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Abstract

The paper considers a Cliff–Ord type spatial model with a spatially lagged dependent
variable and a row normalized weighting matrix with equal weights. We show that the 2SLS
and OLS estimators are inconsistent unless panel data are available. The weighting matrix
in question is one which would naturally be considered if all units are neighbors to each
other, and there is no other reasonable or observable measure of distance between them.
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1. Introduction

We consider estimation issues in linear Cliff–Ord type spatial models which
1contain a spatially lagged dependent variable. We give both a ‘negative’ result

that serves as a warning for a potential pitfall, as well as a ‘positive result’. More
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Case (1991), Boarnet (1994), Anselin et al. (1996), Bollinger and Ihlanfeldt (1997), Pace and Barry
(1977), Conley (1999), Lee (1999a,b,c), and Kelejian and Prucha (1998, 1999, 2001).
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specifically, we first show that under typical conditions the two-stage least squares
(2SLS) and the ordinary least squares (OLS) estimators are inconsistent if the
weighting matrix is row normalized and has equal weights, and data are only
available for a single cross section. We then show that this problem typically does
not occur if panel data are available. Ironically, if two or more panels of data are
available, both the 2SLS and OLS estimator are not only consistent but are also

2efficient within the class of instrumental variable estimators. These results are
important to note because the weighting matrix considered is one which would
naturally suggest itself if all units are neighbors to each other and there is no other
natural or observable measure of distance. Cases which may be consistent with this
are ones in which all cross sectional units interact in a confined space. Such a
matrix was considered by Splitstoser (1999) in a study of spatial interdependence
involving the ideology of legislators. It was also considered by Case (1992) in a
panel data study of the adoption of new technologies by farmers, and by Lee
(1999b) in a study of the properties of least squares estimators in linear spatial

3models.
The paper is organized as follows. In Section 2 we specify the considered

Cliff–Ord type model for a single cross section, and demonstrate the inconsistency
of 2SLS and OLS within this setting. Section 3 extends the framework to panel
data and demonstrates that in contrast to the previous case, the model parameters
can now be estimated consistently by 2SLS and OLS. We also derive the limiting
distribution of the estimators. All proofs are relegated to Appendix A.

The following notation and conventions are useful: letv andP be, respective-N N

ly, a vector and matrix. Then we denote theith element ofv asv and thei, jthN i,N

element ofP asp . The same convention holds for vectors and matrices whichN ij,N

do not involve the indexN, in which case the indexN is suppressed. We will say
that the elements of the sequence of matricesP are uniformly bounded inN

absolute value if

up u#C ,`ij,N

for all 1# i, j #N; N $ 1, where the constantC does not depend on any of the
indices.

2. 2SLS and OLS in the case of a single cross section

2.1. The model

Consider the following cross sectional spatial model (N $1)

2The OLS estimator may, of course, be viewed as a special case of an instrumental variable
estimator.

3Other relevant cases may relate to student performance in a school, certain interactions of workers
in a firm, etc.
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y 5ae 1X b 1lW y 1´N N N N N N (1)
5Z g 1´N N

whereZ 5 (e , X , W y ) andg 5 (a, b9, l)9. Here y is the N 3 1 vector ofN N N N N N

observations on the dependent variable,e is theN 3 1 vector of unit elements,XN N

is an N 3 k matrix of observations onk exogenous variables,W is an N 3NN

weighting matrix,́ is the disturbance vector,a andl are scalar parameters, andN

b is a k 3 1 vector of parameters. Our analysis is conditional on the realized
values of the exogenous variables and so the matricesX will be taken as matricesN

of constants.
Our assumptions for (1) are the standard ones, except for the specification of the

weighting matrix. LetD 5 (e , X ). Then, we assumeN N N

Assumption 1. ulu, 1. Also, for all 1# i #N, N $1 the error termś arei,N
2identically distributed with mean zero and finite variances . In addition, for each

N the error termś , . . . , ´ are independently distributed.1,N N,N

Assumption 2. The elements of the sequence of matricesX are uniformlyN
21 9bounded in absolute value, andQ 5 lim N D D is finite and nonsingular.DD N→` N N

It proves convenient to decomposeQ asDD

91 mxQ 5 .F GDD m Qx XX

21¯ 9Clearlym is a k 3 1 vector, andQ is a k 3 k matrix. Letx 5 N X e be thex XX N N N

vector of sample means of the exogenous regressors. Then for future reference
21¯ 9note that given the above assumptionx → m and N X X → Q .N x N N XX

9Assumption 3. W 5 (1 /(N 21)) J 2 (1 /(N 21)) I , N .1, where J 5 e e .N N N N N N

W 5 0.1

This assumption implies that

1
]] for i ± jw 5 N 21ij,N 50 for i 5 j

and thus, among other things, the model in (1) relates each element ofy to theN

average of the otherN 2 1 elements.

