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Abstract fidentiality and integrity, end-to-end security policies have
generally been interpreted as information flow policies re-
This paper introduces the use of static information flow quiring that the system obey noninterference. As this paper
analysis for the specification and enforcement of end-to- shows, availability policies too can be interpreted as requir-
end availability policies in programs. We generalize the de- ing a form of noninterference.
centralized label model, which is about confidentiality and ~ The third part of the framework is a static program anal-
integrity, to also include security policies for availability. ysis for enforcing confidentiality, integrity, and availability
These policies characterize acceptable risks by representingpolicies. Previous work has shown that it is possible to en-
them as principals. We show that in this setting, a suitable force end-to-end confidentiality and integrity properties by
extension of noninterference corresponds to a strong, end-Static, compile-time analysis of program text (for a survey
to-end availability guarantee. This approach provides a nat- see [24]). What is new here is a demonstration that the same
ural way to specify availability policies and enables exist- approach applies to availability: an availability analysis can
ing static dependency analysis techniques to be adapted folbe expressed in tractable form as a programming language
availability. The paper presents a simple language in which type system that also enforces confidentiality and integrity.
fine-grained information security policies can be specified ~ The paper is structured as follows. Section 2 presents the
as type annotations. These annotations can include require-new policy language for expressing requirements for avail-
ments for all three major security properties: confidential- ability, integrity, and confidentiality. Section 3 instantiates
ity, integrity, and availability. The type system for the lan- this label system as program annotations in a simple pro-
guage provably guarantees that any well-typed program hasgramming language. Section 4 uses the operational seman-
the desired noninterference properties, ensuring confiden-tics of the language to express trace-based security proper-
tiality, integrity, and availability. ties that correspond to availability, integrity, and confiden-
tiality policies. Section 5 gives a type system for this pro-
gramming language and states the corresponding security
theorem: well-typed programs are semantically secure (see
1. Introduction the appendix for proofs). Section 6 extends the simple pro-
gramming language to express richer notions of availabil-
Although availability is often considered one of the three ity and also to describe some aspects of distributed systems.
key aspects of information security (along with confiden- Section 7 discusses related work, and Section 8 concludes.
tiality and integrity), availability assurance has been largely
divorced from other security concerns. This paper starts to2, Availability policies
bridge the gap by giving a single, common framework for
reasoning about confidentiality, integrity, and availability. We begin by precisely defining what is meant by “avail-
The first part of this framework is a language for specify- ability”; then we define an expressive policy language for
ing confidentiality, integrity, and availability policies. This availability, and we demonstrate the policy language can be
policy language extends the decentralized label model [21],used for confidentiality and integrity too.
and thus is able to describe security policies involving mu-
tually distrusting principals. 2.1. Availability
The second part of the framework is a semantics for
the policy language, which characterizes precisely what it A system output is considered to beailableif it will
means for a system to enforce a policy. In the context of con-be produced eventually. The output does not have to be



correct—that is the province of integrity. to make the system unavailable, b@ihwer andups need
There are two common ways to specify availability. to fail. This joint failure is represented by a composite prin-
The first approach is to quantify system reliability using cipal given by the conjunctiopower Aups.
measurable criteria, such as the failure probability or the More genera”y, principa|$ may be constructed using
MTTF/MTTR (mean time to fail mean time to recovéera— COﬂjUﬂCtiOﬂ and disjunction Operatoﬁgind\/:
tio [27]. The second approach is to sped#jlure factors
(factors that could cause the system to fail), for example,
the minimum number of host failures needed to bring down
the system [25]. We adopt this second approach here.
The above description of availability glosses over an-
other aspect of availability: timeliness. How soon does an
output have to occur in order to be considered to be avail-

- " . .
able? For rgal time services, there may be harq time boundsp(,;‘lplvp2 represents a failure that happens if eitheor ps
beyond which a late output is useless. Reasoning about hov\fails. For example, the principaboot \/power can make a

Iong_ it takes to generate an output adds con5|derablg Comsystem fail if the superuser and the power supply each can
plexity, so for now let us consider an output to be available :

i : . . cause the failure.

if it arrives eventually. Section 6 presents an extension to

this framework that supports reasoning about timeliness. To demonstrate the expressiveness of this principal lan-
guage, we specify the availability of a quorum system [17].

A quorum systemis a collectiof©,, . . ., @, } of sets (quo-
rums) of hosts, every two of which intersect. A quorum sys-
tem is available as long as there is some quorum in which

ttributed to dail Th kinds of ble fail no hosts fail. Therefore, a quorum system cannot tolerate
attributed to gailure. There are many kinds ot possivie fall- .o taijre of a set of hostd such that for every quorum

ures: for example, hardware failures such as losing power,Qi, BN Q; is not empty. Thus, if the principal repre-

ftware failur h version n ker, and hu- S .
soft are faiiures such as subversio b.y a .attac er, and Ysents a host, availability of a quorum system can be speci-
man failures such as a user who provides incorrect or eve

malicious inputs. Our goal is a policy language that can de-nrled by the principaV | vq,. 5@ .20 Ane s 1)-

scribe all these kinds of failures and how the availability of
the system should be affected by them.

We consider a failure to be the malfunction open-
cipal, an entity that may affect the behavior of a system.
Therefore, a failure can be denoted by the responsible prin-  We write p; = po if the principalp; acts foranother
cipal. For some failures, the corresponding principal is sim- principal p,—that is,p; has all the powers gf; and is at
ply an abstract name, which might represent hardware,least as trustworthy [21]. Interpreting principals as failure
users, attacks or defense mechanisms, as shown in the folfactors, this means the failure pf is worse than the failure
lowing examples: of ps (or the same). The acts-for relation is useful for an-

) _alyzing availability, becausg, > p, means that the avail-

* power: the main power supply of a system, whose fail- gpjity represented by, is at least as high as the availabil-

ure may bring down the entire system. ity represented by.,. For example, if hosté; andh, are
e root: the “superuser”, which has the ability to control o principals, therh; Aho = hy holds becausé; fails
(or shut down) a system, and to act on behalf of users. it hoth 1, andh, fail. And information with the availabil-

e DDoSygoo: @ distributed denial of service attack ity n, Ak, also achieves the availability;, because ifi;
launched from 1000 machines. This principal can be does not fail 1, Aho does not fail.
used to specify the availability of a system that tol-

erates DDoS attacks launched from fewer than 1000 pal hierarchyH, an ordering (actually, a pre-order) on the

machines. set of principals. By the definition of acts-for, a principal hi-
* puzzle: the puzzle generated by a puzzle-based de-grarchy must satisfy the following deductive rules:
fense mechanism [13] for DoS attacks. This princi-

pal fails if attackers can feasibly solve the puzzle and
launch DoS attacks successfully. P1AD2 = p1

p = a | piApe | p1Vps
The notatiorn is an abstract name representing a principal.
The composite principgb; A p represents a joint failure

factor:p; Aps fails only if bothp; andp, fail. Another con-
structorV is used to construct a group (disjunction): princi-

2.2. Failures and principals

We assume that the unavailability of a system output is

2.3. Principal hierarchy

The acts-for relation between principals createsiaci-

P1 = P2 P2 = D3 P1 = D2
P1 = D3 p1 = p2Vp3

More complex failure scenarios are described by using
composite principall]. For example, suppose thatthereis ~ PLZP3 P2 =Ps  PLZPpP2 P1LZPs
a principalups representing a back-up power supply. And p1Vp2 = p3 p1 = p2/A\ps3




2.4. Owned policies larly if the security violation might occur outside the com-
puting system; some form of abstraction is needed. This ab-
An end-to-end availability policgpecifies the availabil- ~ straction does not create a problem for security enforcement

ity that a user requires of a system input or output. In this as long as the dependencies between security properties in-

work, availability is specified as a principal representing
a failure factor. Accordingly, an availability policy has the
form w : p, where principalu is the policy owner(the user
who specifies the policy), and principatepresents the re-
quired availability. For example, if Alice specifies the avail-
ability policy Alice : hy Ahy On one of her files, it means
that Alice requires the file to be available if hostsandh,

do not both fail.

