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Abstract—The tremendous explosion of image-, video-, and
audio-enabled mobile devices, such as tablets and smart-phones
in recent years, has led to an associated dramatic increase in
the volume of captured and distributed multimedia content.
In particular, the number of digital photographs being captured
annually is approaching 100 billion in just the U.S. These pictures
are increasingly being acquired by inexperienced, casual users
under highly diverse conditions leading to a plethora of distor-
tions, including blur induced by camera shake. In order to be able
to automatically detect, correct, or cull images impaired by shake-
induced blur, it is necessary to develop distortion models specific
to and suitable for assessing the sharpness of camera-shaken
images. Toward this goal, we have developed a no-reference
framework for automatically predicting the perceptual quality
of camera-shaken images based on their spectral statistics. Two
kinds of features are defined that capture blur induced by camera
shake. One is a directional feature, which measures the variation
of the image spectrum across orientations. The second feature
captures the shape, area, and orientation of the spectral contours
of camera shaken images. We demonstrate the performance of
an algorithm derived from these features on new and existing
databases of images distorted by camera shake.

Index Terms—Image sharpness assessment (ISA), image
quality sharpness (IQA), motion blur, camera-shaken image,
no-reference, spectral structure.

I. INTRODUCTION

ECENTLY, hand-held cameras installed in mobile
devices such as tablets and smart-phones have become
pervasive, making the acquisition and distribution of images
highly convenient. However, when images are acquired in
a casual manner, or under difficult conditions, or by an
unskilled user, the quality of the images so obtained is often
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unacceptable due to distortions occurring during capture such
as low-light noise, focal blur [1], [2] and camera shake induced
blur [3]-[5]. In particular, blur induced by camera shake
is a common and severe impairment that occurs in poorly
controlled situations, e.g., without a tripod. Optical image
stabilization techniques attempt to compensate for camera
shake, but this technology is imperfect, is not yet available in
many cell phone cameras and does not eliminate blur induced
by camera shake [6], [7]. This makes the development of
an automated device for detecting and assessing blur from
camera shake an important goal. Success in this direction will
help make it possible to monitor and control the quality of
images as they are being acquired by handheld digital cameras.
Moreover, such an algorithm could be used to cull existing
photographs, or as a source of perceptually optimized feedback
for restoring image sharpness.

No-reference image quality assessment models have been
previously proposed that can predict the perceptual quality
or sharpness of an image by predicting distortions such as
blocking, blur, channel distortion, etc. Blur is a particularly
complex and critical factor influencing the perceptual quality
of images, which can occur during all stages of capture [1], [8],
compression [9]-[11] and transmission [12]-[14]. The prob-
lem is complicated by desirable blur, viz., consciously not
selected by the photographer to be “in focus” and hence
falling outside of the camera’s depth of field (DoF) [15].
Numerous techniques have been studied to measure the sharp-
ness of images, which may be conveniently divided into two
broad categories: 1) edge-based methods, and 2) spectral-based
methods. Edge-based methods generally seek to measure the
spread of edges in the image under the assumption that there
is at least one edge in the image and that the width of edges
increases when the image is blurred [1], [16]-[20]. Edge width
is commonly measured by modeling blurred edges as integrals
of Gaussian functions [16], [17] or by estimating the distance
between the start and end positions of the edge [1], [18]-[20].
Spectral-based methods measure the spectral distribution under
the assumption that edges and textured regions promote high
frequency energy [21]-[23]. These methods typically estimate
sharpness in the discrete fourier transform (DFT) or discrete
cosine transform (DCT) domain by analyzing the histogram
or other statistics of the spectral coefficients [21]-[23].

A variety of recent quality assessment algorithms adopt a
learning approach to capture image distortion characteristics.
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Fig. 1. Limitations of edge-based and spectral sharpness estimation methods. (a) Reference image (top-left), which is a patch of the 30" frame of the Sfootball
sequence, gradient magnitude (top-right), and a plot of luminances (bottom) along a row of the reference image where circles indicate the edge pixels and
triangles indicate local extrema. (b) Gaussian blurred version (¢ = 2.0) of (a). (c) Blurred version of (a) obtained by simulating vertical camera movement.
(d) Blurred version of (a) obtained by simulating horizontal camera movement.

These algorithms use features derived from natural scene
statistics models to learn quality prediction engines [24]-[26].
However, the features used in these models are quite general,
suitable for characterizing noise, compression artifacts, and
isotropic blurs induced by defocus or compression. While such
general purpose blind image quality assessment (IQA) models
may also be responsive to blur induced by camera shake, they
generally are unable to distinguish it from other distortions or
to characterize the nature of the blur.

Likewise, edge and spectral-based sharpness assessment
algorithms are usually not designed to measure quality degra-
dations caused by camera shake, instead they are also designed
to deal with blur caused by defocus or compression. When an
image is blurred by camera shake, the blur severity varies
with the direction of camera movement, as opposed to blur
from defocus or compression, which tends to be isotropic.
Further, camera shake is different from object motion blur,
which is created by the presence of independently moving
objects in a scene against a static or slower-moving
background [8], [27]-[30].

