
NONCOMPUTABLE CONDITIONAL DISTRIBUTIONS

NATHANAEL L. ACKERMAN, CAMERON E. FREER, AND DANIEL M. ROY

Abstract. We study the computability of conditional probability, a fundamental
notion in probability theory and Bayesian statistics. In the elementary discrete
setting, a ratio of probabilities defines conditional probability. In more general
settings, conditional probability is defined axiomatically, and the search for more
constructive definitions is the subject of a rich literature in probability theory
and statistics. However, we show that in general one cannot compute conditional
probabilities. Specifically, we construct a pair of computable random variables
(X, Y) in the unit interval whose conditional distribution P[Y|X] encodes the
halting problem.

Nevertheless, probabilistic inference has proven remarkably successful in prac-
tice, even in infinite-dimensional continuous settings. We prove several results
giving general conditions under which conditional distributions are computable.
In the discrete or dominated setting, under suitable computability hypotheses,
conditional distributions are computable. Likewise, conditioning is a computable
operation in the presence of certain additional structure, such as independent
absolutely continuous noise.
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1. Introduction

The use of probability to reason about uncertainty is fundamental to modern
science and engineering, and the formation of conditional probabilities, in order to
perform evidential reasoning in probabilistic models, is one of its most important
computational problems.

The desire to build probabilistic models of increasingly complex phenomena has
led researchers to propose new representations for joint distributions of collections
of random variables. In particular, within statistical AI and machine learning, there
has been renewed interest in probabilistic programming languages, in which prac-
titioners can define intricate, even infinite-dimensional, models by implementing a
generative process that produces an exact sample from the joint distribution. (See,
e.g., PHA [1], IBAL [2], λ◦[3], Church [4], and HANSEI [5].) In sufficiently expres-
sive languages built on modern programming languages, one can easily represent
distributions on higher-order, structured objects, such as distributions on data struc-
tures, distributions on functions, and distributions on distributions. Furthermore,
the most expressive such languages are capable of representing the same robust class
of computable distributions, which delineates those from which a probabilistic Turing
machine can sample to arbitrary accuracy.

Whereas the probability-theoretic derivations necessary to build special-purpose
algorithms for probabilistic models have typically been performed by hand, imple-
mentations of probabilistic programming languages provide varying degrees of algo-
rithmic support for computing conditional distributions. Progress has been made
at increasing the scope of these implementations, and one might hope that there
would eventually be a generic implementation that would support the entire class
of computable distributions. What are the limits of this endeavor? Can we hope to
automate probabilistic reasoning via a general inference algorithm?

Despite recent progress, support for conditioning with respect to continuous ran-
dom variables has remained ad-hoc and incomplete. We demonstrate why this is the
case, by showing that there are computable joint distributions with noncomputable
conditional distributions.

The fact that generic algorithms do not exist for computing conditional distri-
butions does not rule out the possibility that large classes of distributions may
be amenable to automated inference. The challenge for mathematical theory is to
explain the widespread success of probabilistic methods and develop a characteri-
zation of the circumstances when conditioning is possible. In this vein, we describe
broadly-applicable conditions under which conditional distributions are computable.

1.1. Conditional probability. For an experiment with a discrete set of outcomes,
computing conditional probabilities is straightforward. However, in modern Bayesian
statistics, and especially the probabilistic programming setting, it is common to
place distributions on continuous or higher-order objects, and so one is already in
a situation where elementary notions of conditional probability are insufficient and
more sophisticated measure-theoretic notions are required. When conditioning on a
continuous random variable, each particular observation has probability 0, and the



NONCOMPUTABLE CONDITIONAL DISTRIBUTIONS 2

elementary rule that characterizes the discrete case does not apply. Kolmogorov [6]
gave an axiomatic characterization of conditional probabilities, but this definition
provides no recipe for their calculation. In some situations, e.g., when joint densities
exist, conditioning can proceed using a continuous version of the classic Bayes’ rule;
however, it may not be possible to compute the density of a computable distribution
(if the density even exists classically at all). The probability and statistics litera-
ture contains many ad-hoc rules for calculating conditional probabilities in special
circumstances, but even the most constructive definitions (e.g., those due to Tjur
[7], [8], [9], Pfanzagl [10], and Rao [11], [12]) are often not sensitive to issues of
computability.

In order to characterize the computational limits of probabilistic inference, we
work within the framework of computable probability theory, which pertains to the
computability of distributions and probability kernels, and which builds on the clas-
sical computability theory of deterministic functions. Just as the notion of a Turing
machine allows one to prove results about discrete computations performed using
an arbitrary (sufficiently rich) programming language, the notion of a probabilistic
Turing machine likewise provides a basis for precisely describing the operations that
various probabilistic programming languages are capable of performing in princi-
ple. The basic tools of this approach have been developed in the area known as
computable analysis; in particular, computable distributions on computable metric
spaces are a rich enough class to describe distributions on higher-order objects like
distributions on distributions. In Section 2 we present the necessary definitions and
results from computable probability theory.

We recall the basics of the measure-theoretic approach to conditional distributions
in Section 3, and in Section 4 we consider the sense in which formation of condi-
tional probability is a potentially computable operation. In the remainder of the
paper, we provide our main positive and negative results about the computability
of conditional probability, which we now summarize.

1.2. Summary of results. In Proposition 23, we construct a pair (X,C) of com-
putable random variables such that every version of the conditional distribution
P[C|X] is discontinuous even when restricted to a PX-measure one subset. (We make
these notions precise in Section 4.) Every function computable on a domain D is
continuous on D, and so this construction rules out the possibility of a completely
general algorithm for conditioning. A natural question is whether conditioning is a
computable operation when we restrict the operator to random variables for which
some version of the conditional distribution is continuous everywhere, or at least on
a measure one set.

Our main result, Theorem 29, states that conditioning is not a computable oper-
ation on computable random variables, even in this restricted setting. We construct
a pair (X,N) of computable random variables such that there is a version of the
conditional distribution P[N|X] that is continuous on a measure one set, but no
version of P[N|X] is computable. Moreover, if some oracle A computes P[N|X], then
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A computes the halting problem. In Theorem 50 we strengthen this result by con-
structing a pair of computable random variables whose conditional distribution is
noncomputable but has an everywhere continuous version.

We also characterize several circumstances in which conditioning is a computable
operation. Under suitable computability hypotheses, conditioning is computable in
the discrete setting (Lemma 30) and where there is a conditional density (Corol-
lary 35).

Finally, we characterize the following situation in which conditioning on noisy data
is possible. Let U, V and E be computable random variables, and define Y = U+ E.
Suppose that PE is absolutely continuous with a bounded computable density pE
and E is independent of U and V. In Corollary 36, we show that the conditional
distribution P[(U,V) |Y] is computable.

All proofs not presented in the body of this extended abstract can be found in
Appendices A through F.

1.3. Related work. Conditional probabilities for distributions on finite sets of dis-
crete strings are manifestly computable, but may not be efficiently so. In this finite
discrete setting, there are already interesting questions of computational complex-
ity, which have been explored through extensions of Levin’s theory of average-case
complexity [13]. If f is a one-way function, then it is difficult to sample from the
conditional distribution of the uniform distribution of strings of some length with
respect to a given output of f . This intuition is made precise by Ben-David, Chor,
Goldreich, and Luby [14] in their theory of polynomial-time samplable distributions,
which has since been extended by Yamakami [15] and others. Extending these com-
plexity results to the richer setting considered here could bear on the practice of
statistical AI and machine learning.

Osherson, Stob, and Weinstein [16] study learning theory in the setting of iden-
tifiability in the limit (see [17] and [18] for more details on this setting) and prove
that a certain type of “computable Bayesian” learner fails to identify the index of
a (computably enumerable) set that is computably identifiable in the limit. More
specifically, a “Bayesian” learner is required to return an index for a set with the
highest conditional probability given a finite prefix of an infinite sequence of ran-
dom draws from the unknown set. An analysis of their construction reveals that the
conditional distribution of the index given the infinite sequence is an everywhere
discontinuous function (on every measure one set), hence noncomputable for much
the same reason as our elementary construction involving a mixture of measures
concentrated on the rationals and on the irrationals (see Section 5). As we argue,
the more appropriate operator to study is that restricted to those random variables
whose conditional distributions admit versions that are continuous everywhere, or
at least on a measure one set.

