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INTRODUCTION 
Previous papers have described the theory (1-3) and ap- 

plications (4-12) of the scanning electrochemical microscope 
(SECM) operating in the steady-state current regime. The 
tip current, due to an electrochemical reaction at the tip (e.g., 
0 + ne - R), is perturbed by the presence of the substrate, 
which can be an electronic insulator or a conductor. For an 
insulator, the substrate blocks diffusion of 0 to the tip 
("negative feedback"). With a conductive substrate, if it is 
biased by an external source or by a solution redox species 
to a potential where oxidation of R to 0 occurs, the flux of 
0 to the tip is increased ('positive feedback-). The substrate 
will affect the tip current when the tip-to-substrate distance, 
d, is within a few tip radii, a. The steady-state tip current, 
which can be calculated from the steady-state concentration 
profiles in the gap between the microdisk tip and the substrate, 
provides information about the topography (2,10,13), as well 
as the chemical and electrochemical reactivity (2,11,13) of 
the substrate surface. In this paper we consider the transient 
SECM response, i.e., the microdisk current, iT, as a function 
of time, t ,  which has not been considered in previous work. 
For example, the i-t response provides a measure of the rate 
of establishment of the steady state and the maximum rate 
at which SECM topographic scans can be made. Moreover, 
the transient (chronoamperometric) response is related to the 
rates of diffusion and of any homogeneous chemical reactions 
in solution, as well as the topography and the rate of electron 
transfer on both electrodes. Because the SECM involves small 
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microdisk tip diameters, 2a, typically 0.6-25 pm, and very 
small tip-to-substrate distances (e.g., d I 2a), the effective 
mass-transfer coefficient in the gap region is very high. It 
should thus be possible to study very high rates of diffusion 
or very fast homogeneous chemical reactions by transient 
SECM methods. This paper deals with the theory of the 
transient SECM response in the absence of homogeneous and 
heterogeneous kinetic complications. Since the geometry of 
the SECM does not allow one to derive a closed-form ana- 
lytical solution for the current, a two-dimensional numerical 
simulation of the diffusion between the tip and the substrate 
was used to generate the transient response as a function of 
tip-substrate distance. We compare the simulated chro- 
noamperometric response of the SECM with approximations 
based on known electrode geometries and show that the tip 
currently successively follows the time response of a planar 
electrode, a microdisk, and a thin-layer cell. These electrode 
geometries yield closed-form analytical solutions that provide 
a good guide for the prediction of the SECM chronoamper- 
ometric response. 

We show that an analysis of the SECM transient yields a 
critical time, t,, when the tip current senses the presence and 
nature of the substrate. A working curve of the critical time 
as a function of d is presented. We show that measurement 
oft, from the transient and of d from the steady-state curve 
of b/&,- (1) dows the determination of D, without knowledge 
of n or C*. In this treatment, h,- is the steadystate tip current 
when the tip is far from the substrate and is given by iT,- = 
4nFDC*a; n is the number of electrons in the tip electrode 
reaction, F is the Faraday constant, C* is the concentration, 
D is the diffusion coefficient, and a is the microdisk radius. 
If D is known, a measurement of t ,  also allows the absolute 
determination of the tip-substrate distance independent of 
the working curve (1) iT/iT,- = f(d). Finally, experimental 
SECM transients are reported for the oxidation of Fe(CN)6C 
in KCl solution and these are compared to the theoretical 
curves. 

EXPERIMENTAL SECTION 
Reagents. Solutions of 50 mM K,Fe(CN)6.3H20 (MCB 

Manufacturing Chemists Inc., Cincinnati, OH) and 1 M KCl 
(Baker Analyzed, J. T. Baker Inc., Phillipsburg, NJ) were prepared 
with deionized water (Milli-Q, Millipore Corp.). 

Electrodes. The SECM tip was a 25 pm diameter Pt microdisk 
encased in glass; its construction followed the procedure reported 
previously (2). The glass surrounding the Pt was polished into 
a conical shape and the bottom polished flat to yield a Pt disk 
with glass insulation with a radius about 24 times bigger than the 
Pt disk. Before each experiment, the tip was polished on a Nylon 
cloth with 0.25-rm diamond paste (both from Buehler Ltd., Lake 
Bluff, IL). The reference electrode was a saturated calomel 
electrode (SCE). The substrate used throughout was a glass disk 
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to draw a parallel between the tip-substrate system and a 
thin-layer cell (TLC) (2). Two cases need to be considered 
depending on the type of substrate. 