In the following we describe a no-reference model for Image
Sharpness Assessment of Camera-shaken images (ISAC)
based on analysis of image spectral structure. When there is
camera movement, high frequency components are attenuated
in a manner that depends on the speed and direction of camera
motion. These observations naturally lead us to consider
two classes of features that are predictive of the amount of
perceived blur in a camera shaken image.

« Directional features : These capture the severity of cam-
era shake induced blur by measuring the variance and
energy of the image spectrum along different orientations,
which serve to capture blur strength as a function of
direction [31]—[35]. In particular, the directional features
are obtained by calculating the mean, coefficient of varia-
tion (CV) and minimum sharpness of the image spectrum
across multiple orientations.

o Shape features : Camera shake asymmetrically modifies
the shape of the image spectrum across spatial frequency
bands. We model the image spectrum using ellipses and

measure the area, eccentricity and orientation of these
ellipses to compute spectral shape features.

Finally, we construct a predictive model using support
vector regression (SVR) on the directional and shape features.
This regression model, which we term ISAC, is used to
predict the sharpness of camera-shaken images. In order to
verify the performance of ISAC, we constructed a database
of camera-shaken images and conducted subjective studies to
gather human judgments of the quality of these images. The
performance of ISAC is shown to be superior to other image
sharpness assessment algorithms on this database. We also
evaluated the performance of ISAC on other existing databases
of camera shaken images by gathering human judgments
of quality of these images and found highly competitive
performance.

II. MOTIVATION

Fig. 1 illustrates the failure of existing edge-based and
spectral models when predicting blur induced by camera shake
in a manner consistent with visual perception. Fig. 1 shows a
reference image and distorted images obtained by simulating
isotropic defocus blur and blur induced by horizontal and
vertical camera movement. We simulated camera movement
using a linear motion blur kernel [29], [36] assuming a velocity
of 30 pixels along the horizontal and vertical directions
respectively.

Edge-based methods [1], [18] that estimate image sharpness
by measuring edge widths are unsuitable for measuring blur
induced by camera shake. This is illustrated in Fig. 1, where
edge boundaries are identified as the local maximum and
minimum of a Sobel filtered image patch. Edge width is
then calculated using the distance between these boundaries.
While edge width increases in the presence of isotropic blur
as shown in Fig. 1(b), any change of edge width in camera
shaken images depends on the motion direction. In particular,
if the edge width is measured in a direction perpendicular to
the direction of image motion as illustrated in Fig. 1(c), then
camera shake induced blur will produce no measurable effect.
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(a) Natural images. (b) Linear camera-shaken versions of (a). (c) and (d) Complex camera-shaken versions of (a). The bottom-right of each image is

a zoomed version of the larger image in each case. (e)—(h) The DFT spectra of (a)-(d), where brighter regions indicate larger DFT magnitude. The ellipsoids
are the spectral contours that capture 60%, 70%, 80% and 90% of the energy of the spectrum, respectively.

Spectral kurtosis [23] is a spectral image sharpness assess-
ment method that is also inadequate for measuring blur
induced by camera shake. This is illustrated in Fig. 1(d) where
the kurtosis of the image is very low despite severe blur due
to camera shake.

These limitations of existing blur models clearly illustrate
the need for new models to predict blur in camera shake
induced images. In Section III, we describe the spectral
statistics of camera shaken images that can be utilized to
predict perceptual blur of these images.

III. OVERVIEW OF PROPOSED APPROACH

Blur caused by camera shake can be broadly cate-
gorized based on the type(s) of camera movement that
occurs [4], [37]:

« Linear shake : Caused by linear movement of the camera
along a specific direction.

o Complex shake : Caused by complex camera movements
arising from the user’s hand shaking along multiple
directions.

Complex shake is more likely to occur when a user takes a
picture and can be approximated using a combination of linear
camera shake models.

When linear camera movement degrades the image, high
frequency energy along the direction of camera motion is
significantly attenuated. The point spread function (PSF) of
camera shake induced blur can be expressed as a line mass
under the assumption that the relative motion between the
camera and the scene occurs at a constant projected velocity
V in a direction ¢ [29]:

¥, if V2432 < 4 and £ = —tan(¢);

0, otherwise,

h(x,y) = [ ey

where (x, y) are the horizontal and vertical pixel coordinates,
respectively.

In the DFT domain, camera shake induced blur may be
expressed using:

H(u,v) =sinc (z V) )

where (u,v) are horizontal and vertical spatial frequency
coordinates respectively, H (u,v) is the DFT of h(x, y) and
n = u cos ¢+o sin ¢. This formulation can be applied to global
space-invariant blur or to local space-varying blur.

Both linear and complex camera motion modify the
DFT spectrum of the image along specific directions that
depend on the direction of motion. Further, since the motion
of the camera occurs as the image is being integrated on the
sensor, attenuation of the high frequency components of the
DFT spectrum occurs along these directions. We define two
types of features that capture these effects by making shape
measurements on the image DFT spectrum. First, direction-
ality features capture the degree of orientation of the image
DFT that may occur due to camera motion. Secondly, shape
features capture the degree of attenuation of higher frequency
components of the image due to motion blur.