In general, security (including availability) rests on as-

duced by a computing system can be analyzed precisely.

2.5. Policy semantics

Whether the policy: : p is applied to confidentiality, in-
tegrity, or availability properties, it corresponds to two se-
curity assumptions: thatdoes not fail, and the assumptions
made byu are true.

These assumptions can be formalized as a proposition

sumptions. In particular, the enforcement of a policy owned USing the following syntax:

by useru is contingent on the assumptions madeubyor

ou=0kp | o1Noy | 01Voy

example, system security commonly depends on a trusted

computing base (TCB). If the assumption that the TCB is

trustworthy is false, security may not be enforced. In a sys-

whereok p means that principagl does not fail. The prop-
erties of the acts-for relation can be captured formally us-

tem with mutual distrust, such as a distributed system cross-ng these propositions. }f; acts forp,, this means the fail-
ing administrative domains, different users might assume ure ofp; implies the failure op.:

different components of the system trustworthy. Thus it is
important to specify policy owners explicitly to indicate
whose assumptions are relevant to policy enforcement.
We build on the decentralized label model (DLM) [21],
which applies the notion of policy ownership to confiden-
tiality and integrity. In the DLM, a confidentiality or in-
tegrity policy has the formu : pq, ..., p,, meaning that
allows only principalspy, . .., p, to read or update the in-
formation protected by the policy. Using disjunctive princi-
pals, the policyu : py,...,p, can be written in the form
u:p1V...Vpy,, just like an availability policy. Further-
more, for each security property (confidentiality, integrity
or availability), a policyu : p can be interpreted as an as-
sumption byu thatp does not fail. A confidentiality policy
u : p means that, requires the data will remain confiden-
tial as long a® does not fail to keep it confidential. For in-
tegrity, u requires the data will have integrity unlgs$ails
to provide correct data. As an availability policy, it says that
u requires that the data is availablevifloes not fail.

)

Consequently, composite principals satisfy the following
conditions:

okpy = okpy iff p1 = po

okpy V okps iff ok (p1Ap2)
okp1 A okps iff ok (p1Vp2)

In addition, we assume there exists assumption config-
uration X that maps each principal to its assumptions
o = X(u). In general, ifu; > wug, then any assumption
made byu; is considered an assumption madeugy Con-
sequentlyy. must satisfy the following condition:

= (Z(u2) = X(u1))

)

A security policy can be given a formal semantics in
terms of these propositions. Using brackgisto indicate
the semantic function, the meaning of a policyp is:

Uy = U

[u:p] = Z(u) A okp

Based on this commonality, we can separate a notion ofSuppose a policy’ is applied to a security property Then

owned policiefrom the security properties these policies
apply to. Letw abstractly represent a security property of
the system; it may be a confidentiality, integrity, or avail-
ability property. Formally, we treat as an abstract proposi-
tion that is true if the corresponding security property holds,
and false otherwise. In general, if the polieyp is applied
to a security propertyt, it means that, requiresr to hold
if p does not fail.

Treating owned policies separately from the underlying,

the meaning of the policy is a characterization of when the
property is guaranteed to hold. To enforce the policy is to
guaranteer under the assumption thgP] is true, that is, to
ensurg[P] = .

Consider the example of enforcing the availability policy
Alice : hy Ahy on Alice’s file. The goal is to ensure that
the file is available under the assumption th@tlice) A
ok (h1/Ahs) is true. Therefore, one way to enforce the policy
is to replicate the file on hosts; andhy becausek (hy A

abstract security properties is useful for two reasons. First,hs) means thah; andhy cannot both fail, which ensures
it enables a uniform semantics for security policies. Second,that at least one host is available to serve accesses to the file.

it may in general be infeasible to formally specify or ana-
lyze what it means for a security property to hold, particu-

Moreover, if¥(Alice) impliesok hs, storing the file orhs
is another way to enforce the policy.



2.6. Dependency analysis and policy ordering

combined policy3,, written 8, < 3o, if VE. [31] = [B2]-
From the semantics, the ordering on policies can be lifted

A system processes inputs and produces outputs, creatup to an ordering on combined policies by the following
ing dependencies between security properties of those intyle;

puts and outputs. Such dependencies capture influences of
the system on security and induce constraints on security
policies. For example, consider a system running the fol-

lowing pseudo-code:

while (i > 0) skip;
send 7 to o;

This program sends the inpito the outpub if the value

VP € B,.3P € By. P< P'
B1 < B

Importantly, the set of all the combined policies form a
lattice with the followingjoin (L) andmeet() operations:

B1U B2 =B UBy
B1 M By ={u1Vua:p1Vps | ui:pi € B Aug:ps € B2}

of i is not positive. Otherwise, the program diverges, so the The join and meet operations are sound with respect to the

output is unavailable. Thus, the availabilityoflepends on
the integrity ofi. For simplicity, suppose there is only one
policy applied to these properties, and k& represent the
availability policy of o, and I; represent the integrity pol-
icy of i. Then[A,] = [/;] must hold in order to enforce
A,. If [A,] # [I;], then[A,] and—[I;] may both hold.
In this case the integrity ofis not guaranteed, and the pro-
gram may compromise the availability of But this vio-
lates the availability policyd, becausdgA4,] holds.

In general, given two security properties and ms,
and their policiesP; and P, if m; depends onr,, then
[Pi] = [P-] must hold in order to enforc®,. The con-
straint[P;] = [P-] corresponds to a natural ordering on
the two policies: P, is at least as strong aB;, written
P, < P,, meaning that for any configuratidhand any se-
curity propertyr, P; is enforced onr if P; is enforced on
w. Itis clear thatP; < P, is equivalenttorE. [P] = [P2].

The guantification oveX ensures that analyses based on the

policy ordering are insensitive 0.

From the semantics of policies and formulas (1) and (2)
in Section 2.5, the following rule for ordering policies im-
mediately follows:

Ug = Ul P2 = P1

[CP]
ur:pr < Ug:ipo

2.7. Combining owned policies

In general, different principals may have different secu-

policy semantics, because itis easily shown fi¥ati 5] =
[6:] V [B2] and[B1 11 Ba] = [B1] A [Be].

Having a lattice of policies supports static program anal-
ysis [7]. For example, consider an addition expressio#
es. Let A(e;) and A(eq) represent the availability policies
of the results ok; andes. Since the resuk; + es is avail-
able if and only if the results of; ande, are both avail-
able, we haved(e; + e2) < A(er) and A(e; + e2) <
A(ez). Because the policies form a latticd(e; + e2) =
A(e1) M A(es) is the least restrictive availability policy we
can assign to the result ef + eo. Dually, if C(e;) and
C(eq) are the confidentiality policies of; and es, then
C(e1) < C(e1+eq)andC(ez) < C(e;+e2). The leastre-
strictive confidentiality policy that can be assigned to the re-
sult 0f61 + e2 is 0(61) (] 0(62).