Remark. It seems of interest to briefly compare the above spatial autoregressive
model with the widely used class of mixed models that combines fixed and random
effects. Following, e.g. Harville (1988), a mixed model is defined as

y 5F d 1R s 1´N N N N N
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where y denotes the vector of observations on the dependent variable, F and RN N N

are known nonstochastic matrices (e.g. observations on exogenous refressors), d is
a vector of unknown parameters, s is a vector of unobserved random effects withN

zero mean, ´ is the unobserved disturbance vector, and s and ´ areN N N

uncorrelated. In (1) lW y can be expressed as W (ly ). Therefore, if we defineN N N N

F 5 (e , X ), d 5 (a, b9)9, R 5W and s 5ly it may seem, at first glance,N N N N N N N

that we can express the spatial autoregressive model (1) in the above form of a
mixed model. However, upon closer inspection we see that the two models are
substantially different. Among other things, in (1) the ‘random effects’ s 5lyN N

are observed (up to a common scalar), have nonzero mean, and clearly s 5lyN N

and ´ are correlated. This is reflective of the fact that the spatial autoregressiveN

model represents a simultaneous system, while the above mixed model does not.
The subsequent discussion pertains to the spatial autoregressive model as defined
before this paragraph.

2.2. Some useful results

For future reference we note that, as is easily verified,
21(I 2lW ) 5d J 1d I (2)N 1N N 2N N

where

l N 21
]]]]]] ]]]d 5 and d 5 . (3)1N 2N N 2 11l(N 2 11l)(12l)

The result in (2) can be used to obtain the reduced form for the spatial lag of the
dependent variable in (1). Specifically, (1) implies thatW y 5W (I 2N N N

21
lW ) [ae 1X b 1´ ] and so, in light of (2),N N N N

W y 5 c e 1f X b 1f ´ (4)N N N N 2N N 2N N

where

¯ ¯9c 5Nf a 1 x b 1´ 1af ,f gN 1N N N 2N

d d2N 2N
]] ]]f 5d 1 , f 5 2 ,1N 1N 2NN 21 N 2 1

21¯ 9and ´ 5N e ´ . From the expressions in (3) we see thatN N N

f → 0, f → 0 andNf → 1/(12l) (5)1N 2N 1N

as N →`.
2]Since ´ has zero mean and variances /N, it follows from Chebyshev’sN

]inequality thatp lim ´ 5 0. Therefore, again for future reference, we note thatN→` N

9a 1m bx
]]]p lim c 5 . (6)N 12lN→`
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The results in (4)–(6) suggest that there may be a basic estimation problem in that,
asymptotically, the spatial lagW y is proportional to the unit vector, and thusN N

collinear with the intercept. In the following sections we discuss this problem and
its effect on the 2SLS and OLS estimator in more detail.

2.3. 2SLS estimation

Since W y is correlated with the disturbance term in (1), see, e.g., AnselinN N

(1988), and Kelejian and Prucha (1998), one suggested method of estimation forg

is 2SLS. LetH 5 (e , X , G ) be the matrix of instruments, whereG is anN 3 rN N N N N

matrix of nonstochastic variables,r $ 1. We maintain the following assumption
concerning those instruments.

Assumption 4. The elements of the sequence of matricesG are uniformlyN
21 9bounded in absolute value, andQ 5 lim N H H is finite and nonsingular.HH N→` N N

One suggestion for the columns ofG given by Kelejian and Prucha (1998) andN

by Rey and Boarnet (1998) are the spatial lags ofX of various orders. We note,N

however, that the subsequent discussion does not postulate any particular structure
for G apart from what is maintained in Assumption 4.N

219Let P 5H (H H ) H and note that sinceH containse andX , P e 5H N N N N N N N H NN N

e and P X 5X . LetN H N NN

Ẑ 5P Z 5 (e , X , P W y ). (7)N H N N N H N NN N

The 2SLS estimator ofg is then given by

21ˆ ˆ ˆ9 9ĝ 5 (Z Z ) Z y . (8)2SLS,N N N N N

The following lemma, whose proof is given in Appendix A, establishes that the
2SLS estimator is inconsistent under the assumptions maintained above.

