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Abstract  The problem of controlling the oscillations and chaotic behavior of a nonlinear cantilever beam with 
varying orientation under mixed excitations is tackled. Numerical integration of the second order nonlinear ordinary 
differential equation is performed with different control strategies to explore the chaotic dynamics of the first mode 
of the beam at the primary resonance case. The method of multiple scales perturbation technique is applied to obtain 
approximate solution and the stability of the response is studied. The effects of the various parameters are 
investigated by numerical simulations. 
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1. Introduction 
A single degree of freedom flexible beam subjected to a 

vertical sinusoidal base excitation that has a mass-
pendulum attached to its tip is investigated. It is found that 
the best performance of the pendulum is observed at the 
horizontal orientation of the system. Moreover, the energy 
is absorbed from the system by the absorber until a critical 
boundary is reached [1]. The vibration control of one 
dimensional cantilever beam of varying orientation under 
external and parametric excitations is studied and 
analyzed. The cubic velocity feedback control is applied 
and the method of multiple scaled is utilized to construct 
the modulation equations of the amplitudes and phases. 
Numerical simulations are performed to investigate the 
effects of system parameters and the stability [2]. The 
nonlinear vibration and saturation phenomenon are 
analyzed in the controlled hinged-hinged flexible beam. 
The performance of different control techniques are 
studied and found that the oscillations of the system can 
be controlled actively via negative velocity feedback. 
Effects of system parameters are also investigated [3]. A 
control law based on quintic velocity feedback is proposed 
to reduce the vibrations of one dimensional cantilever 
beam under primary and parametric excitations. 
Numerical simulations are performed to verify analytical 
results obtained using the multiple scales method and to 
detect chaos and unbounded motions [4]. The vibrations 
of a rotor-active magnetic bearing (AMB) system at 
primary resonance and the presence of one-to-one and 
one-to-two internal resonances are studied and suppressed 
applying saturation-based active controller. Optimum 
working conditions are obtained to help improve the 
design of the system [5]. Positive position feedback active 
controller is applied to reduce the oscillations of a 

nonlinear system to external primary resonance excitation. 
The multiple scales method is utilized to obtain a first-
order approximate solution, which is numerically verified 
[6]. A nonlinear time delay saturation-based controlled is 
applied to suppress the vibrations of a beam when 
subjected to external excitation considering simultaneous 
primary and two-to-one internal resonance case. 
Bifurcation analysis is performed to determine the 
stability of the closed loop system and to study the 
effectiveness of the control law [7]. The nonlinear 
behavior of a cantilever beam subjected to external and 
parametric excitations is studied. The cases of primary and 
subharmonic resonances are considered and the multiple 
scales method is used to obtain two first order ordinary 
differential equations. Effects of different parameters are 
investigated and the approximate solution is verified 
numerically [8]. A two degree-of-freedom model of a 
nonlinear vibration absorber to external excitation at the 
simultaneous primary resonance and one-to-one internal 
resonance is investigated applying two control strategies 
for positive and negative delayed feedback. Analytical 
solutions are obtained using the method of multiple scales 
and are found to be in good agreement with numerical 
simulations [9]. The method of multiple scales is utilized 
to obtain analytical solution for the nonlinear differential 
equations describing the motion of the controlled 
electromechanical system with time-varying stiffness. 
Negative linear, quadratic, and cubic velocity feedback 
controllers are applied to the system and investigated. It is 
found that the vibration of the seismograph model is best 
controlled via the negative velocity feedback [10]. A 
nonlinear cantilever beam of varying orientation with 
time-delay subject to direct and parametric excitations is 
studied at the primary and parametric resonances. The first 
order approximation of the response is obtained using the 
multiple scales method, where the time delay is presented 
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in the proportional feedback and the derivative feedback 
[11]. The Melnikov method is used to determine the 
homoclinic and heteroclinic chaos in the micromechanical 
resonators. Numerical simulations including basin of 
attraction and bifurcation diagrams reveal the effect of 
parametric excitation on the system transition to chaos and 
confirm analytical predictions. Moreover, the time-
varying stiffness is introduced to control the chaotic 
motion of the system [12]. RCL circuits with variable 
capacitance is applied to control the oscillations in a 
hinged-hinged beam based on the variational principle. 
The controlled system is investigated by Numerical 
simulations deal with the optimization of the control law 
and analytically to find the condition of the control [13]. A 
differential control method based on the mechanized 
mathematics-Wu elimination method is proposed to solve 
the chaotic solutions of high-dimensional nonlinear 
dynamic systems [14]. The finite element method is used 
to investigate the nonlinear response of Timoshenko beam 
attached with tuned mass damper (TMD) traversed by a 
moving vehicle. The optimum values of the frequency and 
damping ratio of TMD are determined to minimize the 
maximum frequency response of the beam midspan [15]. 
A dynamic beam structure system is controlled applying a 
feasible methodology based on time-delayed boundary 
control. Wavelets are employed to solve time-delayed 
linear lumped parameter system. The efficiency of the 
proposed control algorithm is investigated by numerical 
simulations [16]. Multi-input delay-feedback controllers 
based on the damping produced by these controllers as a 
function of the gains and delay are proposed and analyzed 
to suppress free oscillations for the first mode of the 
cantilever beam. Optimal values of the controllers gains 
and delay are obtained. Numerical simulations using 
three-mode nonlinear beam are carried out to validate the 
single mode approximation [17]. Longitudinal and 
transverse vibrations of an axially moving string system 
are reduced applying an active control scheme, which also 
regulates the transport velocity of the system to track a 
desired moving velocity profile. Three inputs are used in 
the control scheme, which are generated by the Lyapunov 
method. Numerical simulations are performed to illustrate 
the effectiveness of the proposed control scheme [18]. 
Acceleration feedback (AF) controller with a 
sensor/moment pair actuator configuration is used to 
control actively clamped-clamped beam. The gain and 
damping ration are shown to affect significantly the 
stability and performance of the AF controller [19]. The 
effect of an attached nonlinear energy sink on energy 
reduction of a cantilever beam subject to shock excitation 
is investigated. The role of nonlinear normal modes of 
both systems in determining the dynamics of energy 
pumping is studied to identify the required conditions of 
targeted energy transfer [20]. 

