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Abstract

Networks of hundreds or thousands of sensor nodes equipped with sensing, computing and communication
ability are conceivable with recent technol ogical advancement. M ethods are presented in this report to
recover and visualize datafrom wirel ess sensor networks, as well as to estimate node positions. A

communi cation system is assumed wherein information from sensor nodes can be transferred to a
centralized computer for data processing, though suggestions are made for extensions to distributed
computation. Specifically, thisreport presents four topics. First, the notion of using network connectivity to
reconstruct node positions vialinear or semidefinite programming is explored. Random feasible node
placement and bounding methods are both found to increase in precision with the indiviua geographical
constraints. Second, the potentia effectiveness of two correl ation-based sensor data encoding schemesis
reported. Blind correl ation methods are found to provide meager compression while semi-blind correlation
can effectively reduce bandwidth requirements by one-haf. Third, trgjectory reconstruction through a
sparse sensor network is used to track objects with expectation-minimization techniques. Traectories can
be distinguished providing that sufficient spatial or tempora separation exists. Fourth, optica flow
algorithms are used to visualize time-varying continuous flow around the network. A quditative analysis of
the reconstructed flow for severa case studies suggests aminimal node density as related to flow speeds.
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Chapter 1 - Introduction

I. THE EMERGENCE OF WIRELESS SENSOR NETWORKS

The maturing of integrated circuitry, microel ectromechanica systems (MEMS) and
communi cation theory has fomented the emergence of wireless sensor networks and precipitated the
economic and computational feasibility of networks of hundreds or thousands of self-sufficient sensor
nodes. Each node has the ability to sense elements of its environment, perform simple computations, and
communicate either among its peers or directly to an externa observer. Larger node numbers allows for
sensing over larger geographical regions with greater accuracy than previously possible.

Thework in thisreport is principally motivated by the BSAC Smart Dust project, aimingto scale
sensing communication platforms down to cubic millimeter volume [1]. Combining CM OS technol ogy for
processing logic, MEM S corner-cube reflectors [2] for passive communication and thick-film batteries for
power, Smart Dust strives to achieve minimal dimension and power consumption with a many-to-one
communi cation paradigm. The most promising methods for short and long range peer-to-peer
communications are RF and optical media[3], respectively. Progress is being made to integrate both of
these mediaat the chip level [4], while macroscopic sensor node systems have been demonstrated [5],[6].
Ad hoc routing protocol s have been devel oped — information theoretic bounds are explored in [7] and
protocols are detailed in [8],[9].

Judging by the interest shown by the military, academia, and the media, innumerable applications
exist for Smart Dust networks. Exampl es include weather monitoring, security and tactical surveillance,
distributed computing, and camel tracking. The research documented in this report devel ops mathematical
constructs to define, explore and apply sensor network theory. The techniques are drawn from well-
established fields and applied to this nascent ream.

1. RESEARCH GOAL AND APPROACH

The goal of thisresearch isto apply centralized computation to sensor networks with the
philosophy that any information contained in or generated by a sensor network should be accessible to the
outside world. McLurkin’s report explores many of the same problems from a strictly distributed standpoint
[10]. To reject the potentid of centralized computation entirely may be to neglect many powerful
capabilities. Asthe networks scale, sheer bandwidth and computationa requirements will eventually render
impossible the use of an externa observer to monitor or completely control sensor networks, but the
methods presented herein perform acceptably for networks of hundreds of nodes. Where scaling constraints
are apparent, they are explained in detail .

All attempts are made to preserve mathematical rigor, though illustrations and heuristics are
sometimes sufficient. It isregrettable that this report deals exclusively with simulation, it is hoped that the
algorithms will soon be tested in redity. Errors and shortcomings of the research have been candidly
documented; it is the equinoctia union of success and failure that allows researchers to progress and avoid
the repetition of colleagues mistakes.

It is unnecessary that the chapters of this report are read seriatim; aside from the introduction, each
chapter presents an independent study with corresponding introductory and conclusive sections. Relevant
references are provided throughout the text and detailed at the end of each chapter with the following
section providing an overview.

1. RESEARCH OVERVIEW

The material presented in this report may initially seem acollection of disconnected topics related
only distantly under the banner of sensor network theory. Thisis partially true; each chapter grew from the



exploration of aprecise and isolated problem. There is still some logic behind this apparent randomness,
however, in that the mathematics presented provide a path from network definitions to initialization to
application.

A. Prdiminaries

The following chapter details the definitions and the fundamental simulation methods that form
the basis of the remainder of this report. An abstract definition of awireless sensor network appropriate for
thiswork is given aong with the parameters that serve to compare networks. Methods of network creation
for simul ation purposes, along with their impact on the network parameters, are discussed. Findly, abrief
discussion of homogeneity and symmetry-breaking as related to the research is presented.

B. Position estimation

In Chapter 3, convex optimization techniques are employed to estimate unknown node positions
based on known node positions and connectivity-imposed constraints. Linear and semidefinite
programming methods based on physical communication geometry provide both feasible solutions and
upper bounds on the position estimation problem. The chapter focuses on radia constraints to model
broadcast communication systems and angular constraints to model optica communication systems.
Within each model, a performance metric is defined to explore the effects of network connectivity and how
well the agorithms function in idealized circumstances. The discussion concludes with a set of possible
improvements and extensions of the presented methodol ogy.

Given: Node connectivity (not required to be complete)
Output: Node positions with bounded uncertainty

C. Corrdation coding

Chapter 4 applies a data-coding scheme that exploits correlation among individua sensor nodes to
reduce the overall network communication bandwidth used. Initially, the attempt is made to reduce the
message length from most nodes in the network by sending partial sensor data information without any
regquirement for inter-node communication. The full information can be recovered by considering datafrom
neighboring nodes in the same correlation group. For data-generating functions with low spatia frequency,
the proposed coding scheme offers marginal bandwidth reduction with amodicum of error introduction. A
similar coding scheme requiring one additional broadcast message per correlation group results in exact
message recovery with more substantial reductions in bandwidth.

Given: Node positions and sensor readings

Output: A reduced-bandwidth coding method to communicate all sensor readings

D. Tracking in a sparse network

Chapter 5 applies the expectation-maximization procedure to track objects through a sparse
network. An object passing through the sensing radius of a node flags this node for use in the computation.
The positions of flagged nodes are used as data to reconstruct the most likely path or paths that passed
through the network. The a gorithm provides an adjustable threshold for determining the number of paths
and for fitting each path to the best member of a specified family of curves. The addition of time stampsto
the object sensing events at each node alows for the reconstruction of the spatio-temporal trgjectory of the
object through the network. Not only does this provide additional logica distance to distinguish between
similar trgjectories, overal performance isincreased as aresult.

Given: A set of nodes flagged by an object
Output: The path (time-independent) or trgjectory (time-dependent) of the object through the network

E. Visualization of temperature flow

Chapter 6 uses optica flow methods from computer vision to summarize properties of temperature
flow in the sensor network. Functions representative of changing temperatures in the network lead to time-



varying sensor data at each node. The presented methods use al sensor readings to determine the
qualitative properties of the temperature flow in the environment by devel oping a node-pixel analogy. The
required network parameters for accurate recovery are examined in addition to the type of flow that can be
recovered. Function frequency is pivota for flow recovery, both in the spatial and temporal sense. The
former defines the required density of sensorsin the network while the latter determines the minimum
sampling rate. Canonical two-dimensional flows are examined in detail, forming the basis for arbitrary
continuous function recovery.

Given: Sensor readings at known positions and times

Output: A set of vectors describing temperature flow in the network

V. COMMUNICATION PROTOCOL

Thiswork assumes that there is some working protocol sufficiently competent to permit
communi cation between any node in the network and an external observer. This could be accomplished via
individua optical communication from the observer to each node asin the Smart Dust model, through one
of countless ad-hoc routing methods, or through clustering. However, the position estimation chapter
requires that nodes have some knowledge of their neighbor’ s location, so the Smart Dust model is not
applicable. Theissue of which protocol should be chosen or how such methods could be implemented is
not considered.
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Chapter 2 - Preliminaries

|. DEFINITION OF A SENSOR NETWORK

For this work, the mathematical abstraction of a sensor network isthat of an undirected graph.
Nodes of the graph represent sensors in the network while edges represent bi-directional communication
links. The latter are characterized by two nodes having the ability to send information to one another and
may be defined as having noisy properties. Nodes have computational ability that is physically limited but
these limits will not be considered restrictive for the a gorithms discussed. Nodes are situated at a physical
position (often in the x;-x, plane) and are able to sense physica properties (e.g. temperature, magnetic
field) at their location.

To define asensor network, we require the following information:

{V,E}: aset of n, (often abbreviated as n) vertices and n edges
X , 1 =1to n: the node positionsinR?or R*

T;,i = 1ton: the sensor readings a each node in R

The simplification that communication is possible between two nodes if their physica separation
isless than the * maximum communication distance” Rwill be used. A connected graph is one wherein any
two nodes have an uninterrupted path between them following edges of the graph. In the physical context,
this means that any two nodes can communicate with afinite number of hops between them. Only
connected graphs are considered - plura subgraphs with no communication link among them can be
considered independently for this work.

To compare one sensor network with another, the following parameters are useful:
[x1max, x2max] : A rectangular measure of the size of the area containing the network in R?
n : The number of sensor nodesin N
R : The maximum communication distancein R
I : The distance between node‘ & and node ‘b’ in R?

2ngn : The average connectivity of anode in the network in R

D : The distribution of nodesin the network (e.g. random, at grid locations, Gaussian about a
center)

1. CREATION OF A SENSOR NETWORK

The method of creation for a sensor network depends on the variables described above. The
simplest case is anetwork with nodes at regular intervals, in which case nodes are simply placed at grid (or
hexagon, etc.) locations. A more subtle technique is required to form a network with random node locations
while preserving connectedness. Three methods for simulated network creation are presented, each with
some restriction on true randomness. However, any of the methods discussed will be considered sufficient
for simul ating random networks in this study.



A. Random seed node networks

One method of network generation places a seed node at the origin. An angle is selected at
random in [0 2p] and adistance a random in [0 R]. The second node is then placed at the selected angle
and distance from the first. The third node is placed according to the same criteriarelative to either of its
predecessors (selected at random) and so forth. The downside to this method is that nodes situated near the
origin (typicaly those placed first) will generally have increased connectivity relative to those farther away
(placed later). Thisresultsin anormal distribution of connectivity in the network - in order to simulate
fairly, the node names should be shuffled following placement to ensure that an algorithm testing node 1,
for example, does not study an artificially high connectivity. This placement method alows for the
specification of n and R with the remaining network propertiesillustrated in Figure 1. This method
generates a distribution Gaussian in the x; and x; directions with amean of zero (i.e centered at the initial
seed node). For a 100-node network built from random nodes, a standard deviation empirically determined
to be near 0.72R in both x; and X, is obtained.

B. Sequential seed node networks

A variation places anode exclusively relative to its direct predecessor (i.e. node 4 placed relative
to node 3) in a2D random walk. This has the effect of spreading the network out over alarger geographical
area, maintaining a Gaussian distribution centered at the origin and with a standard deviation of 1.55R. As
shown in Figure 1, the mean number of connections per node is reduced by sequentially building the
network.

Mean connectivity obtained by two different network generators
45 T T T T T T T T T
— Build from random node
Build from last node

40

Mean number of connections per node

0 10 20 30 40 50 60 70 80 90 100
Number of nodes placed

Figure 1. lllustration of the choice between high and low average connectivity for the two methods of
generating a connected graph.