Our work is distinct from the study of conditional distributions with respect to
priors that are universal for partial computable functions (as defined using Kol-
mogorov complexity) by Solomonoff [19], Zvonkin and Levin [20], and Hutter [21].
The computability of conditional distributions also has a rather different character
in Takahashi’s work on the algorithmic randomness of points defined using universal
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Martin-Löf tests [22]. The objects with respect to which one is conditioning in these
settings are typically computably enumerable, but not computable. In the present
paper, we are interested in the problem of computing conditional distributions of
random variables that are computable (even though the conditional distribution may
itself be noncomputable).

2. Computable probability theory

For a general introduction to this approach to real computation, see Braverman
[23] or Braverman and Cook [24].

2.1. Computable and c.e. reals. We first recall some elementary definitions from
computability theory (see, e.g. Rogers [25, Ch. 5]). We say that a set (of rationals,
integers, or other finitely describable objects with an implicit enumeration) is com-
putably enumerable (c.e.) when there is a computer program that outputs every
element of the set eventually. A set is co-c.e. when its complement is c.e. (and so
the computable sets are precisely those that are both c.e. and co-c.e.).

We now recall basic notions of computability for real numbers (see, e.g., [26,
Ch. 4.2] or [27, Ch. 1.8]). We say that a real r is a c.e. real when the set of rationals
{q ∈ Q : q < r} is c.e. Similarly, a co-c.e. real is one for which {q ∈ Q : q > r}
is c.e. (C.e. and co-c.e. reals are sometimes called left-c.e. and right-c.e. reals,
respectively.) A real r is computable when it is both c.e. and co-c.e. Equivalently,
a real is computable when there is a program that approximates it to any given
accuracy (e.g., given an integer k as input, the program reports a rational that is
within 2−k of the real).

2.2. Computable metric spaces. Computable metric spaces, as developed in
computable analysis, provide a convenient framework for formulating results in com-
putable probability theory. For consistency, we largely use definitions from [28] and
[29]. Additional details about computable metric spaces can also be found in [26,
Ch. 8.1] and [30, §B.3].

Definition 1 (Computable metric space [29, Def. 2.3.1]). A computable metric
space is a triple (S, δ,D) for which δ is a metric on the set S satisfying

(1) (S, δ) is a complete separable metric space;
(2) D = {si}i∈N is an enumeration of a dense subset of S, called ideal points;

and,
(3) the real numbers δ(si, sj) are computable, uniformly in i and j (i.e., the

function (i, j) 7→ δ(si, sj) is computable).

Let B(si, qj) denote the ball of radius qj centered at si. We call BS := {B(si, qj) :
si ∈ D, qj ∈ Q, qj > 0} the ideal balls of S, and fix the canonical enumeration of
them induced by that of D and Q.

For example, the set {0, 1} is a computable metric space under the discrete met-
ric, characterized by δ(0, 1) = 1. Cantor space, the set {0, 1}∞ of infinite binary
sequences, is a computable metric space under its usual metric and the dense set of
eventually constant strings (under a standard enumeration of finite strings). The
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set R of real numbers is a computable metric space under the Euclidean metric with
the dense set Q of rationals (under its standard enumeration).

Definition 2 (Computable point [29, Def. 2.3.2]). Let (S, δ,D) be a computable
metric space. A point x ∈ S is computable when there is a program that enumer-
ates a sequence {xi} in D where d(xi, x) < 2−i for all i. We call such a sequence
{xi} a representation of the point x.

Remark 3. A real α ∈ R is computable (as in Section 2.1) if and only if α is
a computable point of R (as a computable metric space). Although most of the
familiar reals are computable, there are only countably many computable reals, and
so almost every real is not computable.

The notion of a c.e. open set (or Σ0
1 class) is fundamental in classical computability

theory, and admits a simple definition in an arbitrary computable metric space.

Definition 4 (C.e. open set [29, Def. 2.3.3]). Let (S, δ,D) be a computable metric
space with the corresponding enumeration {Bi}i∈N of the ideal open balls BS . We
say that U ⊆ S is a c.e. open set when there is some c.e. set E ⊆ N such that
U =

⋃
i∈E Bi.

Note that the class of c.e. open sets is closed under computable unions and finite
intersections.

A computable function can be thought of as a continuous function whose lo-
cal modulus of continuity is witnessed by a program. It is important to consider
the computability of partial functions, since many natural and important random
variables are continuous only on a measure one subset of their domain.

Definition 5 (Computable partial function [29, Def. 2.3.6]). Let (S, δS ,DS) and
(T, δT ,DT ) be computable metric spaces, the latter with the corresponding enumer-
ation {Bn}n∈N of the ideal open balls BT . A function f : S → T is said to be
computable on R ⊆ S when there is a computable sequence {Un}n∈N of c.e. open
sets Un ⊆ S such that f−1(Bn) ∩R = Un ∩R for all n ∈ N.

Remark 6. Let S and T be computable metric spaces. If f : S → T is computable
on some subset R ⊆ S, then for every computable point x ∈ R, the point f(x) is also
computable. One can show that f is computable on R when there is a program that
uniformly transforms representations of points in R to representations of points in
S. (For more details, see [28, Prop. 3.3.2].)

2.3. Computable random variables and distributions. Intuitively, a random
variable maps an input source of randomness to an output, inducing a distribution
on the output space. Here we will use a sequence of independent fair coin flips as
our source of randomness. We formalize this via the probability space ({0, 1}∞,P),
where {0, 1}∞ is the space of infinite binary sequences whose basic clopen sets are
cylinders extending some finite binary sequence, and P is the product measure of
the uniform distribution on {0, 1}.

Henceforth we will take ({0, 1}∞,P) to be the basic probability space, unless
otherwise stated. We will typically use a sans serif font for random variables.
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Definition 7 (Random variable and its distribution). Let S be a computable metric
space. A random variable in S is a function X : {0, 1}∞ → S that is measurable
with respect to the Borel σ-algebras of {0, 1}∞ and S. For a measurable subset
A ⊆ S, we let {X ∈ A} denote the inverse image X−1[A] = {ω ∈ {0, 1}∞ : X(ω) ∈ A},
and for x ∈ S we similarly define the event {X = x}. The distribution of X is a
measure on S defined to be PX(·) := P{X ∈ · }.

Definition 8 (Computable random variable). Let S be a computable metric space.
Then a random variable X in S is a computable random variable1 when X is
computable on some P-measure one subset of {0, 1}∞.

Intuitively, X is a computable random variable when there is a program that,
given access to an oracle bit tape ω ∈ {0, 1}∞, outputs a representation of the point
X(ω) (i.e., enumerates a sequence {xi} in D where δ(xi,X(ω)) < 2−i for all i), for
all but a measure zero subset of bit tapes ω ∈ {0, 1}∞ (see Remark 6).

It is crucial that we consider random variables that are computable only on a
P-measure one subset of {0, 1}∞. For a real α ∈ [0, 1], we say that a binary
random variable X : {0, 1}∞ → {0, 1} is a Bernoulli(α) random variable when
PX{1} = α. There is a Bernoulli(1

2) random variable that is computable on all of
{0, 1}∞, given by the program that simply outputs the first bit of the input se-
quence. Likewise, when α is dyadic (i.e., a rational with denominator a power of
2), there is a Bernoulli(α) random variable that is computable on all of {0, 1}∞.
However, this is not possible for any other choices of α (e.g., 1

3).

Proposition 9. Let α ∈ [0, 1] be a nondyadic real. Every Bernoulli(α) random
variable X : {0, 1}∞ → {0, 1} is discontinuous, hence not computable on all of
{0, 1}∞.

On the other hand, for an arbitrary computable α ∈ [0, 1], a more sophisticated
construction [32] produces a Bernoulli(α) random variable that is computable on
every point of {0, 1}∞ other than the binary expansion of α. These random vari-
ables are manifestly computable in an intuitive sense (and can even be shown to
be optimal in their use of input bits, via classic analysis of rational-weight coins by
Knuth and Yao [33]). Hence it is natural to admit as computable random variables
those measurable functions that are computable only on a P-measure one subset of
{0, 1}∞, as we have done.