2.8. Security labels

In general, a system will need to simultaneously enforce
policies for confidentiality, integrity, and availability of the
information it manipulates. These policies can be applied
to information assecurity labels A label ¢ is written as a
triple (B¢, Br, Ba), WwhereS¢ represents the (possibly com-
bined) policy for confidentiality3; represents the integrity
policy, andg,4 represents availability. The notation¥?),
I(¢), and A(¢) represent the confidentiality, integrity, and
availability components of.

For example, suppose expressigrhas a security label

rity requirements. Itis convenient to incorporate the security £1, @hdes has labek;. Thene, + e, has a labe(C'(¢1) U

policies of several principals into one entity so that they can

C(02), (1) M I(Ly), A(61) M A(L)).

be analyzed and manipulated together. This is accomplished

by writing asetof policiesg = {Pi, ..., P,}, where each
P; is an owned policy; : p; applied to the same security
property.

A combined policyg is enforced if and only if all the

policies inj are enforced. As a result, the security assump-

tion described by must be weaker than or equal to the se-
curity assumptions described by policiesdn Therefore,
the semantics of is the propositiof 5] = \/ p 5[ P]. Just

as with simple policies, combined poligk is as strong as

3. Applying policies to computation

In this paper, a system is modeled by a program with
which users (including attackers) can interact only by af-
fecting its inputs and observing its outputs. Security
policies, including confidentiality, integrity and availabil-
ity policies, are specified on the inputs and outputs of a
program. This section shows this approach with a sim-
ple programming language.



3.1. Security model

. o . . Values v n | none
This section introduces two security assumptions that en- Expressions e == n | Im | e + e

ables enforcing secqnty pohqt_as in a§ystem py noninterfer- Statements s :— skip | mi—e | 515
ence. One assumption specifies which policies are already | if e thens; else s
enforced, and the other designates the power of attackers. | whileedos

Our goal is to ensure that a program does not allow at-
tackers to violate its security policies at run time. A pro-
gram itself has no influence on how its inputs are generated Figure 1. Syntax of Aimp
or how its outputs are used by external users. Therefore,
a program is not responsible for the enforcement of the in-
tegrity and availability policies of its inputs, or the confiden-
tiality policies of its outputs. Therefore, we have the follow-
ing security assumption:

ify whether a program satisfies a noninterference prop-
erty [30, 11, 32]. Since availability policies also correspond
to a noninterference property in our security model, a static
program analysis can be used to determine whether a system

SA1 Confidentiality policies specified on inputs, satisfies these policies. We now demonstrate this approach
and integrity and availability policies specified on by formally representing the system as a program written in
outputs are already enforced. a security-typed imperative language called Aimp.

The Aimp language is a basic imperative language
yyith assignments, sequential composition, condition-
als and loops. What distinguishes Aimp from other
security-typed imperative languages [30] is the valoee,
which is used to represeninavailability. a value is un-

We are interested in the security violations that may be
caused by attackers, and we assume that the power of an a
tacker is limited to affecting the inputs and observing the
outputs of the system. This leads to our second security as

sumption: ) . S o
available if and only if it isaone. Intuitively, there are three
SAZ2 If the integrity or availability of an output rules on using the valusone:
is compromised by attackers, it is because the in- )
tegrity or availability of some input is compro- e The valuenone cannot appear in program code.
mised by attackers. e The result of expressionis none if the evaluation of

e depends omone.
e The execution of a statement gets stuck if the execu-
tion depends onone.

By (SA1) and (SA2), the availability policy,, specified
on an outpub can be enforced by a noninterference prop-
erty: the availability of the output is not interfered with
by the availability of any input whose availability policy is A program of Aimp is just a statement, and the state of
not as strong ag,, or by the value of any input whose in- a program is captured by a memaly that maps memory
tegrity policy is not as strong a$,. references (memory locations) to values. We assume that

Indeed, suppose the outputs made unavailable by at- memory is observable to users, so memory references can
tackers. By (SA2), it is because the availability or integrity be used to represent I/O channels. A reference represent-
of some inputi is compromised by attackers. Without loss ing an input is called amput referencelf the value of an

of generality, suppose the availability bfs compromised.  input reference isone, then the corresponding input is un-
Let A; be the availability policy ofi. By (SA1), A, is en- available. Similarly, a reference representing an output is
forced, which, plus the unavailability efimplies that] A;] called anoutput referenceSupposen is an output refer-

is false. By the noninterference property, we haye< A;, ence, then the corresponding output becomes available if

which implies[4,] = [A:]. Thus,[A4,] is false because is assigned an integer value. An unassigned output refer-

[A;] is false. Therefore, the unavailability ofimplies that ence represents an output still expected by users.

[A,] is false. In other words, ifA,] is true, thero must be The syntax of Aimp is shown in Figure 1. Let range

available, which means that, is enforced. over memory locations. In Aimp, values include integer
One advantage of enforcing an availability policy by andnone. Expressions include integer, dereference ex-

noninterference is to avoid proving that a program will pressiorim, and addition expressian+es. Note thathone

eventually produce an output, which generally amounts tois not a valid expression so that it cannot appear in program

solving the halting problem. text. Statements include the empty statenifp, the as-
signment statement := e, sequential compositiosy ; so,
3.2. The Aimp programming language if andwhile statements.

Let 5 range over a lattic€ of base labels, such as poli-
It is well known that confidentiality and integrity poli- cies as defined in Section 2. The top and bottom elements
cies can be enforced by static program analyses that verof £ are represented by and L, respectively. The syntax



for types in Aimp is shown as follows:

Baselabels 4 € £ (E1) & dom( )
ase labels € AR A

Labels £,pc == (Gc,fr, 6a) o A M)

Types T == inty | intyref | stmty (2] (ex, M) J vy (ea, M) | va v =10+ s

In Aimp, the only data type isnt,, an integer type anno- (ex+e2, M) b
tated with security label, which contains three base labels (e, MY I n
as described in Section 2.8. [S1] (m = e, M) —— (skip, M[mw— n])

A memory reference: has typeint, ref, indicating the ’ '
value stored atn has typeint,. In Aimp, types of mem- (s1, M) — (s}, M)
ory references are specified bytyging assignment that [S2] (s1; 82, M) — (s}; 82, M)
maps references to types so that the typends 7 ref if Y T
L(m) =7. [S3] (skip; s, M) — (s, M)

The type of a statementhas the formstmtr whereR
contains the set of unassigned output references wiem [54] (e, M)§{n n>0
minates. IntuitivelyR represents all the outputs that are still (if e then s1 else s2, M) — (s1, M)
expected by users afteterminates.

[55] (e, M) I n n<0

3.3. Operational semantics (if e then s else s2, M) — (s2, M)

(whileedo s, M) —

The small-step operational semantics of Aimp is given  [S6] (if ¢ then s; while ¢ do s else skip, M)

in Figure 2. LetM represent a memory that is a finite map
from locations to values (includingone), and let(s, M)
be a machine configuration. Then a small evaluation step is
a transition from(s, M) to another configuratiofs’, M'),
written (s, M) — (s, M’).