(1) For a conducting substrate, where the reaction a t  the 
substrate is the reverse of the tip reaction and occurs a t  a 
mass-transfer-controlled rate, we take the chronoamperometric 
response of a TLC (a four-electrode system), where the cavity 
is bounded by two electrodes, one acting as an anode, the other 
as a cathode (with the cell also containing a counter and a 
reference electrode). The current a t  the cathode has been 
derived (see eq 87 of ref 16); normalization of this expression 
with respect to iT,- leads to 

- -  ~ T L C  - - ' -2-2 E ) ]  (3) 
'a)" a2 

with gold (about 800 A thick) sputtered on half of the disk. This 
substrate offered both insulating and conducting areas. 

Apparatus. The SECM apparatus has been described pre- 
viously (4,5). The cell was mounted on an X-Y stage controlled 
by piezoelectric drivers (inchworms 100 A/s to 2 mm/s, Burleigh 
Instruments, Fischer, NY), and the tip position was controlled 
by a similar Z piezoelectric inchworm. The SECM setup was 
placed on an air table (NRC pneumatic isolation mount, Newport 
Corp., Fountain Valley, CA) and shielded with a Faraday cage. 
A tweelectrode configuration was employed, with the tip potential 
controlled by a Princeton Applied Research PAR Model 175 
programmer, and the tip current was monitored by a home-built 
current follower with a rise time of about 100 ~ s .  The SECM 
chronoamperometric reaponse was recorded with a Norland Model 
3001A/DMX digital processing oscilloscope (Norland Corp., Fort - .  

Atkinson, WI). 
Procedure. After a potential step from +0.1 to +0.5 V vs SCE, 

the tip current was recorded as a function of time for different 
tip to substrate distances above the conducting (gold) substrate 
or insulating (glass) substrate. The conducting substrate was 
unbiased, with its potential controlled by the local ratio of the 
concentration of oxidized and reduced species. 

THEORY 
We first present analytical approximations that describe 

the chronoamperometric response of the SECM when the tip 
potential is stepped from a value where no electrochemical 
reaction occurs to one where a reduction or oxidation takes 
place a t  a diffusion-controlled rate. These expreasions have 
been established previously for different electrode geometries 
and are approximately valid for different time windows of the 
SECM i-t curve. They are particularly useful in providing 
a physical feeling for the SECM transient behavior in different 
time regimes. 

It is convenient to use Dt /a2  as the dimensionless time, 
where a 2 / D  is a measure of the time taken by the species to 
diffuse over a distance a equal to the tip radius. We also 
normalize all distances with respect to a. As is common 
practice in SECM theory, we normalize the tip current with 
respect to the steady-state tip current at infinity, iT ,  -. 

(a) At very short times, the thickness of the diffusion layer 
is small with respect to a and semiinfinite linear diffusion 
applies. Under these conditions, the Cottrell equation (14) 
holds. Normalization with respect to iT,- yields 

where ipE is the chronoamperometric response of a planar 
electrode (the Cottrell equation). 

(b) At short times, when the diffusion layer is still small 
with respect to d but microdisk edge effects become important, 
the tip behaves as a microdisk a quasi hemispherical diffusion 
field is established, and the transient deviates from the Cottrell 
i-t curve. The current then follows the chronoamperometric 
response of a microdisk, e.g., as given by Shoup and Szabo 
(15). Normalization of their expression with respect to iT,- 
leads to 

- -  LMD - 0.7854 + 0 *( 8862 D t  7) -'I2 + 

1r.- 
- 3  . .  

0.2146 exp [ -- 5 ) l " ]  (2) 

where i m  is the chronoamperometric response of a microdisk. 
At long times, in the absence of substrate effects, the 
steady-state current to a microdisk would be established and 
under these conditions eq 2 would yield iMD/iT,- = 1. 

(c) At intermediate and long times, the substrate interacts 
with the diffusion field, i.e., (Dt)lI2 > d ,  and it is convenient 

where d is the distance between the tip and the substrate. At 
long times, the TLC current reaches a steady state and eq 3 
yields the expreasion suggested in ref 2, im/k,- = (~/4)(a/d).  

(2) For an insulating substrate, we take the chronoam- 
perometric response of a TLC where the cavity is bounded 
by one electrode and an insulating wall. The analytical ex- 
pression for the concentration profdes within such a cell has 
been derived (see eq 4 of ref 17). Differentiation to obtain 
the current at the electrode and normalization with respect 
to iT,- leads to 

At  long times, depletion of the species within the TLC leads 
to zero current and eq 4 yields i m / i T , ,  = 0. In the SECM, 
the current decays to a steady state, non-zero value, because 
electroactive material continues to diffuse to the tip from the 
space between the edges of the insulator surrounding the 
microdisk and the substrate. The SECM in this regime can 
thus be thought of as a "leaky" TLC. 