LetM1(S) denote the set of (Borel) probability measures on a computable metric
space S. The Prokhorov metric (and a suitably chosen dense set of measures [30,
§B.6.2]) makes M1(S) into a computable metric space [28, Prop. 4.1.1].

Theorem 10 ([28, Thm. 4.2.1]). Let (S, δS ,DS) be a computable metric space.
A probability measure µ ∈ M1(S) is a computable point of M1(S) (under the

1Even though the source of randomness is a sequence of discrete bits, there are computable random
variables with continuous distributions, such as a uniform random variable (by subdividing the
interval according to the random bittape) or an i.i.d.-uniform sequence (by splitting up the given
element of {0, 1}∞ into countably many disjoint subsequences and dovetailing the constructions).
(For details, see [31, Ex. 3, 4].)
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Prokhorov metric) if and only if the measure µ(A) of a c.e. open set A ⊆ S is
a c.e. real, uniformly in A.

Proposition 11 (Computable random variables have computable distributions [29,
Prop. 2.4.2]). Let X be a computable random variable in a computable metric space
S. Then its distribution is a computable point in the computable metric space
M1(S).

On the other hand, one can show that given a computable point µ inM1(S), one
can construct an i.i.d.-µ sequence of computable random variables in S.

Henceforth, we say that a measure µ ∈ M1(S) is computable when it is a com-
putable point inM1(S), considered as a computable metric space in this way. Note
that the measure P on {0, 1}∞ is a computable probability measure.

3. Conditional distributions

The notion of conditional probability captures the intuitive idea of how likely an
event B is given the knowledge that some positive-measure event A has already
occurred.

Definition 12 (Conditional probability). Let S be a measurable space and let
µ ∈ M1(S) be a probability measure on S. Let A,B ⊆ S be measurable sets, and
suppose that µ(A) > 0. Then the conditional probability of B given A, written
µ(B|A), is defined by

µ(B|A) =
µ(B ∩A)

µ(A)
. (1)

Note that for any fixed measurable A ⊆ S with µ(A) > 0, the function µ( · |A)
is a probability measure. However, this notion of conditioning is well-defined only
when µ(A) > 0, and so is insufficient for defining the conditional probability given
the event that a continuous random variable takes a particular value, as such an
event has measure zero.

In order to define the more abstract notion of a conditional distribution, we first
recall the notion of a probability kernel. (For more details, see, e.g., [34, Ch. 3, 6].)
Suppose T is a metric space. We let BT denote the Borel σ-algebra on T .2

Definition 13 (Probability kernel). Let S and T be metric spaces. A function
κ : S × BT → [0, 1] is called a probability kernel (from S to T ) when

(1) for every s ∈ S, the function κ(s, ·) is a probability measure on T ; and
(2) for every B ∈ BT , the function κ(·, B) is measurable.

Suppose X is a random variable mapping a probability space S to a measurable
space T .

2The Borel σ-algebra of T is the σ-algebra generated by the open balls of T (under countable unions
and complements). In this paper, measurable functions will always be with respect to the Borel
σ-algebra of a metric space.
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Definition 14 (Conditional distribution). Let X and Y be random variables in met-
ric spaces S and T , respectively, and let PX be the distribution of X. A probability
kernel κ is called a (regular) version of the conditional distribution P[Y|X]
when it satisfies

P{X ∈ A,Y ∈ B} =

∫
A
κ(x,B) PX(dx), (2)

for all measurable sets A ⊆ S and B ⊆ T .

Definition 15. Let µ be a measure on a topological space S with open sets S.
Then the support of µ, written supp(µ), is defined to be the set of points x ∈ S
such that all open neighborhoods of x have positive measure, i.e., supp(µ) := {x ∈
S : ∀B ∈ S (x ∈ B =⇒ µ(B) > 0)}.

Given any two versions κ1, κ2 of P[Y|X], the functions x 7→ κi(x, ·) need only agree
PX-almost everywhere, although the functions x 7→ κi(x, ·) will agree at points of
continuity in supp(PX).

Lemma 16. Let X and Y be random variables in topological spaces S and T , re-
spectively, let PX be the distribution of X, and suppose that κ1, κ2 are versions of
the conditional distribution P[Y|X]. Let x ∈ S be a point of continuity of both of the
maps x 7→ κi(x, ·) for i = 1, 2. If x ∈ supp(PX), then κ1(x, ·) = κ2(x, ·).

When conditioning on a discrete random variable, a version of the conditional
distribution can be built using conditional probabilities.

Lemma 17. Let X and Y be random variables mapping a probability space S to
a measurable space T . Suppose that X is a discrete random variable with support
R ⊆ S, and let ν be an arbitrary probability measure on T . Define the function
κ : S × BT → [0, 1] by

κ(x,B) := P{Y ∈ B | X = x} (3)

for all x ∈ R and κ(x, ·) = ν(·) for x 6∈ R. Then κ is a version of the conditional
distribution P[Y|X].

4. Computable conditional distributions

Having defined the abstract notion of a conditional distribution in Section 3, we
now define our notion of computability for conditional distributions.

Definition 18 (Computable probability kernel). Let S and T be computable metric
spaces and let κ : S ×BT → [0, 1] be a probability kernel from S to T . Then we say
that κ is a computable (probability) kernel when the map φκ : S → M1(T )
given by φκ(s) := κ(s, ·) is a computable function. Similarly, we say that κ is
computable on a subset D ⊆ S when φκ is computable on D.

Recall that a lower semicomputable function from a computable metric space to
[0, 1] is one for which the preimage of (q, 1] is c.e. open, uniformly in rationals q.
Furthermore, we say that a function f from a computable metric space S to [0, 1]
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is lower semicomputable on D ⊆ S when there is a uniformly computable sequence
{Uq}q∈Q of c.e. open sets such that

f−1
(
(q, 1]

)
∩D = Uq ∩D. (4)

We can also interpret a computable probability kernel κ as a computable map
sending each c.e. open set A ⊆ T to a lower semicomputable function κ(·, A).

Lemma 19. Let S and T be computable metric spaces, let κ be a probability kernel
from S to T , and let D ⊆ S. Then φκ is computable on D if and only if κ(·, A) is
lower semicomputable on D uniformly in a c.e. open set A.

In fact, when A ⊆ T is a decidable set (i.e., A and T \ A are both c.e. open),
κ(·, A) is a computable function.

Corollary 20. Let S and T be computable metric spaces, let κ be a probability
kernel from S to T computable on a subset D ⊆ S, and let A ⊆ T be a decidable
set. Then κ(·, A) : S → [0, 1] is computable on D.

Although a conditional distribution may have many different versions, their com-
putability as probability kernels does not differ (up to a change in domain by a null
set).

Lemma 21. Let κ be a version of a conditional distribution P[Y|X] that is com-
putable on some PX-measure one set. Then any version of P[Y|X] is also computable
on some PX-measure one set.

Proof. Let κ be a version that is computable on a PX-measure one set D, and let
κ′ be any other version. Then Z := {s ∈ S : κ(s, ·) 6= κ′(s, ·)} is a PX-null set, and
κ = κ′ on D \ Z. Hence κ′ is computable on the PX-measure one set D \ Z. �

Definition 22 (Computable conditional distributions). We say that the condi-
tional distribution P[Y|X] is computable when some version is computable on a
PX-measure one subset of S.

Intuitively, a conditional distribution is computable when for some (and hence for
any) version κ there is a program that, given as input a representation of a point
s ∈ S, outputs a representation of the measure φκ(s) = κ(s, ·) for PX-almost all
inputs s.

Suppose that P[Y|X] is computable, i.e., there is a version κ for which the map
φκ is computable on some PX-measure one set S′ ⊆ S.3 The restriction of φκ to
S′ is necessarily continuous (under the subspace topology on S′). We say that κ is
PX-almost continuous when the restriction of φκ to some PX-measure one set is
continuous. Thus when P[Y|X] is computable, there is some PX-almost continuous
version.

In Section 5 we describe a pair of computable random variables X,Y for which
P[Y|X] is not computable, by virtue of every version being not PX-almost continuous.
In Section 6 we describe a pair of computable random variables X,Y for which there
is a PX-almost continuous version of P[Y|X], but still no version that is computable
on a PX-measure one set.