C. Subnetwork extraction

An aternative method for random placement involves placing nodes one at atime with random x;
position in [0 X1ma] @and x2 position in [0 Xomax] - From this set, R determines the edges of the graph. The
largest connected subgraph is then used asthe {V ,E} set for the sensor network. This allows for
specification of the areaand R but not n and generally displays alower average connectivity than the
previous method. The effect of node density on the number of subnetsis summarized in Figure 2 and
Figure 3.



Disconnected subnets drawn from randomly placed nodes
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Figure 2. Asthe size of the placement areaincreaseswith the same number of randomly placed
nodes, the number of disconnected subnets grows. At the lower extreme, only one subnet isformed
with all the nodes being connected. Each data point represents 10 randomly generated networks.
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Figure 3. The size of the largest subnet decreases asthe dimension of the placement area increases.
At thelower extreme, almost all the nodesbelong to the largest subnet. Each data point represents 10

randomly generated networks.

The data presented in the previous two figures is expanded for the 20 node case in Figure 4. In this
plot, the lines from both previous plots are refined and plotted concurrently.



Data expanded for 20 node networks
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Figure 4. Thelargest subnet dataisexamined more closely for a 20 node network. The transition
period of the curve isbetween square side lengths of 4R and 8R. Below this, ailmost all nodesare
connected in one large network. Above thisregion, most nodes areisolated.

There is a catastrophic decrease in network connectivity as the area of node distribution increases. An
alternate view isthat there is aminimum density of randomly distributed nodes that must be present
throughout the region to statistically expect to maintain a highly connected network. When random
networks are used in this study, they will either be chosen from the dense region to the left of the transition
or from the sparse region in the transition. To the right of the connectivity calamity, the network istoo
weakly connected to warrant attention. The selection of the largest subgraph introduces some systematic
trend in the distribution corrupting it from being totally random.

Typical 10-node network generated with subnet algorithm Typical 10-node network generated with sequential seed node algorithm

35
0.2f
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4 4.5 5 1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

Figure5. Connectivity obtained with the two different types of network-generation algorithms. In
(a), low connectivity is obtained by selecting a 4x4 areawith 15 nodes and extracting the largest R=1
subnetwork. In (b), the parameters of 10 nodes and R=1 are given and the resulting connected
network is generated with high connectivity. The regions are drawn with different scale.

[11. UNIQUE NODE NAMES

In simulation, there is atemptation to assume qualities of a problem that make it easier to manage;
one must take care not to assume away many of the details that make the physical implementation of a
problem difficult. One such example in our case is the notion of nodes having a unique name to break
symmetry in the network. It is an easy oversight to simply name nodes from 1...n in simulation without
thought, but solving thisin genera is perhaps a cumbersome task. A solution is to hardcode a unique name



into each node of the system, but this may be difficult from an organizational perspective. Another
acceptable solution is to have the network assign unique names in adistributed sense. To create aminimal
spanning tree in an asynchronous network, a problem equivalent to naming nodes, alower bound on
message roundsis O(n log n) as developed in [11]. A more direct solution is to have nodes pick names at
random during their initialization phase.

Providing that alarge enough name sample size istaken, the probability of any two nodes
sel ecting the same random name will be small. The issue of randomness should be addressed — taking
samples from the least significant bit of any sensor should fulfill this requirement. The size of the name
space must be established at start-up, how long should the names be? This problem isisomorphic to the
“ birthday paradox” [12]. In this problem, the author considers the expected number of people required
before any two have the same birthday. In our problem, the expected number of nodes that can be named
before aduplicate name is randomly generated from a possible set of m choicesis:

E{n} =2+ m-1_ (m- 1)(2m- 2, (m- 1)(r2.l )1 o
m m m
For names of length 2™, aplot of E{n} is shown in Figure 6.

Expected number of nodes named before duplicate ID given
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Figure 6. Expected number of nodesrequired to obtain aduplicate ID in the birthday paradox.

The magnitude of this result is somewhat surprising — from 2'® name choices, on the average, it
will take only about 320 random sel ections before a duplicate choice is made. The probability of
duplication can be made arbitrarily small with large enough names, but names are so prolific in the network
communication (possibly part of every single transmission) that any overhead should be carefully avoided.
A more intelligent method might provide some conflict resolution for duplicate names. In this case, we
could tolerate larger duplication probabilities — perhaps extending the possibility of acrisisto having4 or 5
nodes with the same name. The anaysis of the birthday paradox to this higher level of collisionis
developed in [13].

The issue of node names will be disregarded from this point forth — much of the other theory
presented may not scale to the upper bound established by a 16-bit name.

[11] N. Lynch, Distributed Algorithms, Morgan Kaufmann, 1996.

[12] M. Klamkin, J. Combin. Theory, vol. 3, pp.279-282, 1967.

[13] P. Flgolet, D. Gardy, L. Thimonier, “ Birthday paradox, coupon collectors, caching a gorithms and self-organizing
search” , Discrete App. Math., val. 39(3), pp.207-229, Nov. 1992.



Chapter 3 - Position Estimation

[. INTRODUCTION

A. Problemdefinition

In anetwork of thousands of nodes, it is unlikely that the designer will determine the position of each
node. In an extreme case, nodes may be dropped from the air and scatter about an unknown area. To
process sensor data, however, it isimperative to know where the datais coming from. Nodes could be
equipped with agloba positioning system (GPS) to provide them with knowledge of their absolute
position, but thisis currently acostly (in volume, money, and power consumption) solution. I nstead,
positiond information can be inferred from connection-imposed proximity constraints. In this model, only
afew nodes have known positions (perhaps equipped with GPS or placed deliberately) and the remainder
of the node positions are computed from knowledge about communication links. A less genera attempt at
solving for node positions within grid-located known beacons is proposed by Bulusu et al. [14].

This chapter describes feasible solutions to the position estimation problem using convex optimization
techniques. In the network shown in Figure 7, the solid nodes represent known positions (data) while the
open node positions are estimated (variables). If one node can communicate with another, a proximity
constraint exists between them. As aphysical example, if aparticular RF system can transmit 20m and two
nodes are in communication, their separation must be less than 20m. These constraints restrict the feasible
set of open node positions. Only planar networks are considered, but augmenting the methodology to 3-D is
straightforward. In summary:

Given: positions of solid nodes
Find: apossible position for each open node
Subject to: proximity constraintsimposed by known connections

@ Known position
O Unknown position
— Connection constraint

(x1.y2) (X3,y3)

(X2y2)

Figure7. Graph illustrating data and variables as vertices, constraints as edges.

Formally, the network is a graph with n nodes at the vertices (each node having a Cartesian position)
and with bi-directional communication constraints as the edges. Positions of the first m nodes are known
(X1, Y1, -+ Xms Ym,) @Nd the remaining n-m positions are unknown. The feasibility problem isthen to find
(Xm1, Y1, - Xny Yn) SUCh that the proximity constraints are satisfied. Note that there are constraints among
open nodes though their positions are unknown.

B. Mathematical tools

Efficient polynomial-time al gorithms based on interior-point methods exist for solving linear
programs [15] and semidefinite programs[16]. A linear program (LP) is a problem of the form:



Minimize  c'x (1)
Subjectto:  Ax=b

Geometrically, this amounts to minimizing alinear function over a polyhedron.

A generalization of the LP isthe semidefinite program (SDP) of the form:

Minimize  c'x

Subjectto:  F(X) = Fo+ xF1+ ...+ X,F,=0 2
Ax=Db
Fi = FiT

The inequality represents amatrix inequality on the cone of positive semidefinite matrices, i.e. the
eigenvalues of F(x) are constrained to be nonpositive. Thisis known as alinear matrix inequaity (LM1).
Again the objective function must be linear for SDP. Constraints can be stacked in either method. SDP will
be sufficient to solve al the numerical problemsin this paper though LP will be used where applicable
because of superior computational efficiency.

In two dimensions, each node has a position (x,y). For position estimation, asingle vector with all
the positions is formed representing x in (1) and (2):

X =[X2 Y1 oo X Yimees X1 Yimed oo Xa Vol
Thefirst mentries are fixed as data and the remaining n-m are computed by the a gorithm.

In genera, efficient computational methods are available for most convex programming problems.
Geometrically, aconvex set is one for which any two points in the set can be connected with aline entirely
contained in the set. Convex constraint models for RF and optical communication systems are presented in
section |1. Other convex constraints are also computabl e with the same a gorithms.

[1. CONVEX CONSTRAINT MODELS

A. Connections as convex constraints

Providing that the connectivity of the network can be represented as a set of convex position
constraints, the mathematical methods outlined in section | can be utilized to generate afeasible position
for all the nodes in the network. It is sufficient to consider connection constraints individually as both LP
and SDP methods allow for multiple constraints to be collected into asingle problem. The question
becomes: “ given the position of node A, what is the set of possible positions for node B?" The remainder of
this Section is devoted to two models of thisfeasible set.

B. RF communication — radial constraints

The RF transmitter of awireless sensor node can be model ed as having arotationally symmetric
range asillustrated in Figure 9a. Thisis not an accurate physical representation of what is often ahighly
anisotropic and time-varying communi cation range, but we can always use a circle that bounds the
maximal range. Furthermore, the proceeding methods apply equally well to ellipses without increased
complexity should it become evident that an elliptical communication model is more relevant.

I'n this symmetric model, a connection between nodes can be represented by a 2-norm constraint
on the node positions. More specifically, for amaximum communication range R and node positions a and
b, the equivaent LMI is given by:

é I,R a-by i i i
a T a3 o0 (3— Fixed radial constraint)

da-b° Ry

where | isthe 2x2 identity matrix. For atwo-dimensiona problem, using Schur complements[17], the
guadratic inequality transformsinto an LM1 with a3x3 matrix in (3). Multiple LMIs can be stacked to form

|a- 4, £ RP
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one large SDP for the entire network. Hence, each bi-directiona proximity constraint contributes one
convex 3x3 LMI to the system.

A variant of this problem isto use the exact distance between nodes as the outer distance bound in

the above LMI:

é lory, a-bu . , , ,

é T a3 0; rypgiven (4— Variableradial constraint)

da-b)°  rap 0
Physically, transmitters varying their output power during an initialization phase could obtain an estimate
of ra. If aconnectionisfirst obtained at apower P, the receiver ca culates the maximum possible
separation for reception at P,. This maximum separation r, < R can be used to determine atighter upper
bound on each individua connection in the network.

Note that neither of the following are convex constraints:

[a- o, =rapi Ja- b, >R (5)
The latter would be useful in* pushing away” nodes that are not connected in the agorithm asin Figure 8.
This constraint is not physically realistic either, nodes within a certain range may not be able to
communicate due to aphysical barrier or transmission anisotropy. Even greater precision can be obtained if
some lower bound on separation is known and the former constraint in (5) isformulated as a set of robust
convex constraints.

Do @ Known position
c Q/ O Unknown position
— Connection constraint

v

rny &

Actual positions Feasible solution

Figure 8. Thereisno mechanism in theradial constraint model for bounding nodes away from
known positions. Asillustrated, the entire node chain could feasibly collapseto a point asthe
unknown nodes B,C and D liein afeasible set of circlesof radii R, 2R and 3R centered at A.

C. Optical communication — angular constraints

In the optical communication realm, consider sensor nodes with laser transmitters and receivers
that scan through some angle. The receiver rotatesits receiver coarsely until asignal is obtained, and then
finely to get the maximum signal strength. By observing the angle at which the best reception occurs, we
can estimate the relative angle to the transmitter but not the distance between them. Thisresultsin acone
(triangle in 2D) for the feasible set asin Figure 9b. This cone can be expressed as the intersection of three
half-spaces, two to bound the angle and one to place adistance limit. The intersection of haf-spacesis till
anLP.