Lemma 1. Given the model in (1), Assumptions 1, 2, 3 and 4,

ˆp lim g ±g.2SLS,N
N→`

On an intuitive level the above lemma can be motivated from the following
observations: results given in Amemiya (1985, pp. 245–255) imply that the

¯optimal instrument matrix isE(Z ). In terms of our model, however,E[´ ] 50 andN N

so the results in (4) imply

E(Z )5 [e , X , E(c )e 1f X b ] (9)N N N N N 2N N

where

¯ 9E(c )5aNf 1Nf x b 1af .N 1N 1N N 2N
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Since E(c ), f , and f are scalars, the last column ofE(Z ) is clearlyN 1N 2N N

multicollinear with the firstk 11, and soE(Z ) does not have full column rank.N

We also note that the above lemma does not contradict ‘positive’ results given
in Kelejian and Prucha (1998) concerning the consistency and asymptotic
normality of the 2SLS estimator in linear spatial models containing a spatially
lagged dependent variable. For instance, Eqs. (4)–(6) imply that

9a 1m bx21 21 F S]]]D G9 9Q 5 p lim N H Z 5 p lim N H e , X , e ,HZ N N N N N N12lN→` N→`

which shows thatQ has less than full column rank. This violates Assumption 7HZ

maintained in Kelejian and Prucha (1998). We note further that as a consequence

21 21 21 21 21ˆ ˆ9 9 9 9p lim N (Z Z ) 5 p lim [N Z H ][N (H H )] [N H Z ]N N N N N N N N
N→` N→`

2195Q Q QHZ HH HZ

is singular.

2.4. OLS estimation

Lee (1999b) has shown that under certain conditions the OLS estimator of the
parameters of a linear spatial model containing a spatially lagged dependent
variable is consistent and asymptotically normal. One of the conditions assumed in
Lee’s model implies that each element of the spatial weights matrix limits to zero
as the sample sizeN →`. Since that condition is satisfied by our model, one might

21ˆ 9 9also consider the least squares estimator ofg in (1), i.e. g 5 (Z Z ) Z y .OLS,N N N N N

However, as seen from the subsequent lemma, under the maintained assumptions
the OLS estimator is also inconsistent.

Lemma 2. Given the model in (1), and Assumptions 1, 2, 3,

ˆp lim g ±g.OLS,N
N→`

We note that the above lemma does not contradict the results given in Lee
(1999b). While at first glance the spatial weights matrix defined in Assumption 3
seems to satisfy Lee’s assumptions, one of Lee’s conditions for the consistency of

21the OLS estimator is thatQ 5 lim N E(Z )9E(Z ) is a finite nonsingularZZ N→` N N

matrix. Under the assumptions maintained here this condition does not hold. Using
(4)–(6) and (9) it is readily seen that

91 m cx *

m Q c mQ 5 x XX * xZZ 3 429c c m c* * x *
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9where c 5 (a 1m b ) /(12l), and soQ is singular since its first and third* x ZZ

columns are proportional.

2.5. Limiting log-likelihood function

As was observed above, the root cause for the inconsistency of the 2SLS and
OLS estimator ofl is that asymptoticallyW y is proportional to the unit vector,N N

and thus collinear with the intercept. This suggests that the problem encountered
with the 2SLS and OLS estimator is not specific to those estimators. To shed more
light on the issue it seems of interest to investigate the limiting log-likelihood

4function, properly normalized by the sample size. Under normality the normalized
2log-likelihood function at parameter valuesa, b, l, s is given by

] ] ]]

12 2 2]L (a, b, l, s )5 2 ln (2p)1 L (a, b, l, s )1 L (a, b, l, s )N 1N 2N] ] ] ] ] ] ] ] ]2] ] ]

where

12 ]L (a, b, l, s ) 5 ln I 2lWuu uu1N N N] ] ] ]N]
N 2 1 l 1

]]] ]] ]S D5 ln 11 1 ln (12l),
]N N 21 N

1 1 12 2] ]]]L (a, b, l, s ) 5 2 ln (s )2 y 2Z g 9 y 2Z g ,f g f g2N 2 N N N N] ] ] ]2 N] ] ]2s
]