3As noted in Definition 18, we will often abuse notation and say that κ is computable on S′.
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5. Discontinuous conditional distributions

Any attempt to characterize the computability of conditional distributions imme-
diately runs into the following roadblock: a conditional distribution need not have
any version that is continuous or even almost continuous (in the sense described in
Section 4).

Recall that a random variable C is a Bernoulli(p) random variable, or equiva-
lently, a p-coin, when P{C = 1} = 1−P{C = 0} = p. We call a 1

2 -coin a fair coin.
A random variable N is geometric when it takes values in N = {0, 1, 2, . . . } and
satisfies

P{N = n} = 2−(n+1), for n ∈ N. (5)

A random variable that takes values in a discrete set is a uniform random variable
when it assigns equal probability to each element. A continuous random variable U
on the unit interval is uniform when the probability that it falls in the subinterval
[`, r] is r− `. It is easy to show that the distributions of these random variables are
computable.

Let C, U, and N be independent computable random variables, where C is a fair
coin, U is a uniform random variable on [0, 1], and N is a geometric random variable.
Fix a computable enumeration {ri}i∈N of the rational numbers (without repetition)
in (0, 1), and consider the random variable

X :=

{
U, if C = 1;

rN, otherwise.
(6)

It is easy to verify that X is a computable random variable.

Proposition 23. No version of the conditional distribution P[C|X] is PX-almost
continuous.

Proof. Note that P{X rational} = 1
2 and, furthermore, P{X = rk} = 1

2k+1 > 0.
Therefore, any two versions of the conditional distribution P[C|X] must agree on all
rationals in [0, 1]. In addition, any two versions must agree on almost all irrationals
in [0, 1] because the support of U is all of [0, 1]. An elementary calculation shows
that P{C = 0 | X rational} = 1, while P{C = 0 | X irrational} = 0. Therefore, all
versions κ of P[C|X] satisfy

κ(x, {0}) =

{
1, x rational;

0, x irrational,
almost surely (a.s.), (7)

which, when considered as a function of x, is the nowhere continuous function known
as the Dirichlet function.

Suppose some version κ were continuous when restricted to some PX-measure one
subset D ⊆ [0, 1]. But D must contain every rational and almost every irrational in
[0, 1], and so the inverse image of an open set containing 1 but not 0 would be the
set of rationals, which is not open in the subspace topology induced on D. �
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Discontinuity is a fundamental obstacle, but focusing our attention on settings
admitting almost continuous versions will rule out this more trivial way of producing
noncomputable conditional distributions. We might still hope to be able to compute
the conditional distribution when there is some version that is almost continuous.
However we will show that even this is not possible in general.

6. Noncomputable almost continuous conditional distributions

In this section, we construct a pair of random variables (X,N) that is computable,
yet whose conditional distribution P[N|X] is not computable, despite the existence
of a PX-almost continuous version.

Let h : N→ N ∪ {∞} be the map given by h(n) =∞ if the nth Turing machine
(TM) does not halt (on input 0) and h(n) = k if the nth TM halts (on input 0)
at the kth step. The function h is lower semicomputable because we can compute
all lower bounds: for all k ∈ N, we can run the nth TM for k steps to determine
whether h(n) < k, or h(n) = k, or h(n) > k. But h is not computable because any
finite upper bound on h(n) would imply that the nth TM halts, thereby solving the
halting problem. However, we will define a computable random variable X such that
conditioning on its value recovers h.

Let N be a computable geometric random variable, C a computable 1
3 -coin and

U and V both computable uniform random variables on [0, 1], all mutually inde-
pendent. Let bxc denote the greatest integer y ≤ x. Note that b2kVc is uniformly
distributed on {0, 1, 2, . . . , 2k − 1}. Consider the derived random variables

Xk :=
2b2kVc+ C + U

2k+1
(8)

for k ∈ N. The limit X∞ := limk→∞ Xk exists with probability one and satisfies
limk→∞ Xk = V a.s. Finally, we define X := Xh(N).

Proposition 24. The random variable X is computable.

Proof. Let {Un : n ∈ N} and {Vn : n ∈ N} be the binary expansions of U and V,
respectively. Because U and V are computable and almost surely irrational, it is not
hard to show that these are computable random variables in {0, 1}, uniformly in n.

For each k ≥ 0, define the random variable

Dk =


Vk, h(N) > k;

C, h(N) = k;

Uk−h(N)−1, h(N) < k.

(9)

Because h is lower semicomputable, {Dk}k≥0 are computable random variables,
uniformly in k.

We now show that, with probability one, {Dk}k≥0 is the binary expansion of X,
thus showing that X is itself a computable random variable.

There are two cases to consider:
First, conditioned on h(N) = ∞, we have that Dk = Vk for all k ≥ 0. In fact,

X = V when h(N) =∞, and so the binary expansions match.
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Condition on h(N) = m and let D denote the computable random real whose
binary expansion is {Dk}k≥0. We must then show that D = Xm a.s. Note that

b2mXmc = b2mVc =

m−1∑
k=0

2m−1−kVk = b2mDc, (10)

and thus the binary expansions agree for the first m digits. Similarly, the next
binary digit of Xm is C, followed by the binary expansion of U, thus agreeing with
D for all k ≥ 0. �

n=0

n=1

n=2

n=3
n=4
n=5

0

1

1�2

1�4

1�8

Figure 1. A visualization of (X,Y), where Y is uniformly dis-
tributed and N = b− log2 Yc. Regions that appear (at low resolution)
to be uniform can suddenly be revealed (at higher resolutions) to be
patterned. Deciding whether the pattern is in fact uniform (or below
the resolution of this printer/display) is tantamount to solving the
halting problem, but it is possible to sample from this distribution
nonetheless. Note that this is not a plot of the density, but instead
a plot where the darkness of each pixel is proportional to its measure.

We now show that P[N|X] is not computable, despite the existence of a PX-almost
continuous version of P[N|X]. We begin by characterizing the conditional density of
X given N. Note that the constant function pX∞(x) := 1 is the density of X∞ with
respect to Lebesgue measure on [0, 1].
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Lemma 25. For each k ∈ N, the distribution of Xk admits a density pXk
with respect

to Lebesgue measure on [0, 1] given by

pXk
(x) =

{
4
3 , b2

k+1xc even;
2
3 , b2

k+1xc odd.
(11)

As Xk admits a density with respect to Lebesgue measure on [0, 1] for all k ∈
N∪{∞}, it follows that the conditional distribution of X given N admits a conditional
density (with respect to Lebesgue measure on [0, 1]) given by pX|N(x|n) := pXh(n)

(x).
Each of these densities is continuous and bounded on the nondyadic reals, and so
they can be combined to form an PX-almost continuous version of the conditional
distribution.

Lemma 26. There is a PX-almost continuous version of P[N|X].

Lemma 27. For all m,n ∈ N all versions κ of P[N|X], and PX-almost all x, we
have

2m−n · κ(x, {m})
κ(x, {n})

∈


{1

2 , 1, 2}, h(n), h(m) <∞;

{1}, h(n) = h(m) =∞;

{2
3 ,

3
4 ,

4
3 ,

3
2}, otherwise.

Let H = {n ∈ N : h(n) < ∞}, i.e., the indices of the TMs that halt (on input
0). A classic result in computability theory [35] shows that the halting set H is not
computable.

Proposition 28. The conditional distribution P[N|X] is not computable.

Proof. Suppose the conditional distribution P[N|X] were computable. Let n be the
index of some TM that halts (on input 0), i.e., for which h(n) < ∞, and consider
any m ∈ N.

Let κ be an arbitrary version of P[N|X], and let R be a PX-measure one set on
which κ is computable. Then the function

τ(·) := 2m−n · κ(·, {m})
κ(·, {n})

(12)

is also computable on R, by Corollary 20. By Lemma (27), there is a PX-measure one
subset D ⊆ R on which τ exclusively takes values in the set T = {1

2 ,
2
3 ,

3
4 , 1,

4
3 ,

3
2 , 2}.

Although PX-almost all reals in [0, 1] are in D, any particular real may not be.
The following construction can be viewed as an attempt to compute a particular
point d ∈ D at which we can evaluate τ . In fact, we need only a finite approximation
to d, because τ is computable on D and T is finite.

