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Abstract  This paper presents to solve the 3D Helmholtz equation using dual reciprocity boundary element 
method (DRBEM) and its particular solutions with various radial basis functions (RBFs). The important function in 
this method is to employ the RBF. Here, we find the particular solution of the Helmholtz equation 

2 2( ) ( )k h f r∇ ± = , where ( )f r  is the RBF. Various RBFs are chosen and the particular solutions are obtained. The 
dual reciprocity method (DRM) is a method that converts the domain integral into the boundary integral. 
Mathematical formulations and discretization forms are described and discussed. Numerical results with three RBF 
with and without polynomial terms are presented and discussed. Algorithm of the method is also presented. 
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1. Introduction 
The boundary element method is a numerical method 

for solving partial differential equations encountered in 
mathematical physics and engineering [1].The boundary 
element method can be viewed as some sort of half-way 
house between analytical and numerical methods [2]. 
According to work of Nardini and Brebbia (1982) [3], 
there has been an increasing interest in using the Dual 
Reciprocity Method (DRM) to solve partial differential 
equations (PDEs) by boundary element methods (Partidge 
et al. 1992 [4] and Golberg and Chen 1997 [5]). The 
attractiveness of the DRM is its capability to transfer 
domain integration to the boundary integration. In the past, 
1+r has been chosen as the ad-hoc basis function in the 
DRM [6,7]. In 1994, Golberg and Chen [7,8] provided 
theoretical evidence for the choice of the basic functions 
by using the RBFs in the DRM. On the issue of 
applicability, the DRM has been only applied to the case 
when the major differential operator is kept as the Laplace 
or in harmonic operator and the rest of the terms in the 
original differential are treated as a forcing term. This is 
primarily due to the difficulty in obtaining particular 
solutions in a closed form. As a result, the DRM is less 
effective when the forcing terms become too complicated 
[10,11]. In general, we would like to keep forcing term as 
simple as possible to make better approximation by RBF. 
Meanwhile, the simpler the forcing term, the more 
complicated the differential operator becomes, and also 
the fundamental solution become more involved. So far, 
the choice of the main differential operator seems to be 
limited to Laplace and in harmonic operators due to 
difficulty of producing particular solutions in a closed 
form. A particular solution to the governing differential 

equation is then determined for each basis function [12]. 
In this regard, Zhu [13] attempted to using Helmholtz 
operators as the main differential operator in the DRM. 
The key ingredient in doing this is the ability to 
analytically calculate particular solutions for various linear 
PDEs, φ =L b . This is usually done by approximating f by 

a series 1
N

j jj a f=∑ , and then solving 

, 1j jLh f j N= < < , where { }jf  is an appropriate set of 
linearly independent basis function. Hence, the choice of 
{ }jf  is important, and the analysis given in Golberg et al. 

(1998b). They defined that { }jf  needs to provide an 
accurate approximation to 𝑏, and also it should be as a 
form that j jLh f=  be solved analytically. 

The following sections are organized as follows. 
Section 2 is described the physical problem and obtain the 
governing equation. Section 3 shows that how the DRM 
method converts the domain integral into the boundary 
integral. Section 4 finds analytical particular solutions for 
various RBF like simple function ( ) 1f r r= + , thin plate 

Splines (TPS), 2( )f r r logr=  and higher-order 
polyharmonic Splines. Then, applying the particular 
solutions is described in Section 5. Section 6 is discussed 
the numerical results and finally conclusions are given in 
Section 7. 

2. Helmholtz Equation 
The complete dynamic basic equations of the fluid are 

the mass continuity, Navier-stokes and energy equations 
[14]: 
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 ( )2 2 ,k b inφ φ∇ ± = Ω  (1) 

 . . ,B C known on=  
Eq. (1) is the governing equation for the sound field in 

the three-dimensional flow. 
The drawbacks of using the Laplace operator instead of 

the Helmholtz operator are: 
(i) The information in the original differential 

equation is partially lost. 
(ii) The forcing term becomes more complicated and 

difficult to interpolate by radial basis functions. 
(iii) The solution may not even converge when k 

becomes large [15]. 

