P; pair is that the finite
element space for the velocity is not rich enough to control the spurious pressure mode.
The idea behind the [P;-bubble]?/P; pair is therefore to enrich the velocity space. The
simplest way of achieving this is to add just one additional degree of freedom per element,
associated with the barycenter (center of mass) of the element.

Let us suppose that €2 is a bounded open polyhedron in R?, d = 2,3, whose closure Q
has been subdivided into simplices K that form a finite element mesh 7. Let K denote
the reference right-angle simplex, with barycenter C and consider the bubble function
b e HY(K), such that 0 < b < 1, b(C) = 1. A simple choice of such a function b is to take

d+1

b= (d+ 1)d+? H Aoy
i=1
where A1, ..., Ag41 are the barycentric co-ordinates on the simplex K. We then define

Py =Py (IA() @ span(b)
and we introduce the finite element spaces

Xy, = {vi, € [C(V]? : VK € Th, vio Tk € [P143]%, viloo = 0},
My, == {qn € LO(Q) : VK € T, qno Tk € Pi}.

This pair of spaces then satisfies the discrete inf-sup condition (4.6). The proof, based
on Fortin’s criterion, can be found in Lemma 4.20 in [4]. Tt is also known (cf. Theorem
4.21 in [4]) that, on shape-regular families of finite element meshes {75 },~0, one has the
approximation properties

f — <
vhlgxh [u — vl (aye < Const. hllu|| g2 (q)a

and

qlg]f/[ lp = qnllL2(@) < Const. hl|p|| g1 (q),

and therefore, by (4.8) one arrives at the error bound
lu—up| g qya + 1P — pullL2(0) < Const. A ([[ull gz2(0ye + ol ar(0)) »

assuming that the exact solution (u,p) € (H2(Q)? N H(Q)?) x (HL(2) N LE(Q)).

2. Taylor-Hood element and its generalizations. Suppose, again, that € is a bounded open
polyhedron in R?, d = 2,3. We shall retain the P; finite element space for the pressure,
but instead of enriching the space of piecewise linear functions with a bubble function on
each element for the velocity, we shall replace it with the space of continuous piecewise
quadratic polynomials. The resulting pair of finite element spaces

Xy, i={vn € [C(Q)* : VK € Th, vio Tk € [Po]?, vi|oa = 0},
My, :={q, € C(Q) : VK € Ty, g0 Tic € P},

is called the Taylor-Hood element. The pair of spaces (Xp, M) satisfies the inf-sup
condition (cf. Lemma 4.24 in [4]); furthermore, on shape-regular families of finite element
meshes {75, }r>0, one has the approximation properties

v;}g(h [u = Vi g1 gy < Const. h?|[ul| ga(gya
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(9]

[10]

and
inf ||p— < Const. h®
,nf [P — aqnllz2() < Const. 7 ||p|[ 2.
and therefore, by (4.8) one arrives at the error bound
[u —uplgr)e + P — pallz2 (o) < Const. h? (Hu||H3(Q)d + ol az)) »
assuming that the exact solution (u,p) € (H3(Q)9 N H(Q)?) x (H?(Q) N L3(Q)).
Higher order generalizations of the Taylor—-Hood elements also exist: it is known that the
pairs of velocity/pressure finite element spaces [Px]?/Pj_; on simplices, and [Qx]¢/Qp_1
on quadrilaterals (d = 2) or hexahedra (d = 3) satisfy the inf-sup condition for all & > 2.

The associated bound on the approximation errors for the velocity and the pressure is
then of the form

[u —un| g1y + [|p — Prllr2(@) < Const. h* (||11||Hk+1(9)d + ||p|\Hk(Q)) ;

assuming that the exact solution (u,p) € (H**1(Q)? N HL(Q)9) x (H*(Q) N L3(Q)).

. Q2 /Py-discontinuous finite element. The continuity requirement on the elements of the

pressure space M}, in the basic Taylor-Hood finite element method can be relaxed. The
resulting finite element spaces, defined by

Xy, := {vi € [C(Q)]? : VK € Ty, v, o Tk € [Q2]¢, Viloa = 0},
My, = {qn € L3(Q) : VK € Ty, qn 0 Tk € Py},

satisfy the discrete inf-sup condition and exhibit the same asymptotic error bound as the
basic Taylor-Hood element (corresponding to k = 2 in the previous example).

It may be tempting to consider the pair of finite element spaces Q2/Q;-discontinuous.
This pair however does not satisfy the inf-sup condition: once again, the velocity space is
not rich enough to control spurious pressure modes.

There is an extensive library of inf-sup stable finite element spaces on both simplicial and
quadrilateral /hexahedral meshes in both two and three space dimensions. The interested reader
is referred to the references [1, 2, 4, 5, 6, 7], for example, for further details.
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