For each t ∈ T , let Bt be an ideal ball centered at t of radius less than 1
6 , so that

Bt∩T = {t}. By Definition 5, for each t ∈ T , there is a c.e. open set Ut ⊆ [0, 1] such
that τ−1(Bt)∩R = Ut∩R. Because every open interval has positive PX-measure, if
Ut is nonempty, then Ut∩D is a positive PX-measure set whose image is {t}. Thus,
PX-almost all x ∈ Ut ∩ R satisfy τ(x) = t. As

⋃
t Ut has PX-measure one, there is

at least one t ∈ T for which Ut is nonempty. Because each Ut is c.e. open, we can
compute the index t̂ ∈ T of some nonempty Ut̂.
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By Lemma 27 and the fact that h(n) <∞, there are two cases:

(i) t̂ ∈ {1
2 , 1, 2}, implying h(m) <∞, or

(ii) t̂ ∈ {2
3 ,

3
4 ,

4
3 ,

3
2}, implying h(m) =∞.

Because m was arbitrary, and because the mth TM halts if and only if h(m) <∞,
we can use τ to compute the halting set H. Therefore if P[X|N] were computable,
then H would be computable, a contradiction. �

Because this proof relativizes, we see that if the conditional distribution P[N|X]
is A-computable for some oracle A, then A computes the halting set H.

Computable operations map computable points to computable points, and so we
obtain the following consequence.

Theorem 29. The operation X,Y 7→ P[Y|X] of conditioning a pair of real-valued
random variables, even when restricted to pairs for which there exists a PX-almost
continuous version of the conditional distribution, is not computable.

It is natural to ask whether this construction can be extended to produce a pair
of computable random variables whose conditional distribution is noncomputable
but has an everywhere continuous version. We provide such a strengthening in
Appendix F.

Despite these results, many important questions remain: How badly noncom-
putable is conditioning, even restricted to these continuous settings? What is the
computational complexity of conditioning on efficiently computable continuous ran-
dom variables? In what restricted settings is conditioning computable? In the final
section, we begin to address the latter of these.

7. Positive results

We now consider situations in which we can compute conditional distributions,
with an aim towards explaining the widespread success of probabilistic methods.
We begin with the setting of discrete random variables.

For simplicity, we will consider a computable discrete random variable to be a
computable random variable in a computable metric space S where S is a countable
set. Let X be such a computable random variable. Then for x ∈ T , the sets
{X = x} and {X 6= x} are both c.e. open in {0, 1}∞, disjoint, and obviously satisfy
P{X = x} + P{X 6= x} = 1. Therefore, P{X = x} is a computable real, uniformly
in x. It is then not hard to show the following:

Lemma 30 (Conditioning on a discrete random variable). Let X and Y be com-
putable random variables in computable metric spaces S and T , respectively, where
S is a countable set. Then the conditional distribution P[Y|X] is computable, uni-
formly in X, Y.

7.1. Continuous, dominated, and other settings. The most common way to
calculate conditional distributions is to use Bayes’ rule, which requires the exis-
tence of a conditional density (and is thus known as the dominated setting within
statistics). We first recall some elementary definitions.
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Definition 31 (Density). Let (Ω,A, ν) be a measure space and let f : A→ R+ be
a measurable function. Then the function µ on A given by

µ(A) =

∫
A
fdν (13)

for A ∈ A is a measure on (Ω,A) and f is called a density of µ (with respect to
ν). Note that g is a density of µ with respect to ν if and only if f = g ν-a.e.

Definition 32 (Conditional density). Let X and Y be random variables in (complete
separable) metric spaces, let κX|Y be a version of P[X|Y], and assume that there is

a measure ν ∈ M(S) and measurable function pX|Y(x|y) : S × T → R+ such that
pX|Y(·|y) is a density of κX|Y(y, ·) with respect to ν for PY-a.e. y. That is,

κX|Y(y,A) =

∫
A
pX|Y(x|y)ν(dx) (14)

for measurable sets A ⊆ S and PY-almost all y. Then pX|Y(x|y) is called a condi-
tional density of X given Y (with respect to ν).

Common parametric families of distributions (e.g., exponential families like Gauss-
ian, Gamma, etc.) admit conditional densities, and in these cases, the well-known
Bayes’ rule gives a formula for expressing the conditional distribution.

Lemma 33 (Bayes’ rule [36, Thm. 1.13]). Let X and Y be random variables as
in Definition 14, let κX|Y be a version of the conditional distribution P[X|Y], and
assume that there exists a conditional density pX|Y(x|y). Then the function defined
by

κY|X(x,B) :=

∫
B pX|Y(x|y)PY(dy)∫
pX|Y(x|y)PY(dy)

(15)

is a version of the conditional distribution P[Y|X].

Comparing Bayes’ rule (15) to the definition of conditional density (14), we see
that the conditional density of Y given X (with respect to PY) is given by

pY|X(y|x) =
pX|Y(x|y)∫

pX|Y(x|y)PY(dy)
. (16)

Using the following well-known integration result, we can study when the condi-
tional distribution characterized by Bayes’ rule is computable.

Proposition 34 (Integration of computable functions ([28, Cor. 4.3.2])). Let S
be a computable metric space, and µ a computable probability measure on S. Let
f : S → R+ be a bounded computable function. Then

∫
fdµ is a computable real,

uniformly in f .

Corollary 35 (Density and independence). Let U, V, and Y be computable random
variables (in computable metric spaces), where Y is independent of V given U. As-
sume that there exists a conditional density pY|U(y|u) of Y given U (with respect to
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ν) that is bounded and computable. Then the conditional distribution P[(U,V)|Y] is
computable.

Proof. Let X = (U,V). Then pY|X(y|(u, v)) = pY|U(y|u) is the conditional density of
Y given X (with respect to ν). Therefore, the computability of the integrand and the
existence of a bound imply, by Proposition 34, that P[(U,V)|Y] is computable. �

As an immediate corollary, we obtain the computability of the following common
situation in probabilitic modeling: where the observed random variable has been
corrupted by independent absolutely continuous noise.4

Corollary 36 (Independent noise). Let U be a computable random variable in a
computable metric space and let V and E be computable random variables in R.
Define Y = U+E. If PE is absolutely continuous with a bounded computable density
pE and E is independent of U and V then the conditional distribution P[(U,V) | Y]
is computable.

Proof. We have that

pY|U(y|u) = pE(y − u) (17)

is the conditional density of Y given U (with respect to Lebesgue measure). The
result then follows from Corollary 35. �

This result is analogous to a classical theorem of information theory. Hartley
[39] and Shannon [40] show that the capacity of a continuous real-valued channel
without noise is infinite, yet the addition of, e.g., Gaussian noise with ε > 0 variance
causes the channel capacity to drop to a finite amount. The Gaussian noise prevents
too much information from being encoded in the bits of the real number. Similarly,
the amount of information in a continuous observation is too much in general for a
computer to be able to update a probabilistic model. However, the addition of noise
with enough structure is sufficient for making conditioning possible on a computer.

The computability of conditioning with noise, coupled with the noncomputability
of conditioning in general, has significant implications for our ability to recover a
signal when noise is added, and suggests several interesting questions. For example,
suppose we have a uniformly computable sequence of noise {En}n∈N with absolutely
continuous, uniformly computable densities such that the magnitude of the densities
goes to 0 in some sufficiently nice way, and consider Yn := U+En. Such a situation

4Note that Corollary 36 implies that noiseless observations cannot always be computably approxi-
mated by noisy ones. For example, even though an observation corrupted with zero mean Gaussian
noise with standard deviation σ may recover the original condition as σ → 0, by our main noncom-
putability result (Theorem 29) one cannot, in general, compute how small σ must be in order to
bound the error introduced by noise.

Myhill [37] exhibits a computable function [0, 1] → R whose derivative is continuous, but not
computable, and Pour-El and Richards [38, Ch. 1, Thm. 2] show that a twice continuously dif-
ferentiable computable function has a computable derivative. Therefore, noise with a sufficiently
smooth distribution has a computable density, and by Corollary 36, a computable random variable
corrupted by such noise still admits a computable conditional distribution.
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could arise, e.g., when we have a signal with noise but some way to reduce the noise
over time.

When there is a continuous version of P[(U,V)|Y], we have

limn→∞P[(U,V)|Yn] = P[(U,V)|Y]. (18)

However, we know that the right side is, in general, noncomputable, despite the fact
that each term in the limit on the left side is computable. This suggests that we
should be unable to recover any information about P[(U,V)|Y] from P[(U,V)|Yn]
for any particular n.