2whereg 5 (a, b9, l)9. The termL (a, b, l, s ) represents the log of the absolute1N] ] ] ] ]] ] ]value of the determinant of the Jacobian normalized by the sample size. We thank
one of the referees for supplying us with the second expression forL (a, b, l,1N ] ]2 ]
s ), which makes the maximum likelihood estimator easily computable. From this
]
expression it is also readily seen that

2lim L (a, b, l, s )5 0.1N ] ] ]N→` ]

Thus this term drops out from the normalized log-likelihood function as the
2sample size tends to infinity. The termL (a, b, l, s ) is in essence the objective2N ] ] ]]function of the OLS estimator. Observe that in light of (1) and the results in

(4)–(6) we have

4This normalization ensures that the terms involved converge to finite limits; compare, e.g., Gallant
¨(1987) and Potscher and Prucha (1997) who provide a general analysis of the limiting behavior of

extremum estimators.
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1
]p lim y 2 Z g 9 y 2Z gf g f gN N N NNN→` ] ]

1
]5 p lim ´ 2Z (g 2g ) 9 ´ 2 Z (g 2g )f g f gN N N NNN→` ] ]

2
5s 1 (g 2g )9Q (g 2g ).ZZ] ]

Thus the limiting normalized log-likelihood function is given by

1 12 2] ]p lim L (a, b, l, s )5 2 ln (2p)2 ln (s )N ] ] ] ]2 2N→` ]

1 2]]2 s 1 (g 2g )9Q (g 2g ) .h j2 ZZ] ]2s
]

As remarked above, the matrixQ is singular, and thus the limiting normalizedZZ

log-likelihood function does not have a unique maximum at the true parameter
2valuesa, b, l, s . In fact, as is readily seen, the function is maximized at any

2 2 2parameter valuea, b, l, s with a 2a 1 c (l2l)5 0, b 5b, s 5s . That is,*] ] ] ] ] ]] ]the limiting log-likelihood function is flat along the set of parameter values
satisfyinga 5a 2 c l1 c l. This implies that the typical identifiable uniqueness* *] ]
assumption maintained to prove consistency of an estimator does not hold at the
true parameter values; compare, e.g., Gallant and White (1988, Chapter 3) and

¨Potscher and Prucha (1997, Chapter 3 and 4.6). This in turn suggests that also the
maximum likelihood estimator, as well as any other estimator, will be inconsistent.

3. 2SLS and OLS in the case of panel data

3.1. The model

Our panel data generalization of the model in (1) is (1# t #T, N $ 1)

y 5ae 1X b 1lW y 1´tN N tN N tN tN (10)
5Z g 1´tN tN

whereZ 5 (e , X , W y ) andg 5 (a, b9, l)9. Herey 5 (y , . . . , y )9 istN N tN N tN tN t1,N tN,N

theN 3 1 vector of observations on the dependent variable in thet-th ‘setting’, XtN

is theN 3 k matrix of observations on the exogenous variables in thet-th ‘setting’,
´ 5 (´ , . . . , ´ )9 is the N 3 1 vector of disturbance terms in thet-thtN t1,N tN,N

‘setting’, andW is defined above in Assumption 3. These ‘settings’ could relate toN

time periods, or spatial entities for which there are multiple observations.
Examples of such spatial entities would be villages, as in Case (1991), schools,
etc. We again conditionalize our results on the realized values of the exogenous
variables, and so we will take the matricesX to be matrices of constants. WetN

have assumed a balanced panel for ease of presentation; it will be clear that our
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results do not require a balanced panel. In the following we assume the number of
settingsT is greater than one. In our asymptotic analysisN is assumed to tend to
infinity.

The model in (10) can be expressed as

y 5Z g 1 ´ (11)N N N

where

9 9y 5 [ y , . . . , y ]9,N 1N TN

9 9Z 5 [Z , . . . ,Z ]9,N 1N TN

9 9´ 5 [´ , . . . ,´ ]9.N 1N TN

Let D 5 (e , X ) for t 51, . . . ,T. Our assumptions for the panel data model are:tN N tN

Assumption 5. ulu, 1. Also, for all 1# t # T, 1# i #N, and N $ 1 the error
2terms ´ are identically distributed with mean zero and finite variances . Inti,N

addition, for eachN $ 1 the error termś , . . . , ´ , . . . , ´ , . . . , ´ are11,N 1N,N T 1,N TN,N

independently distributed.