3. Dual Reciprocity Method (DRM)  
In the boundary element method, for a body of the 

boundary (Γ ) and domain (Ω ), the integral formulation 
of the Eq. (1) may be expressed as: 

 
( ) ( ) ( ) ( )Ge p p G ds Gb d

n n
φφ φ φ∂ ∂

= − − Ω∫ ∫Γ Ω∂ ∂  (2) 
where: 

 

1           
( ) 0.5       

0          

for P outside Surface
e p for P on Surface

for P outside Surface


= 

  (3) 

And G  is the Green’s function from the Helmholtz 
equation. For the 3D problems: 

 

2 2

2 2

exp( )( ),
4

exp( )( ),
4

jkrk b G
r

krk b G
r

φ φ φ
π

φ φ φ
π

−
∇ + = =

∇ − = =
 (4) 

Eq. (2) contains the volume integral, which is a difficult 
problem. Therefore, in order to overcome this difficulty, 
one of the easiest way is converting volume integral into 
the boundary integral via DRM [3-16]. This method 
focuses to the term ( )b φ  which may be approximated by 
the following expression, 

 1
( )

N L

i i
i

b X f α
+

=
= ∑

 (5) 
where ,i ifα  are interpolation coefficients and radial basis 
function (RBF), respectively. N is the number of 
collocation nodes along the boundary, L is the number of 
collocation points inside the domain, and ir  is defined as 
the distance between the node under consideration and the 
node i. 

For each simple source function if , a particular 
solution ih  needs to be found and satisfied as: 

 
2 2

i i ih k h f∇ + =  (6) 
Hereafter, the particular solution of the Eq. (6) was 

obtained by some various RBFs. 
Substituting equations (6) and (5) into Eq. (2) yields:

 

 1

( ) ( ) ( )

( ) ( ) ( )
N L

i i i i
i

Ge p p G ds
n n

Ge p h p Gh h ds
n

φφ φ

α

Γ

+

Γ
=

∂ ∂
= −

∂ ∂

∂ ′− − − 
∂ 

∫

∑ ∫
 (7) 

Discretization form of the Eq. (7) can be represented as 
follows: 

 

1 1

1 1 1

ˆ

ˆ

N N

l l lj n lj jj
j j

N L N N

i l li lj ji lj ji
i j j

e L H

e h L h H h

φ φ φ

α

= =

+

= = =

= −

  ′− − − 
  

∑ ∑

∑ ∑ ∑
 (8) 

where  ijL  and ˆ ijH  are influence coefficients, and defined 
as follows: 

 
ˆ

lj

lj

L Gds

GH ds
n

Γ

Γ

 =

 ∂

=
∂

∫

∫
 (9) 

These integrals can be evaluated by numerical and 
analytical methods. 

By verifying it in detail: 

 
ˆ0.5lj lj ljH Hδ= +  (10) 

where ijδ  is the Kronecker delta, which is defined as 

0ijδ =  for i j≠ , and 1ijδ =  for i j= . 
Eq. (8) may further be written as: 

1 1 1 1 1

N N N L N N

lj j lj n i lj ji lj jij
j j i j j

H L H h L hφ φ α
+

= = = = =

  ′= − − 
  

∑ ∑ ∑ ∑ ∑
(11) 

where ih  is obtained in Section 4. 

4. Particular Solutions  
First, we introduce some RBFs as given: 
Linear classic:  

 1i if r= +  (12) 
TPS: 

 2 lnjf r r=  (13) 

Higher-order Spline: 

 [ ] 2 1n n
jjf r −=  (14) 

4.1. Classical RBF 
By substituting Eq. (12) into Eq. (6), the particular 

solution of the Eq. (6) can be found as follows: 

 
2 2( ) 1i ik h r∇ + = +  (15) 

Since this solution is axisymmetric with respect to the 
source, it is independent of the polar angle θ , and thus Eq. 
(15) becomes [17]: 
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2
2

2
2( ) 1i i

i i i

d d k h r
dr r dr

+ + = +

 (16) 
A regular solution of Eq. (16) is obtained [13,14]: 

 
2 4

1 1 cos( )2i i
i

i

r kr
h

rk k

 + −
= −  

   (17) 
Where: 

 r q p= −
  

 (18) 