This directionality of the spectra of camera shaken images
is illustrated in Fig. 2, which shows several linear and complex
camera-shaken images and their DFT spectra. Complex cam-
era movement is seen to cause higher frequency attenuation
in multiple, but not all, directions as illustrated in Fig. 3.
Further, perceived blur has been shown to depend on the
speed and direction of camera movement [32], [33]. Based
on these observations, we define the measure of directional
sharpness to be a function of the energy and variance of
the image spectrum along multiple directions. We then define
three directional features that are predictive of the degree
of perceived blur: the average directional sharpness (F1),
the coefficient of variation (CV) of directional sharpness
(F>) and the minimum directional sharpness (F3) (described
in Section IV). We motivate the choice of these three statistics
by a few illustrative examples that are shown in Figs. 3 and 4.
We explain the rationale behind each feature later.
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Fig. 3. Zooms of (a) a natural image and (b) a real complex camera-shaken
version of (a). (¢) DFT spectra of (a). (d) DFT spectra of (b).

(©) (@

Fig. 4. Zooms of (a) a natural image and (b) a linear camera-shaken
version of (a). The bottom-left of each image is an original version in each
image. (c) The DFT spectrum of (a) and the directional statistics described
in Section III (F; = 0.3952, F, = 0.0798 and F3 = 0.4161). (d) The
DFT spectrum of (b) and the directional statistics described in Section III
(F1 =0.3831, F» =0.4913 and F3 = 0.1630).

Fig. 3 illustrates how complex camera shake reduces the
average directional sharpness of the image spectrum. Fig. 4
shows how the CV and the minimum directional sharpness
are indicative of perceptual blur, even in cases where the
average directional blur is not discriminative. Depending on
the image content, some images could have a relatively high
average directional sharpness even in the presence of camera
shake. However, the spectral structure will be asymmetri-
cally modified by camera motion. The feature F> serves to
quantify the variation of directional sharpness across orienta-
tions, while F3 measures the severity of perceptual blur along
the camera motion direction.

We also utilize shape features in the spectral domain to
quantify perceptual blur. The shape features are based on
fitting ellipses to the spectral contours of an image. Fig. 2
shows the fitted ellipses that (in order of increasing size)
capture 60%, 70%, 80% and 90% of the image’s spec-
tral energy [38]. Observe that the areas of these ellipses
increases rapidly on natural images, but the rate of increase is
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Fig. 5. (a) Average areas and (b) rate of increase of elliptical area. The
ellipses model spectral contours of an image as a function of percentiles of
spectral energy.

diminished in the presence of camera shake. This is illustrated
in Fig. 5, which plots the average areas of fitted ellipses and
the rate of increase of elliptical areas on the Camera-Shaken
Images (CSI) database (described in Section V). Further, we
observe that the eccentricity and orientation of the ellipses
tend to be concentrated within a narrow range on natural
images but vary widely on complex camera-shaken images.
This is illustrated in Fig. 6, which shows the eccentricity and
orientation of fitted ellipses on natural and complex camera-
shaken images from the CSI database.

Based on these observations, we also define three spectral
shape features that quantify the area, eccentricity and
orientation of the fitted ellipses: the rate of increase of
elliptical areas (F4), the sample variance of the spectral
eccentricities (Fs) and the spectral orientations (Fg). The
details of our model and algorithm for measuring camera shake
induced blur are presented in Section IV.

IV. NO-REFERENCE IMAGE SHARPNESS ASSESSMENT
OF CAMERA-SHAKEN IMAGES (ISAC)

In this section, we describe in detail the spectral domain
directional and shape features that are used in ISAC to measure
the degree of camera shake induced blur that may afflict an
image being analyzed. We then build a regression model that
performs perceptual sharpness estimation by training on these
features against recorded human subjective judgments.
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model the spectral contours of natural and complex camera-shaken images
(from the CSI database).

The directional features capture changes in the orientation
structure of the spectrum when an image is affected by motion
blur caused by camera shake. Directional sharpness is captured
by measurements of the variance and energy of the image
spectrum across all (sampled) orientations. These are expected
to decrease by generally different degrees in the direction of
camera movement. Define the directional energy D E(¢,) and
the directional variance DV (¢,) of the DFT coefficients as
follows:

Cy,(u) = (B, utan(gn)) | u € (~N/2,N/2)} ()
N/2 2 7%

>

u=—N/2

Cep, ()
B(0,0)
Vu? +u? - tan?(u)

S () = sgn(u) - N )

DE(¢n) = “)

N/2

DV = D g @) [ fp, @) — g, ]’ 6)

u=—N/2
where
|Cg, )]

N/2 2
Zu/:—N/z |C¢n (”/)|
N/2

> ) fy,

u=—N,2

P, (1) =

Ky
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where B(u,v) is the DFT of the image and N is the DFT
block size. Cy, (1) contains those image DFT coefficients that
lie along the direction ¢, where ¢, € {gbl,gbz, e ,(/ﬁNdr}
is the n'" sample of orientation and Ny, is the number of
orientation samples. In addition, pg,(u) is the probability
mass function of the normalized power spectrum along each
direction ¢, [23], ug, is the first central moment of the power
spectrum along each direction ¢, and fy, (4) is normalized
frequency, where sgn(-) is the sign function. We use linear
interpolation to calculate those u tan(¢,)"” coefficients that do
not fall on the discrete grid.