Table I illustrates the chronoamperometric response given 
by eqs 1-4 from very short to very long times. Equations 3 
and 4, valid for a TLC at long times, become unwieldy a t  
shorter times and are no longer useful as the limit D t / a 2  
approaches 0. When D t / a 2  > (d /a )2 ,  the relative current 
reaches a steady state for a two-electrode TLC and decays to 
0 for a one-electrode TLC. In other words, for t L d2 /D,  the 
species have diffused across the gap of distance d and now 
probe the presence and nature of the substrate. For a con- 
ducting substrate, the species that were oxidized or reduced 
on the tip are regenerated and a steady-state concentration 
profile is rapidly established. For an insulating substrate, 
however, rapid depletion of the species leads to a 0 current. 
Table I also shows that for t << @ID, the SECM tip current 
should follow the chronoamperometric response of a PE; it 
then rapidly deviates to that of a MD. When t 1 d2 /D,  the 
SECM tip current should follow the response of a TLC. 

Equations 1-4 are adequate for a semiquantitative un- 
derstanding of the SECM i-t curve. However, since an exact 
solution to the differential equations governing the concen- 
tration distribution between the tip and the substrate is, to 
our knowledge, not known, accurate prediction of the SECM 
time response requires a digital simulation. 

NUMERICAL SIMULATION 
The fundamental diffusion equations for the SECM geom- 

etry and the boundary conditions have been given in a pre- 
vious treatment of the steady-state current (1). Modeling the 
SECM places two conflicting demands on a numerical simu- 
lation. A high spatial resolution is necessary at both the 
substrate and electrode surfaces, where the electrochemical 
reactions occur; however, the diffusion between substrate and 
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Table 1. Approximate SECM Transients Based on the Chronoamperomettic Response for a Planar Electrode (Second 
Column), a Microdisk (Third Column), a Thin-Layer Cell with Two Electrodes (Fourth to Sixth Columns), and a Thin-Layer 
Cell with One Electrode (Seventh to Ninth Columns)a 

iTLC/iT,- 
conducting substrate insulating substrate 

iPE/iT,m i M D / i T . m  eq 3 eq 4 
D t / a 2  eq 1 eq 2 d l a  = 0.1 d / a  = 1 d / a  = 10 d / a  = 0.1 dfa  = 1 d f a  = 10 

10-6 140.125 
10-4 44.311 
10-3 14.012 
10-2 4.431 
10-1 1.401 
1 0.443 
10' 0.140 
102 0.044 
103 0.014 
104 0.004 
108 0.001 

140.906 
45.095 
14.797 
5.221 
2.249 
1.374 
1.115 
1.036 
1.011 
1.004 
1.001 

140.125 
44.311 
14.014 
7.855 
7.854 
7.854 
7.854 
7.854 
7.854 
7.854 
7.854 

44.311 
14.012 
4.431 
1.401 
0.785 
0.785 
0.785 
0.785 
0.785 
0.785 

4.431 
1.401 
0.443 
0.140 
0.079 
0.079 
0.079 
0.079 

a The TLC exmessions. ea8 3 and 4. were comwted with 100 terms in the series. 

140.125 
44.311 
14.011 
1.332 
O.OO0 
O.OO0 
O.OO0 
O.OO0 
O.OO0 
O.OO0 
O.OO0 

44.311 
14.012 
4.431 
1.401 
0.133 
O.OO0 
O.OO0 
O.OO0 
O.OO0 
O.OO0 

4.431 
1.401 
0.443 
0.140 
0.013 
O.OO0 
O.OO0 
O.OO0 

electrode takes place over a distance several orders of mag- 
nitude greater. A uniform grid of both high resolution and 
large extent is prohibitively expensive (I). The use of several 
exponential grids within the domain, as used in the previous 
simulation (1) of the steady-state behavior of the SECM, 
reconciles these two demands. A simulation of the time ev- 
olution of the SECM and its transient behavior can be treated 
as a large set of coupled, ordinary differential equations (18, 
19). These equations are stiff because of the different length 
scales on the exponential grids. 