4.2. Thin Plate Spline (TPS) 
We consider an approach, usually called the 

“annihilator method” as described in Ref. [18]. Here, it is 
assumed that there is a linear partial differential operator 
M  which satisfies 

 0iMf =  (19) 
And commutes with ;L  i.e. ML LM= , and then: 

 0i i iMLh Mf LMh= = =  (20) 

If the solution sets, { } : 0V v Lv= =  and 
{ : 0}W w Mw= = , are finite and disjoint, then 

 1 1

s t

i k k k k
k k

h b c zβ γ
= =

= + +∑ ∑
 (21) 

where { }kβ  is a basis for V , { }kγ  is a basis for W , and 
0Lz = . The coefficients { }kb  and { }kc  are determined 

by requiring i iLh f=  and additional regularity conditions 
(Golberg and Chen 1997 [5] and Golberget al. 1998a [21]). 

By substituting Eq. (13) into Eq. (6), the particular 
solution of the Eq. (6) in 2D can be found as follows: 

 
2 2 2( ) lnik h r r∇ + =  (22) 

And for _L  we have: 

 ( ) 2_ log , ,L h p r r r P= =   (23) 

Now, with respect to Eqs. (19, 20), and Eq. (21): 

 4 2 log 0, 0,r r r∇ = >  (24) 

h  can be obtained by solving ( )4 _ 0L h p∇ = . For 
radially symmetric solutions, it is equivalent to solve: 

 ( )4 2 2 0r r k h∇ ∇ − =
 (25) 

h  can be obtained by solving: 

 ( )4 2 20, 0r rw k v∇ = ∇ − =  (26) 

Since ( )2 2
r k∇ −  is a Bessel operator (Derrick and 

Grossman 1976 [19]): 

 ( ) ( )0 0 ( )v r AI kr BK kr= +  (27) 

where 0I  and 0K  are Bessel functions of order zero.  

Since 4
r∇  is a multiple of an Euler operator, 

( )22 2 2 4 2 4, 2 ,p p p p
r rr p r r p p r p− −∇ = ∇ = −   must 

satisfy the characteristic equation ( )22 2 0p p − = , 
(Derrick and Grossman 1976 [19]) 

 ( ) 2 2log logw r a b r cr dr r= + + +  (28) 
Thus, 

 

( ) ( ) ( )0 0
2 2log log

h r AI kr BK kr a

b r cr dr r

= + +

+ + +  (29) 
The coefficients { , , , , , }A B a b c d  are found by requiring 

( )2 2 logr k h r r∇ − =  and the condition that h  should be 

continuous at 0r = . One solution is given in Chen and 
Rashed (1998a) by: 

 

( )

( )2
0

2 4 2 4

4 4 4

44 4log log , 0

4 4 4 log , 0
2

K krr r r r
k k k kh r

k r
k k k

γ


− − − − ≠
= 

  − + − + − =     (30) 
where  0.5772156649015328γ ≅  is Euler’s constant. 

4.3. Higher-order Spline 
Here, we want to obtain the particular solutions for the 

higher-order Spline, i.e defined as follows: 

 ( ) 2 2lognL h r r r in± =   (31) 

 ( ) 2 1 3  nL h r r in−
± =   (32) 

To calculate the particular solution for 3  L in R± , we 

have to solve ( )2 2 0r k v∇ ± =  and 3 0n
r w+∇ = , therefore 

3 2 1 0n n
r r+ −∇ = . It is easily shown that the solution to 

( )2 2 0r k v∇ − =  is (Golberg et al. [7]): 

 
( ) ( ) ( )cosh sinhA kr B kr

v r
r r

= +
 (33) 

And for ( )2 2 0r k v∇ + = : 

 
( ) ( ) ( )cos sinA kr B kr

v r
r r

= +
 (34) 

To obtain solutions, which are regular at 0r = , we use 
the Taylor series expansions of cosh( )kr  and sinh( )kr  at 

0r = , and comparing coefficients gives: 

 
( ) ( ) ( ) ( )

( )
2 1

2 3 2 2 2
0

2 !cosh 2 !
2 !

n i

n n i
i

n kr n rh r
irk k

−

+ − +
=

= −∑
 (35) 

A similar argument for L+  gives: 
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( ) ( ) ( ) ( ) ( )
( )

( )1 2 1

2 2 2 2 2
0

1 2 ! 2 ! 1
cos

2 !

n n i in

n n i
i

n n r
h r kr

irk k

+ + −

+ − +
=

− −
= +∑

(36) 
The results for different orders are given in Table 1 and 

Table 2. 