D. Other constraints

Any combination of the SDP and L P constraints can be used to define individua feasible position
sets. Some study was devoted to a quadrant detector scheme (Figure 9c¢) involving one LMI and two scalar
linear constraints. In amore genera case, for atrapezoid with variable angles and width (Figure 9d), four
linear constrai nts can approximate a segment of an annulus that might represent uncertain knowledge of
both position and angle. There are other non-LM1 constraints that may a so be useful constraints.

11
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2q j/]
'
@ (b) () (d)

Figure 9. Geometrical interpretation of single constraints. Given that the solid and open nodesare
connected, the open node must liein the shaded region anchored by the solid node position.
Constraint shown in (a) radial, (b) angular, (c) quadrant and (d) trapezoid. The outer bound in (b) is
optional.

E. Combination of convex constraints

Node positions in the network are often constrained by connections to severa other nodes.
Satisfying plura constraints means that the feasible set becomes the intersection of the individual constraint
sets, necessarily making the feasible region smaller with each added constraint asin Figure 10. The
intersection of convex setsisitself aconvex set, so our search methodol ogy continues to be sufficient.

(a). <~ @

Figure 10. Combination of radial constraints. The shaded region representsthe feasible set for the
light node, constrained by the dark node positions. From (a)-(c), the intersected constraintsyield
progressively smaller feasible sets.

Though only connections between known positions and unknown positions are illustrated in
Figure 10, unknown-unknown connections are equally important to the problem solution. In this case, both
a and b are variablesin the SDP or LP. All unknown positions are solved for simultaneously using asingle
globa program. A summary of the individual constraint methodsisgivenin Table 1.

M ethod Allowable angle Allowable distance Linear inequalities
Fixed radid 0-2p Variable 1LMI
Variable radial 0-2p Fixed 1LMI
Angular Vaiable Fixed 3scaa
Quadrant One quadrant Fixed 1LMI, 2 scdar
Trapezoid Vaiable Vaiable 4 linear

Table 1. Parametersfor each constraint method considered.

1. SIMULATION

A. Test setup

All LPs are solved with the MATLAB optimization toolbox while SDPs are solved with LMItool
[18]. The position estimation methods outlined in the previous sections are intended for use in networks
where each node can communicate bilaterally with each of several adjacent nodes. For the radid constraint
model, networks of 15 nodes are generated with the random seed node a gorithm from the preliminary
discussion. Typicdly, these networks involve about 130 radia constraints (i.e. the networks have an
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average connectivity near 9) which currently pushes the computationa limits of LM Itool*. With the lower
computationa load of LPs, the angular constraint model is tested on networks of 30 nodes.

B. Performance metric

As mentioned in section |, both the SDP and LP admit linear objectives (c'x) exclusively.
However, there is no readily apparent linear objective that would provide any sort of “ optimal” solution to
the placement problem. Instead, cin (1) and (2) is defined to be either +1 or —1, randomly determined for
each entry. This has the effect of selecting arandom feasible point Xes = (X, Yer) from the solution space
— this point represents a set of (x,y) pairs for each unknown position. The most precise statement of a
node’ s position that can be made is that the node lies somewhere in the intersection of the alowable
regions. Providing that these regions are small enough, finding afeasible position for al the nodes may be
close enough for the required estimation.

The performance of the algorithm is defined as the mean error from the computed to the actual
unknown positions. This mean error provides ameasure of the size of the feasible set.

1 9 i
eror = ——— "x - X " 6
n- m_a est real P ( )
i=m+1

C. Bounding thefeasible set
To effectively exploit the utility of the objective function c"x, the algorithms can be run multiple

times. This provides a mechanism for bounding the feasible set with arectangle paralel to the axes. The
computation proceeds as follows for each unknown position k:

1) Setcyg=1anddl otherc =0forcin(l)or(2)
2) Solvetheorigind SDP/LP® yields X in
3) Setcyy=-landdl otherc=0

4) Solveorigind SDP/ILP® vyields X e

5) Repeat steps 1-4 for ¢ to get Y¥iin and e

This procedure defines the smallest such rectangle that bounds the feasible set asin Figure 11. By selecting
the center of this rectangle as the most likely solution, we can expect some improvement in mean error over
the randomly selected case.

Figure 11. The shaded region representsthe feasible set for thisproblem. The procedure finds points
1-4 that define the tight rectangular upper bound shown in dots. Thisrectangle runs parallel tothe
axes shown.

For the price of a4(n-m) timesincrease in the number of problems solved, anincreasein
estimation performance and an outer bound on the solution is obtai ned.

1 LMItool failswith more than 150 3x3 LM constraints.
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Another possibility isto find the minimum measure elliptical bound on the solution space for each
unknown position as discussed in [17]. Thisdoes not, in generd, provide atight upper bound due to the
problem relaxation, but may provide numerically similar results requiring the solution of asingle SDP for
each unknown position instead of four.

V. RESULTS

A. Comparison of two radial constraint methods

We analyze the performance difference between the fixed radius and variable radius RF location
methods. Using a 15-node network, the following test is performed:

1) Select nodes 1-3 as known positions

2) Solvefor the remaining 12 unknown positions

3) Compute the mean error for these 12 positions from the actua network

4) Increase the number of known positions by 1 (hence decreasing the unknowns by 1)
5) Repeat steps 2-4 until only one unknown remains

Results of these trials are summarized in Figure 12.

Position estimation error in 100 networks of 15 nodes
0.8

07 O Fixed radius
) O Variable radius
0.6
0.5 %
0.4 %
0.3 % %

B |
| f11
1 {]

=1]

Mean error in computed unknown positions [R

2 4 6 8 10 12 14 16
Number of known positions

Figure 12. Results of radiuslocation method averaged over 100 different test networks. Error bars
indicate one standard deviation from the mean.

As a performance comparison, consider asimple case of two nodes, one position being known.
The second node is somewhere within adisc of radius R around this node — a point picked a random will
have an expected distance error of 2/3 R. Thisis approximately the error for the fixed radius case with a
low number of known positions. As data on the positions increases to about 10 known positions, the mean
error continues to decrease. With more than 10 known positions, mean error no longer decreases. Providing
sufficient positions are known, the connections among unknown positions are equally valuable to
decreasing the size of the feasible position set. It is not known why the standard deviation of the unknown
positions increases with the number of known positions.

There isasignificant performance increase with the variable radius method. This suggeststhat it is
worth the effort to improve distance estimation either by measuring received power directly or by
modul ating the transmission power through afew discrete steps.

B. Comparison of different angular uncertainties

The same methodol ogy is employed to test the angular estimation model. A visudization of the
simulation output is given in Figure 13 with only 10 nodes shown for clarity.
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0.5
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Figure 13. lllustration of atrial with n =10, m = 3 and a p/100 half-angle constraint. Circlesindicate
actual positions, plus signsindicate estimated positions. The shaded region isthe communication
distance R from node 8 illustrating the nodes by which node 8 is constrained. Mean error for this
caseis0.19R.

The half-angle is selected from p/10, p/100, p/1000 for the size of the constraint. A varying
number of nodes are taken as data as indicated on the horizonta axis of Figure 14 with the mean placement
error of the unknown positions represented on alogarithmically scaled vertical axis.

Position estimation error in 50 networks of 30 nodes with angle constraints
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Figure 14. Results of angular estimation method averaged over 50 different test networks.

There is nearly an order of magnitude difference between each level of angular uncertainty. This
corresponds roughly to the relative size of the individual feasible areas defined by the three levels. Of
significance is the invariance in the mean error as the number of known positionsisincreased in contrast to
the genera refinement of the results observed in the radial constraint model. Physicaly, thisindicates that
networks employing optica communication and location methodol ogies require fewer known nodes to
effectively place the remaining unknown nodes in the network.

Additiondly, the distance limit is not essentia to the solution of this set of constraints. To
illustrate this, thislimit was increased twofold in simul ation without significant decay of accuracy 0.0381 R
versus 0.0397 R. For computational purposes, however, an upper bound is useful to avoid numerical
problems.

C. Connectivity and mean error

The statement that the intersection of constraints yields smaller feasible sets was made in section
I1. To verify that the a gorithm follows this expected behavior, 100 15-node networks are generated by
random seed placement and the connectivity of each node is determined. The variable radius constraint
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method is used to place the unknown nodes and the mean error is computed for each node. A summary of
the effect that connectivity has on the mean error isgivenin Figure 15.

Effect of connectivity on placement error for 100 networks
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Figure 15. Each dot represents one node with the solid line indicating the mean error for each level of
connectivity. All networksare generated with R=1.

As the nodes become progressively more constrained, the mean placement errors decrease. From
this data, network density could be designed such that a certain position estimation performance islikely to
be achieved. Admittedly, better performance is not without sacrifice — the increased computation required
to run the algorithms and communication protocol s required to maintain order in such a network may
outwei gh the aforementioned benefits.

D. Rectangular bounds

The fixed radius estimation method is used to test the validity of the rectangular outer
approximation method. For direct comparison with the previous results, the outer bounds are computed for
the 15-node networks used previously with 6 known positions. The problem of finding the four Cartesian
bounds isformulated as a set of 4(n-m) SDPs discussed in section 111. From this rectangul ar outer bound,
the middle is chosen asthe “ optimal” guess. An example for the angular estimation model isgivenin
Figure 16.

16



Rectangular bounds for angular position estimation
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Figure 16. Solution of rectangular bound problem for a 10-node network with 3 known positions
(nodes 1, 2 and 3) and an uncertainty of p/100. The rectangles bound the possible positions of nodes 4
through 10 and the estimated positions are at the center of the rectangles.

This example shows how increased connectivity to known positions reduces the feasible set.
Nodes 8 and 10 are connected to both 2 and 3 (R=1) and are precisely known. The remaining nodes have
connections to only one known position and hence are fitted with larger rectangles. The rectangle centers
are surprisingly close to the actua positions and tend to be this way.

Solving these 4(n-m) SDPs and selecting the rectangle center gives position estimates that are
nominally slightly better than those picking randomly from the feasible set. Specificaly, for the case of
m=6 in the previous n=30 anaysis, the error is 0.4+0.1 R versus 0.5+0.1 R for the random selection
method. The mean area of the bounding rectanglesin this case is 1.7+0.8 R%. The area of the bounding
rectangle is correlated with the improvement in performance — smaller rectangles mean that arandom point
in the feasible set will be closer to the center.

A more significant increase in performance is obtained by using the rectangular center method
with angular estimation. In this scenario, mean errors decrease by an order of magnitude under those
selecting arandom point in the feasible set. Again, however, this involves solving the problem (an LPin
this case) 4(n-m) times. The advantage of the accuracy increase must be weighed against the computational
increase. Research is underway to determine how the ellipsoidal outer bound compares in terms of
performance and computational |oad.

V. IMPROVEMENTS AND APPLICATIONS

A. Tracking through the sensor network

A specific application of the procedures described is during tracking of an object through the
sensor network. The sensing radius can be modeled asin the radia constraint case. If multiple nodes can
sense the object, the same set intersection methods via SDP can be utilized to estimate the object’s position
and provide an upper bound. Thisisaproblem with only one unknown — the position of the tracked object
— and m known node positions. The solution should hence be rapid and possibly simple enough to
accomplish using the microprocessor of asensor node. Of course, this can be extended to track k objects
concurrently ana ogous to the k unknown node positions devel oped previoudly.
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Acoustical dataisused by Yao et al. [19] to locate an object using sensors. Y a0’'s method uses
more specific (phase-related) data and provides more precise results.