The directional sharpness s(¢,) of the image along the
direction ¢, is expressed as the product of DE(¢,) and

DV (¢n).
§(#n) = DE(¢n) x DV (¢n) (M

We then define three features based on the directional
sharpness feature (7) that quantify perceptual blur induced
by camera shake. The first feature is the average directional
sharpness:

1 Nar
F = = — s . 8
1= Hsy Nar Z_: (¢n) (@)
n=1
In our implementation, we use Ny = 60 equally spaced

directions, hence ¢ = 0°, ¢ =3°,..., ¢n,, = 177° [39].
The second directional feature is the CV of directional
sharpness:

0'5¢
P = Ty ©)

where

Osp = \/ﬁ S o) — s, I (10)

F> is close to 0 when the directional sharpness is identical
in all directions, but it increases in the presence of highly
directional, camera-shake induced blur of the image.

Finally, the third feature is the minimum directional
sharpness:

(1)

F3 captures the severity of the directional perceptual blur
since oriented high frequency spectral coefficients are severely
attenuated along the direction of camera motion.

Next, we define the shape based features that characterize
the blur induced by camera shake in a different manner. Fig. 7
motivates the specific spectral shape features that provide
additional discrimination power with regard to camera shake
induced blur. The spectral shape features provide advantages
over using the directional features alone, especially when the
image content also has a directional nature. As described in
Section III, we utilize ellipses to model the spectral contours
of images in the DFT domain. Let N, be the number of
spectral contours and n be the index of the spectral contour.
Let T, denote the percentage of the energy of the DFT
spectrum contained within contour n + 1 but outside contour
n, and ®, be the set of DFT coefficients lying within the
(n+1)°" spectral contour, but outside the n'” spectral contour.

F3 =min [s(¢y)|1 <n < Ng].
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Fig. 7. Zooms of complex camera shaken images (a) MOS=3.93 and
(b) MOS=2.57. The bottom-left of each image is an original version in each
image. (c) The DFT spectrum of (a). (d) The DFT spectrum of (b). The
spectral shape features provide additional discriminative power for measuring
the sharpness of images (a) and (b), where, as in this example, the directional
features may fail.

Further, let B dengte the DFT coefficients B sorted in descend-
ing order so that B(k) is the k'" largest DFT coefficient. Then,

S B2K)
N I S O

1<k < NwNg

®n = < Fn+l,

12)

where Nw and Ng are the width and height of the image.
We use fixed, evenly-spaced intervals of percentage of the
energy ', = 0.60,0.65,...,0.95,1 <n < Ng + 1 to define
the contours [38]. Model parameters for the ellipses (major and
minor axes and eccentricities) are obtained via least squares
fitting on the DFT coefficients [40]. The ellipse model that we
use is given by [41].

(ucosy +vsiny)>  (usiny — v cos y)?
2 + =1
c d?
where ¢ and d are the semi-major and semi-minor axes of the
ellipse (¢ > d), and w is the orientation of the ellipse.
The first spectral shape feature (fourth overall) is the rate of
increase of elliptical areas, denoted using Fj, as an indicator
of perceptual blur:

13)

1
Nei—1 Nei—1

H |An - An+1|
An

n=1

Fy = (14)

where A, = mwc,d, is the area of the n'” ellipse and ¢, d,
are the semi-major and semi-minor axes of the n'”" spectral
ellipse respectively.

We also utilize the eccentricity of each spectral ellipse,
which indicates the degree by which the ellipse departs from
circularity, as an indicator of perceptual blur. The eccentricity
of the n'" ellipse is:

2
D
" 2 c

n n

15)
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The second spectral shape feature (fifth overall) is the sam-
ple variance of the spectral eccentricities, which is expected
to increase with the degree of camera shake induced blur:

Nel
1
Fs=—>"(en— )’ (16)
Nel =1

where u, = N%z Z,Ilv;ll e, is the average eccentricity of the
ellipses.

The last spectral shape feature uses the orientations of
the spectral ellipses. Specifically, the sample variance of the
spectral orientations, which is expected to increase with the
degree of camera shake induced blur, is the third spectral shape

feature (sixth overall):

Nei
1
Fe = N E (COS(V/n) - #v/)z
el

n=1

a7

where p, = N%z Zflv‘zll cos(y,) is the average orientation of
the ellipses. We compute the cosine of the argument so that
orientations of opposite polarities but similar orientation lead
to similar measurements.