In this study, controlling chaotic dynamics and 
suppressing primary response of a nonlinear beam of 
varying orientation under direct and parametric excitations 
are studied and analyzed. The equation of motion of the 
beam is reduced by the multiple scales method to two first 
order nonlinear ordinary differential equations, governing 
the amplitude and the phase of the first mode motion. The 
performance of various control laws is analyzed by 
numerical simulations. Analytical solution under two best 
controllers is illustrated in both frequency-response curves 

for the primary resonant case. Numerical and theoretical 
results are compared and found to be in good agreement.  

2. Mathematical Model 
The governing equation of motion to be studied and 

solved has the from 

 
2 2 3

1 1 2 2

(2 )
(2 sin( ) cos( ) 2 sin( )sin( ))

x x x x x
f t xf t T
ω ε µ β γ

ε α α
+ + + + +

= Ω + Ω +

   (1) 

where  
ε is a small bookkeeping perturbation parameter, µ is the 
damping coefficient, ω is the natural frequency, f1 and f2 
are the external and parametric forcing amplitudes, Ω1,2 
are the forcing frequencies, β and γ are quadratic and 
cubic nonlinear terms, α is the orientation angle of the 
beam and T is a control input. 

 
Figure 1. The considered model of a cantilever beam 

3. Time-history Solution and Control 
In this section, the cantilever beam model (1) is 

numerically integrated using fourth order Runge-kutta 
algorithm to obtain nonresonant time-series solution and 
the system behavior at primary resonance condition. Then, 
different controllers will be applied and investigated at the 
resonant case. Figure 2 shows time histories and phase 
portraits of the considered model when the values for the 
system parameters are chosen as follows: 

µ=0 .02, ω = 10.9, f1 = 1.5, f2 = 1.2, Ω1 = 10.4, Ω2 = 9.9, 
β = 10.0, γ = 2.03, α = 10o with initial condition x(0)=0.1 
and zero initial velocity, unless otherwise specified. 

3.1. Effect of Natural and Excitation 
Frequencies 

When Ω = ω (primary resonance), the maximum 
steady-state amplitude has increased to about 445%, 
compared to the non-resonant case shown in Figure 2(a). 
This resonant condition is shown in Figure 2(b) and will 
be considered as basic case in our study. 

3.2. Effect of Initial Conditions 
It can be seen from Figure 2(d) that at the beginning, as 

the initial condition x(0) is varied from 1.0 to 3.0, the 
transient time is increased. But the steady-state amplitudes 
are the same for all initial conditions different values. This 
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means that the system depends on initial conditions, which is a characteristic of a nonlinear system. 

 
Figure 2. Numerical solution of the cantilever beam: (a) Non-resonant time response solution, (b) Primary resonant solution, (c) Effect of initial 
conditions on system behavior at primary resonance. 