B. Hierarchical solution for large networks

With adensely connected 15-node network, the radia constraint method is computationally
intensive. Thisis an inauspicious result for scaling to networks of thousands of nodes. We propose two
possibilities: limit the number of constraints on each node or solve the problem hierarchically.

The first option isto impose an upper bound on the number of constraints that will be considered
for each node. Asillustrated in Figure 15, the performance increase becomes marginal beyond acertain
level of connectivity. In essence, we keep the same number of connections in our problem while dividing
them up among more nodes. For example, the current limit of 150 radia constraints could solve for
networks of 30 nodesif constraints are limited to 5 per node. This does not, however, provide for scaling
the solution through orders of magnitude.

The second option isto first divide alarge network into smaller subnetworks based on
connectivity data— nodes connected to one another will likely be members of the same subnetwork.
Position estimation can be carried out for each member of the subnetwork based on an unknown centroid of
this region. Following the individual estimations, the subnetwork centroids can be abstracted to nodesin
the larger network and placed accordingly with another iteration of position estimation. With plural
hierarchical steps, this method scales to arbitrarily large problems.

All methods would benefit from exploiting the sparsity of the connectivity matrices to reduce
computationa requirements.

C. Setting known positions

The placement of the known positions has not been addressed. Thisisimportant, particularly for
the radial constraint model. As mentioned in section 11, there is no propensity for pushing unknown nodes
away from the known positions. Hence, we cannot expect nodes to be constrained outside of the convex
hull defined by the known positions. In a network, we would thus benefit from placing nodes around the
periphery of the area of interest. It isthese nodes that should be GPS-equipped or be manually located at
known positions.

With the results obtained for mean error in networks of randomly placed known and unknown
positions, it is now possible to compare other node distribution schemes. Intuitively, it seems that networks
with nodes around the perimeter or in aregular grid pattern should lead to better position estimation.

D. I'mplementing continuous distributions

The feasible sets are currently defined as binary fields — either anode is permitted to be a a
position (x,y) or it is not. An extension of this theory could be made to continuous distributions. Based on a
certain power reading, there may be a Gaussian distribution of the most likely distance between nodes.
Solution of the placement problem would then give probabilistic distributions for al unknown node
positions. From this, the most likely position can be determined as well as confidence intervals.

E. Erroneousdata management

Thereis currently no faculty for the detection of erroneous connections. If a spurious proximity
constraint is fallaciously reported, the algorithm will, in genera, fail. Testing for such an error is as difficult
as solving the position estimation problem outright.
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Chapter 4 - Correlation Coding

[. INTRODUCTION

The exploitation of correlated datafrom closely situated sensors to reduce overall transmission
bandwidth is the focus of this chapter. In one application scenario for asensor network, we expect sensors
in the same geographical region to have very similar data— the benefits of using alarge number of simple
sensorsinstead of asingle more complex sensor include higher theoretical SNR and more robust data
collection. When correlation exists, it is wasteful to transmit compl ete data from each node — this chapter
outlines amethod of transmitting reduced levels of datawhile maintaining acceptable levels of overall
performance.

One proposal to exploit correlation isto perform datafusion in adistributed manner within the
network; a selected node queries its neighbors and creates one aggregate reading (ostensibly possessing a
higher SNR) for the region. This method is not limited to the fusion of asingle type of data, but may
instead incorporate readings from an eclectic melange of sensors to come to a conclusion independent of
centralized computation. The canonical example for this approach is to fuse temperature, acoustic and
video datato detect an intruder [21]. The caveat to fusionisthat datais lost before leaving the network. In
some situations, this sacrifice is unnecessary.

Instead of fusing data within the network, we consider instead using implicitly assumed
correlation statistics to alow for reduced average message lengths and apprising the external controller of
all sensor readings. Fusion for sensor networksis prodigal — why bother with thousands of readingsif only
aggregate signas are ever to escape? One benefit of the miniaturization of sensor nodes liesin the ahility to
resurrect the datain its entirety and to throw out information intelligently once agloba perspectiveis
obtained. The gains proposed in this chapter alow for more information to be communicated outside the
network without increased bandwidth requirements. Two coding methods are presented. The first isalossy
compression scheme not requiring any inter-node communication. The second requires some inter-node
communication but results in more compression and |ossless data recovery.

Il. MATHEMATICAL BACKGROUND

A. Coding for blind correlation

The sensor information encoding is based on the correl ated data coding scheme presented in [20].
In particular, the scalar quantization model is of interest — the model assumes two correlated information
strings are to be sent, one from each of two transmitters. If transmitter A sends the full information, the
correlation between the messages alows for reconstruction of the both messages even if transmitter B
sends an abridged version of its message. For example, A might send 3 bits of information with B sending
only 2 bits. The method of minimizing erroneous message recovery for an equa probability of any message
is presented below.

For transmitter B, there are 2° = 8 possible messages enumerated asin Figure 17:
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Figure 17. Encoding a 3-bit message aseither 2 bitsor a single bit. The shorter name of the coset,
shown on theright, istransmitted instead of the original 3-bit message. In theillustrated example,
the message 100 isencoded as 00.

If B has the message 100 to send with 2-bit encoding, it searches the cosets for 100 and findsit in the 1%,
00. B transmits 00 to the receiver, which then knows that B’ s original message was either component of the
first coset, 000 or 100. The receiver then compares the two options to the 3-bit message sent by A and picks
the closer of the two as B’s message. For 1-bit encoding, B would send only a*0’ and the receiver would
then choose the closest of 4 choicesto A’s message.

It should be emphasized that A and B do not need to communicate in this model, hence the term
blind correlation. The receiver abtains the messages independently, thisis useful to an ad-hoc routing
scheme that may have A and B situated in geographic proximity but rarely exchanging messages.

This scheme extends to larger message sizes. For message lengths of k, A sends a message of
length k and B sends one of length k-1, | < k. The maximum value of | depends on the degree of correlation
between the messages. The messages must be correlated to within one-half of the coset member distance to
be accurately recovered by the receiver. This distance is defined to be the differentiation distance between
compressed codewords. A larger value of | will result in alarger quantity of errors, each of equa or greater
severity than asmaller value of I. If the noise level is of the same magnitude as this differentiation distance,
the datais reconstructed erroneously. This coding scheme should be implemented only when noiseis small
compared to the level of correlation. To expound, if two nodes are expected to remain within atemperature
range ?T of each other, the coset size should be chosen such that the differentiation distance is larger than
?T and the noise level must be far below ?T.

This scheme a so extends to larger numbers of nodes. In adirect first-order extension, suppose that
all of n nodesin aparticular region have correl ated messages. Only a single node must communicate the
full k-bit message; the others transmit (k-1) bit messages. This reduces the overall message length
propagated from nk to nk-(n-1)I. As a higher-order application, consider three nodes, A, B and C. Suppose
that A and B are sufficiently correlated to permit accurate reconstruction of B’s message with k-1 g, but that
Cisnot this correlated to A. Now C might send k-1ac for [ac<l g bits, but if C issufficiently correlated to
B, define Igc such that Igc>l ac. The receiver first decodes B’ s message based on A, then C's message based
on B.
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Figure 18. Graphical representation of correlation. Nodes are transmitterswith edgesindicating
sufficient message correlation for reduced message size. In a) the external receiver gets ak-bit
message from A which isused to decode the (k-1) bit messagesfrom B through F. In b) the receiver
first decodes messagesfrom B and C based on A, then decodes message D based on C.

Of course the coset members have been chosen based on the assumption that all messages are
equally probable. M ore extreme probability distributions on message sel ection could conceivably result in
different coset grouping to minimize the chance of an erroneous decoding at the receiver end.

B. Sdlecting correlation groups based on connectivity

Now that correlation can be exploited to reduce message size for most nodes in the network, the
next issue is how to determine candidates for correlated messages. The metric used for this study is one of
connectivity. Just asin node location, we interpret the information that two nodes are within
communi cation range as a suggestion that they are close — now this carries the added suggestion that the
nodes will have similar sensor readings. Alternatively we could use the estimated positions from the
solution of the location problem and define a certain radius within which we deem sensors will be
correlated. Nodes within this radius of each other become “ connected” for the purposes of this chapter, a
notion then equivaent to the origina proposal. Once the overall network connectivity has been determined,
an austere heuristic sufficesto create the correlation groups:

1. Createtwo digoint sets, each containing node names and initialized to the null set: the parent
set contains one node for each correl ation group; the one-hop set contains all nodes connected
to a least one member of the parent set

2. Select the seed node which can communicate with the externa controller as the first element
in the set of parent nodes

Add al nodes connected to the parent set’ s recent addition to the one-hop set

The next selection to the parent set is the node that will add the most new nodes to the one-
hop set. Remove this node from the one-hop set. The new nodes are informed of their parent
in the parent set.

5. Repeat steps 2-3 until al nodes are either part of the parent set or the one-hop set

With this construction, the nodes in the parent set will send full k-bit messages to the controller. Nodesin
the one-hop set will send (k-1) bit messages and are assumed to be correlated to their parent node in the
parent set.

To extend this agorithm to a2™-order correlation model (or beyond) as discussed in section 11,
another set, the two-hop set, must aso be maintained with parents in the one-hop set. The 2"-order
correlation between these two setsis exploited after the one-hop to parent set correlation has been used to
reconstruct the one-hop data

This selection procedure is not a perfect a gorithm; it does not necessarily return the smallest
cardinality parent set possible for the network. However, it is often very close to the limit. A comparison
with the brute force combinatoria search for the minimal parent set will be presented in the sequel.
Moreover, the parent set is guaranteed to be connected independently of the one-hop set making it a
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possible candidate for acommunication backbone in distributed routing or other applications. All networks
in this chapter use the subnet extraction agorithm for generating connected networkswith R= 1.

Network of 32 nodes extracted as Iargest subnet from 40 nodes Network broken down into clusters
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Figure 19. lllustration of the function of the correlation group-forming algorithm, a) showsthe node
positions and names, b) indicates parent nodes with open circles and one-hop nodeswith points. The
lines represent the correlation assumption between one-hop and parent nodes.

[11. BLIND CORRELATION - SIMULATION AND RESULTS

A. Horizontally increasing temperature

In this simple simulation, the temperature is varied horizontally across anetwork similar to that in
Figure 19. The nodes are placed in a 5x5 sgquare and the temperature at each positioniis:

=2 O

For simulation purposes, it is beneficia to have temperature in the network limited to the interval [0,1]
allowing the sensor encoding for, e.g. 8-bits, tobe0? 00000000 and 1 ? 111111111. Inthiscase, a =5.
In genera, larger values of a will give more correl ation between the sensor readings.

For each of 2,4,6 and 8 bits, the temperature reading at each node is quantized from the
continuous-va ued function. At each of the one-hop nodes, the quantized value is placed in the appropriate
coset for acompressed code. The compressed code message length is varied from 1 bit to the sensor bits
less one. For example, an 8 bit simulation varies compressed code length from 1 to 7. The appropriate coset
isthe only information kept from each sensor. The quantized va ue from the parent node of each one-hop
node is used to find the closest member of the coset. This member is the best estimate of the temperature
and is compared with the origina temperature measured at the node’ s location to obtain ameasure of error
at each node. Even with perfect reconstruction from the correlated parent value, thereis still quantization
error in each reading. Results from this experiment are shown in Figure 20.
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Temperature recovery error
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Figure 20. Average temperature error after message compression and correlation recovery. Each
data point representsthe average of each node for each of 20 networks. For a sensor of b bits, the
compressed message isat most b-1 bits.