Modeling of the SECM transient assumes the oxidation 
reaction, R - ne - 0, occurs a t  the electrode tip. The con- 
centrations of the two species, Co(r,z) and CR(r,z), can be 
represented by the second-order partial differential equations 
for diffusion to a disk: 

1 
1 

-=Do[ aCo(r,z) a2Co(r,z) +- -  1 ac0W + d 2 C o ( w )  
at ar2 r ar ax2 

dCR(r,z) -=DR[ a2CR(r,z) +- -  1 aCR(r,z) + d2CR(r,z) 
at ar2 r dr a22 

( 5 )  

(6) 
The scaling of variables and choice of boundary conditions 
exactly followed the previous SECM simulations ( I ) .  If one 
chooses as an initial condition ( t  = 0) that Co(r,z) = Co*(r,z) 
(the oxidized bulk concentration) and assumes that the dif- 
fusion coefficients for both species are equal, Do = DR, then 
eqs 5 and 6 can be replaced with a single equation for the 
scaled oxidized species, X(r , z )  = Co(r,z)/Co*(r,z). The con- 
centration of the reduced species is then 1 - [Co(r,z)/Co*(r,z)]. 
The boundary conditions described in ref 1 now apply to a 
domain for one scaled concentration, and with lengths scaled 
by the tip radius, a. Along the tip electrode surface, z = 0, 
the assumption of fast kinetics gives a homogeneous boundary 
condition, X(r,O) = 0. There is a nonhomogeneous boundary 
condition X ( r , d / a )  = 1 on a conducting substrate, at a distance 
z = d / a  from the electrode, for the same reason. As usual, 
along the glass electrode sheath surrounding the tip and on 
an insulating substrate, there is a no-flux (Neumann) 
boundary condition, and we assume that the bulk concen- 
tration is regained at the radius of the glass sheath, RG. The 
resulting diffusion equation in the single variable X(r , z )  with 
these mixed inhomogeneous boundary conditions is not known 
to have an analytical solution. We write our single-differential 
equation a8 a set of ordinary differential equations, as dis- 

cussed previously (18,19), of a form that can be solved by a 
matrix approach. 

(7) 

(8) 

(9) 

dx/dt = A,x + A,x + b 

(AJ)(ri,zj) = aTx(ri-1,zj) + @x(ri,zj) + y[x(ri+l,zj) 

(A,x)(ri,z,) = $X(ri,zj-l) + @x(ri,zj) + */:X(ritzj+J 

where a, 0, and y are coefficients of the Laplacian in cylin- 
drical coordinates and Ap(ri,zj) and A,x(ri,zj) represent an 
element of the matrix-vector product at point ij. Since we 
used the exponential grids described in ref 1, these coefficients 
take a more complicated form than those in the equally spaced 
finite difference formula. Vector b incorporates the effect of 
the inhomogeneous boundary condition on the neighboring 
points. 

Instead of the Lanczos approach (18,19), a new algorithm 
for the solution of large sets of stiff ordinary differential 
equations based upon exact propagation in a small Krylov 
space (20) was used. Details of this approach are given 
elsewhere (20,21), and only an outline of the method will.be 
given here. The exact solution to eq 7 is 

(10) x(t) = xo + - (Ax0 + b) 

where A = A, + A,. This operation is carried out in a reduced 
subspace as follows. As described in ref 20, a Krylov space 
is formed by successive action of the Jacobian A on the vector 
(Ax, + b), i.e., the first vector W = (Axo + b) and \Irk result 
from orthonormalizing AQk-' to all previous W s .  Thus K 
iterations yield K Krylov vectors; for this work, 15 Krylov 
vectors were used to span the 15 dimensional Krylov subspace. 
The N by K matrix \k is defined as 9 i h  = Sf. Multiplication 
of a Krylov vector by 9 takes the components of the vector 
from the Krylov space back to R", and *+ projects a vector 
in R" into the Krylov subspace. While orthonormalizing the 
vectors qk one can construct a matrix 

eAt - I 
A 

A h 1  = ( *klAlql) (11) 

A = UAU-l (12) 

A is a K by K upper Hessenberg matrix and can be diago- 
nalized by the QR algorithm so that 

where U is the matrix of _eigenvalues and A is the diagonal 
matrix of eigenvalues of A. 

Most numerical methods approximate the exact solution 
to this linear problem by approximating the exponential of 
A. The exponential is treated as a polynomial expansion in 
explicit methods or by rational approximations in implicit 
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Flguro 1. Sknulated SECM translents. The top cvves correspond to 
a condudq substrate (log (dla) = -1, -0.8, -0.6, ..., 0 from the top 
downward); bottom curves correspond to an Insulating substrate (log 
(d la )  = -1, -0.8, -0.8, ..., 0 from the bottom upward). These results 
were obtalned for an RG (Insulating sheath radlus/tip radlus) of 10 and 
on the assumption that oxMlred and reduced species had the same 
dlffusbn coefflclent. 

schemes. In both cases the exact matrix A is used. In the 
method deacribed here, exponential propagatipn involves the 
exact exponential of the approximate matrix A. Our solution 
is obtained as 

where the notation (eAL - I) /A is shorthand for diag[(eAit - 
l)/AiI. 