3.3. Effect of the Orientation Angle (α) 
Figure 3(a) and Figure 3(b) show that small angles 

between 10o and 50o does not significantly affect the 
amplitude of the beam. When the orientation angle is 

increased to 80o, Figure 3(c), the amplitude decreases and 
the tuned behavior disappears. As α is increased further, 
the reduction in the amplitudes is noticed significantly and 
the system reaches the steady state as shown in Figure 3(d).  

 
Figure 3. Effect of the orientation angle under primary resonance 

3.4. Effect of the Forcing Excitation Amplitudes 

3.4.1. Direct Excitation f1 

It can be shown from Figure 4, that the amplitude of the 
model increases as the excitation amplitude of the external 
force increases. 

3.4.2. Parametric Excitation f2 

The effect of the amplitude of the parametric excitation 
f2 is shown in Figure 5, which represent the time-series 

solution (t, x) and the phase plane (x, v) for the beam at 
primary resonance, where v denotes the velocity. 
Considering Figure 2(b) as basic case for comparison. It 
can be seen from Figure 5(a) that as the amplitude of 
parametric excitation f2 is increased to 100.0, a chaotic 
motion occurs. When f2 is increased to 200.0, a modulated 
chaotic behavior is noticed in Figure 5(b). The time 
history of the beam, Figure 5(c), shows a change from 
modulated chaotic response to a periodic response as f2 is 
increased further to 400.0. More increase lead to a severe 
chaotic motion as indicated in Figure 5(d). 
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Figure 4. Effect of the external excitation under primary resonance 

 
Figure 5. Effect of the parametric excitation under primary resonance 

3.5. Vibration Control 
Different controllers have been applied to the cantilever 

beam model, which are the position feedback, the negative 
velocity feedback and the negative acceleration feedback 

controllers. The performance of several types of each kind 
of the three controllers is studied and analyzed at the 
primary resonance response of the system. Figure 6(a) is 
considered as basic case for comparison. 
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3.5.1. Position Feedback (PF) Laws, nT Gxε=  
(i) When n = 1, it is called the linear PF controller and 

it is aimed at modifying the natural frequency of the 
system. Figure 6(b) - Figure 6(d), show the performance 
of controller for different values of the gain G. It is clear 
that the effect of the controller becomes significant in 

reducing the amplitude of vibration for G > 5.0. Larger 
values for the gain may not be effective enough compared 
to the percentage of reduction in the amplitude.  

(ii) When n = 2, the effect of the quadratic PF is shown 
in Figure 6(e) and Figure 6(f), which indicates that the 
reduction in the amplitude is noticeable when G takes very 
large values (G > 70.0). 

 
Figure 6. Performance of LPF controller, (a)-(d), and QPF controller, (e) and (f), for different values of the gain when the system subjected to primary 
resonance 

(iii) When n = 3, the cubic PF controller is activated 
and affects the cubic nonlinearity coefficient in the beam 
system due to nonlinear curvature when G > 20.0 as 
indicated in Figure 7. 

It is clear that increasing gain of all PF controllers is not 
only suppressing the amplitude of vibration but changes 
the oscillations of the beam to a strongly modulated 
motion as well. 

 
Figure 7. Performance of CPF controller for different values of the gain when the system subjected to primary resonance 

3.5.2. Velocity Feedback (VF) Laws, nT Gxε= −   
(i) When n = 1, it is called the linear VF controller and 

it modifies the damping of the considered system. It can 

be seen from Figure 8 that the controller is very effective 
in suppressing the amplitude of the system for small 
values of the gain G and the motion is steady. 
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Figure 8. Performance of LVF controller for different values of the gain when the system subjected to primary resonance 

(ii) When n = 2, Figure 9 indicates that the quadratic 
VF controller may not be considered to have a good 
criterion among active controllers for the considered beam. 
In fact, the beam looks to be sensitive to increasing the 
gain, which resulted in affecting the shape of the motion. 

(iii) When n = 3, a significant reduction of the system 
amplitude is observed in Figure 10 for very small values 
of the gain G as the cubic VF controller is added to the 
system. Also the behavior of the system is noticeably 
affected by the controller to reach the steady-state.  

 
Figure 9. Performance of QVF controller for different values of the gain when the system subjected to primary resonance 

 
Figure 10. Performance of CVF controller for different values of the gain when the system subjected to primary resonance 
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3.5.3. Acceleration Feedback (AF) Law, T Gxε= −   
It is clear that this control law modifies the acceleration 

of the system. The AF controller may act better for  

G < 0.2. More increase may lead to unstable system as 
shown in Figure 11. 