Asintuition suggests, at each level of sensing precision, the average error decreases as the
compressed code length isincreased. More surprising is the steady-state val ue that is approached as the
code length is decreased. It appears that a 1-bit message (2 cosets) for an 8-bit sensor is equally effective as
a5-bit message (32 cosets). This suggests that most errorsin the network are sufficiently large to impact
both of these methods identically. Thisis possibly due to the fact that errors al result from the same
distance gap — in this exampl e, the parent node and one-hop nodes are separated by at most a distance of 1,
or by atemperature of 0.2. This maximum temperature difference results in an upper bound on the error
and the plateau seen in Figure 20, particularly apparent in the error for the single 2-bit data point.

B. Spatially periodic temperaturefield

I'n the previous section we saw that the correl ation-coding scheme does allow for accurate
reconstruction in aspecid case. Now we consider what particular property that temperature field possessed
and how these results can be generdized. The important parameter of the temperature in this scenariois
how rapidly the temperature can change over one communication radius. One means of determining the
effect of this spatial variation is by applying abounded periodic function to the sensor network with
varying frequency. A commensurate function mapping to the interval [0,1] is chosen:

T0=voosax] @

Now by varying a, the amount that the temperature can change over a certain distance can be modul ated.
Resultsfor different values of a are givenin Figure 21.
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Temperature error for different spatial frequency
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Figure 21. Different spatial frequency of thetemperaturefield leadsto varying levels of sensor
reading recovery. For each curve, the sensor measuresa cosine temperature field with frequency
indicated below the curve and with 8-bit precision. Each curverepresentsthe average over 50
subnetworks.

As an aside, consider the selection of two random numbersin the interva [0,1]. The expectation
value of the absolute difference of these two numbersis 1/3. Thisis precisely the val ue approached by the
uppermost curve in Figure 21, indicating that the recovered one-hop readings are as erroneous as would be
expected by simply choosing the value randomly. It can hence be stated that in this scenario, correlation-
codingisat itstheoretic nadir. Vaues of a > p retrace the same curve. Also to note isthat al curveswould
drop to the quantization error value at 8 bits though the algorithm does not return this value.

The plateau at higher levels of compression can no longer be mistaken for an artifact of the first
temperature field considered. Surprisingly, the values of the plateau represent the error that would result if
each one-hop node were assigned the temperature reading of its parent. Hence, sending 5 bits from each
one-hop node is scarcely more relevant than ignoring the readings entirely and utilizing only those from the
parent nodes. The only performance increases appear to occur for small compression, sending 6 or 7 bits.
Depending on the scenario, this may not be significant enough to justify the additional overhead of the
correlation-coding techniques. The same phenomenon is observed when the sampling precision isincreased
to 16 bits.

The lack of effectiveness over alarge frequency range is the dirge of the correl ation-coding
method. This raises the question of what the optimal means of encoding sensor readingsisin the network.
The blind correlation precept is dismissed to alow for amore complex set of compression techniques. Are
better results obtainable if the one-hop nodes are aware of the sensor reading of their parent?

V. SEMI-BLIND CORRELATION — SIMULATION AND RESULTS

Consider the case where the parent node broadcasts its sensor reading. Every node in the one-hop
set will be able to receive this transmission (by definition). Based on this data, the one-hop nodes can
encode their sensor readings more effectively than in the blind correlation regime. Still, the parent node
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does not need to know the readings of each one-hop sensor in its correlation group, so effectively only one
extrabroadcast message per correlation group is required to allow for this new set of experiments. Thisis
defined as semi-blind correlation.

An effective means of exactly encoding the one-hop node’ s sensor reading is by representing its
difference from its parent’ s reading. The correlation assumption states that smaller differences will be more
likely to occur. In order to code this with minimal message lengths, the more frequent messages should
have lesser code lengths. The Huffman code addresses this precise issue. To generate the optima Huffman
code, the relative frequency of codewords must be determined. As a case study, the spatialy periodic
temperature field with a =p/2. Thisis a case that the blind correlation scheme could not adequately
improve.

In simulation, each node senses its temperature to 4-bits (to keep the number of codewords
manageable). One-hop node quantized val ues are then compared with the quantized values of their parents.
The difference can be any integer in the interval [-15,15] with the limits being attained when readings of
1111 and 0000 are obtained in the same correlation group. Results of this experiment illustrate that the
effective range of valuesis considerably less as shown in Figure 22.
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Figure 22. The frequency of bit-differenceswhen using a 4-bit code. Values are summed from 500
networks. Thetable summarizesthe frequency of the histogram binsaswell asthe proposed
codewords described below.

The histogram suggests that only codewords in the interval [-5,5] need be considered for the
parameter a =p/2. The asymmetry of the distribution is mildly disconcerting, but is not of current interest,
instead we take the distribution as correct and compute an appropriate Huffman code. The code is
computed as detailed in [22]. This code has the added benefit of having a unique decoding scheme for an
arbitrary concatenation of codewords, despite their varying lengths. If this property is not required, the
codeword length can be assigned sequentidly from the smallest using anaive code. The mgjor differenceis
that the number of bits encoded would have to be sent with the simple code. A summary of the results and
both possible codes are shown in Figure 22. Of significance is the length of each word. The original system
is simulated again with the new codewords. For Huffman encoding, the average codeword length is 2.7 for
the one-hop nodes. For the simple code, the average is 1.5. In either scheme, this resultsin better
performance and shorter codewords than possible in the blind correlation process. Note that the particul ar
Huffman code described is not unique — but al such codes are isomorphic. In our example, the simple code
requires 2 bits (log, k in general) to identify how many bits are included as data and would jump to 3.5,
illustrating the worth of the Huffman code.
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V. CONCLUSIONS

Thisfirst attempt at coding many sensor readings based on correlation is something of a
disappointment. With blind correlation, compression by asingle bit isall that is possible in order to
maintain alevel of error close to the quantization limits. With semi-blind correlation, this can be improved
dlightly with the use of aminimum length code suitable for the particular expected correlation distribution.
The benefit to the latter technique isthat if the sensor readings are unexpectedly aberrant, the message
length will increase as a survivable consequence. Using the former method, total 1oss of correlation will not
even be apparent and any data collection will be crippled by an information palsy.

The Smart Dust communi cation scenario is amenabl e to the semi-blind correlation model with
some minor dterations. The interrogator first receives k bits of information from a parent node, then
interrogates each of the corresponding one-hop nodes with the parent node’ s sensor reading. Thereisno
peer-to-peer communication, but now the one-hop nodes are apprised of the parent value and can encode
the difference as detailed in the semi-blind model. There is additiona energy expenditure by the sensor
nodes to receive thislonger interrogative message, however, which may obviate the transmission savings.
A more detailed energy analysisis required to characterize the trade-off.

An interesting extension of thiswork would be to determine exactly how much informationis
stored by agiven number of nodes with given temperature readings. For this study, the search would be for
the global minimum sum of bits to communicate all temperatures in the network. From this beginning, the
generalization of this analysisto a sensor network-based information theory is alaudable godl, if only to
define something called the Shannon-Doherty limit.

Compression algorithms abound have been explored for avariety of purposes, not the least of
which are JPEG and M PEG standards for spatia and spatio-temporal compression respectively. Trellis-
based coding and symmetric code compression can be used to compress data sequences further [23] inthe
blind correlation regime. It may be worthwhile to use basi s functions as an approximation to adatafield
with low required bandwidth, the choice of basis functions would have to be appropriate each sensor
scenario — e.g. tracking and temperature monitoring may not be possible with the same set of functions.
The challenge would be to develop all thisin adistributed context, or even anirregular one.

One problemisthat even if the message length could be drastically reduced according to the
presented methodol ogy, the node names will not be reduced. For example, if 8-bit node names are used, the
reduction of the composite name + data might be reduced from 16 bitsto 12 bits. The reduction in data size
may not be as salient asit initialy appears. For communication from nodes to the parent of the correlation
group, this may be overcome with channel time-division wherein the parent would know the origin of each
message from its arrival time slot.
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Chapter 5 - Tracking in a Sparse Network

[. INTRODUCTION

This chapter describes the use of awireless sensor network for tracking an object through the
network and identifying its movement parameters. In this scenario, we are concerned with a sparse sensor
scenario — when asmall number (usually 0 or 1) sensors can detect an object at any given point in the
network. Detection of an object may physically arise from sound, magnetic, light or acceleration sensors.
From the geographical |ocation of the sensors observing the object, the trgjectory or path of the object is
reconstructed.

In the following discussion, atrajectory refers to the time-dependent motion of the object through
the network while a path consists solely of the locus of points traversed along the trgectory. The
Expectation-M aximization (EM) a gorithm isimplemented with linear models and augmented with time
variables to improve performance.

The number of sensors detecting apath islinear in the total sensor number n and in the sensing
radius of each node as illustrated in Figure 24. When sel ecting the sensing area of anode (or equivaently
the node density), it must be large enough so that ample points are available to locate a path while being
small enough to reduce the uncertainty in the points. A node detects only that the object isin its sensing
radius, not where within this areait lies.

Simulations summarized in this chapter explore the requirements in node density and sensing
radius to track objects through the sensor network. The agorithm isintended mainly as atool to explore the
intricacies of the network properties, not as an exposition of itself. Specifically, how much datais required
to solve the tracking problem consistently and what type of sensor network can provide this data?

Il. MATHEMATICAL BACKGROUND

A. The EM algorithmfor path reconstruction

Reconstruction of asingle path is accomplished with line-fitting techniques, aleast-squares
regression is probabilistically optimal in the 2-norm sense. For an object passing through the network in a
straight line, linear least squaresis applicable. We seek the line that best describes the object’s path
according to the positions of the sensors that are activated. The abstracted problem equates a path with a
line and path-finding is equivalent to line-fitting. Least-squares analysis extends readily to more tortuous
curvesincluding arbitrarily large polynomia and basis function fits. Such analysis aone is however not
sufficient for identifying plural paths simultaneously.

The EM algorithm provides a mechanism for extending the concepts of |east-squares anadysisto
plural path reconstruction. The a gorithm was proposed by Dempster et al. [24], and an introduction as
applied to line-fitting is given by Weiss [25]. The agorithm aternates between so-called “ estimation” and
“maximization” steps, each assuming that the other has perfectly solved its part of the problem. The
iteration is easily explained through an example — consider two paths through a network each generating a
set of digoint points. To describe the two lines, the parameterization y = ax + b issufficient for either line.
Given the composite set of points{(x,y)}, we caculate the line parameters a and b for both lines as follows:

1) Start withrandom a and b for each line

2) Expectation: probabilistically assign each point to the line that best describesit

3) Maximization: apply line-fitting individually to each line given the points found in step 2
4) Repeat steps 2 and 3 until the parameter vaues converge

This procedure can fit any number of lines simply by assigning aset of parametersto each line.
The agorithm as applied in this study requires a priori knowledge of the number of lines.
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B. The Expectation step

The expectation stepisgiven aset of | pairs{(a,b)} completely describingthel lines. For each
point (x,y), ameasure of the distance to each of the linesis calculated. In the linear |east-squares model, this
residual from pointi tolinej is:

il =alx+b -y, L)

Thisissimply the distance aong the y-axis from the point to the line. Next, the probabilistic membership
of this point in each of the | linesis computed with the softmin function:

wi = OPCIr/s17)
a ew(-Ir*/s1%)
k

(2

where s represents a measure of expected fit and will be discussed in the sequel. Each weight w represents
the probability that the point i belongsto the line j — as expected, the weights for a point summed over all
linesisunity. For intuition, if apoint lies vertically in between two lines, w; = w, and we say, “ thereis
equal probability that the point belongs to either line” . If the point is much closer to line 1, w;~1 and w,~0
and we say, “ the point amost certainly belongsto line 1" . The output of the expectation step isthe (i x j)
component set of weights.