The learning process is defined in a straightforward manner.
We use support vector regression (SVR) to predict the subjec-
tive sharpness scores using the six features (F; through Fg).
The regression model is trained using an image quality data-
base annotated by human opinion scores, as described in detail
in Section VI-A. We used the libSVM package [42] using the
linear kernel with parameters estimated by cross-validation to
implement the SVR.

V. CAMERA-SHAKEN IMAGE DATABASE

To validate the performance of our algorithm, we built a
test database called the Camera-Shaken Image (CSI) database
and conducted a human study where we collected subjective
sharpness assessment scores.

A. Test Stimuli

Test stimuli were acquired using a compact digital
camera (Nikon COOLPIX P300) and a digital single-lens
reflex (DSLR) camera (Canon EOS 5D) to represent ‘casual’
and ‘high-performance’ cameras, respectively. The image
resolutions were 1024x768 and 1092x728 pixels, respec-
tively. When the image resolution was larger than the display
resolution, we downsampled the images using bicubic inter-
polation prior to display. To simulate typical motion blurs
generated by naive users, we panned or shook the cameras
by hand while acquiring the images. The database consists
of two categories of distortion: linear and complex camera
movement. Category I consists of 11 natural images and
99 blurred images afflicted by linear camera shake. The shaken
images were acquired by manually panning the camera at three
different ranges of speeds and in three different directions
(horizontal, vertical and diagonal) using a hand-held camera.
The apertures were varied between f/2.2—{/8, the exposure
times varied between 1/40-1/30 sec, and the ISO was set
to 160. Fig. 8 illustrates one of the linear shaken images in
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Fig. 8. (a) Linear camera shaken image with horizontal linear motion of the
camera. (b) The local motion trajectories of (a) computed using an optical
flow algorithm.

our database and its motion trajectories calculated using an
optical flow algorithm [43]. Although it is difficult to control
hand movement of the camera very precisely, Fig. 8 shows that
the motion trajectory of the camera is horizontal and close to
linear, as per design.

Category II consists of 25 naturalistic images impaired by
complex camera movement caused by intentionally and man-
ually shaking the camera during acquisition, also using three
different ranges of intensity of camera shake. The apertures
varied between {/3.5-f/32, the exposure times varied between
1/40-1 sec, and the ISO number varied between 100-800.
Most of the stimuli were captured using an ISO setting of
160 (for Category I) and 100 (for Category II) to minimize
the noise level.

B. Subjective Test

The test stimuli were displayed on an LG Electron-
ics D2342P 23-inch liquid crystal display (LCD) monitor
(1920x 1080 at 60Hz), yielding a maximum luminance of
250 cd/m?. The distance between the subject and the
LCD monitor was held at about 85 cm which is three times the
height of the display [44]. Twenty-three adults, aged between
23 and 30, took part in the experiment. We screened for visual
acuity (Snellen test) and for color blindness (Ishihara test).
After viewing the test image, the subjects rated their opinions
of sharpness by drawing a slider on a sharpness scale. The
sharpness scale was unlabelled numerically and divided into
five equal portions, which were labelled with Likert marks rag-
ing from “very annoying” through “imperceptible” following
the ITU-R impairment scale [44]. The position of the slider
was converted into a sharpness score by linearly mapping the
entire scale to the interval [0 5] in floating point. To avoid
subject fatigue, each participant rated images in 2 separate
testing sessions, each having a duration of 20 minutes. A short
training session was conducted whereby the subjects were

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 12, DECEMBER 2014
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Fig. 9. Histogram of MOS from the CSI database. (a) Category I
(b) Category II. (c) Category I and II.

instructed regarding the subjective test methodology using
10 training images. The training stimuli were captured using
the same procedure as that of the test stimuli, but were not
part of the CSI database. We selected the training stimuli
to cover the same range of sharpness as the test stimuli in
order to familiarize the subject with the range of sharpness
they would be viewing in the study. We also made a playlist
for the test session by shuffling the test stimuli in a random
order. In order to prevent possible memory effects experienced
when judging sharpness, the otherwise random arrangement
of images presented to each subject excluded successive test
stimuli that were obtained from the same reference image.
This list was then divided equally into two sessions.

C. Processing of Subjective Scores

To analyze the subjective results, we processed the sub-
jective scores and screened the recorded subjective scores
to exclude those from unreliable subjects according to the
guidelines described in ITU-R BT.500 [44]. Just one of the
twenty-three subjects was rejected at this step.

Finally, the mean opinion score (MOS) of each image was
calculated as the mean of scores from the remaining twenty-
two subjects after subject rejection. Fig. 9 shows the histogram
of the obtained MOS. For both blur categories I and II, the
MOS were spread widely from 0 to 5.