 
Figure 11. Performance of negative acceleration feedback controller for different values of the gain when the system subjected to primary resonance 

 
Figure 12. Effect of the gain for various control laws at primary resonance - numerical integration of the system: (x-axis: the gain, y-axis: x-amplitude) 

(a) LPF (blue), QPF (black) and CPF (red) controllers 
(b) LVF (blue), QVF (black) and CVF (red) controllers: (i) 0. < G < 4.0 and (ii) G > 4.0 



 American Journal of Mechanical Engineering 323 

 

3.5.4. Effect of the Gain Coefficient G 
Figure 12 shows the effect of the amplitude of vibration 

with respect to the gain for the PF and VF control laws. 
The effectiveness of the different active control laws is 
evaluated to determine the one that leads to effective 
vibration suppression and chaotic motion control of the 
system. The effectiveness of the controller is represented 
by Ea = steady-state amplitude of the system before 
control / steady-state amplitude of the system after control, 
which is calculated at saturation beginning. Comparing the 
effectiveness of these controllers. It is noticed from  
Figure 12(a) and Figure12(b) that  
• Ea = 15.3, 3.32, and 2.68 and saturation begins at 

G greater than 30.0, 75.0, and 20.0 to control the 
system when applying LPF, QPF, and CPF 
controllers, respectively. This means that the LPF 
controller (T = Gx) is the best one among PF 
controllers, which has better performance when 
1.0 < G < 5.0. 

• Ea = 31.0, 5.5, and 19.0 and saturation begins at 
G greater than 5.0, 2.0, and 5.0 to control the 
system when applying LVF, QVF, and CVF 
controllers, respectively. This means that the 
LVF controller ( T Gxε= −  ) is the best one 
among VF controllers. Comparing the LVF and 
CVF controllers, one observed that for G < 1.0 
the LVF and CVF laws have same effect, while 
the CVF controller is better than the LVF one 
when 1.0 < G < 4.0 as shown in Figure 12(b)(i). 
But Figure 12(b)(ii) indicates that as G increases 
beyond 4.0 the linear VF controller performes better. 

Therefore, the best control method among all applied 
controllers is the LVF one. 

4. Analytical Solution 
In this section the approximate solution of the nonlinear 

system, Eq. (1), with the two effective controllers is 
analyzed, applying the method of multiple scales.  

4.1. LPF Controller 
Setting T = εGx in Eq. (1) and assuming x  is in the 

form 

 0 1 0 0 1 1 0 1(T ,T ) (T ,T ) (T ,T ) ..........x x xε= + +  (2) 

where 0T t=  is the fast time scale and 1 0T T tε ε= = is 
the slow time scale. The time derivatives are expressed as  
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Equating the coefficient of same powers of ε yields:  
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The general solution of Eq. (3) is given by  

 0 00 1 1( ) ( ) .i T i Tx A T e A T eω ω−= +  (5) 

Substituting Eq. (5) into Eq. (4) , gives 
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The particular solution of Eq. (6) is given by  
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The primary resonance, due to external force, will be 
considered and studied. It occurs when 1Ω  is very close to
ω , which is expressed as  

 1 .ω εσΩ = +  (8) 

From Eq. (6) the secular terms, which result in 
unbounded solution, are eliminated and the solvability 
condition yield  

 2 112 2 3 cos( ) 0.i Ti A i A A A GA if e σω ω µ γ α′− − − + − =  (9) 

Using the following polar form expression in Eq. (9) 

 ( )11
1 ( )
2

i TA a T e θ=  (10) 

where ,a θ  are the steady-state amplitude and phase of the 
motion. Then Separating imaginary and real parts, and 
setting 1v Tσ θ= −  we obtain 
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fa a vµ α
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 3 13 1 sin cos( ).
8 2

fv a a a Ga vσ γ α
ω ω ω
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The steady-state solutions correspond to constant a , v  
that is 0a ν′ ′= =  Thus Eqs. (11) and (12) can be reduced 
to the following nonlinear algebraic equations 
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Squaring Eqs. (13) and (14) then adding them, we 
obtain the following frequency response equation 
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4.2. LVF Controller 
Setting T = Gxε  in Eq. (1) and following the same 

procedure as in LPF controller considering the primary 
resonance case, one obtains 

 

2 2
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Next, we study the problem of stability of linear (trivial) 
solutions for the two considered controllers.  

4.3. Trivial Solution 
To determine the stability of the trivial solutions, one 

investigates the primary resonant solution with LPF 
controller by introducing the following Cartesian form  

 ( ) 10 1 1
1
2

i TA p iq e σ= +  (17) 

into the linearized form of Eq. (9), that is into  
 0 02 ( ) 0i A A GAω µ′− + + =  (18) 

where p1, q1 are real, then separating real and imaginary 
parts, gives the following eigen-value equation 
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which has the solution  
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In a similar manner, one can obtain the following 
eigenvalues for the stability of the trivial primary resonant 
solution with LVF control law as follows 

 ( ) ( ).G iλ µ σ= − + ±  (21) 

Consequently, the linear solution is stable for all 
negative values of the real part of the obtained eigenvalues. 