C. The Maximization step

The input to the maximization step is aset of weights. For each line j, aweighted |east squares
computation is performed. Points that more likely belong to the line j are given higher weights (larger w) in
the fitting.
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The solution of thislinear equation provides the parameters a; and b;. After completion of the procedure for
every line, the parameters are passed back to the expectation step. Experimentation suggests that five
iterations of the EM steps are appropriate for solving the problems a hand — five iterations are used
throughout.

D. Determining the number of lines

Determining the number of models, independent motions in the image, required to adequately
describe aprocess as applied to video signasis proposed by Weiss [26]. With this methodol ogy, the
number of modelsis dynamically updated as required based on the statistically expected form of the
collected data. If apoint does not fit amodel closely enough according to the image statistics, a new model
isintroduced to explain this inconsistency. Convergence is not guaranteed; in the pathological case, a
distinct model could be assigned to each pixel in the image. In our scenario, we have no such assumptions
on data statistics and our procedure is correspondingly ingenuous.

The EM agorithm isfirst run to full convergence with the assumption that there isoneline. The
error is computed as the mean of the lowest absolute residual for each node for each iteration. For a number
of fitting lines|:

1o . -
E :Hai|m|nj(ri’)| 4
The EM dgorithm isthen run incrementally — first attempting to fit the datato one straight line, then two,
and so on. The loop terminates when the addition of another line to the data does not significantly reduce

the overall error, a which point we back up astep and take the previous solution. If the difference in E, and
E,.1 islessthan 10%, the decision is made to pick the I-line fit.
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1. SIMULATION

A. Ddfining the network and determining EM data

In previoustesting, it was discovered that random networks and grid-based node placement are
equivalent for the path estimation problem. With thisin mind, nodes are placed randomly in the prescribed
square area. Without loss of generaity, we consider only squares of 100x100 units. The parameters
required to completely specify the network are:

n — the number of nodes

{(x%,y:)} —the set of al node positions
s— the sensing radius of each node (sensing areais taken as circular centered at the node)

To generate a set of points corresponding to a sensed path, an object isinitialized at the edge at the

square area and given a constant “ velocity.” At each time step, the position of the object is computed and

each node is checked to seeif the object iswithin its sensing radius, i.e. if [x — % [<s. If this inequality
holds, the node “ senses” the object and is flagged. When dl objects’ paths through the network are
complete, the set of flagged node positionsis the datainput to the EM agorithm. If either one or zero nodes

are flagged, line-fitting is not possible and the triad is deemed unsuccessful.
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Figure23. Nodesare flagged by an object traversing the network. In @) the linerepresentsthe
object’s path and the dots are 200 nodesin the network. In b) any node within s=2 of the path is
flagged for the curvefitting algorithm.

As stated in section |, the number of nodes flagged is linear in both n and s (Figure 24). As such,

the fixed network size is not restrictive; a 50x50 square with s reduced by one haf is equivaent.
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Figure 24. The number of nodesflagged by an object passing through the network islinear in both
sensing radius and node density. This same graph format will be used throughout this chapter to
summarize datafor the same set of variables. Each data point represents 50 simulations.
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B. Parametersto test

Specificaly, we are interested in how five independent parameters affect the performance of path
estimation:

1) n

2) s

3) The number of paths

4) Individua path characteristics (a and b)

5) Collective path characteristics (separation, angle difference)

The tests performed will attempt to discover how networks should be designed to obtain sufficient
performance in anticipated situations. An example of the EM agorithm output is shown in Figure 25.
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Figure 25. EM algorithm fits 1, 2 and 3 lines (solid line) to points (open circles) generated by 3
distinct paths. An additional line does not significantly reducethe error so the algorithm reports
three. Data shown isfor n=500 and s=2. Performancein this case was above average — typical fitsare
not as accurate.

V. RESULTS

A. Sngle path results

Three classes of single paths are considered while varying n and s: paths along the x-axis, paths
along the y-axis and diagonal paths. In the horizontal path trias, the object enters the network at (0,50) and
travelsin the positive x direction. A “ successful” estimate iswhen the agorithm preferentidly fits the
pointsto asingle line — the aternatives being that it is unable to fit aline (fewer than two nodes flagged) or
that the error criteria prompts the a gorithm to fit to multiple lines. Ostensibly, the algorithm will return the
same parameters as asimple linear least-squares fit for one line, but it does not know apriori that the search
isfor only asingleline. A summary of the resultsis plotted in Figure 26. In genera, the results show better
performance with more nodes.
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Figure 26. Performance of the algorithm for single horizontal linetrials. In a) percentage of trialsin
which the algorithm correctly returnsasingleline, b) the error in dope estimation. Each data point
represents 100 trials.

It is enlightening to examine the failure modes of the agorithm asidentified in Figure 27. At low
sensing radii, the path often flags fewer than two nodes and the a gorithm cannot identify any lines with
thisinformation dearth. At larger sensing radii, the agorithm is more likely to conclude that severd lines
are present due to the large residud in the data. Perhaps in between s=5 and s=10, there is an optimal
sensing radius for the network where the dark part of the bar in Figure 27 is maximized.
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Figure 27. Expansion of datafor the 20 nodetrialsin Figure 26. The algorithm either returnsthe
correct number of lines (i.e. one), zero lines, or more than oneline.

Similar results are obtained for adiagonal trgjectory. The success rate and error are slightly
improved because the diagona path through the environment is longer and typically activates more nodes
than the horizontal path, thereby providing more datafor the EM analysis and greater statistica certainty.

I dentification of asingle vertical trgjectory is less successful. The error in the vertical case is much
larger than for ahorizontal motion, an artifact of the fitting formulaused in the EM agorithm (y = ax + b).
Numerically, the agorithm preferentialy fits the slope to azero value than to an infinite value. The
optimization of the line-fitting a gorithm is merely amatter of coordinate choice and islargely peripheral to
the current discussion. Therefore, further simulation simply avoids such factious trgectories.

32



B. Dual path results

The single path analysis does not directly apply to multiple path location. Not only are the
individua path characteristics influentia to agorithm performance, but the measure of dissimilarity among
the pathsis pivotal. Intuitively, the closer the paths are geographically, the less chance that the algorithm
may be able to distinguish them. The eagerness to divide datainto more linesis afunction of the expected
fit quality s sidestepped earlier. The higher the s, the more likely the algorithm will make al lines exactly
the same — in the example of 3 lines, ahigh s will result in 3 internecine lines with identica slopes and
intercepts. As an attempt to quantify some aspects of multiple path behavior, the interrel ationship between
two paths and the corresponding performance is explored in the following trials. The algorithm again has
no knowledge of how many paths have passed through the network.

Asseeninsingle path andysis, diagonal lines are most readily identified. The most conducive
intersecting dua path scenario to successful identification should hence be lines with £1 slope originating
at the corners of the network area. Success requires that two lines are returned and furthermore that their
computed slopes are within 20% of the actual values. A summary for this test using the same variable
vauesasinthe single-path triasis presented in Figure 28.
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Figure 28. Successrate of accurately parameterizing intersecting diagonal lines. Surprisingly, the
best resultsare obtained for an intermediate node density and an intermediate sensing radius. In all

cases, s =10.

The same scenario is used to determine the possibility of changing s to obtain better results.
Varying s from 0.1 to 100, it becomes apparent that the initial choice of 10 isfortuitous— there isarange
between 3 and 35 outside which the agorithm fails consistently. The peak performance is obtained around
thes=10level, so the plotsin Figure 28 reflect the best results.

The next experiment tests how close lines can be and still be separately identified. Horizontal
paths through the center of the network are simulated with varying vertica separation. In the event that two
lines are detected, the computed gap is compared to the actua path separation. A similar experiment isrun
for paths intersecting at varying angles. Example trials are illustrated in Figure 29; results from both
experiments are shown in Figure 30. The distribution of pointsin these plotsis not yet fully understood,
particularly the absence of points near the center of the plot between angles of 50-80 degrees. The angle of
45 degrees corresponds to the n = 200, s = 2 data point of Figure 28.
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Figure 29. Simulation output for a) gap test and b) angletest. Theindicated lines are those returned
by the EM algorithm, closely matching the actual parametersin this example. The examples shown
use n =500 for illustrative purposes.
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Figure 30. Linedissimilarity affectsalgorithm performance. In a) horizontal lines separated by less
than 20 unitsaredifficult to separate while greater separation leadsto a general performance
increase and possible gap overestimation. In b) angles of intersection are consistently underestimated
and distinction is poor below 25 degrees. Each data point isonetrial, all networks have n=200, s=2,
s=10. Thelinesrepresent target values.

These results give insight into what network parameters should be chosen to di stinguish among
similar tracked paths. Based on these data, the sensing radius should be chosen lower than one tenth of the
desired gap resolution. No corresponding statement can be made to increase angular resol ution beyond that
shown — presumably smaller sensing radii would yield crisper paths that could more readily be
distinguished.

Even with high node density, small sensing radii, and an optimd s, identification is below 70%
successful. This suggests that the algorithm is either not suited for the current problem, or that more
information is required to improve performance. The additional information comes in the form of adding
another dimension to the data, time.

C. Time-enhanced EM solution

With the addition of time to the problem, nodes are not only flagged when the object enterstheir
respective sensing areas, but also record the time a which the object isfirst sensed. From this data,
trgjectories are reconstructed — the time-series of the path is now computed. The new problem follows a
similar formulation with the additional time data at each flagged node, t;. Each object location is now
characterized by the triple (x,yi,ti). The modelsto fit for each line (indexed by j) are now of the form:

100
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xI () =xJ +V] %
Y () = ya +Vy 1
Here V, and Vy represents the x-ward and y-ward velocities, respectively. The intercept with the x-y plane

occurs at (Xo,Yo)- All four of these parameters are required to characterize the trgjectory in three-space. At
each data point i, theresidua tolinej isgiven by:

©)

rij:)(ij+yij-xg-y(J;-VXj>¢-Vyj>¢i (6)

Thisis perhaps anaive construct, but it succeeds in representing the discrepancy between the data and the
line-fitting. In a perfect fit, the residua vanishes at al location points/times. The corresponding weights are
computed from the residud viathe softmin function in (2).

The maximization step computes the best guess at the four parameters in the now familiar manner.
While augmented in dimension, the linear equation takes the same form:
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The new formulation is transparent to the a gorithm which proceeds in exactly the same manner.

Visualization of the resultsis now more difficult, watching 3D plots on aflat screenis
significantly more recondite than the 2D data of Figure 25. Quantification of error is correspondingly
mired; does interest lay primarily in reconstructing the time progression of the trgectory or rather in
exploiting the additiona datato distinguish among previously inseparable trgectories? To an extent, the
two are correlated — but the focus will be directed towards improving x-y line-fitting with the knowledge of
time.

I'n short, the addition of time to the algorithm does succeed in improving performance. As ameans
of comparison with the previous method, we can compare the slope a with V,/V, and the intercept b with
they(t) such that x(t) = 0. Asindicated in Figure 30a, the algorithm performs poorly below athreshold gap
distance of 20 between the paths. As an indication of the new possibilities, this gap is reduced to 10 (only 5
times asensing radius) and additionally, the second trgjectory is subject to some time del ay before entering
the network area. An example output of the algorithm is shown in Figure 31. Results are summarized in
Figure 32a. Similarly, the previously undetectabl e intersection angle of 20° meets time-based
improvementsin Figure 32b.