VI. PERFORMANCE
A. Performance Evaluation on CSI Database

To validate the performance of ISAC, we tested it on
camera-shaken images from the CSI database. We used the
Spearman rank order correlation coefficient (SROCC), the
Pearson linear correlation coefficient (LCC) and the root mean
squared prediction error (RMSE), as recommended by the
video quality experts group (VQEG) [45]. A four parameter
logistic function was used to fit algorithm scores to subjective
scores [45]:

pr— B2
Mos; = —2 2
05; 1 + e(Si=P3/1Pal)

+ 52 (18)
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TABLE I
MEAN AND STANDARD DEVIATION OF SROCC AND LCC OF EACH
FEATURE ACROSS 1000 TRAIN-TEST TRIALS ON THE CSI DATABASE

5435

TABLE II
MEAN SPEARMAN RANK ORDERED CORRELATION COEFFICIENT
(SROCC) AND STANDARD DEVIATION ACROSS 1000
TRAIN-TEST TRIALS ON THE CSI DATABASE

Category | Category 11 All

Mean std.dev. Mean std.dev. Mean std.dev.
Ml 0.6352 | 0.0482 | 0.7098 | 0.2757 | 0.6922 | 0.0190
M2 0.5128 | 0.0830 | 0.7050 | 0.0305 | 0.5814 | 0.0529
M3 0.6905 | 0.0270 | 0.7177 | 0.0421 0.7109 | 0.0207
M4 0.2998 | 0.0943 | 0.4856 | 0.0506 | 0.3648 | 0.0461
M5 0.5819 | 0.0465 | 0.2242 | 0.0945 | 0.4387 | 0.0354
M6 0.6800 | 0.0499 | 0.5489 | 0.0402 | 0.6616 | 0.0417
M7 0.8128 | 0.0582 | 0.7868 | 0.0958 | 0.8181 0.0495
M8 0.8386 | 0.0626 | 0.7953 | 0.0868 | 0.8393 | 0.0473
M9 0.7932 | 0.0657 | 0.6659 | 0.1166 | 0.7539 | 0.0574
MI10 | 0.8585 | 0.0412 | 0.7886 | 0.0774 | 0.8517 | 0.0367

TABLE III

MEAN LINEAR CORRELATION (LCC) AND STANDARD DEVIATION
ACROSS 1000 TRAIN-TEST TRIALS ON THE CSI DATABASE

Feature SROCC LCC
Mean std.dev. Mean std.dev.
F1 0.8141 0.0417 | 0.8513 | 0.0390
F> 0.6085 | 0.0866 | 0.6382 | 0.0779
F3 0.7904 | 0.0539 | 0.8287 | 0.0545
Fu 0.7286 | 0.0513 | 0.7688 | 0.0557
F5 0.6151 0.0807 | 0.6491 0.0743
Fe 0.1644 | 0.1235 | 0.1633 | 0.1041
Py, Fa, F3 0.8393 | 0.0473 | 0.8736 | 0.0393
Fy, F5, Fs 0.7539 | 0.0574 | 0.7799 | 0.0562
F1, Fy, F3, Fy, F5, Fs | 0.8517 | 0.0367 | 0.8825 | 0.0311

where §; is the sharpness score of the 7" image, and
the model parameters f1, f>, f3, and f4 were obtained by
minimizing the least square error between the MOS values
and the fitted scores M OS;.

The test and training sets input to the support vector
regressor (SVR) were obtained from the CSI database by
repeatedly and randomly subdividing it into two portions:
80% for training and the remaining 20% for testing, where
the training and testing subsets do not share any image
content. To verify that the results generalize across different
training and test sets, we repeated the train-test sequence
1000 times using new randomly chosen training and testing
sets at each iteration. We then evaluated the mean SROCC
across 1000 trials as shown in Fig. 10. We also repeated this
entire process across a wide range of content percent divisions.
The percentage comprised by the training set was varied from
5% to 80%. It was observed that the average SROCC stabilized
above 0.82 when only 10% of the data was used for training.

Table I shows the mean and standard deviation of SROCC
and LCC for each of the six features across 1000 train-test
trials. We also show the performance of the combination of
directional features and shape based features. Each feature
contributes to the overall evaluation of perceptual blur and
the combination of all features improves upon the individual
features.

Category [ Category 11 All

Mean std.dev. Mean std.dev. Mean std.dev.
M1 0.7477 | 0.0326 | 0.7365 0.2657 | 0.7562 | 0.0221
M2 0.5699 | 0.0607 | 0.7507 | 0.0233 0.6459 | 0.0369
M3 0.7700 | 0.0322 | 0.7424 | 0.0268 0.7540 | 0.0171
M4 0.2845 0.0615 0.5061 0.0572 0.3421 0.0536
M5 0.6207 | 0.0603 0.1936 | 0.1188 0.4639 | 0.0488
M6 0.7227 | 0.0651 0.5578 | 0.0467 | 0.6704 | 0.0599
M7 0.8837 | 0.0469 | 0.8214 | 0.0906 | 0.8554 | 0.0440
M8 0.9152 | 0.0330 | 0.8322 | 0.0886 | 0.8736 | 0.0393
M9 0.8279 | 0.0596 | 0.7083 0.1126 | 0.7799 | 0.0562
MI10 | 0.9230 | 0.0246 | 0.8197 | 0.0764 | 0.8825 | 0.0311