The evaluation rules (S1)—(S6) are standard for an imper-

Figure 2. Operational semantics for Aimp

ative language. Rules (E1) and (E2) are used to evaluate ex{A) ma:=!m1; mo:= 1;
pressions. Because an expression has no side-effect, we usé) while (!m1) do skip; Mo :=1;
the notation(e, M) || v to mean that evaluatingin mem- (C) if (!m1) then while (1) do skip; else skip;
ory M results in the value. Rule (E1) is used to evaluate Mo :=1;
dereference expressidm. In rule (E2),v; + v is com- (D) if (!m;) then m,:=1 else skip;
puted using the following formula: while (!m2) do skip;
Mo :=2;
v + vy = { SR !f vy = my andvy = ny Figure 3. Examples
none if wv; = none Or vy = none

Rules (S1), (S4) and (S5) show that if the evaluation of
configuration(s, M) depends on the result of an expression
e, it must be the case thdt, M) || n. In other words, if
(e, M) | none, the evaluation ofs, M) gets stuck.

In code segment (B), thehile statement gets stuck if
m; iS unavailable. Moreover, it diverges if the valuerof
is positive. Thus, the availability ofi, depends on both the

availability and the value aof;.

3.4. Examples .
P In code segment (C), thief statement does not terminate

if my is positive, so the availability ofn, depends on the

By its simplicity, the Aimp language helps focus on the
V\yalue ofmy.

essentials of an imperative language. Figure 3 shows a fe
code segments that demonstrate various kind of availability In code segment (D)n, is assigned in one branch of the
dependencies, some of which are subtle. In all these exam4if statement, but not in the other. Therefore, whenithe
ples,m, represents an output, and its initial valueéme. statement terminates, the availabilitysof, depends on the
All other references represent inputs. value ofm;. Moreover, the program executestsi le state-

In code segment (A), ifn; is unavailable, the execution ment that may diverge before, is assigned value 2. There-
gets stuck at the first assignment. Therefore, the availabilityfore, for the whole program, the availability of, depends
of m, depends on the availability of;. on the value ofn;.



4. Noninterference properties exists an evaluatiofs, M) +— (s, My) +—— ... —
_ _ _ _ ~ (sn, My) suchthall’ = [M, My, ..., M,]. Intuitively, ev-

This section formalizes the noninterference properties ery trace in7 is the outputs observable to users at some
(in particular, availability noninterference) that correspond point during the evaluation dfs, /), andT represents all
to the security policies of Section 2. Although this formal-  the outputs of(s, 1/) observable to users. Since the Aimp
ization is done in the context of Aimp, it can be easily gen- |anguage is deterministic, for any two tracesZinit must
eralized to other state transition systems. be the case that one is a prefix of the other.

For both cor_1fidentia_lity _ and integ_rity, nonint(_erfer- In the intuitive description of noninterference, equiva-
ence has a simple, intuitive description: equivalent lent low-confidentiality inputs can be represented by two
low-confidentiality  (high-integrity) inputs always re- memories whose low-confidentiality parts are indistinguish-
sult in equivalent low-confidentiality (high-integrity) out- able. Suppose the typing information of a memady is
puts. The notion of availability noninterference is more given by a typing assignmert. Thenm belongs to the
subtle, because an attacker has two ways to comprojow-confidentiality part ofM if C(I'(m)) < L, where
mise the availability of an output. First, the attacker can C(I'(m)) denotesC(¢) if T'(m) is int,. Similarly, m is
make an input unavailable and block the computation us-a high-integrity reference if (I'(m)) £ L, and a high-
ing Fhe input. Second, the attacker can try to affect the i.n- availability reference ifA(I'(m)) € L. Letv; ~ vy de-
tegrity of control flow and make the program diverge (fail note that; andwv, are indistinguishable. By the observation
to terminate). In other words, the availability of an out- model of Aimp, a user cannot distinguislone from any
put may depend on both the integrity and availability of an other value. Consequently; ~ v, if and only if v; = vs,
input. The observation is captured by this intuitive descrip- »; = none or v, = none. With these settings, given two
tion of availability noninterference: memoriesM; and M, with respect tal', we define three

With all high-availability inputs available, equiva- kinds of indistinguishability relations betweéd; and M,

lent high-integrity inputs will eventually result in as follows:

equally available high-availability outputs. Definiton 41 T + M; =~c<r M2). The low-

As far as we are aware, no previous work has proposed a noonfidentiality parts ofA/; and M, are indistinguish-

tion of noninterference between the availability of outputs 2b!€; writtenl’ = My ~c<p, Mo, if for any m € dom(I),
and both the integrity and availability of inputs. This formu- € (I'(m)) < L implies M, (m) ~ Ma(m).

lation of noninterference provides a separation of concernsDefinition 4.2 (' = M; =45 M>). The high-integrity
(and policies) for availability and integrity, yet prevents the parts of M; and M, are indistinguishable, writtel®
two attacks discussed above. M, =1z My, if foranym € dom(T"), I(I'(m)) £ Lim-

The intuitive concepts of high and low security are based plies M; (m) ~ M, (m).

on the power of the potential attacker, which is represented | .. ... - R
by a base label. In the DLM, suppose the attacker is able E;Eglt(;?%'e’an(rd ET;;Aséugﬁ;).aI:i?agig? V?/\r/iil(ljﬂbllﬁy

to act for principalsy, . .., p,, and that there exists a top My ~agy Ms, if for any m € dom(T), A(T(m)) £ L

principal (denoted by) that acts for every principal. Then . . _ . . 7
we havel = {x : pi A. .. Apy}, becauses A. .. Ap,, is the implies thatM; (m) = none if and only if M>(m) = none.

most powerful principal that the attacker controls. Given a  Based on the definitions of memory indistinguishability,
base label3, if 5 < L then the label represents a low- we can define trace indistinguishability, which formalizes
security level that is not protected from the attacker. Oth- the notion of equivalent outputs. First, we assume that users
erwise,( is a high-security label. cannot observe timing. As a result, tra¢é$, M| and[M]

For an imperative language, the inputs of a program arelook the same to a user. In general, two traggsand 7>
just the initial memory, and the outputs are the observableare equivalent, writte; ~ 7, if they are equal up to
aspects of a program execution, which is defined bytie  stuttering, which means the two traces obtained by elimi-
servation modebf the language. In Aimp, we have the fol- nating repeated elements iy and 7> are equal. For ex-
lowing observation model: ample,[M;, My, My] =~ [My, My, Ms]. Second]’ andT5
are indistinguishable, if’, appears to be a prefix @b, be-
cause in that cas&); andT> may be generated by the same
execution. Given two traces;, and 7, of memories with
respect tol, letT' - Ty =¢<; T» denote that the low-
confidentiality parts of’; and7:; are indistinguishable, and
Suppose is a program, and/ is the initial memory. Based I' - T} =4, 15 denote that the high-integrity parts of
on the observation model, the outputssadre a se” of fi- T, andT5 are indistinguishable. These two notions are de-
nite traces of memories, and for any trd€ein 7, there fined as follows:

e Memories are observable.

e The valuenone is not observable. In other words, if
M(m) = none, an observer cannot determine the
value ofm in M.