Table 1. Results for different order for L_  
𝑓(𝑟) ℎ𝑖 for 𝐿− 

𝑟1 2 cosh(𝑘𝑟)
𝑟𝑘5

−
2
𝑟𝑘4

−
𝑟
𝑘2

 

𝑟3 24 cosh(𝑘𝑟)
𝑟𝑘7

−
24
𝑟𝑘6

−
12𝑟
𝑘4

−
𝑟3

𝑘2
 

𝑟5 720 cosh(𝑘𝑟)
𝑟𝑘9

−
720
𝑟𝑘8

−
360𝑟
𝑘6

−
30𝑟3

𝑘4
−
𝑟5

𝑘2
 

𝑟7 40320 cosh(𝑘𝑟)
𝑟𝑘11

−
40320
𝑟𝑘10

−
20160𝑟
𝑘8

−
1680𝑟3

𝑘6
−

56𝑟5

𝑘4
−
𝑟7

𝑘2
 

Table 2. Results for different order for L+ 
𝑓(𝑟) ℎ𝑖 for 𝐿+ 

𝑟1 2 cos(𝑘𝑟)
𝑟𝑘4

−
2
𝑟𝑘4

+
𝑟
𝑘2

 

𝑟3 −
24 cos(𝑘𝑟)

𝑟𝑘6
+

24
𝑟𝑘6

−
12𝑟
𝑘4

+
𝑟3

𝑘2
 

𝑟5 720 cos(𝑘𝑟)
𝑟𝑘8

−
720
𝑟𝑘8

+
360𝑟
𝑘6

−
30𝑟3

𝑘4
+
𝑟5

𝑘2
 

𝑟7 −
40320 cos(𝑘𝑟)

𝑟𝑘10
+

40320
𝑟𝑘10

−
20160𝑟
𝑘8

+
1680𝑟3

𝑘6
−

56𝑟5

𝑘4
+
𝑟7

𝑘2
 

Finally, the flowchart algorithm of the DRBEM is 
shown in Figure 1. First, geometry of the body is modeled. 
DRBEM method defines some internal and boundary 
nodes. Using RBF, the domain integral can be inverted to 
the boundary integral. This is the main advantage of DRM 
to deal with boundary of the body. 

 
Figure 1. Flowchart algorithm of the DRBEM 

5. Numerical Results 
The geometry of problems is a Square with side of unit 

length. These examples are chosen since their analytical 
solutions can be obtained. More complex problems can be 
handled in the same DRM fashion without any extra 
difficulty. 

The inhomogeneous 2D Helmholtz problem is 
governed by equation: 

 

2 2

2 2
u u u x

x y
∂ ∂

+ + =
∂ ∂  (37) 

 ( , ) ( , )u x y D x y=  (38) 
The analytical solution is: 

 ( , )u x y sinx siny x= + +  (39) 
The Dirichlet boundary conditions ( , )D x y  can be 

determined from the exact solution (39). 

5.1. Without Polynomial Terms 
For all different RBF in Table 3, the solution is 

obtained using 200 boundary elements (50 on each side) 
and 25 internal nodes. 

Table 3. Comparisons various RBF Without polynomial terms 
x y RBF Exact DRM % error 

0.5 0.5 1 + r 1.4589 1.4632 0.294743 
0.5 0.5 r2 log r 1.4589 1.477 1.240661 
0.5 0.5 r4 log r 1.4589 1.5382 5.435602 

As it is seen, the result of 1+r without polynomial term 
is more accurate, while the results of TPS and poly-
harmonic Splines of order 2 without polynomial terms are 
so bad. 

5.2. With Polynomial Terms 
To obtain a more accurate answer, polynomial terms 

have been added to radial basis functions: 

 ( )j pf f ζ= +  (40) 
where ( )pζ  is obtained from the following equation: 

 ( )p nL pζ± =  (41) 
where np  can be any polynomial function. Some of the 
functions p and ( )pζ  are given in Table 4. 