Assumption 6. For eacht 5 1, . . . ,T the elements of the sequence of matricesXtN
21 9are uniformly bounded in absolute value andQ 5 lim N D D is finiteDD,t N→` tN tN

and nonsingular.

It proves again convenient to decomposeQ asDD,t

91 mx,t
Q 5 .F GDD,t m Qx,t XX,t

21¯ 9Clearly m is a k 3 1 vector, andQ is a k 3 k matrix. Letx 5 N X e bex,t XX,t tN tN N

the vector of sample means of the exogenous regressors for thet-th setting. Then
¯for future reference note that given the above assumptionx → m andtN x,t

21 9N X X → Q .tN tN XX,t

Observe that the panel data model in (10) corresponds to the model in (1)
specified for each of the ‘settings’t 51, . . . , T. Applying (4)–(6) we see that
within each setting the spatial lagW y will be asymptotically proportional to theN tN

unit vector. However, unlessm is the same for each setting, the magnitude of thex,t

proportionality factor will vary across settings, and thus the spatial lag in the
stacked model (11), that is (I ^W )y , will not be proportional to the (stacked)T N N

unit vector. This suggests that the availability of panel data should alleviate the
basic estimation problem discussed in Section 2 in the case of a single cross

5section. Applying (4)–(6) and (9) to each ‘setting’ it is not difficult to see that

5It should also be clear, however, that panel data will not alleviate the problem if the intercept in
(10) is allowed to vary with the ‘setting’t, i.e. if the model has fixed effects.
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21Q 5 lim N E(Z )9E(Z )ZZ N N
N→`

91 m cx,t *, tT (12)
m Q c mx,t XX,t *, t x,t5O3 4t51 2c c m c*, t *, t x,t *, t

9with c 5 (a 1m b ) /(12l). Our remaining assumption is as follows:*, t x,t

Assumption 7. The matrixQ is nonsingular.ZZ

Clearly, as observed in the previous section, forT 5 1 this assumption would be
violated. However, an inspection of the expression forQ shows that in generalZZ

this matrix will not be singular, except in very special cases ifT . 1. Those cases
are ruled out by Assumption 7. In particular, Assumption 7 rules out the case in
which b 50, as well as the case in whichm 5m for all t 5 1, . . . , T.x,t x

3.2. 2SLS and OLS estimation

The form of the instruments we use for the 2SLS estimator is partially based on
the results obtained in Section 2. As remarked, the panel data model in (10)
corresponds to the model in (1) specified for each of the ‘settings’t 51, . . . , T.
Applying (4) to thet-th ‘setting’ we see that the only deterministic regressors in
the reduced form forW y aree andX . The coefficient corresponding toe inN tN N tN N

¯the model solution forW y will clearly involve x , and therefore, consistentN tN tN

with our remarks above, will typically not be the same for each ‘setting’. This
suggests that the list of instruments underlying the 2SLS procedure should contain
T dummy variables instead of just one constant term. For the purposes of
generality we also interact these dummy variables with the regressor matricesX ,tN

t 5 1, . . . , T. More specifically, the instrument matrix we consider is

D 0 . . 01N

0 . .
. . .H 5 (13)N
. . 03 4
0 . . 0 DTN

ˆThen, the ‘second’ stage regressor matrix isZ 5P Z , where P 5N H N HN N21 ˆ9 9H (H H ) H . It is not difficult to see thatZ can be expressed asN N N N N

ˆ ˆ ˆ9 9 9Z 5 [Z , . . . ,Z ] (14)N 1N TN

21ˆ 9 9with Z 5P Z andP 5D (D D ) D . SinceD includes bothe andtN D tN D tN tN tN tN tN NtN tN

X , it follows that P e 5 e and P X 5X . ThereforetN D N N D tN tNtN tN

Ẑ 5 (e , X , P W y ). (15)tN N tN D N tNtN
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The 2SLS estimator ofg based on the panel data model in (14) is now given by

21ˆ ˆ ˆ9 9g̃ 5 (Z Z ) Z y . (16)2SLS,N N N N N

The corresponding least squares estimator ofg is

21˜ 9 9g 5 (Z Z ) Z y . (17)OLS,N N N N N

The next theorem, whose proof is given in Appendix A, establishes the asymptotic
properties of the 2SLS and OLS estimator.