Definition 4.4 (' - T} ~c<r T3). Giventwo traced’ and
T, ' Ty Ro<L T if there EXiStS/Tl/ = []\417 .. 7Mn]
andTy = [M{,...,M],] such thatly ~ T}, andT, ~ T3,

andl' - M; =¢c<r, M/ foranyiin{l,... ,min(m,n)}.

o ['H ]\/[1 zlgL MQ

e Fori € {1,2},Vm € dom(T'). A(T'(m)) £ LAm ¢
R = M;(m) # none

o (s, M;) —* (s;, M) fori e {1,2}

Definition 4.5 ' - T1 ~r«1 T2). Given two traced; and

Ty, T' = T =i¢p T if there existsT| = [M;, ..., M,]

andT; = [My,..., M) ] such thatl}y ~ T}, andT; ~ T3,

andl’ - M; =4, M/ foranyiin {1,... ,min(m,n)}.

imply that there exists?, M) for i € {1,2} such that

%

(sl, M) —* (s, M) andT - M/ ~eazp M.

. o _ 5. Security typing and soundness
Note that two executions are indistinguishable if any two

finite traces generated by those two eXeCUtionS are indiS' The type System of A|mp is designed to ensure that
tinguishable. ThUS, we can still reason about the indistin- any We”_typed A|mp program satisﬁes the noninterference
guishability of two nonterminating executions, even though properties defined in Section 4. For confidentiality and in-
~r1«1 and=c<, are defined on finite traces. tegrity, the type system performs a standard static informa-

With the formal definitions of memory indiStingUiShab”' tion flow ana|y5is [7, 30] For ava”ab”ity, the type System
ity and trace indistinguishability, it is straightforward to for- - tracks the set of unassigned output references and uses them
malize confidentiality noninterference and integrity nonin- to ensure that availability requirements are not violated.
terference: To track unassigned output references, the typing envi-
ronment for a statemestincludes a componerR, which
contains the set of unassigned output references before the
execution ofs. The typing judgment for statements has the
form:T'; R ;pct s: stmtg/, wherel is the typing assign-
ment, andpc is theprogram countefabel [6] used to track
security levels of the program counter. The typing judgment
for expressions has the forlt R Fe: 7

Note that this confidentiality noninterference property  Tpe typing rules are shown in Figure 5. Rules (INT) and
does not treat covert channels based on termination angNONE) check constants. An integehas typeint, where
timing. Static control of timing channels is largely orthog- 4 can e an arbitrary label. The valnene represents an un-
onal to this work, and has been partially addressed else-yyajlable value, so it can have any data type. Sinceis
where [28, 2, 23]. the only data type in Aimpone has typeint,.

Rule (REF) says that the type of a referemeés T ref
if I'(m) = 7. In Aimp, a memory maps references to val-
ues, and values always have integer types.

Rule (DEREF) checks dereference expressions. It disal-
lows dereferencing the references?) because they are
unassigned output references.

Rule (ADD) checks addition expressions. et /; be

Definition 4.6 (Confidentiality noninterference). A pro-
gram s has the confidentiality noninterferenceprop-
erty w.r.t. a typing assignmerit, written T' - NIg(s),
if for any two tracesT; and T, generated by evaluat-
ing (s, My) and(s, M), we have thal' - M; ~c<r Mo
impliesT' - T ~c<p, Tb.

Definition 4.7 (Integrity noninterference). A programs
has thdntegrity noninterferenceroperty w.r.t. a typing as-
signmentT’, writtenT" + NI;(s), if for any two tracesl}
and T, generated by evaluating, M;) and (s, M), we
have thal' = M; ~r¢;, My impliesI' =Ty ~r4p, Tb.

Consider the intuitive description of availability non-

interference. To formalize the notion that all the high- .
Lo . ) L S (C()UC (b)), I(6)NI (L), A(L1)MA(L2)). Asd d
availability inputs are available, we first need to distinguish i<n éelgtion(ZQE)B tr(ml)labe(l 31 +( 612) is e&aﬁilyé? Uz:lffss:

input references from unassigned output references. Giver .« 1o |abef. for i e (1,2}
a programs, let R denote the set of unassigned output ref- . o

erences. In general, referencesRnare mapped taone
in the initial memory. Ifm ¢ R, then referencen repre-

sents either an input, or an output that is already been gen

erated. Thus, given an initial memohy, the notion that all

the high-availability inputs are available can be represented

by Vm. (A(T'(m)) £ LAm ¢ R) = M(m) # none, as in
the following definition of availability noninterference:

Definition 4.8 (Availability noninterference). A program
s has theavailability noninterferencgroperty w.r.t. a typ-

ing assignmenf’ and a set of unassigned output refer-

encesR, writtenI'; R F NI4(s), if for any two memo-
ries M, M5, the following statements

Rule (SEQ) checks sequential statements. The premise
I'sRi;pec F s1 @ stmtgr, means thatR, is the set of
unassigned output references aftgrterminates and be-

fore s, starts. Therefore, the typing environment fgris

T'; Ry ; pc. Itis clear thaty andsy ; so terminate at the same
point. Thus,s;; s has the same type as.

Rule (ASSIGN) checks assignment statements. The
statementn := e assigns the value of to m, creat-
ing an explicit information flow frone to m and an implicit
flow from the program counter t@. To control these infor-
mation flows, this rule requireS(¢') U C(pc) < C(T'(m))
to protect the confidentiality of and the program counter,
andI(T'(m)) < I(pc) N C(¢) to protect the integrity ofn.



[INT] I';yREn:int,
[NONE] T';R | none : int,
I'(m) = inty
[REF] I'yREm: int, ref
m¢gR I'(m) = inty
[DEREF] I';RE!m : int,
[ADD] I';REep :inty, I ;.R F ez : inty,
I'sREer +ez:inty e,
[SKIP| T';R;pct skip: stmtr
I'sRipck sy : stmtr,
I';Ri;pck s2: stmtr,
[SEQ] =y Ten -
I';R;pck s1;52 : stmtg,
I'sREm: int, ref I'yREe:inty
Cpo)uC(') < C() 1(€) < I(pe)nI(L')
ASSIGN Ar(R) < ()
[ ] ['yRipekm:=e:stmtr_(m)
I';REe:inte Ar(R) < A(0)
I DyRi;pcllls; ;7 ie€{l,2}
[IF] I';R;pct if ethens; elsesy : T
I'Fe:int, I'sRipcUlF s: stmtr
Ar(R) < I(£)nI(pc)m A(£
[WHILE] r(R) < (.) (pc) M A(£)
I';R;pct whileedo s : stmtr
SUB I';R;pcks:T 'R;peH1< 7
[ ] I';R;pcks:t

Figure 4. Typing rules for Aimp

If the value ofe is unavailable, the assignmennt := e
will get stuck. Therefore, rule (ASSIGN) has the premise
Ar(R) < A('), where Ap(R) = |,,cr A(T'(m)), to
ensure the availability oé is as high as the availability

SIGN), the premisedAr(R) < A(¢) ensures that has
sufficient availability.

Rule (WHILE) checkswhile statements. In this rule,
the premisedr(R) < I(¢) M I(pc) M A(¢) can be decom-
posed into three constraintdi (R) < A(¢), which ensures
thate has sufficient availabilityAr (R) < I(¢), which pre-
vents attackers from making théile statement diverge
by compromising the integrity of, and Ar(R) < I(pc),
which guarantees the integrity of the control flow reaching
the while statement, becausewaile statement may di-
verge without any interaction with attackers.