This raises several questions, such as: What do bounds on how fast the se-
quence {P[(U,V)|Yn]}n∈N converges to P[(U,V)|Y] tell us about the computability
of P[(U,V)|Y]? What conditions on the relationship between U and the sequence
{En}n∈N will allow us to recover information about P[(U,V)|Y] from individual dis-
tributions P[(U,V)|Yn]?

7.2. Conclusion. There is no generic algorithm for conditioning on continuous
random variables, and yet there are many particular situations in which practi-
tioners have developed algorithms (sometimes even quite efficient) for computing
conditional probabilities. An important challenge for computer science theory is to
characterize broadly-applicable circumstances in which conditioning on computable
random variables is possible. The positive results in this section provide several
such settings.

Freer and Roy [31] show how to compute conditional distributions in the setting
of exchangeable sequences. A classic result by de Finetti shows that exchangeable
sequences of random variables are in fact conditionally i.i.d. sequences, conditioned
on a random measure, often called the directing random measure. Freer and Roy de-
scribe how to transform an algorithm for sampling an exchangeable sequence into a
rule for computing the posterior distribution of the directing random measure given
observations. The result is a corollary of a computable version of de Finetti’s theo-
rem [41], and covers a wide range of common scenarios in nonparametric Bayesian
statistics (often where no conditional density exists). The search for additional pos-
itive results is an exciting future avenue for logic and theoretical computer science.
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Appendix A. Proofs from Section 2

Proof of Proposition 9: Assume X is continuous. Let Z0 := X−1(0) and Z1 :=
X−1(1). Then {0, 1}∞ = Z0 ∪ Z1, and so both are closed (as well as open). The
compactness of {0, 1}∞ implies that these closed subspaces are also compact, and so
Z0 and Z1 can each be written as the finite disjoint union of clopen basis elements.
But each of these elements has dyadic measure, hence their sum cannot be either α
or 1− α, contradicting the fact that P(Z1) = 1−P(Z0) = α. �

Appendix B. Proofs from Section 3

Proof of Lemma 16: Fix a measurable set A ⊆ Y and define g(·) := κ1(·, A) −
κ2(·, A). We know that g = 0 PX-a.e., and also that g is continuous at x. Assume,
for the purpose of contradiction, that g(x) = ε > 0. By continuity, there is an
open neighborhood B of x, such that g(B) ∈ ( ε2 ,

3ε
2 ). But x ∈ supp(PX), hence

PX(B) > 0, contradicting g = 0 PX-a.e. �

Proof of Lemma 17: The function κ, given by

κ(x,B) := P{Y ∈ B | X = x} (19)

for all x ∈ R and κ(x, ·) = ν(·) for x 6∈ R, is well-defined because P{X = x} > 0 for
all x ∈ R, and so the right hand side of Equation (19) is well-defined. Furthermore,
P{X ∈ R} = 1 and so κ is characterized by Equation (19) for almost all x. Finally,∫

A
κ(x,B) PX(dx) (20)

=
∑

x∈R∩A
P{Y ∈ B | X = x}P{X = x} (21)

=
∑

x∈R∩A
P{Y ∈ B, X = x}, (22)

which is equal to P{Y ∈ B, X ∈ A}, and so κ is a version of the conditional distri-
bution P[Y|X]. �

Appendix C. Proofs from Section 4

In the following proof we use a correspondence [26, Ch. 9.4] between type-two
effectivity and oracle computability: A function f is computable on D if and only
if f(x) is uniformly computable relative to an oracle for x ∈ D, where the oracle
encodes a convergent sequence of ideal balls containing x.

Proof of Lemma 19: Assume that κ(·, A) is lower semicomputable on D uniformly in
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A. In other words, for s ∈ D, the real number κ(s,A) is uniformly c.e. relative to s,
uniformly in A, and so by Theorem 10, the measure κ(s, ·) is uniformly computable
relative to s. Hence φκ is computable on D.

We now prove the other direction. Let φκ be as in Definition 18, fix a rational
q ∈ (0, 1) and c.e. open set A, and define I = (q, 1]. Then κ(·, A)−1[I] = φ−1

κ [P ],
where

P := {µ ∈M1(T ) : µ(A) > q}. (23)

This is an open set in the weak topology induced by the Prokhorov metric (see [44,
Lem. 3.2]). We now show that P is, in fact, c.e. open, uniformly in q and A.

Consider the set D of all probability measures on (T, δT ,DT ) that are concentrated
on a finite subset and where the measure of each atom is rational, i.e., every ν ∈ D
can be written as ν =

∑k
i=1 qiδti for some rationals qi ≥ 0 such that

∑k
i=1 qi = 1

and some points ti ∈ DT . Gács [30, §B.6.2] shows that D is dense in the Prokhorov
metric and makes M1(T ) a computable metric space.

Let ν ∈ D, and let R be the finite set on which it concentrates. Gács [30,
Prop. B.17] characterizes the ideal ball E centered at ν with rational radius ε > 0
as the set of measures µ ∈M1(T ) such that

µ(Cε) > ν(C)− ε (24)

for all C ⊆ R, where Cε =
⋃
t∈C B(t, ε).

We can write A =
⋃
n∈NB(dn, rn) for a computable sequence of ideal balls in

T with centers dn ∈ DT and rational radii rn. Let Am =
⋃
n≤mB(dn, rn). Then

Am ⊆ Am+1 and A =
⋃
mAm. Writing

Pm := {µ ∈M1(T ) : µ(Am) > q}, (25)

we have P =
⋃
m Pm. In order to show that P is c.e. open, it suffices to show that

Pm is c.e. open, uniformly in m. It is straightforward to show that E ⊆ Pm if and
only if ν(Cm) ≥ q + ε, where

Cm := {t ∈ R : B(t, ε) ⊆ Am}. (26)

Note that Cm is a decidable subset of R (uniformly in m and E) and that ν(Cm) is
a rational and so we can decide whether E ⊆ Pm, showing that P is c.e. open.

Hence, by the computability of φκ, there is a c.e. open set V , uniformly com-
putable in P (and hence I) such that φ−1

κ [P ]∩D = V ∩D. But then, we have that
κ(·, A)−1[I] ∩D = V ∩D, and so κ(·, A) is computable on D. �

Proof of Corollary 20: If B a c.e. open set, κ(·, B) is lower semicomputable on D
and κ(·, T \B) = 1−κ(·, B) is upper semicomputable on D. Because A is decidable,
both A and T \A are c.e. open, and so κ(·, A) is computable on D. �
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Appendix D. Proofs from Section 6

Proof of Lemma 25: Let k ∈ N. With probability one, the integer part of 2k+1Xk is
2b2kVc+C while the fractional part is U. Therefore, the distribution of 2k+1Xk (and
hence Xk) admits a piecewise constant density with respect to Lebesgue measure.

In particular, b2k+1Xkc ≡ C (mod 2) almost surely and 2b2kVc is independent of
C and uniformly distributed on {0, 2, . . . , 2k+1 − 2}. Therefore,

P{b2k+1Xkc = `} = 2−k ·

{
2
3 , ` even;
1
3 , ` odd,

(27)

for every ` ∈ {0, 1, . . . , 2k+1−1}. It follows immediately that the density p of 2k+1Xk
with respect to Lebesgue measure on [0, 2k+1] is given by

p(x) = 2−k ·

{
2
3 , bxc even;
1
3 , bxc odd.

(28)

and so the density of Xk is obtained by rescaling: pXk
(x) = 2k+1 · p(2k+1x). �

Proof of Lemma 26: By Bayes’ rule (Lemma 33), the probability kernel κ given by

κ(x,B) :=

∑
n∈B pX|N(x|n) P{N = n}∑
n∈N pX|N(x|n) P{N = n}

(29)

is a version of the conditional distribution P[N|X]. Every nondyadic real x ∈ [0, 1]
is a point of continuity of pX|N, and so the kernel κ is PX-almost continuous by
Lemma 44. �

Proof of Lemma 27: Let κ be as in Equation (29). Let m,n ∈ N. Then

τ(x) := 2m−n · κ(x, {m})
κ(x, {n})

= 2m−n ·
pX|N(x|m)P{N = m}
pX|N(x|n)P{N = n}

=
pXh(m)

(x)

pXh(n)
(x)

.