Theorem 1. Given the model (10) and Assumptions 3, 5–7

D1 / 2 2 21˜(a) N (g 2g ) →N(0, s Q ) as N →`,2SLS,N ZZ
21 21ˆ ˆ9 9(b) p lim N (Z Z )5 lim N E(Z )E(Z )5Q ,N→` N N N→` N N ZZ
1 / 2 ˜ ˜(c) p lim N (g 2 g )5 0,N→` 2SLS,N OLS,N
2 2˜(d) p lim s 5s whereN→` N

2 21˜ ˜ ˜s 5 (NT ) (y 2Z g )9(y 2Z g ).N N N 2SLS,N N N 2SLS,N

A number of points should be noted about Theorem 1. Firstly, part (a) implies
that the 2SLS estimator is consistent and asymptotically normal. Part (b) implies
that the 2SLS estimator is the efficient instrumental variable estimator, since the
limiting variance–covariance matrix is the inverse of the limit of the second
moment of the mean of the regressor matrix. Part (c) implies that the 2SLS and
OLS estimators are asymptotically equivalent. We note that in proving this result
we establish, among other things, that

21 21ˆ ˆ9p lim N (Z Z )5 p lim N Z Z . (18)N N N N
N→` N→`

Part (d) implies that the typical estimator of the variance of the disturbance term is
consistent.

Theorem 1 suggests that finite sample inferences concerningg can be based on
the approximation

2 21ˆ ˆ9˜ ˜g (N(g, s (Z Z ) ),2SLS,N N N N

or via (18)

2 21˜ ˜ 9g (N(g, s (Z Z ) ).2SLS,N N N N

In further research it may be of interest to analyze the small sample properties of
the 2SLS and OLS estimator, and the quality of the approximate distribution
derived from large sample theory, via a Monte Carlo study.
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Appendix A

Proof of Lemma 1

ˆ ˆ9ˆ ˆLet g 5 a , b , l 9. To prove Lemma 1 it suffices to shows d2SLS,N 2SLS,N 2SLS,N 2SLS,N
21ˆ 9 9thatp lim l ±l. Let P 5D D D D . Then, by partitioned matrixs dN→` 2SLS,N D N N N NN

ˆinversion,l can be expressed as2SLS,N

21l̂ 5 I 2P P W y 9 I 2P P W ysfs d g fs d gd2SLS,N N D H N N N D H N NN N N N (A.1)
3 I 2P P W y 9y .fs d gN D H N N NN N

Note that I 2P D 5 0; also, sinceH contains the columns ofD , P D 5s dN D N N N H NN N

D and soN

P P 5P . (A.2)H D DN N N

Therefore, replacingy by its model expression in (1), and then using (A.2), itN

follows from (A.1) that

21l̂ 5 l1 W y 9 P 2P W ys d s df s d g2SLS,N N N H D N NN N

3 W y 9 P 2P ´s d s dN N H D NN N (A.3)
W y 9 P 2P ´s d s dN N H D NN N
]]]]]]]]5l1 .W y 9 P 2P W ys d s ds dN N H D N NN N

In light of (4), W y is linear ine , X , and´ . Since bothH andD containeN N N N N N N N

and X it follows that P e 5 e , P X 5X , P e 5 e , and P X 5X .N H N N H N N D N N D N NN N N N

Therefore, from (4)

P W y 5 c e 1f X b 1f P ´H N N N N 2N N 2N H NN N (A.4)P W y 5 c e 1f X b 1f P ´D N N N N 2N N 2N D NN N

and so the numerator in (A.3) is

9 9W y 9 P 2P ´ 5f ´ P ´ 2´ P ´ . (A.5)s d s d f gN N H D N 2N N H N N D NN N N N

The result in (4) and (A.4) imply that the denominator in (A.3) is expressible as

W y 9 P 2P W y 5f W y 9 P 2P ´s d s d s df g f gN N H D N N 2N N N H D NN N N N
(A.6)2 9 95f ´ P ´ 2´ P ´ .f g2N N H N N D NN N
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It follows from (A.3), (A.5) and (A.6) that

1ˆ ]l 5l1 (A.7)2SLS,N f2N

and so via (5)

ˆp lim l 5`± l . (A.8)u uu u2SLS,N
N→`

Proof of Lemma 2

ˆ ˆ9ˆ ˆ9Let g 5 a , b , l . To prove Lemma 2 it suffices to shows dOLS,N OLS,N OLS,N OLS,N
ˆthatp lim l ± l. By partitioned matrix inversion the model in (1) impliesN→` OLS,N