For example, consider the code segments (B) and (C) in
Figure 3, in whichR = {m,}. Supposed(T'(m,)) £ L.

In (B), the constraintAr(R) < I(¢) of rule (WHILE) en-
suresl (I'(m1)) £ L, so attackers cannot affect the value of
my1, and whether th@hile statement diverges. In (C), the
constraintAr(R) < I(pc) guaranteeg(pc) £ L, and thus
I(T'(mq)) £ L holds becausé(pc) < I(I'(my)). There-
fore, attackers cannot affect which branch of ilfestate-
ment would be taken, or whether control reachesithid e
statement.

Rule (SUB) is the standard subsumption rule. Let
I';R;pct 7 < 7’ denote that is a subtype of’ with re-
spect to the typing environmeht; R ; pc. The type system
of Aimp has one subtyping rule:

R'CR'CR
Ym, meR"—R = A(l'(m)) < I(pc)

ST
[ST] I';R;pck stmtrs < stmtgr

Supposd™; R ;pc - stmtrs < stmtr~» andl'; R ;pc F

s : stmtg/. Thenl';R;pc b s : stmtr~ by rule (SUB).

In other words, ifR’ contains all the unassigned output ref-
erences aftes terminates, so doeR”. This is guaranteed
by the premiséR’ C R” of rule (ST). The reference s&
contains all the unassigned output references bafarex-
ecuted, so rule (ST) requird®” C R. Intuitively, that the
statements can be treated as having typemty. is be-
cause there exists another control flow path that bypasses
and does not assign to reference®if—R’. Consequently,
for anym in R” — R’, the availability ofm may depend

of any unassigned output reference. For example, in theon Whet.hEES is executed. Therefore, rule (ST) enforces the
code segment (A) of Figure 3, the type system ensures thagonstraint/m, m € R” — R’ = A(T'(m)) < I(pc).

A(T(mo)) < A(T(m1)).
Finally, when the assignment :

e terminates,m

should be removed from the set of unassigned output ref-0 :

erences, and thus the statement has $e ¢ _ ().
Rule (IF) checksif statements. Consider the state-
ment if e then s; else sy. The value ofe determines

Consider the assignment, := 1 in code segment (D)
of Figure 3. By rule (ASSIGN)I;{m,};pc F m, =
stmty. For the else branch of theif statement,
we havel';{m,};pc - skip : stmty,, ;. By rule (IF),
I'i{mo};pck my := 0 : stmty, 1 needs to hold, which
requiresl’;{m,};pc = stmty < stmty, 3. In this ex-

which branch is executed, so the program-counter la-ample, the availability ofn, depends on which branch is

bels for branches; ands, subsume the label ofto pro-
tecte from implicit flows. As usual, the.f statement has
type 7 if both s; and s, have typer. As in rule (AS-

taken, and we need to ensut¢l’(m,)) < I(I'(m1)). In-
deed, if (D) is well typed, by rules (ST) and (IF), we have
A(I'(my)) < I(pe) < I(I'(ma)).



This type system satisfies the subject reduction prop-6.1.1. Operational semantics.Note that valuen can be
erty. Moreover, we can prove that any well-typed program treated as a syntax sugar fot, 0). As a result, the eval-
has confidentiality, integrity and availability noninterfer- uation rules in Figure 2 can be adapted to the timeout ex-
ence properties. These results are formalized in the fol-tension by replacing any occurrence (@f M) | n with
lowing two theorems (see the technical report [34] for the a more general formje, M) |} (n, t). For example, the
proofs). adapted rule (S1) is shown below:

Theorem 5.1 (Subject reduction). Supposel’; R ; pc (e, M) | (n, t)

P [S1] :
s : 7, anddom(T") = dom(M). If (s, M) — (s, M’), (m :=e, M) — (skip, M[m n])
then there exist&k’ such thatl'; R’ ;pc + ¢ : 7, and
R’ C R, andforanym € R — R, M'(m) # none.

In addition, the formula for computing, + v in rule (E2)
also needs to be adapted to this more general form of val-
Theorem 5.2 (Noninterference).If I'; R ; pct s : 7, then ues:

T'FNIg(s), I'FNIf(s)andl';RENI4(s). N { (n1+ma, t1 +t2) if Vi€ {1,2}. v = (ni, t:)
V1TV =

none if v1 = none Orvs = none

6. Extensions . . o
The operational semantics of the race expression is given by

This section describes two language extensions that cari"€ following rules (E3)—(ES). Suppose ande; are eval-
be used to reduce availability dependencies and allow a pro-lated to(n1, t1) and(ns, t5), which means evaluating

gram to use low-availability data in a more flexible and @ndez takest, andt, units of time, respectively. Thus, if
practical way. t1 <ty (E3), the result ok, should be the final result, and

if t1 > to (E4), (ne, t2) is the final result. Rule (E5) ap-

plies when only the result of one expressigris available.

(e1, M) | (n1, t1) (e2, M) | (ng, t2) t1 <t
(erftez, M) | (n1, t1)

6.1. Timeout

. . . L E3
Timeouts can effectively turn a blocking operation into a [E3]

non-blocking operation, and thus provide a strong availabil-
ity guarantee for a computation that uses low-availability in- (54, (e, M) U {n1, t1) (e2, M) U (na, t2) t1 > 12
puts. To support timeouts, we introduce two syntax exten- (erttez, M) | (na, t2)
sions to Aimp: timed integer values and a race expression.
<67;, M>‘u<na t> (q,M}l}none {Z,j}:{1,2}

<61#€27 M> ‘u <n7 t>

6.1.2. Typing. The race expression is essential for the
A timed integer(n, t) is similar to integem except that timeout mechanism to provide strong availability guaran-

it would taket units of time to use this value. A race expres- [€€S- Consider a race expressiggte,. According to rule
sione; #e5 evaluateg, ande, at the same time and returns (ES), the result of eXpr_eSS'O@l#SQ is available as '0”9
the result of the expression that finishes first. If botand @S the result o, or e, is available. Therefore, the avail-

¢, finish at the same time, the resultafwould be the fi-  aPility of e is as high as the availability af; ande,. Let
nal result. Suppose we want to set a timeofdr expres- A(e) represent the availability label ef Then we have

sione so that if the evaluation of does not finish i units ~ “A(€17#¢2) = A(e1)UA(e2). On the other hand, the value of

of time, a default value is returned as the result ef This e1#+e2 depends on the availability and timing of bethand

can be implemented by the expressiga(n, ¢). es. Consequently, an attacker can try to compromise the in-
Using the timeout mechanism, the following program tegrity ofe; #e, by compromising the availability or timing

implements an auction for two clients Alice and Bob. Ref- of e; or es. Intuitively, the race expression trades integrity

erencem 4 represents Alice’s bid, and Alice has 30 units for ava'lib",'ty' K - ity label
of time to make a bid, otherwise time runs out, &nd re- To take into account attacks on timing, a security labe

turned as her bid. Similarly, Bob also has 30 units of time MY containanew base label componeét (17" stands for
to make a bid. Even though the result of this auction de- integrity of timing), and/T'(¢) is used to retrieve the com-

pends on the bids of Alice and Bob, the availability of the ponent 'M Suppose expressianhas a labe, a”‘?' the re-
auction result is not affected by them. sult of e is (n, t). Then an attacker with a security level

can affect the value dfif and only if IT(¢) < L.