Example of a time-enhanced solution to a gap = 20 problem

200  /

150

100

Time

40

0
X

Figure 31. Time-enhanced solution output. The actual trajectory velocitesare V, = [1,1] V,=[0,0]
while the computed velocitesare V, =[0.8,1.0] Vy =[0.1,0.0]. The delay for the second path isset to
50.
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Gaps found with time-enhanced algorithm (actual gap = 10) Angles found with time-enhanced algorithm (actual angle = 20 degrees)
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Figure 32. Delaying the second trajectory allowsthe time-enhanced algorithm to separate two
formerly-indistinguishable paths. In a) wetest separation identification for a gap = 10 while b) angles
of 20° aretested. Each point representsonetrial and the solid line followsthe mean of the data. For
all tests, n=20, s=2 and s =10. At delay = O, the system isequivalent to its predecessor. The
trajectoriestake approximately atime of 100 to passthrough the network.

A longer delay between the trgjectories gives the a gorithm more distinction between the two lines
and correspondingly aids performance. Providing that the lines can be distinguished, the estimation ability
of the agorithm should apply individually to each trgjectory with the level of performance shown in the
single path trials.

V. CONCLUSIONS

The EM agorithm with asimple residua function is sufficient for fitting dissimilar paths through
asensor network. Augmenting the model to include time stamping of |ocation data serves to add a degree
of dissimilarity to data generated by different trgjectories and generally improves performance.

Results are surprising in the sense that there appears to be an optimal node density and sensing
radius for detection of multiple lines. It is clear that an infinite node density with vanishingly small sensing
radii would provide an exact solution, but when these quantities are bounded, trade-offs do exist between
potentially missing a path and overestimating the number of paths.

The least squares model used in this EM agorithm is robust to false darms in the same manner as
it would be for fitting asingle line in the presence of outliers. Statistical methods for removing outliersin
regression analysis are equally applicable here. No work has been done to improve the either of the residua
functions — a preliminary change from vertical distance to perpendicular distance might improve the
versatility of the results. Much work has been done to apply and improve the EM agorithm [27]; and the
application above is no more than rudimentary.

Questions relating to the requirements of the sensor networks are not fully answered by these
simulations. Based on the results, it would appear, for a 100x100 network area, that 200 randomly placed
nodes with sensing radii of 2 is sufficient to track single and multiple objects through the network, keeping
in mind that the sensing radius and the network dimension scal e together. The tracking problem is not
always solved with the data provided by such anetwork, but this may reflect fundamental limitsin the
problem approach. Nodes with the ability to locate the object within their sensing areas would provide for a
better approximation but would require amore complex formulation. The EM agorithm is asubset of the
more powerful Bayesian network techniques which would alow for not only positional knowledge, but
also the implementation of probability distributions [28] in dense network scenarios.
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Chapter 6 - Visualization of Data Flow

[. INTRODUCTION

The use of computer vision algorithms to process large amounts of sensor datais the focus of this
chapter. In particular, time-varying sensor readings over atwo-dimensional area are visuaized and
summarized using vision techniques. The pervasive example will be one of temperature measurement over
ageographica area— based on sensor readings at al locations over aperiod of time, how can the
temperature flow be estimated?

The analogy between sensors and pixels is suggested. While pixels have brightness values, sensors
have temperature readings. By interpolating sensor readings to regular grid locations, the network is
interpreted as an image. Once the network image is constructed, optica flow a gorithms can be applied.

The Lucas-Kanade first-order gradient-based flow recovery agorithm [29] is chosen to estimate
temperature flow from the network image. As explained in [30], this a gorithm is among the simplest of its
kind both conceptually and computationally and provides more accurate results than its peers. It relies on
temperature conservation over small patches in the network to constrain the flow solution — thisisa
reasonable assumption in our physica scenario. Other popular recovery a gorithms include Horn-Schunck
[31] which maximizes globa smoothness and Fleet-Jepson [32] which analyzes differentia image phase
information. The former tends to provide aesthetically pleasing, yet quantitatively inaccurate flow
reconstruction which is not sufficient for this study. The latter requires far more computational complexity
and does not offer a significant performance improvement over the selected method [30].

Inthis chapter, all simulation is carried out assuming that node positions and sensor readings are
available and accurate. The motivation isto uncover the limitations imposed by the flow recovery alone
and independent of the node location or sensor correl ation problems.

Il. MATHEMATICAL BACKGROUND

A. Fromsensor positionsto grid locations

I'n order to process the sensor datawith optical flow methods, aregularized set of pointsis
required. Thisis accomplished using the MATLAB function griddata which constructs a surface to pass
through al data points (taking position as (x,y) coordinates and sensor readings as the z-coordinate) via
Delaunay triangul ation. By reading off the z-component of the surface at each grid location, a set of
“ pixels’ with brightness corresponding to the magnitude of the sensor readings is interpolated. Depending
on the method employed, the interpolation may alow for discontinuitiesin the surface itself or its
derivatives. The precise method used will be identified when appropriate later in the text.

B. Flow estimation from changesin local image intensity

The foundation of flow recovery as implemented is the conservation of intensity; brightness
derivatives are measured and flow is computed. Formally, the tota derivative of the image intensity
function vanishes at each image location for al time. For an optical flow v, spatial image derivativesf, and
fy, and tempora image derivative f;,

&, U
[t flerarti=0 @
e'yu

This means that changes in image intensity are produced exclusively through translation of local
intensity properties and not by changes in overall image intensity. In actudity, this function will not vanish
at dl locations and the problem becomes one of minimization in the least-squares sense. The solution of the
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| east-squares problem can be written as setting to zero the gradient of the squared error in (1). This results
in the following linear equationinv:

2 T N Z N

e fiyggﬁz - gfx ftﬁ )

gfxfy fy gelvi éfyftﬂ

In general, the matrix on the left of (2) can be singular and different flow reconstruction methods
have distinct ways of resolving this singularity [30]. The method of Lucas and Kanade [29] actualy
partitions the space into “ patches’ consisting of square arrays of severa pixels, e.g. 5x5 pixels. The
brightness constraint (2) isthen applied individually to each patch; the minimization now conserves
brightnesslocally in the optimal |east-squares sense.

For i indexed over dl pixelsin the patch, the following linear equation is solved (with the index
suppressed for the derivatives):

o] o] . z 0 <
2a, i a, fflvu_fa,fhl 2
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Inthis case, thereis still the possibility of the matrix being singular. Simoncelli et a. [33] suggest checking
the difference in singular val ues of the matrix to obtain a measure of confidence for the result. If both
singular values fal below a certain threshold, the computed flow is discarded for this patch. Additionaly,
they propose using aweighting function in the matrix to emphasize the more centra elements of the pixel

aray.

C. Computing derivatives

Numerical differentiation techniques tend to amplify noise, though considering the stochastic
behavior of the signal and noise in the system can reduce this effect [34]. A method specificdly designed
for differentiating images to compute optica flow in two dimensionsis developed in [35]. Inthis
procedure, two filters are used to spatially differentiate the image. The first is aprefilter based on a
discretization of the sinc function used to interpolate the image. The second is the derivative filter which
closely approximates the derivative of the prefilter. The derivative is computed point-by-point with atwo-
dimensiona convolution of these filters throughout the image. For example, to compute f, , theimage is
vertically covoluted with the prefilter and horizontally with the derivative filter. The tempora derivative is
one-dimensional and requires only a convolution with the derivative filter to compute f,. Table 2 below
gives the numerical values used for differentiation based on afive-point filter [36].

-2 -1 0 1 2
Prefilter 0.036420 | 0.248972 | 0.429217 | 0.248972 | 0.036420
Derivative Filter -0.108415 | -0.280353 0 0.280353 | 0.108415

Table 2. Numerical filter specification for an estimate based on five points. The derivative isbeing
calculated for the point at location “ 0" .

D. Fromsensor readingsto optical flow
The entire process is characterized by the following steps:

1. Collect sensor datafrom nodes

2. Interpolate datawith Delaunay triangulation

3. Compute spatid and temporal derivatives with matched filters
4. Apply Lucas-Kanade flow estimation algorithm.

The complete processisillustrated in Figure 33.
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Figure 33. Sensor data leadsto flow computation: In a) intensity represents sensor readings at
random node positions, b) dataisinterpolated toregular grid locations, c) after several time steps,
flow iscalculated using the Lucas-K anade algorithm on the grid valuesin b). Simulation has 500
nodesinterpolated to a 25x25 grid. Each 5x5 pixel patch from the grid issubjected to the brightness
constraint resulting in atotal of 25 flow estimatesillustrated by the vectors. The actual flow proceeds
horizontally totheleft. Grid dataisnot perfect, especially in regions of low node density such asthe
corners.

1. SSIMULATION AND RESULTS

A. Interpolation

The method of interpolation to grid locations can be decoupled from the optical flow estimation
itself. Tofirst discover how the number of nodes and the number of grid points as well as the method
chosen affect the accuracy of interpolation, some preliminary tests are run. The following temperature field
is applied to the sensor network:

T(x,y) = cos(%y) 0

In generd, the temperature field will be afunction of time aso, T(x,y,t). Nodes are randomly
placed computing T at each node location and interpolating to a number of grid locations with a method
detailed in Section I1. The results are summarized in Figure 34.

Interpolation error for different node numbers and grid points
T T T T T T T T

0.25

50 nodes

100 nodes
200 nodes
500 nodes |q

+x 0D

0.15F

ol /MA\A

0.05F D_IE//E\E/E-

O

Mean absolute error per grid point

——————————H——

L L L L L L L L
5 10 15 20 25 30 35 40 45 50
Number of grid points per side for square grid

Figure 34. Mean error computed at each interpolated grid point. Linear Delaunay interpolation is
used. Theerror isgiven in termsof T where absolute values of T(x,y) are bounded above by 1. Each
data point representsthe mean of 50 trials.

Asevident in Figure 34, the error does not vary significantly with the number of grid points used
in the interpolation. The only effect that this number should have on the resultsis the size of the fina flow
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dataset; if n? grid points per side are used, it is natural to choose L ucas-Kanade patches of size n. This
provides atotal of n? total flow measurements (vectorsin Figure 33) for the network. For the current study,
25 flow measurements are sufficient and 5x5 pixel patches will be used henceforth, allowing the filters
detailed in Table 2 to be used. This patch size isaso the oneillustrated in Figure 33. As for the number of
nodes in the network, it isintuitive that an increase in node number should provide a more accurate
interpolation. Increasing up to 500 nodes shows no sign of asymptotic behavior. Again, for the
computational complexity associated with 500 nodes, 200 nodes will be sufficient for the remainder of
trias.

The type of interpolation used affects the accuracy of the resulting estimated surface. MATLAB
offers three Delaunay triangulation methods (* nearest’, ‘linear’ and * cubic') aswell asarepudiated
algorithm left over from aprevious version (‘v4’).

o Interpolation error for different methods (25 grid points per side)
10

nearest
linear
cubic
v4

10"

/:DO

10°

Mean absolute error per grid point

10° -
10" 10 10
Number of nodes

3

Figure 35. Mean error at each of 25x25 grid pointsfor different interpolation methods. Resultsare
plotted on alogarithmic scale to emphasize differences. Each data point representsthe mean of 50
trials.

Asindicated by Figure 35, the interpolation method has significant impact how faithfully the T
function can be reproduced. Simulation reved sthat athough the ‘v4’ method offers prime performance, its
scaling properties are horrendous. The other methods scale more tolerably to larger networks with
computationa load increasing for more accurate approximations. With thisin mind, the ‘cubic’ Delaunay
triangul ation method is settled upon. A detailed description of the algorithm can be found in [37].