TABLE IV

MEAN ROOT MEAN SQUARE ERROR (RMSE) AND STANDARD
DEVIATION ACROSS 1000 TRAIN-TEST TRIALS
ON THE CSI DATABASE

Category | Category 11 All

Mean std.dev. Mean std.dev. Mean std.dev.
Ml 0.8116 | 0.0439 | 0.7218 | 0.0917 | 0.7986 | 0.0301
M2 0.9896 | 0.0560 | 0.7543 0.0409 | 0.9314 | 0.0409
M3 0.7737 | 0.0574 | 0.7648 | 0.0427 | 0.8023 0.0300
M4 1.1617 | 0.0382 | 0.9829 | 0.0452 1.1467 | 0.0293
M5 0.9423 0.0770 1.1139 | 0.0393 1.0810 | 0.0392
M6 0.8339 | 0.0877 | 0.9465 | 0.0399 | 0.9063 0.0542
M7 0.5569 | 0.1071 0.6176 | 0.1351 0.6245 0.0930
M8 0.4801 0.0948 | 0.6568 | 0.1416 | 0.5875 0.0944
M9 0.6657 | 0.0925 0.7737 | 0.1440 | 0.7555 0.0765
MI10 | 0.4602 0.0657 | 0.6272 | 0.1265 0.5688 | 0.0726

Tables II-IV show the means and standard deviations of
SROCC, LCC and RMSE across the 1000 train-test trials.
We deployed three versions of our blur prediction model:
ISAC-D and ISAC-S use only the directional or shape features
respectively. ISAC utilizes both types of features. To compare
the performance of ISAC against the state-of-the-art, we also
evaluated the performance of Marziliano [18], JNBM [1],
CPBD [19], Zhang [22], Caviedes [23], DIIVINE [24] and
S3 [46]. M1 through M10 are Marziliano, JNBM, CPBD,
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Fig. 11.  Box plots expressing the performance distributions of the various
blur prediction algorithms across 1000 train-test trials on Category I and II
blurs. (a) SROCC. (b) LCC.

Zhang, Caviedes, DIIVINE, S3, ISAC-D, ISAC-S and ISAC
respectively. ISAC-D and ISAC-S delivered better predictive
performance than all of the other algorithms. This indicates
that the ISAC spectral features are highly effective for predict-
ing the loss of sharpness of camera-shaken images. Further,
ISAC performed better than both ISAC-D and ISAC-S. ISAC
captures spectral variation along both orientations and radial
spatial frequency bands. Fig. 11 shows plots of SROCC and
LCC computed over 1000 experimental trials. The plots show
that the ISAC models are statistically superior to the existing
models in terms of SROCC and LCC.

B. Statistical Significance of Results on CSI Database

In addition, we tested the statistical significance of the
performance of each model. The residual error between the
quality prediction of an objective model and the MOS values
on the CSI Database can be used to test the statistical supe-
riority of one model over another. The F-test was performed
on the ratio of the variance of the residual error from one
objective model to that of another objective model [47], [48].
The F-test assumes that the residuals are normally
distributed and we tested this assumption by performing the
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TABLE V
RESULTS OF JB-TEST PERFORMED ON THE RESIDUALS BETWEEN
MODEL PREDICTIONS AND MOS VALUES. THE LAST COLUMN
SHOWS THE TEST DECISION FOR A SIGNIFICANCE LEVEL
OF 5%. A SYMBOL VALUE OF “1” INDICATES THAT
THE NULL HYPOTHESIS IS ACCEPTED AND THE
RESIDUALS ARE NORMALLY DISTRIBUTED.
EACH ENTRY IN THE TABLE IS A CODEWORD
CONSISTING OF THREE SYMBOLS.
THE SYMBOLS CORRESPOND TO
“CATEGORY I”, “CATEGORY II”
AND “ALL” IN THAT ORDER

JB statistic ..
Test Decision
Category 1 | Category II All
Ml 2.6056 1.0607 3.7541 111
M2 3.8014 1.2162 4.2897 111
M3 1.4067 0.9928 1.3251 111
M4 2.5531 0.9501 2.9859 111
M5 1.8088 0.9978 1.7807 111
M6 1.6738 1.0223 1.6056 111
M7 1.1676 0.9415 1.3662 111
M8 1.1601 0.9783 1.9363 111
M9 2.3535 0.8535 2.5157 111
M10 1.0553 0.6829 1.9086 111

Jarque-Bera (JB) test [49], [50]. Table V shows the results of
the JB-test for a significance level of 5%. The results show
that the distribution of the residuals of all objective models
are normal, thus validating the use of the F-test.