For k < ∞, pXk
(x) ∈ {2

3 ,
4
3} for PX-almost all x. Therefore, for h(n), h(m) < ∞,

τ(x) ∈ {1
2 , 1, 2} for PX-almost all x. As pX∞(x) = 1 for PX-almost all x, we have

τ(x) = 1 for PX-almost all x when h(n) = h(m) =∞ and τ(x) ∈ {2
3 ,

3
4 ,

4
3 ,

3
2} other-

wise. �
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Appendix E. Proofs from Section 7

Definition 37 (Computable probability space [29, Def. 2.4.1]). A computable
probability space is a pair (S, µ) where S is a computable metric space and µ is
a computable probability measure on S.

Let (S, µ) be a computable probability space. The measure µ(A) of a c.e. open
set A is always a c.e. real, but is not in general a computable real. It will be useful
to understand those sets A whose measure µ(A) is a computable real.

Definition 38 (Almost decidable set [29, Def. 3.1.3]). Let S be a computable metric
space and let µ ∈ M1(S) be a probability distribution on S. A (Borel) measurable
subset A ⊆ S is said to be µ-almost decidable when there are two c.e. open sets
U and V such that U ⊆ A and V ⊆ S \A and µ(U) + µ(V ) = 1.

When µ is a computable measure and A is an arbitrary c.e. open set, then µ(A)
is merely a c.e. real. However, when A is a µ-almost decidable set, then µ(A) is also
a co-c.e. real, hence computable ([29, Prop. 3.1.1]).

We now show that every c.e. open set is the union of a computable sequence of
almost decidable subsets.

Lemma 39 (Almost decidable subsets). Let (S, µ) be a computable probability space
and let V be a c.e. open set. Then, uniformly in (the index of) V , we can compute
a sequence of µ-almost decidable sets {Vk}k∈N such that, for each k, Vk ⊆ Vk+1, and⋃
k∈N Vk = V .

Proof. Note that the finite union or intersection of almost decidable sets is almost
decidable. By [29, Thm. 3.1.2] there is a computable sequence {rj}j∈N of reals, dense
in R+ and for which the balls {B(di, rj)}i,j∈N form a basis of µ-almost decidable sets.
Let E ⊆ N be a c.e. set such that V =

⋃
i∈E Bi, where {Bi}i∈N is the enumeration

of the ideal balls of S. Consider the set F = {(i, j) : ∃k ∈ E with B(di, rj) ⊆ Bk}
of indices (i, j) such that the closure of the ball B(di, rj) lies strictly within an ideal
ball within V . Then F is c.e. and, by the density of the sequence {rj}, we have V =⋃

(i,j)∈F B(di, rj). Consider the finite union Vk :=
⋃
{(i,j)∈F : i,j≤k}B(di, rj), which is

almost decidable. By construction, for each k, Vk ⊆ Vk+1, and
⋃
k∈N Vk = V . �

Conversely, we have the following characterization of computable measures.

Corollary 40. Let S be a computable metric space and let µ ∈ M1(S) be a prob-
ability measure on S. Then µ is computable if the measure µ(A) of every µ-almost
decidable set A is a computable real, uniformly in A.

Proof. Let V be a c.e. open set of S. By Theorem 10, it suffices to show that µ(V )
is a c.e. real, uniformly in V . By Lemma 39, we can compute a nested sequence
{Vk}k∈N of µ-almost decidable sets whose union is V . Because V is open, µ(V ) =
supk∈N µ(Vk). By hypothesis, µ(Vk) is a computable real for each k, and so the
supremum is a c.e. real, as desired. �
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Recall the definition of conditional probability (Definition 12). When µ is com-
putable and A is an almost decidable set, the conditional probability given A is
computable.

Lemma 41 (Conditional probability given an almost decidable set [29, Prop. 3.1.2]).
Let (S, µ) be a computable probability space and let A be an almost decidable subset
of S satisfying µ(A) > 0. Then µ(·|A) is computable.

Proof. By Corollary 40, it suffices to show that µ(B∩A)
µ(A) is computable for an almost

decidable set B. But then B∩A is almost decidable and so its measure, the numer-
ator, is a computable real. The denominator is likewise the measure of an almost
decidable set, hence a computable real. Finally, the ratio of two computable reals
is computable. �

The equation P{Y ∈ A | X = x} = P{Y∈A, X=x}
P{X=x} gives a recipe for calculating the

conditional distribution of a discrete random variable. However, the event {X = x}
is not necessarily even an open set, and so in order to compute the conditional
distribution given a discrete random variable, we need additional computability
hypotheses on its support.

Definition 42 (Computably discrete set). Let S be a computable metric space.
We say that a (finite or countably infinite) subset D ⊆ S is computably discrete
when, for some enumeration d0, d1, . . . of D (possibly with repetition) there is a
computable function f : N → N such that each dj is the unique point of D in the
ideal ball Bf(j).

Lemma 43. Let (S, µ) be a computable probability space, and let D be a computably
discrete subset of S. Define D+ := {d ∈ D : µ({d}) > 0}. There is a partial
function g : S → N, computable on D+, such that for d ∈ D+, the integer g(d) is
(the index of) a µ-almost decidable set containing d and no other points of D.

Proof. Immediate from Lemma 39. �

Proof of Lemma 30: We will actually prove the result in the slightly more general
setting where the “discrete” random variable takes values in a possibly uncountable
space S, but that we have a computable handle on the discrete subspace on which
the random variable concentrates. In particular, assume that PX is concentrated on
a computably discrete set D (see Definition 42).

Define D+ := {d ∈ D : PX({d}) > 0}, and let g be a computable partial function
that assigns each point in D+ a PX-almost decidable set covering it, as in Lemma 43.
Let Ag(d) denote the PX-almost decidable set coded by g(d).

Because X is also concentrated on D+, a version κ of the conditional distribution
P[Y|X] is an arbitrary kernel κ(·, ·) that satisfies

κ(d, ·) = P{Y ∈ · | X = d} (30)

for every d ∈ D+ (as in Lemma 17).
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Let d ∈ D+ be arbitrary. The set Ag(d) contains exactly one point of positive
PX-measure, and so the events {X = d} and {X ∈ Ag(d)} are positive PX-measure
sets that differ by a PX-null set. Hence

P{Y ∈ · | X = d} = P{Y ∈ · | X ∈ Ag(d)}. (31)

The event {X ∈ Ag(d)} is P-almost decidable, and so the measure P{Y ∈ · | X ∈
Ag(d)} is computable, by Lemma 41.

Thus the partial function mapping S →M1(T ) by

x 7→ P{Y ∈ · | X ∈ Ag(x)} (32)

is computable on D+, a subset of S of PX-measure one, and so the conditional dis-
tribution P[Y|X] is computable. �

Proof of Lemma 33: By Definition 14 and Fubini’s theorem, for Borel sets A ⊆ S
and B ⊆ T , we have that

P{X ∈ A, Y ∈ B} =

∫
B
κX|Y(y,A)PY(dy) (33)

=

∫
B

(∫
A
pX|Y(x|y)ν(dx)

)
PY(dy) (34)

=

∫
A

(∫
B
pX|Y(x|y)PY(dy)

)
ν(dx). (35)

Taking B = T , we have

PX(A) =

∫
A

(∫
pX|Y(x|y)PY(dy)

)
ν(dx). (36)

Therefore, ∫
A
κY|X(x,B)PX(dx) (37)

=

∫
A
κY|X(x,B)

(∫
pX|Y(x|y)PY(dy)

)
ν(dx). (38)

Finally, using the definition of κY|X, and by Equation (35), we see that κY|X is a
version of the conditional distribution P[Y|X]. �

Lemma 44. Let R ⊆ S be a PX-measure one subset. If the conditional density
pX|Y(x|y) of X given Y is continuous on R × T and bounded, then there is a PX-
almost continuous version of the conditional distribution P[Y|X].