4.4. Analytical Results 
In this section, the solution of the frequency response 

Eqs. (15) and (16) are obtained numerically. The stability 
of the steady-state solution is investigated using frequency 
response function and the numerical results are focused on 
the effect of different parameters. The results of solving 
Eqs. (15) and (16) are shown in Figure 13 and Figure 14 
as the amplitude a against the detuning parameters σ, 
which are called frequency- response curves. 

4.4.1. LPF Controller 
Figure 13(a), which is considered a basic case to 

compare with, indicates that the system under L PF 
controller possesses a strong hardening nonlinearity effect. 
it can be seen from Figure 13(b) that as the damping 
coefficient µ increases the steady-state amplitude a 
decreases. The effect of varying the natural frequency ω is 
shown in Figure 13(c), where the region of multi-
valudeness and stability between the two branches is 
decreased as ω increases. Figure 13(d) shows that the 

frequency response curves are bent to right when the 
nonlinear term γ is positive and to left when γ is negative 
leading to the appearance of jump phenomenon and indicating 
nonlinearity effect (either hardening or softening nonlinearity) 
of the nonlinear term γ. In Figure 13(e), the amplitude 
increases as the excitation force amplitude increases. The 
effect of varying the gain G is shown in Figure 13(f), 
where the curves are shifted to left as G increases. The 
curves in Figure 13(g) indicates that orientation angle α is 
inversely proportional to the steady-state amplitude a.  

4.4.2. LVF Controller 
The frequency response curves with the LVF controller, 

Figure 14, show weak hardening nonlinearity effect. The 
effects of varying the gain G and the orientation angle α 
indicate that the steady-state amplitude a is monotonically 
decreasing function in G and α as shown in Figure 14(b) 
and Figure 14(c), respectively.  

5. Conclusion 
In this work different control laws are implemented and 

examined to suppress the vibrations of the first mode of a 
cantilever beam at primary resonance when subjected to 
external excitation and parametric excitations. The time 
response and chaotic dynamics of the system are studied 
applying Rung-Kutta fourth order method. The numerical 
solution is obtained at non-resonant case and primary 
resonance case under different initial conditions. Using 
multiple scales method, the frequency response equation is 
numerically solved to obtain the steady-state solution, and 
the stability of the resonant solutions is determined by the 
eigenvalues of the corresponding Jacobian matrix. The 
effect of different parameters on the system behavior and 
its stability are also investigated. We may conclude the 
following: 

5.1. Numerical Integration Results  
1. The worst resonance case under the 

parametrically and externally excited cantilever 
beam occurs at the primary resonance case, at 
which the frequency of the excitation is close to 
the natural frequencies of the system. 

2. The resonant system is sensitive to the variation 
of the initial conditions. 

3. The variation of the orientation angle α reduces 
the growth of the amplitude. 

4. The steady-state amplitude gets larger with the 
increase of the external force amplitude f1. 

5. The effect of the parametric force amplitude f2 is 
different from that of the external excitation. It 
has influence on the response of the cantilever 
beam system and hence maybe considered to be 
the main parameter for controlling the response 
of the system.  

6. The oscillations of one mode of the beam can be 
actively controlled by adding LPF or LVF 
controller.  

7. The effect of increasing the gain in the negative 
LVF is better than the LPF in suppressing the 
vibration of the beam and results in a better 
transient performance. 
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Figure 13. Primary resonant frequency response curve with LPF controller 
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Figure 14. Primary resonant frequency response curve with LVF controller 

5.2. Frequency- Response Results 
1. The model exhibits a strong/ weak nonlinearity 

effect, due to the cubic nonlinear term γ, in the 
positive PF/ negative linear VF controlled 
frequency response curves for the beam model, 
respectively. 

2. The steady-state amplitude x of the system is a 
monotonic decreasing function in the linear 
damping coefficient μ, and the orientation angle 
α. 

3. The steady-state amplitudes x of the system is a 
monotonic increasing function in the direct 
forcing amplitude f1. 

4. The effect of the gain G in the frequency- 
response curves is varied due to the type of the 
applied controller. When adding the LPF 
controller, as G is increased the frequency-
response curves are shifted to left. But with the 
negative LVF, the frequency- response curves 
indicate that the steady-state amplitude is a 
monotonic decreasing function in G. 

5. Analytical results are in good agreement with the 
numerical simulations. 
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