[E5]

Values v == ... | (n,t)
Expressions ¢ = ... | ej#es

my = lma#(0, 30); Supposees; andes have typeint,, andint,,, respec-
ma := !mp#(0, 30); tively. Thene; #e, has typeinty, »(,, Wherel; #/; is a la-
if ('my > mg) m, = 'my bel computed fron?; and/,. Based on the above discus-
else m, := 'msy sion, we have the following:
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A(la#tlz) = A(f) U A(L2) tax of this extension is shown below:
I(Zl#fg) = I(f1) M I(Zg) m A(Zl) M A(Zz) M IT([l) M IT(ZQ)

References r == m | x
By rule (E5), if the result ok, #e, is (n, t), the value oft Expressions ¢ = ... | Ir
may be affected by the availability ef ande,. Therefore, Statements s = ... | r:=e

IT(614405) = IT(61) 1 IT(62) 1 A(£) 11 A(6s) | meww:ily =ref(f) ins

The namer is used to range over a set of reference vari-
As usual,C(6#l2) = C(61) U C(Ly), since the result of  aples. Thenew statemenhew z : £, = ref(() in s creates
e1#te; depends on the results of bathande,. Withthese 3 new referencen with type int, ref, substitutes the oc-
formulas for computing, #(5, the typing rule for checking  currences of: in s with m, and then executes Now a ref-
the race expression is straightforward: erencer may be a memory locatiom or a variabler. Ac-
T\ RF e : inte, D\ RE e inty, cordingly, the dereference expieSS|on and' the assignment
. statement have the fortn andr := e, respectively.

IR erdfes  inty, g, Because the memory is observable to users, the creation
of a new reference is an observable event and may be used
as an information channel. Inn@w statemenhew z: ¢, =
ref({) in s, the label, is used to specify the security level

[RACE]

Because the timeout mechanism trades integrity for
availability and allows attackers to compromise the in-

tegrity Off an outputh bi/j ?ﬁ_e_ctmgfthe a\./a”ab'“t.y O of this event and control this new kind of implicit flows. For
timing of an input, the definition of Integrity noninter- example, any user with a confidentiality level not as high as

fgrence needs to b? adapted to_ these new risks. Imu'C(Zm) should not observe the creation of the reference.
itively, the adapted integrity noninterference would re- Consider the simple service example. In Aimp, a

quire two sets of inputd/, and M/, to generate equivalent straightforward implementation is shown below:
high-integrity outputs, if the high-integrity parts, the avail-

ability of the high-availability parts and the timing of the m = lmy;

high-integrity-of-timing parts of\/; and M, are indistin- mg = 1;

guishable. The formal definition is given below, following \yhere m, represents the client request, andg, repre-

the definition of the memory indistinguishability with re-  sents the output generated by the server in response to

spect to the integrity of timing: the client request. This implementation is problematic be-
Definition 6.1 (I' - M, ~741 M,). Supposelom(T’) = cause the availability afi, depends on that of.; . In prac-
dom(M;) = dom(My). ThenT' = M, ~jr«; M, means tice, we can imagine that the availability labelsrof and
that for anym € dom(T'), IT(I'(m)) £ L agndMl(m) _ mo are{*:client} and{*:server}, respectively, where

client represents the client machine, asgrver repre-

ny, t1) andMs(m) = (nq, to) imply t; = to. . .
r1, 1) 2(m) = {n1, t2) imply 1 2 sents the server machine. However, in genefalent does

Definition 6.2 (Integrity noninterference). A programs not act forserver, and thus(*:server} £ {*:client}.
has theintegrity noninterferenceroperty w.r.t. a typing as-  Therefore, the above program is not well-typed in practice.
signmentl’, writtenT" - NI;(s), if for any two tracesl; With the new statement, the simple service can be im-

and T, generated by evaluating, M;) and (s, M), we plemented by the following program in which the server re-

have thatl' = My ~rg¢r Ma, I' = My =~agr M> and sponse is represented by a reference variakitestead of

I'E M =prgr MaimplyI'= Ty ~rep To. a memory location. Since is created aftefn, is derefer-
enced, the availability af does not depend on that of; .

6.2. Run-time reference generation m = lmy;
new x:4, = ref({Bc, OBr, {*:server})) in
For a prograns in Aimp, the set of outputs thatis ex- x =1

pected to generate are statically determined by a set of referg 5 1 Operational semanticsFormally, the follow-
encesR. However, in some realistic applications, an output ing rule is used to evaluate thew stateme;’]t:

may be expected only after control reaches certain program

points. For example, consider a simple service that responds m = newloc(M, {,,)
to the request from a client. The response is expected only[S7] (new z:0, = ref({) in s, M) —>
after the service receives a client request. To express such
kind of availability requirements, we extend Aimp with a
new Statement that creates a new reference in memory. Intu-The function newloc(M, ¢,.) deterministically returns a
itively, the output represented by this reference is expectedfresh reference: such thatn ¢ dom(M). The observabil-

by users only after the point where it is created. The syn- ity and integrity of the newly created reference are specified

(s|m/z], M[m+ none])
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by a labell,. To associate a memory reference with its la-
bel, we assume there exists a nfafrom the memory space
M (an infinite set of memory locations) to labels. Given
alabell, let M, = {m | m € M AQ(m) = {¢}. In ad-
dition, we assume that for ang, M, is infinite. The
function newloc(M,¢,) deterministically picks a refer-
encem from M,,_ such thatn ¢ dom(M).

The definitions of memory indistinguishability need to

if (!m) then

new z:4, = ref({) in
while !mjy do my := my1 - 1;
r =1
else
skip

Supposd™; R ; pc is the typing environment for thehile
statement in the above code. ThEpc) < I(I'(m)) holds

take into account the reference labels, which determineby the typing rule (IF). Furthermore, we haves R, which
the observability and integrity of references themselves'requiresA(é) < I(pc) by rule (WHILE). Therefore, for the

We give the new definition fof' - M; ~aqr M> be-
low. Compared to Definition 4.3, this definition does not
require dom(M;) = dom(Ms), but I(2(m)) £ L im-
pliesm € dom(M;) N dom(Mz). The new definitions for
I = M RILL Mo andI’ -+ My ~co<L M, have simi-
lar adjustments.

Definition 6.3 (' = My ~ay, Ms). Supposelom(I")
dom(Ml) ] dOIH(Mg) ThenI' + M RALL Mo if for
any m € dom(I") such thatI(2(m)) £ L, we have
m € dom(M;) N dom(Mz), and A(T'(m)) £ L implies
that M, (m) = none if and only if M>(m) = none.

Note that we assume that for any referencén the ini-
tial memory of a programQ(m) = (Lo, Tr, Ta). As a
result, if a prograns does not contain anyew statement,
these new definitions of memory indistinguishability , when
applied to the traces af are consistent with those original
definitions in Section 3.

6.2.2. Typing. The type system of Aimp needs to be ex-
tended to manipulate reference variables and checkedhe
statement. First, variable represents a reference that can

above code to be well-typedi(¢) < I(T'(m)) needs to
hold, which contradicts the intuition that the availability of
x is not affected by whether control reaches the state-
ment. To increase the precision of the static security analy-
sis, we extend the type system to track the program counter
label for each reference variabtefrom the program point
wherez is created. Accordingly, the typing environment is
extended with a new componefitthat maps references to
program count labels.