Proof. Fix an open set B ⊆ T . We will show that for fixed B, the map x 7→
κY|X(x,B) given by Bayes’ rule is a lower semicontinuous by demonstrating that the
numerator is lower semicontinuous, while the denominator is continuous.
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Let PY be the distribution of Y. By hypothesis, the map φ : S → C(T,R+)
given by φ(x) = pX|Y(x|·) is continuous on R, while the indicator function 1B is

lower semicontinuous. Because the integration operator f 7→
∫
fdµ of a lower

semicontinuous function f with respect to a probability measure µ is itself lower
semicontinuous, the map x 7→

∫
1Bφ(x)dPY is lower semicontinuous on R.

Now let B = T and note that for every x ∈ R, the function φ(s) is bounded
by hypothesis. Integration of a bounded continuous function with respect to a
probability measure is a continuous operation, and so the map x 7→

∫
φ(x)dPY is

continuous on R. Therefore, κY|X is PX-almost continuous. �

Appendix F. Noncomputable everywhere continuous conditional
distributions

As we saw in Section 5, discontinuity poses a fundamental obstacle to the com-
putability of conditional probabilities. As such, it is natural to ask whether we
can construct a pair of random variables (Z,N) that are computable and admit an
everywhere continuous version of the conditional distribution P[N|Z], yet for which
every version is noncomputable. In fact, this is possible using a construction similar
to that of (X,N) in Section 6.

In particular, if we think of the construction of the kth bit of X as an iterative
process, we see that there are two distinct stages. During the first stage, which
occurs so long as k < h(N), the bits of X simply mimic those of the uniform random
variable V. Then during the second stage, once k ≥ h(N), the bits mimic that of
1
2(C + U).

Our construction of Z will differ in the second stage, where the bits of Z will instead
mimic those of a random variable S specially designed to smooth out the rough edges
caused by the biased coin C. In particular, S will be absolutely continuous and its
density will be infinitely differentiable.

We will now make the construction precise. We begin by defining several random
variables from which we will construct S.

Lemma 45. There is a distribution F on [0, 1] with the following properties:

• F is computable.
• F admits a density pF with respect to Lebesgue measure (on [0, 1]) which is

infinitely differentiable on all of [0, 1].
• pF(0) = 2

3 and pF(1) = 4
3 .

• dn+
dxn pF(0) =

dn−
dxn pF(1) = 0, for all n ≥ 1 (where

dn−
dxn and

dn+
dxn are the left and

right derivatives respectively).

(See Figure 2 for one such random variable.) Note that F is almost surely
nondyadic and so the r-th bit Fr of F is a computable random variable.
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Figure 2. (left) f(x) = e
− 1

1−x2 , for x ∈ (−1, 1), and 0 otherwise,
a C∞ bump function whose derivatives at ±1 are all 0. (right) A

density p(y) = 2
3

(
Φ(2y−1)

Φ(1) + 1
)
, for y ∈ (0, 1), of a random variable

satisfying Lemma 45, where Φ(y) =
∫ y
−1 e

− 1
1−x2 dx is the integral of

the bump function.

Let t ∈ {0, 1}3. For r ∈ N, define

S000
r :=

{
0, r < 3;

Fr−3, r ≥ 3;

S100
r :=


1, r = 0;

0, 1 ≤ r < 3;

1− Fr−3, r ≥ 3;

Str :=


C, r = ∅;
t(r), 1 ≤ r < 3;

Ur−3, otherwise;

when t 6∈ {000, 100}. It is straightforward to show that Str are computable random
variables, uniformly in t and r.

Finally, let T be a uniformly random element in {0, 1}3, and let the r-th bit of S
be STr .

It is straightforward to show that

(i) S admits a density pS with respect to Lebesgue measure on [0, 1].

(ii) pS is infinitely differentiable everywhere with
dn+
dxn pS(0) =

dn−
dxn pS(1), for all

n ≥ 0.

(For a visualization of the density pS see Figure 3.)
We say a real x ∈ [0, 1] is valid for S if x ∈ (1

8 ,
4
8) ∪ (5

8 ,
8
8). (For nondyadic x,

this is equivalent to the first 3 bits of the binary expansion of x not being 000 or
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Figure 3. Graph of the density function pS.

100.) The following are then straightforward consequences of the construction of S
and the definition of valid points:

(iii) If x is valid for S then pS(x) ∈ {2
3 ,

4
3}.

(iv) The Lebesgue measure (and PS-measure) of the collection of valid x is 3
4 .

Next we define, for every k ∈ N, the random variables Zk mimicking the construction
of Xk. Specifically, for k ∈ N, define

Zk :=
b2kVc+ S

2k
, (39)

and let Z∞ := limk→∞ Zk = V. Then the nth bit of Zk is

(Zk)n =

{
Vn, n < k;

Sn−k, n ≥ k
a.s. (40)

For k < ∞, we say that x ∈ [0, 1] is valid for Zk if the fractional part of 2kx is
valid for S, and we say that x is valid for Z∞ for all x. Let Ak be the collection
of x valid for Zk. It follows from (iv) that the Lebesgue measure of Ak is 3

4 for all
k <∞.

It is straightforward to show from (i) and (ii) above that Zk admits a density
pZk

with respect to Lebesgue measure on [0, 1] and that this density is infinitely
differentiable.

To complete the construction, we define Z := Zh(N). The following results are
analogous to those in the almost continuous construction:

Lemma 46. The random variable Z is computable.

Lemma 47. There is an everywhere continuous version of P[N|Z].

Proof. The density pZ is everywhere continuous and positive. �
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Lemma 48. For all m,n ∈ N, all version κ of the conditional distribution P[N|Z]
and PZ-almost all x, if x is valid for Zh(n) and for Zh(m) then

2m−n · κ(x, {m})
κ(x, {n})

∈


{1

2 , 1, 2}, h(n), h(m) <∞;

{1}, h(n) = h(m) =∞;

{2
3 ,

3
4 ,

4
3 ,

3
2}, otherwise.

We now show that one can compute the halting set from any version of the
conditional distribution.

Proposition 49. The conditional distribution P[N|Z] is not computable.

Proof. Suppose the conditional distribution P[N|Z] were computable. Let n be the
index of some TM that does not halt (on input 0), i.e., for which h(n) =∞. Consider
any m ∈ N. Notice that all x ∈ [0, 1] are valid for Zh(n) and so Ah(n)∩Ah(m) = Ah(m).

Let κ be an arbitrary version of P[N|Z], and let R be a PZ-measure one set on
which κ is computable. Then the function

τ(·) := 2m−n · κ(·, {m})
κ(·, {n})

(41)

is also computable on R. Define T∞ := {1}, T<∞ := {2
3 ,

4
3} and T := T∞ ∪ T<∞.

By equation (41), there is a PZ-measure one subset D ⊆ R such that whenever
x ∈ D ∩Ah(m) then τ(x) is in T .

For t ∈ T , let Bt be an ideal ball of radius less than 1
6 about t, and let Ut be a c.e.

open set such that τ−1(Bt) ∩ R = Ut ∩ R. Define U∞ := U1 and U<∞ := U 2
3
∪ U 4

3
.

Notice these are both c.e. open sets and D ∩ U∞ ∩ U<∞ = ∅.
We now consider two cases. First, assume h(m) =∞. In this case Ah(m) = [0, 1]

and Ah(m) ∩D ⊆ τ−1(T∞) ∩D = U∞ ∩D. Hence

(a) The Lebesgue measure of U∞ is 1 > 1
2 .

If, however, h(m) <∞ then Ah(m) has Lebesgue measure 3
4 and

Ah(m) ⊆ τ−1(T<∞) ∩D = U<∞ ∩D, (42)

and so
(b) The Lebesgue measure of U<∞ is at least 3

4 >
1
2 .

In particular, for each m ∈ N exactly one of (a) or (b) must hold. But it is clear
that the collection of m for which (b) holds a c.e. set and the collection of m for
which (b) does not hold (i.e., for which (a) holds) is also a c.e. set. So, as (b) holds
of m if and only if m ∈ H = {m : h(m) < ∞}, we have H is a computable set,
which we know is a contradiction.

Therefore κ must not be computable. �

In conclusion, we obtain the following strengthening of Theorem 29.

Theorem 50. Let X and Y be computable real-valued random variables. Then
operation X,Y 7→ P[X|Y] of conditioning a pair of real-valued random variables, even
when restricted to pairs for which there exists an everywhere continuous version of
the conditional distribution, is not computable.
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