21l̂ 5 I 2P W y 9 I 2P W ysfs d g fs d gdOLS,N N D N N N D N NN N

3 I 2P W y 9yfs d gN D N N NN (A.9)
W y 9 I 2P ´s d s dN N N D NN
]]]]]]]5l1 .W y 9 I 2P W ys d s dN N N D N NN

Recalling thatP e 5 e and P X 5X , the results in (4) and (A.4) implyD N N D N NN N

9 9f ´ ´ 2´ P ´s d2N N N N D N 1Nˆ ]]]]]] ]l 5l1 5l1 (A.10)OLS,N 2 f9 9f ´ ´ 2´ P ´ 2Ns d2N N N N D NN

and so via (5)

ˆp lim l 5`± l .u uu uOLS,N
N→`

As a point of interest we note that in light of (A.7) and (A.10) we have
ˆ ˆl 5l . The equality between the 2SLS and OLS estimators forl does2SLS,N OLS,N

not extend, however, to all components of the parameter vectorg.

Proof of Theorem 1

ˆ ˆ ˆ9 9Parts (a) and (b): SinceZ Z 5Z Z , the model in (11) impliesN N N N

211 / 2 21 21 / 2ˆ ˆ ˆ˜ 9 9N g 2g 5 N Z Z N Z ´s ds d2SLS,N N N N N

T 21 T (A.11)
21 21 / 2ˆ ˆ ˆ9 95 N OZ Z N OZ ´ .S DtN tN tN tN

t51 t51

Consider the first term on the r.h.s. of (A.11). Extending the result in (4) to the
panel data model in (11), and noting thatP D 5D it follows from (15) thatD tN tNtN

Ẑ 5 D , c e 1P (A.12)s dtN tN tN N tN

where
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] ]9c 5Nf a 1x b 1´ 1af ,f gtN 1N tN tN 2N

P 5f X b 1f P ´ ,tN 2N tN 2N D tNtN

21] 9´ 5N e ´ .tN N tN

The results in (A.12) imply

21 ˆ ˆ9N Z ZtN tN

21 21 219 9 9N D D c N D e 1N D PtN tN tN tN N tN tN
5 .F G21 21 2 21 219 9 9 9c N e D 1N P D c 1N P P 1 2c N e PtN N tN tN tN tN tN tN tN tN tN

(A.13)

Consider the elements of the matrix in (A.13). As a preliminary observation we
note that applying the results (4)–(6) to thet-th setting gives

9a 1m bx,t
]]]c → c 5 ,`tN *, t 12l

21 9asN →`. Now letC 5N D ´ . Then, Assumptions 5 and 6 implyE C 5 0s dtN tN tN tN
2 229 9and E C C 5s N D D → 0 asN →`, and so, via Chebyshev’s inequali-s dtN tN tN tN

21 9ty, p lim N D ´ 5 0. As a consequenceN→` tN tN

P21 21 219 9 9N D P 5f N D X b 1f N D ´ →0s d s dtN tN 2N tN tN 2N tN tN

21 2 219 9N P P 5f b9 N X X bs dtN tN 2N tN tN

2 21 21 21 219 9 91f N ´ D N D D N D ´s ds d s d2N tN tN tN tN tN tN

2 21 21 21 219 9 91 2f b9 N X D N D D N D ´s ds d s d2N tN tN tN tN tN tN

P
→0 (A.14)

as N →`. SinceD containse we have furthermoretN N

P21 9c N e P →0 (A.15)tN N tN

as N →`.
The results in (A.13)–(A.15), and Assumption 6 imply that fort 5 1, . . . , T

21 219 9N D D c N D etN tN tN tN N21 ˆ 9p lim N Z Z 5 p limF GtN tN 21 2
N→` N→` 9c N e D ctN N tN tN

91 m c (A.16)x,t *, t

m Q c mx,t XX,t *, t x,t53 429c c m c*, t *, t *, t *, t

and consequently
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91 m cx,t *, tT
21 m Q c mˆ ˆ9 x,t XX,t *, t x,tp lim N Z Z 5O 5Q . (A.17)N N ZZ

N→` 3 4t51 29c c m c*, t *, t x,t *, t

In light of Assumptions 6 and 7 this matrix is finite and nonsingular.
Now consider the second term on the r.h.s. of (A.11). First note from (A.12) that