The concentrations of the reduced species are integrated 
to some specified time, to obtain concentration profiles. This 
procedure was carried out for different spacings, d,  for both 
conductive and insulating substrates. The current was then 
calculated by a summation of the fluxes at the tip electrode 
surface. 

The calculation of SECM transient and steady-state cur- 
rents presented here can also be accomplished by other 
methods. For example, we recently treated this problem, with 
inclusion of a homogeneous reaction in the solution between 
tip and substrate, by the alternating direction implicit (ADI) 
method (22). The normalized current-time-distance curves 
found by the AD1 calculations were in excellent agreement 
with those reported here. Moreover, the AD1 method was 
more efficient for these calculations, which involved solving 
two tridiagonal matrix equations when the cylindrical La- 
placian separates into two directions. However, the Krylov 
integrator approach may have advantages in other problems. 

RESULTS AND DISCUSSION 
Figure 1 shows simulated transients in a dimensionless form 

( i ~ / i ~ , -  = f(Dt/a*)) for a conducting (C) and insulating (I) 
substrate for different values of d/a .  From the top curve 
downward, log (d/a) = -1, -0.8, -0.6, ..., 0 for a conductor, and 
from the bottom curve upward, log (d /a )  = -1, -0.8,-0.6, ..., 
0 for an insulator. At  long times, the simulated tip transients 
converge to the steady-state tip currents simulated previously 
( I ) .  While i~ reaches a steady state very rapidly with a con- 
ducting substrate, it exhibits a quasi steady state with an 
insulator. With no feedback diffusion from the insulating 
substrate to the tip, depletion of species first occurs within 
the thin layer of solution bounded by the conductive (Pt) 
microdisk and the substrate. A true steady state is eatablished 

log(d/a) / 

0 10 20 30 
a / (D t)"' 

Figure 2. Same transients as in Figure 1, but plotted as a function 
of the inverse square root of the dimensionless time. 

10 
I I I I I I I I I  

1 

.- . .- P 4  
3 .- 

3 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 
D t / a 2  

Flgurr 3. Comparison of simulated SECM transients In the form /1//1,- 
= f(Dt/a2), with transients corresponding to different electrode ge- 
ometries: (A) simulated SECM transient for a Conducting substrate; 
(6) two-electrode TLC, eq 3; (C) MD, eq 2; (D) PE, eq 1; (E) Simulated 
SECM transient for an Insulating substrate; (F) one-electrode TLC, eq 
4. Curves A, B, E, and F were computed with d l a  = 0.1. 

later, when depletion and a steady concentration profile exist 
all the way to the edge of the insulating sheath where it meets 
the bulk solution. Thus with insulating substrates, the rate 
of attainment of steady state depends on the thickness of the 
insulating region around the microdisk. All calculations here 
were carried out with a ratio of insulating sheath radius to 
disk radius, r, termed RG, of 10. Steady state at an insulating 
substrate would be reached more quickly with a smaller RG. 

In Figure 2 the simulated tip currents are replotted as a 
function of the inverse square root of the dimensionless time 
in order to highlight the chronoamperometric response at very 
short times. Figures 3 and 4 illustrate a comparison between 
simulated transients and approximate analytical transients 
computed with eq 1-4. The simulated curves agree quite well 
with the MD approximation in the short time region (Figure 
4) but show significant differences from the TLC approxi- 
mation in the long time region (Figure 3), which does not 
account for leakage into the gap region for both conducting 
and insulating substrates. As expected, the shapes of the 
SECM transients follow closely the MD transients and rapidly 
deviate toward a constant iT > iT,= for a conducting substrate 
and iT < iT,- for an insulating substrate. Merger of the curves 
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0.4 

0 1  

15 
I I 
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- 

.- . 
PI .- .z 5 

I 

0 10 20 30 
a i  (D t)"' 

Flgurr 4. Same as in Flgure 3, but In the form il/iT,m = f(e 

with the Cottrell equation occurs at times even shorter than 
those indicated in Figure 4. 