Another method of interpolation is considered that performs averaging in a distributed sense. Each
grid location has an equivalent sensor reading that is equal to the weighted mean of the sensorsin its
neighborhood. This mean value is reported back to the controller as the pixel brightness for optical flow
andysis.

B. Horizontal flow
A simple time-varying temperature function is applied to the network:

T(x,y,t) =cos(x+at) (5)

where a represents the flow speed - how rapidly the temperature field varies and is the variable of interest
in the following study. Thisfield yields a periodic temperature wave moving towards the left and provided
the example data for Figure 33. To determine the resolution to which a can be accurately computed, it is
varied over arange of values and the flow problem is solved as directed above with Dt = 1 between frames.
The mean horizontd value of the 25 flow arrows is computed for each tria and thisis the computed value
of a. In each simulation, five time steps (corresponding to the length of the derivative filter) are used to
compute optica flow. Results of these trids are shown in Figure 36.
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Computed horizontal flow speed over a small range
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Figure 36. Computed a for a strictly horizontal flow. In @) thereisalinear match between the actual
and computed flow speeds over a small range before flow speed becomes underestimated. In b) the
linearity isclearly broken for sufficiently largea. In particular, for a =p, theflow speed is zero. In
all trials, n=200.

For small a, the agorithm effectively estimates horizonta flow speed. However, the range of a islimited
due to tempord aiasing. At avaue of p, the flow is transparent since cos(x + p) = cos(x), it isno surprise
that the graph has an x-intercept at this point. This phenomenon exposes one limitation of this flow
reconstruction technique — flow speeds must be kept well below the frequency of the signalsto be
accurately measured. One means of bypassing this obstacle is through multi-scal e flow recovery,
essentially a sampling of the signd at different frequency values[36].

As acomparison to Figure 36a, a network consisting of 625 nodes placed exactly at the grid
locations provides the best measure of what can be achieved. The performance of thisidealized network is
nearly identical to the 200 randomly placed network’ s performance.

C. Radial flow

In thisflow model, the temperature gets equally warmer everywhere with time — but absolute
temperatures are lower near the center (5,5) of the simulation area

T(x,y.t) = (x- 5 +(y- 5)* +at (6)

For negative a, this has the effect of flowing temperature away from the center of the area. Thismodels a
divergent flow emanating from a source located within the network. While this apparently violates the
constant temperature constraint upon which our agorithm is based, the recovery of flow vectors proceeds
nonetheless.
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Figure 37. Recovered optical flow at 25 locationsfor a=-0.1. In a) the random network of 200 nodes
hasthe correct qualitative structure of the flow whilein b) the orientation of all arrowsisnear

perfect for nodesat the 625 grid locations.

From Figure 37, it is clear that the random network does not recover flow as well as one with
nodes placed at individua grid points. However, this turns out to be only amatter of n.

Recovered radial flow with random network
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Figure 38. An n=100 random network radial flow recovery in a). In b) the brightness of the region
indicatesthe number of nodes geographically situated therein. The colorbar on theright providesthe
scale. Thecircled vectorsare discussed in thetext.

With better results given by increased overall node densities, it is surprising that the regiona node density
does not seem to correlate to individua flow arrow accuracy as given in Figure 38. In particular, the circled

vector in the top right has high density but large directiona error; the node sparsity in the top left gives low

directional error.

D. Rotating flow

A rotating flow can be introduced about (5,5) with the function:

éx- 50
T(x, y,t) = cos(arctanéx—mat)
€y- 5Q

For negative a, the rotation is anti-clockwise. 1n the implementation, there is a discontinuity a ong the
negative x-axis where the arctan function jumps between +p, numerically disrupting the flow.
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Recovered rotating flow with random network [n=200] Recovered rotating flow with random network [n=625]
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Figure 39. Rotating flow recovery for a) 200 nodes and b) 625 nodesfor a=-0.1.

Again, there is qualitative improvement with the increased number of nodes as depicted in Figure
39. It isinteresting how the agorithm handl es the discontinuity in the flow with minor errors instead of
either adisappearingly small arrow or adwarfingly large one.

E. Arbitrary flow

In two dimensions, flow is characterized by trandlation, divergence and rotation. The methodol ogy
presented can successfully recover dl of these flow patterns independently. Combining them linearly yields
arbitrary continuous two-dimensional flows; the algorithms presented should recover any continuous flow
with components in similar frequency ranges. As apractica example, consider vapors blowing away from
a source and detected by chemical concentration sensors a each node. Defining ? = arctan[(y-5)/X] to center
the source a (0,5),

| 2 e X0
- - < /8
T(x y,t):_}_exp( q )*expg o ll>e ®
1 0 otherwise

In this model, the wind is blowing towards the right.

Recovered plume flow with random network
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Figure 40. A simulated chemical sourceiscentered at (0,5) with wind blowing the vaporstowardsthe
right of the network. In thisexample, n = 500 and 81 flow vectors are recovered.
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F. Computational complexity

The flow recovery agorithm scales gracefully with both the amount of data (number of nodes
sensing temperature) and the requested amount of input (number of flow arrows computed). Asillustrated
in Figure 41, both relations are linear.

X 105 Computational requirement to recover rotating flow (25 arrows) X 105 Computational requirement to recover rotating flow (200 nodes)
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Figure41. Computational requirements of recovering the rotational flow. In a) the number of nodes
isvaried for recovering 25 flow arrows. In b) the number of arrowsrecovered (always a perfect
square) isvaried while n=200 is constant.

Of course as we increase the number of flow arrows computed while keeping the data constant,
eventually there are insufficient data for an accurate solution of the problem as exemplified in Figure 42a

Recovered rotating flow with copious arrows Horizontal and rotating flows combined
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Figure42.1n a) 324 arrows are recovered with n=200. The singularity isnow very evident and
general performance suffersdueto alack of data. In b) a horizontal flow iscombined with arotating
flow in the upper-right quadrant.

In Figure 42b, two flow fields are combined by defining arotating function in the upper-right
guadrant and a horizontal flow elsewhere. Qualitative properties are maintained, though the agorithmis
| ess perspicacious around the borders of the two fields.

If both input (node number) and output (flow vector number) are scaled to meet the problem, a
more enriching portrayal of the environment can be obtained. To cover alarger areaof n?, the
computationa requirement will rise asn.
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V. CONCLUSIONS

Time-varying temperature flows have been reconstructed using optical flow recovery agorithms.
For the recovery of 25 flow arrows, 200 randomly placed nodes according to auniform distribution are
sufficient to qualitatively capture temperature flows. The addition of more nodes to the sensor network
improves performance — no asymptotic performance limits are detected up to the tested 500 nodes.
Quantitative assessment of the algorithm was attempted only for the simplistic one-dimensiona flow model
but could be readily extended with an appropriate metric to the other flows discussed. Thiswould provide a
definitive means of comparing the first-order gradient a gorithm used to other methods of flow recovery.

The recovery of canonica flowsin 2-D is successful, asisthe combination of flows providing that
all components have similar flow speeds. Any such continuous flow in 2-D can be recovered, while
discontinuities lead to unpredictable, yet non-disastrous, behavior. Recovery of concurrent and distinct flow
patterns could be implemented using coarse-to-fine estimation methods as discussed by Simoncelli [38] if
they have significantly different time constants. Performance is mercuria in both simplistic and complex
cases.

All of the computation required for flow recovery could conceivably be done within the sensor
network itself. The Lucas-Kanade recovery for each flow vector proceeds independently of all other
vectors, dl required information is contained within the mxm patch of interpolated pixels. The proposed
distributed pixel interpolation method, coupled with the solution of the patch’s linear equation solves for
flow within each region. The only unresolved issue is differentiation, though this convolution of the pixels
could also be done in adistributed sense but would require communi cation outside the patch. Alternatively,
some simulations could be run which rely exclusively on intra-patch data for computation of the
derivatives.
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Chapter 7 - Discussion

This report presented methods for defining sensor networks, developing simulations, estimating
node positions, reducing overall communication bandwidth requirements, tracking objects, and recovering
dataflow. Taken separately, each chapter represents a solution to one facet of a developing sensor network
theory. The study of position estimation revea ed that given a set of known locations around the perimeter
of asensing area and a sufficiently precise model of network connections, all node positions could be
estimated to within asmall uncertainty. M essage-reduction coding was shown to work efficaciously in the
case of semi-blind correlation and marginally in the more restrictive blind correlation model. Expectation-
Maximization based line search methods, augmented with atemporal dimension, accurately reconstruct
tra ectories through the network. The distillation of sensor datainto flow arrows was used to visualize
qualitative properties of data flow through the network. Each chapter presented some success and some
limitations. Each could be improved — the methods applied were taken directly from other fields without
attempts at specialization or refinement. A host of similar techniques might be applied anew with similar
results.

In each chapter, the network abstraction takes on a certainly different definition. It is hoped,
however, that the foundations proposed in the preliminary section provide some structure upon which the
further theory and application can grow. Together, the subjectsillustrate how a network graduates from
initialization to application stages. An extension of this work involves carrying the uncertainty through the
chapters, beginning with a network having a communication protocol:

1) Estimate node positions and associated uncertainty

2) Develop correlation-coding using the uncertain positions

3) Apply the tracking algorithm with the positiona uncertainty

4) Apply the flow algorithm with both positiona and sensing uncertainty

It is not obvious how destructively uncertainty will affect the idealized results. In this case, it would be
worthwhile to express node locations as statistical distributions for use in the future algorithms.

There is no current barrier to the implementation of any of the discussed a gorithms into hardware.
The potentia exists for thousands of sensor nodes to be fabricated today. There will be obstacl es associated
with the transition to reality, but the simulation suggests that the methodol ogy should be sufficiently robust
to survive. Work is underway to devel op and implement an operating system on sensor network nodes by
Culler et al. [39]. At this point, the only impediment will be maintaining interest in pursuing such anon-
theoretical god.

The postul ate that centralized computation has a place in sensor network is supported by the
successes in this report. 1t is concurrently apparent, however, that some of the al gorithms discussed will
soon run into computationa limits as network size scales higher. At this point, distributing the load within
the network itself could spread out the computations, but not beyond afactor of n at each node. The
communication savings would be the prime benefit of a distributed implementation. It is not clear how the
proposed a gorithms could transfer to the local world, but some speculation is offered:

1) The hierarchical node positioning agorithm proposed in Chapter 3 could be run locally
according to an unknown local subnetwork landmark. In this scheme, each nodein a
subnetwork would know its position relative to the landmark, but not redtive to any global
perspective. Thisloca information might be all that is required for other network functions.

2) The correlation-coding scheme as presented is till useful for passing reduced-length
messages among sections of the network. There will always be some need for message
passing over aradius of several hopsin the network.

3) Thetracking algorithm could be modified with local beamforming to fuse object
identification data. 1n this methodol ogy, nodes make decisions about path parameters within
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the network by assimilating data from neighboring nodes. The output of the network would be
the computed path itself, not points on a path.

4) The flow agorithm was calculated locally in some experiments. In this model, local
derivatives are computed by looking at sensor readings from neighboring nodes. These
derivatives can be used to compute flow vectors locally within each section of the network
with the same windowing technique discussed earlier. While not quantitatively sound as the
presented global counterpart, flow vectors can still be recovered to an acceptable quditative
accuracy.

As stated in the introduction, this report is concerned exclusively with information that isimmediately
extracted from the network and of some empirical use. The transition to amore academic study — one
concerned more with self-organi zation and self-awareness in a sensor network than with utility — may in
turn revea more robust and less intensive methods for achieving the same goals.
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