21 / 2 1 / 2 219 9N P ´ 5 N f b9 N X ´s d s dtN tN 2N tN tN

1 / 2 21 21 21 219 9 91 N f N ´ D N D D N D ´ . (A.18)s ds ds d s d2N tN tN tN tN tN tN

1 / 2 21 9From (3) and (4) observe thatN f → 0. Sincep lim N D ´ 5 0, and2N N→` tN tN

utilizing Assumption 6 it follows that

21 / 2 9p lim N P ´ 5 0, t 5 1, . . . ,T. (A.19)tN tN
N→`

Also note that
21 / 2 9p lim c 2 c N e ´ 50, t 51, . . . ,T (A.20)s dN,t *, t N tN

N→`

D21 / 2 29 ´sincep lim c 2 c 50 andN e ´ →N(0, s ) by the Lindeberg–Levys dN→` N,t *, t N tN e

central limit theorem.
Now define

] ] ]
9 9Z 5 Z , . . . ,Z 9s dN 1N TN

where
]
Z 5 D , c e , t 51, . . . ,T.s dtN tN *, t N

Then clearly
] ]21 9lim N Z Z 5Q , (A.21)N N ZZ

N→`

which is, as remarked above, finite and nonsingular. Assumptions 6 and 7 imply
]

that the elements ofZ are uniformly bounded in absolute value (observing thatTN

is fixed). In light of Assumption 5 all conditions for the central limit theorem
given in Kelejian and Prucha (1998, p. 112) are thus seen to be satisfied. Applying
this theorem yields

D]21 / 2 29N Z ´ →N 0,s Q . (A.22)s dN N ZZ

From (A.12), (A.19) and (A.20) it is readily seen that

]21 / 2 21 / 2ˆ 9 9p lim N Z ´ 2N Z ´ 50. (A.23)s dN N N N
N→`

Consequently we also have
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D21 / 2 2ˆ 9N Z ´ →N 0,s Q (A.24)s dN N ZZ

asN →`. Parts (a) and (b) of Theorem 1 now follows from (A.11), (A.17), (A.24)
and (12).

Part (c): From (11) and (17) we have

1 / 2 21 21 21 / 2˜ 9 9N g 2g 5 N Z Z N Z ´ . (A.25)s ds dOLS,N N N N N

21 9ConsiderN Z Z . Note again from the extension of (4)–(6) thats dN N

Z 5 D , c e 1f X b 1f ´ .s dtN tN tN N 2N tN 2N tN

21 9Since Assumptions 5 and 6 imply thatp lim f N D D 5 0 andp limN→` 2N tN tN N→`
21 9N D ´ 5 0 it should be clear thattN tN

21 21ˆ ˆ9 9p lim N Z Z 5 p lim N Z Z 5Q . (A.26)N N N N ZZ
N→` N→`

Therefore the first factors in (A.11) and (A.25) have the same probability limit.
Now consider the second factors in (A.11) and (A.25). Given (A.19), recalling

1 / 2that N f → 0 asN →`, and then noting that Assumptions 5 and 6 imply2N

1 / 2 21 9p lim N f N ´ ´ 5 0,s d2N tN tN
N→` (A.27)1 / 2 21 9p lim N f N X ´ 5 0,s d2N tN tN
N→`

it follows that

21 / 2 21 / 2 ˆ 99p lim N Z ´ 2N Z ´ 50. (A.28)s dN N N N
N→`

Part (c) follows from (A.26) and (A.28).

Part (d): Let

˜ ˜´ 5 y 2Z gN N N 2SLS,N

5´ 2Z DN N N

˜whereD 5 g 2g. ThenN 2SLS,N

2 21 21 21˜ 9 9 9 9s 5 NT ´ ´ 2 2 NT ´ Z D 1D NT Z Z D . (A.29)s d s d s dN N N N N N N N N N

For a given value ofT, Assumption 5 and Khintchine’s law of large numbers,
imply

221 9p lim NT ´ ´ 5s . (A.30)s d N N
N→`

˜The consistency ofg implies p lim D 5 0. Given this, (A.24), (A.26)2SLS,N N→` N

and (A.28)



H.H. Kelejian, I.R. Prucha / Regional Science and Urban Economics 32 (2002) 691–707 707

21 9p lim NT ´ Z D 50,s d N N N
N→` (A.31)

21 9 9p lim NT D Z Z D 50.s d N N N N
N→`

Part (d) then follows from (A.30) and (A.31).
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