Table 4. Particular solutions for polynomial terms in L+ 

𝑝𝑛 𝜁(𝑝) 𝑝𝑛 𝜁(𝑝) 

1 1
𝑘2

 𝑥𝑦2 𝑥𝑦2

𝑘2
−

2𝑥
𝑘4

 

𝑥 
𝑥
𝑘2

 𝑦3 𝑦3

𝑘2
−

6𝑦
𝑘4

 

𝑦 
𝑦
𝑘2

 𝑥4 𝑥4

𝑘2
−

12𝑥2

𝑘4
+

24
𝑘6

 

𝑥2 𝑥2

𝑘2
−

2
𝑘4

 𝑥3𝑦 𝑥3𝑦
𝑘2

−
6𝑥𝑦
𝑘4

 

𝑥𝑦 
𝑥𝑦
𝑘2

 𝑥2𝑦2 𝑥2𝑦2

𝑘2
−

2𝑥2

𝑘4
−

2𝑦2

𝑘4
+

8
𝑘6

 

𝑦2 𝑦2

𝑘2
−

2
𝑘4

 𝑥𝑦3 𝑥𝑦3

𝑘2
−

6𝑥𝑦
𝑘4

 

𝑥3 𝑥3

𝑘2
−

6𝑥
𝑘4

 𝑦4 𝑦4

𝑘2
−

12𝑦2

𝑘4
+

24
𝑘6

 

𝑥2𝑦 𝑥2𝑦
𝑘2

−
2𝑦
𝑘4
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Results for some points, are compared in Table 5 by 
applying polynomial term, where np  is a polynomial of 
total degree n. 

Table 5. Comparisons of the results for various RBFs with 
polynomial terms  

(x, y) exact acbrf TPS+p (n=1) TPS+p (n=2) 

(0.15, 0.2) 0.4981 0.4974 0.4913 0.5013 

(0.15, 0.5) 0.7789 0.7782 0.7647 0.7841 

(0.15, 0.75) 0.9811 0.9806 0.971 0.9869 

(0.5, 0.5) 1.4589 1.4587 1.4568 1.4614 

(0.7, 0.25) 1.5916 1.5915 1.5947 1.5914 

(0.7, 0.65) 1.9494 1.9496 1.9513 1.9515 

(0.75, 0.8) 2.149 2.1493 2.1475 2.152 

Advanced classical RBF shown in Table 5, is obtained 
from contrariwise method. In this method at first we 
choice any particular solutions ( )f , for example 

2 3

4 9
r rf = + , then with solving this equation Lf rbf= , 

as a result, the advanced classical radial basis function 
(acrbf) is obtained. 

 

2 3
21 ( )

4 9
r racrbf r k= + + +

 (42) 
According to Table 5, it’s seen that the result from this 

method is very accurate, but it’s so difficult to guessing a 
particular solution that gives an exact answer. 

Finally, we compared the relative error (RE) with 
various RBFs, as shown in Figure 2. Although for all cases 
the RE is less that 0.03%, but for acrbf is very small error.  

6. Conclusions 
In this paper, a DRBEM formulation for axisymmetric 

Helmholtz-type equation is briefly presented. We have 
generalized pervious work using TPS for finding 
particular solutions to Helmholtz-type operators by using 
higher-order Splines, substantially increased accuracy can 
be obtained using higher Splines. Based on this research, 
following conclusions can be drawn: 
• Higher accuracy can be obtained by using higher-

order Splines with polynomial term. Acrbf is 
much better than others. 

• The polynomial terms of RBF are important as 
shown in Table 3 and Table 5. 

• With annihilator approach, we can obtain 
particular solutions of any order of TPS in 2D 
and 3D. Table 1 and Table 2 shows the particular 
solutions of 3D Helmholtz-type equation and 
Table 4 shows the particular solutions of 2D 
polynomials terms for L+ . 

Numerical examples for Helmholtz-type equation using 
higher-order Splines in 3D will be examined and compare 
with lower order Splines in the next research, and that will 
be our future plan. 

 
Figure 2. Relative error using various RBFs 
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