Table VI shows the results of the F-test. A symbol value
of “1” (“0”) indicates that the statistical performance of the
model in the row is superior (inferior) to that of the model in
the column. A symbol value of “-” indicates that the statistical
performance of the model in the row is equivalent to that of
the model in the column. As before, M1 through M10 are
Marziliano, JNMB, CPBD, Zhang, Caviedes, DIIVINE, S3,
ISAC-D, ISAC-S and ISAC respectively. The results indicate
that ISAC-D, ISAC-S and ISAC achieve better performance
than all of the existing models with statistical significance.
Furthermore, both ISAC-D and ISAC are statistically better
than all other algorithms on Category I blur. Clearly, oriented
features are better able to capture directional variations of
image spectral induced by linear shake.

C. Performance Evaluation on an Independent Database

Finally, as independent verification, we also tested ISAC on
another existing (albeit much smaller) camera-shaken image
database [51]. This database contains four natural images of
800 x 800 resolution captured using a Canon EOS 5D Mark II
camera. 12 blurred images were generated from these natural
images using linear and complex camera shake patterns that
were simulated by moving the camera using a mechanical
device. This database is complementary to our own in that
the camera motions are precise and controlled, even if they
less realistically represent camera movements caused by casual
human users. Since this database does not include subjective
sharpness scores, we conducted a subjective study on the
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TABLE VI
RESULTS OF F-TEST PERFORMED ON THE RESIDUALS BETWEEN MODEL PREDICTIONS AND MOS VALUES. EACH ENTRY

IN THE TABLE IS A CODEWORD CONSISTING OF THREE SYMBOLS. THE SYMBOLS CORRESPOND

TO “CATEGORY I”, “CATEGORY II” AND “ALL” IN THAT ORDER

| M1 | m2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | MIO

ML | --- [ 1-1 ] --—- ]ttt [111]-11]0--J0--]---JTo-0
M2 [ 0-0] --- [o0-0 ] 111 |-11]01-[0-0[0-0]0--]0-0
M3 | --- | 1-1 ] --—- |1ttt |111]-11]0--]0-0]---]0-0
M4 | 000|000 000] --- | 0--]0-0[0-0[0-0[]0-0]0-0
M5 | 000 -00 | 000 | 1--] --- | --- | 000 ] 000|0-0]000
M6 | -00 | 10-]-00 ] 1-1 | --- ] ---]o0-0[0-0]--0]0-0
M7 | 1-- | 1-1] 1-- | t1-t 111 |t-1]---1]-“-J1-1]---
M8 | 1-- | 1-1 | 1-1|1-1 111 |t-1| -] -=-|1-1]---
MO | --- | 1--] --—- | 1-t|1-1]--1]0-0]0-0]---]0-0
MIO | 1-1 | 1-1 | 1-1 | 1-1 111 |t-1 | -] - |1-1]---
TABLE VII

SROCC, LCC AND RMSE RESULTS OBTAINED BY TRAINING
ON THE CSI DATABASE AND TESTING ON THE DATABASE [51]

SROCC LCC RMSE

Marziliano [18] 0.1937 0.2607 | 1.1217
INBM [1] 0.5077 | 0.4864 | 0.9827
CPBD [19] 0.3656 | 0.5044 | 1.0033
Zhang [22] 0.5894 | 0.6484 | 0.8846
Caviedes [23] 0.5262 | 0.2158 | 1.1349
DIIVINE [24] 0.5264 | 0.4229 | 1.0192
S3 [46] 0.8577 | 0.8962 | 0.4990
ISAC-D 0.7957 | 0.8459 | 0.5999
ISAC-S 0.6124 | 0.7358 | 0.7616
ISAC 0.8367 | 0.8829 | 0.5281

database using 8 subjects, by following the same procedure
as described in Section V.

We evaluated ISAC on the database described in [51] after
training the SVR model parameters on the entire CSI database.
The performance of ISAC may again be seen to be highly
competitive relative to the other compared models as indicated
by the SROCC, LCC and RMSE scores reported in Table VII.
The competitive performance of ISAC on the database [51],
even though trained on the very different CSI database, nicely
illustrates its generalized camera shake induced blur predictive
power.

VII. CONCLUSION

We have described a new Image Sharpness Assessment
model for Camera-Shaken Images (ISAC) that utilizes statisti-
cal measures of the spectra of camera-shaken images. Most
previous approaches have been designed to detect quality
degradations arising from defocus blur, whereas ISAC is
specifically designed to predict perceptual distortions induced
by camera shake. ISAC predicts perceivable sharpness degra-
dations by combining spectral directional and shape features.
SVR was used to regress on these features against subjec-
tive scores to develop an algorithm to predict perceptual
blur. To verify the performance of ISAC, we constructed
a camera-shaken image database that includes linear and
complex camera movements along with subjective test results.

We demonstrated that the ISAC model predicts sharpness
degradations on camera-shaken images more accurately than
existing no-reference image blur prediction and quality assess-
ment models.

In the future, we would like to study the performance of
ISAC on large databases of videos acquired by real world
users on different cameras that suffer from motion blur. Also,
the ISAC algorithm assumes that the entire image is blurred
due to camera shake and is not designed to handle images
with local blur - as an example, out-of-focus blur created due
to a camera’s shallow depth of field. In the future, we would
like to extend the ISAC model to handle these types of local
blurs.
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