From Figure 4 it is possible to distinguish two limiting 
SECM responses, a MD regime (short times) and a TLC 
regime (long times). We can define a time when the SECM 
undergoes a transition from the MD regime to the TLC 
regime-the critical time, t,. Fundamentally, t ,  is related to 
the time when the species diffuses to and from the tip probe 
in the presence of the substrate. Assume that a reduction 
takes place on the tip. For an insulating substrate, t ,  is the 
time when the substrate first hinders the diffusion field of 
the oxidized species 0. Thus t ,  is of the order of d2/Do. 
However, for a conducting substrate, t,  is the time when the 
tip senses the increase in the local concentration of 0 (this 
increase is due to the diffusion of 0 from the bulk and from 
the substrate). In this case t ,  is of the order of d2(1/DR + 
l/DO) because it reflecta the time taken by species R to diffwe 
from the tip to the substrate and that taken by species 0 to 
diffuse from the substrate to the tip. By assuming that Do 
= DR = D, t ,  for a conducting substrate is about twice that 
for an insulating substrate. Indeed, both Figures 2 and 4 show 
that h (insulator) deviatea from im before h (conductor). The 
critical time, t,, is therefore an important parameter that is 
directly related to the diffusion time of the species over the 
distance d.  Since t ,  is a function of d and D, measurement 
oft, and d should allow direct determination of D; alterna- 
tively, measurement of t,  with a substrate of known D should 
lead to the tip-substrate distance, d.  

In Figure 5 we show the procedure that was used to define 
an arbitrary dimensionless critical time. (The true critical 
time discussed above is not accessible directly from the 
transients.) The arbitrary defined values are easily obtained 
from a plot of iT/iT,- vs l / t112. For a conducting substrate, 
we take a simulated SECM transient and draw a horizontal 
straight line (A) at the level of the steady-state current. We 
then draw an oblique line (B) (which defines the transient 
behavior and is basically the analytical response of a MD) on 
the early part of the transient. The intersection of lines A 
and B leads to the dimensionless critical time Dt,/a2 (C). Two 
methods were used to define t ,  with an insulating substrate. 
In method 1 ,  a straight line (D) is drawn as a tangent to the 
region of steepest gradient. The intersection of lines B and 
D leads to Dt,/a2 (E). In method 2, for an insulating substrate, 
we can also define a t ,  at an arbitrary value where the tip 
current is smaller than iT,-. For example, t,  can be taken by 
drawing a horizontal straight line (F) for iT/iT,- = 1. The 
intersection of line F with the transient leads to the dimen- 
sionless critical time Dt,/a2 (G). By repeating these proce- 

15 
I 1 

0 
0 10 20 30 

a I (D t)'l2 

Flgurr 5. Plot of i l / i T , m  vs e/(M)"* used for the evaluation of the 
dimensionless critical time: (A) horizontal line tangent to the steady- 
state slmulated tip current for a conducting substrate: (B) h e  tangent 
to the short time simulated tip current; (C) dimensionless critlcai time 
for a conductor: (0) line tangent to the region of steepest gradlent of 
a slmulated tip cwent for an insulating substrate; (E) dimensionless 
critical time for an insulator (method 1); (F) horizontal line given by 
i T / i T , m  = 1; (0) dimensionless critical time for an insulating substrate 
(method 2). 

0.8 '-1 J 

0.0- ' " ' ' " ' * " 
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dla 

Flgurr 6. Plot of (Dt,)"2/a vs dle used as a working curve for the 
determination of D when a conducting substrate (A) and an Insulating 
substrate method 1 (6) and method 2 (C) are used. Plots are based 
on simulated SECM transients obtained for an RG of 10. 

dures for different values of d l a ,  we can construct working 
curves of (Dt,)'12/a as a function of d f a for conducting and 
insulating substrates (Figure 6). These curves can be used 
for the determination of D when d and a are known or for 
determination of d when D and a are known. 

Again, one can get a feeling for this approach by considering 
a thin-layer cell. For a TLC, a critical time can be computed 
by equating the limiting current to the Cottrell transient 
current 

nFADC*/d = nFAD1/2C*/?r1/2t,'/2 (14) 

(Dt,)1/2 = d?r-1/2 (15) 
As described previously, t ,  can be evaluated from a plot of 
inc against l / t112. This equation is rigorous for a TLC. If 
d is known, eq 15 and the value of t ,  yield a value of D in- 
dependent of n and C*. Alternatively, if D is known, eq 15 
and the value oft ,  yield the value of d for a TLC. 