The typing rule (NEW) is used to check thew state-
mentnew z : ¢, = ref(¢) in s. In this rule, statement
is checked with variable in scope. In the typing environ-
ment of s, the program counter label mappedatds L .,
whichis{Ll¢, T, Ta}.

Dyz:inte; RU{z};Az: Lpe;pets: T
C(pe) <C(tz)  1(tx) < I(pc)
I';R;A;pctnevwz:ly, =ref({)ins: T

[NEW]

In addition, typing rules (ASSIGN), (IF) and (WHILE)
need to take into account tlecomponent in the typing en-
vironment. To abuse the notation a bit, we udsel ¢ to de-
note the program counter may that satisfieslom(A) =
dom(A’)andA’(r) = A(r)u for anyr € dom(A). In ad-

be used in the typing environment: the typing assignmentdition, let A(r, pc) denoteA(r) if » € dom(A), andpc if

I' may mapz to a type, and the reference $etmay con-
tain x. For example, consider the statementr = : ¢, =
ref(¢) in s. Suppose the typing environment for thew
statement isI"; R ; pc”. Then the typing environment for
should be T,z : int,;R U {z};pc’. Second, to control
the implicit information flow arising from the creation of a

new reference, the typing rule for checking the statement

new z:{, = ref(¢) in s needs to ensure that the confiden-
tiality and integrity components of, are bounded by the
current program counter labgt. Formally, the correspond-
ing constraints ar€’(pc) < C(¢;) andI(¢;) < I(pc).

Intuitively, the value or availability of a reference cre-

ated at a program point is not affected by whether control
reaches this point, because the reference itself does not ex-
ist if control does not reach the point. As a result, the typ-

otherwise. The adjusted typing rules are shown as follows:

I'yRE7r:inty ref I'yREe:inty
C(A(r,pe)) UC(') < C(2)
1() < I(A(r,pe)) N 1()  Ar(R) < A(Y)

ASSIGN
[ ] I[RyAspekri=e:stmtr_(ry

I'sREe:int, Ar(R) < A(¢)
D;R;AUL;peUlEs; 7 i€ {1,2}
T';R;A;pck if ethen sy else sy : T

[IF]

I'ke:int, Ar(R) < I(¢)M A(0)
I'sR;AUl;pcUlE s: stmtr
Vr e R, A(r) < I(A(r, pc))

WHILE
[ ] I';R;A;pect whileedo s : stmtr

ing rules in Figure 5 may be over-restrictive for reasoning 6.2.3. Example: TCP handshake protocol.The TCP

about the security policies of a reference created at run time.connection establishment process uses a three-step hand-

For example, consider the following code:

12
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packet that contains the address of Hoti a serves. Sec-
ond, the server sendsS¥N_ACK packet to host. Third,
hosth sends amCK or RST packet to the server, depend-
ing on whether: is h.. An instance of this protocol can be

terference property if the first elements Bf and 75 are
distinguishable, off’; andT; are indistinguishable to low-
confidentiality users. Therefore, a noninterference property
can be represented by a set of trace péirand a program

simulated by the following code, in which message com- satisfies the property if all the pairs of traces produced by

munications are modeled by assignments:

m = 1m; ;s // receive SYN from h.
new Tepg:(Ll, L, T) = ref((s:s, s:s, s:he)) in
Mep = 'm + 1; // send SYN_ACK to h
m = Imyp; // receive ACK/RST from h
Tend 1

the program belong t&. Interestingly, with respect to a
trace pair, the confidentiality and integrity noninterference
properties have the informal meaning of safety properties
(“something bad will not happen”), and availability nonin-
terference takes on the informal meaning of liveness.
Focardi and Gorrieri [8] provide a classification of secu-
rity properties in the setting of a non-deterministic process

The referencen; , represents the connection request from algebra. In particular, the BNDGisimulation-based non-

h.. After the request is received, a new referencgg, is

deducibility on compositionsproperty prevents attackers

created to capture the availability requirement of the server:from affecting the availabilities of observable process ac-

the protocol will terminate if the clienk. does not fail,
which is specified by the availability label i, of z¢,.q.

The statement: := m, j, represents the third step of the
handshake protocol, and the referemeg;, represents the
response fronh. Intuitively, the availability ofm; ;, only

tions. However, the BNDC property requires observational
equivalence, making it difficult to separate the concerns for
integrity and availability.

Yu and Gligor [31] develop a formal method for ana-
lyzing availability: a form of first-order temporal logic is

depends ork, and thus we suppose that the availability la- used to specify safety and liveness constraints on the in-
bel of m; 5, is s : h. Then the above code is not well-typed puts and behaviors of a service, and then those constraints
becauses : h, £ s: h. Interestingly, this reflects the prob- can be used to formally verify the availability guarantees of
lem with the handshake protocol that allows the SYN flood- the service. The flexibility and expressiveness of first-order
ing attack: host may be spoofed and cannot be trusted to temporal logic come at a price: it is difficult to automate the
establish the connection betweeandh,. verification process. The approach of formalizing and rea-
soning system constraints and guarantees in terms of logic
resembles the rely-guarantee method [12], which was also

7. Related work ) : )
applied to analyzing cryptographic protocols by Guttman et

There has been much research on ensuring high avail @l [10]. ] . _ _
ability of a computer platform, or guaranteeing a server to  Lafrance and Mullins [14] define a semantic security
carry out the computation requests from clients. Most of Propertyimpassivityfor preventing DoS attacks. Intuitively,
these work falls in two main categories: one is aimed at impassivity means that low-cost actions cannot interfere
tolerating server-side failures, usually by using some repli- With high-cost actions. In some sense, impassivity is an in-
cation techniques [25, 17, 4]; the other deals with faulty t€grity noninterference property, if we treat low-cost as low-
clients and defends denial of service attacks [31, 19, 13].integrity and high-cost as high-integrity. With the implicit
This work is concerned with the availability risks inherent @ssumption that high-cost actions may exhaust system re-
to the computation that may process untrusted inputs, whileSOUrces and render a system unavailable, impassivity corre-
the computation platform is assumed available. sponds to one part of our notion of availability noninterfer-

Lamport first introduced the conceptssafetyandlive- ence: Iow—.|ntegr|ty inputs cannot affect the availabilities of
nessproperties [15]. Being available is often characterized Nighly available outputs.
as a liveness property, which informally means “something ~ Li et al. [16] formalize the notion that highly available
good will eventually happen”. In general, verifying whether data does not depend on low-availability data. However,
a program will eventually produce an output is equivalent their definition istermination-insensitivi24], which makes
to solving the halting problem, and thus incomputable for a it inappropriate to model availability noninterference.
Turing-complete language. In this work, we propose a secu- Volpano and Smith [29] introduce the notion tefrmi-
rity model in which an availability policy can be enforced nation agreementwhich requires two executions indistin-
by a noninterference property [9]. It is well known that a guishable to low-confidentiality users to both terminate or
noninterference property is not a property on traces [18], both diverge. The integrity dual of termination agreement
and unlike safety or liveness properties, cannot be specifiedcan be viewed as a special case of the availability noninter
by a trace set. However, a noninterference property can bgerence in which termination is treated as the only output of
treated as a property on pairs of traces. For example, cona program.
sider a trace paif7y, 7). It has the confidentiality nonin- Language-based information flow control techniques [7,
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