For the SECM situation, the relevant approximate equation 
is obtained by dividing eq 15 by a to yield 

(Dt , ) ' /2 /a  = (d/a).lr-'12 (16) 

Equation 14 yields the analytical working curve 
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Table 11. Experimental Results of SECM Transients with a Gold Substrate (a) and a Glass Substrate (b)" 

(a) Gold 

5.3 0.171 2.5 0.0961 
4.2 0.225 4.2 0.1315 
3.2 0.315 9.3 0.1907 
2.9 0.361 11.9 0.2210 
2.8 0.379 12.4 0.2328 
2.5 0.446 17.8 0.2768 

1@D, cm2 s-l 

5.8 0.178 
6.4 0.223 
6.1 0.319 
6.4 0.358 
6.8 0.365 
6.7 0.432 

(b) Glass 

t,, me (Dt,)1/2/a l@D, cm2 s-l dla 
iTJ iT , .  d/a meth 1 meth 2 meth 1 meth 2 meth 1 meth 2 meth 1 meth 2 

0.1 0.156 6.9 29.4 0.0829 0.1985 1.6 2.1 0.308 0.266 
0.2 0.319 13.8 77.2 0.1730 0.4053 3.4 3.3 0.433 0.419 

OIn the 2nd column d/a is derived from the working curve iT(t - =,d)/iT,. = f(d/a) (I), whereas in the last columns it is derived with the 
working curve (DtJ1121a = f(dla) assuming a = 12.5 X lo-' cm and D = 6.3 X 10" cm2 s-'. i T / i T -  and t, were measured experimentally. 

Note the slope predicted by this equation, d2 or 0.56, com- 
pared to that of the plot in Figure 6, curve A. 

Experimental Transients. One can define a procedure 
for determining t,, as defined above, for experimental tran- 
sients and then use the working curves in Figure 6 to deter- 
mine D or d,  independent of any parameter but the tip radius, 
a, by the following steps. (1) Record the "long distance" 
transient, and measure the steady-state tip current (t - -, 
d - m), iT,-. (2) Position the tip at a distance d from the 
substrate, where the steady-state iT is significantly different 
from iT,-. (3) Record the transient iT(t,d), and normalize it 
with respect to iT,-. (4) Evaluate d / a  from the steady-state 
iT(t - -,d)/iT,- and the simulated working curve iT(t - 
-,d)/iT,- = f(d/a) (I). (5) Plot iT(t,d)/iT,- and i&,d + -1 
versus t-'12, and determine t ,  graphically, as shown in Figure 
5. (6) Evaluate (DtC)'I2/a from d / a  and the working curve 
(Dt,)'12/a = f(d/a) (Figure 6), and compute D from the value 
of (Dt,)'l2/a read from the working curve and the measured 
values of t ,  and a. 

We might point out the similarity of this technique for 
determining D and the recent method described by Licht et 
al. (231, who used an array of individually addressable mi- 
crobands to perform a generation-collection experiment and 
measure the diffusion time between two microbands (a gen- 
erator and a collector) separated by a known distance. Our 
approach is similar, since we measure t ,  (equivalent to a 
diffusion time) as a function of the tip-substrate distance, but 
over a range of distances. 

I t  is important to point out that our technique does not 
require knowledge of the absolute tip to substrate distance, 
d. This is an advantage, since it can be experimentally Micult 
to evaluate an accurate absolute value of d from relative 
movements of the piezos. The only parameter that needs to 
be known with precision a priori, is a. We should emphasize 
that, contrary to most electrochemical techniques, in the 
SECM transient method the determination of D is inde- 
pendent of the concentration, C*, and the number of electrons 
involved during the electrochemical reaction, n. Note that, 
in principle, it is possible to evaluate t ,  for an insulating, as 
well as a conducting, substrate. For example, with an insu- 
lating substrate, it is not necessary for the tipgenerated species 
to be stable, as is required by generation-collection methods. 
We should stress, however, that the evaluation of D with an 
insulating substrate will generally not be very precise, since 
the negative feedback tip current under these conditions 
(hindered diffusion) is very dependent on the actual geometry 
of the tip and the substrate (the simulation is based on the 
assumption that the substrate and tip are perfectly parallel 

to one another). Because the positive feedback tip current 
is much less geometry dependent and larger values of iT/iT,- 
are measured, the evaluation of D with a conducting substrate 
is more precise. 

Two other applications derive from this approach one can 
compute C* from D, a, iT,-, and n (if n is known) or compute 
n from D, a, iT,=, and C* (if C* is known). In the former, the 
bulk concentration is evaluated without the need of a cali- 
bration curve, whereas in the latter, the number of electrons 
can be evaluated for the electrode reaction of a species whose 
diffusion coefficient is not known a priori. 

To demonstrate the approach discussed above, experimental 
SECM transients were recorded for different tip-substrate 
distances above a conductor (gold) and an insulator (glass). 
In actual transients the measured current also contains a 
contribution from double-layer (dl) charging that depends 
upon the dl capacitance of the tip and the uncompensated 
resistance (R,,). Moreover, in general, the potential drops at  
the tip and biased substrate surfaces can be affected by the 
magnitude of iR,, although in the cases considered here the 
applied bias is sufficiently extreme as to ensure diffusion 
control. As in most studies involving ultramicroelectrodes (H), 
dl charging and iR, effects tend to be small, e.g., as compared 
with analogous experiments in thin-layer cells. The electro- 
chemical reaction occurring on the tip was the oxidation of 
Fe(CN)$- (50 mM bulk concentration) to Fe(CN)6S- in 1 M 
KC1. Experimental normalized tip currents are plotted as a 
function of time (Figure 7) and as a function of the inverse 
square root of time (Figure 8). For these transients, about 
1000 tip current values were recorded at a sampling rate of 
one point every 100 p. As expected from the simulation, these 
results show that a very rapid steady state is established when 
the tip is close to a conductor (as early as 10 ms, top curve 
of Figure 7), whereas a quasi steady state occurs when the tip 
is close to an insulator (a true steady state does not appear 
on the time scale of these experiments). Since it was difficult 
to observe true MD behavior at very short times (either be- 
cause of the double-layer charging current or because of the 
finite rise time of the current follower), the short time line 
used to determine t,, as shown in Figure 5, was obtained from 
the current transient recorded when the tip was far from the 
substrate. Plotted as a function of the inverse square root 
of time, the experimental microdisk transient is a straight line 
that can be used for the determination of the experimental 
critical time. 

Table IIa shows the results with a gold substrate; iT/iT,- 
and t ,  were experimentally measured. In the second column 
d / a  is computed from the steady-state working curve iT(t - 
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Flgurr 7. Experimental tip cunent transients plotted as a function of 
tlme. From top to bottom dla equals 0.17, 0.22, 0.31, and 0.44 above 
a gold substrate, m, and 0.3, 0.2, and 0.1 above a glass substrate. 

I in s 

I In 8 

1 .ob2 2.563 l.le-3 6.344 

I 
0 1 0  2 0  3 0  4 0  

l/dt in 114s 

Figure 8. Same experimental transients as In Figure 7, plotted as a 
function of the inverse square root of tlme. 

-,d)/iT,.. = f(d/a) (I), while in the last column d/a  is com- 
puted with the transient working curve (Dt,)1/2/a = f(d/a) 
taking a = 12.5 X lo4 cm and D = 6.3 X lo4 cm2 s-l. (For 
a 4 mh4 solution of &Fe(CN)s in 1 M KCl, Adams (25) reports 
a value of 0.632 X cm2 s-l for the diffusion coefficient of 
Fe(CN)6C.) Note that both methods lead to almost identical 
results. Column 5 lists the value of D calculated for each 
distance; the average is (6.4 f 0.3) X lo4 cm2 s-l. 

Table IIb reports the results with a glass substrate. In this 
case we compare the two methods for the determination of 
t, (method 1 is based on the tangent to the steepest region 
of the SECM transient; method 2 is based on the intercept 
of iT/iT,- = 1 and the SECM transient). The results for an 
insulating substrate are much less precise and accurate and 
are dramatically dependent on the geometry of the tip-sub- 
strate system. The microdisk used throughout had an RG 
(insulating sheath radius/microdisk radius) of about 24, while 
all of the SECM simulations were performed for an RG of 10. 

CONCLUSIONS 
The chronoamperometric response of the SECM tip has 

been studied. An approximate analytical treatment had been 
proposed. Equations for the chronoamperometric response 
of a planar electrode, a microdisk, and a thin-layer cell have 
been used to predict the semiquantitative time dependence 
of the SECM tip current at very short, intermediate, and long 
times. The results of a more exact treatment based on a 
two-dimensional digital simulation of the diffusion process 

between the tip and the substrate have been presented, and 
the simulated SECM transients were compared with those 
predicted by the approximate analytical approach. An analysis 
of the normalized tip current plotted against the inverse square 
root of time has led to the measurement of the time when the 
diffusing species probes the presence and nature of the sub- 
strate. A working curve for the tip-substrate distance de- 
pendence of this critical time has been reported; it was pro- 
posed that this curve be used for the determination of the 
diffusion coefficient. Experimental SECM transients have 
been presented and analyzed; a measure of the critical time 
for several distances above a conducting substrate has shown 
that this technique allows determination of a value of the 
diffusion coefficient that agrees with previously published 
data. However, measurements above an insulating substrate 
have shown that the tip current is dramatically dependent 
on the geometry of the tip-substrate system. 
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