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ABSTRACT. We give a generalization of a result of Myerson on the
asymptotic behavior of norms of certain Gaussian periods. The
proof exploits properties of the Mahler measure of a trinomial.

1. Introduction

This paper was motivated by the following remarkable asymp-
totic result of Myerson [8] about the norm of a Gaussian period. Let
p ≡ 1 mod 3 be a prime and ω a primitive cube root of unity in the
finite field Fp = {0, 1, . . . , p− 1}. Also let K = Q(ζ) be the p-th cyclo-
tomic field, where ζ = e2πi/p. Then, as p →∞,

(1) 1
p
log |NK

Q (ζ + ζω + ζω2

)| → L′(−1, χ) = .3231 . . . ,

where L(s, χ) is the Dirichlet L-function with χ the nontrivial char-
acter mod 3. As a consequence of a more general result we will give
the following refinement of (1).

THEOREM 1. For p ≡ 1 mod 3

1
p
log |NK

Q (ζ + ζω + ζω2

)| = L′(−1, χ) + O(p−1/2 log p),

with an absolute implied constant.

The method of proof behind Theorem 1 differs from that of Myer-
son and develops further an interesting relationship between a cer-
tain combinatorial problem and Mahler’s measure. In the next sec-
tion we introduce this combinatorial problem, briefly describe Myer-
son’s approach to (1), state the general result, Theorem 2 and show
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that it implies Theorem 1. The five sections that follow contain re-
sults of independent interest that lead up to the proof of Theorem
2.

2. The combinatorial problem

Let S be an arbitrary subset of cardinality |S| of Fp, for p an odd
prime. For a given t ∈ Fp denote by Nt the number of solutions
(n1, . . . , np−1) ∈ Sp−1 of the equation

∑

`∈F∗p
` n` = t,

where F∗p = Fp \ {0}. Clearly Nt = Nat for a ∈ F∗p so that Nt takes
on only the two values N0 and N1. Furthermore, N0 and N1 are in-
variant under affine maps S 7→ aS + b for a ∈ F∗p and b ∈ Fp. The
combinatorial problem of interest here is to determine N0 and N1 as
precisely as possible in terms of p and (the affine equivalence class
of) S.

Since it is obvious that N0 + (p − 1)N1 = |S|p−1, this problem
reduces to the determination of ∆ = N0 −N1, in terms of which

N1 = 1
p
|S|p−1 − 1

p
∆ and N0 = 1

p
|S|p−1 + (1− 1

p
)∆.

We have that ∆ =
∑

t∈Fp
Nt ζ

t, which yields the basic formula

(2) ∆ =
∏

`∈F∗p

∑
n∈S

ζn`.

The counting problem is thus equivalent to computing the norm of
the cyclotomic integer

∑
n∈S ζn.

As a consequence of the arithmetic-geometric inequality applied
in (2) it follows that

|∆| ≤ |S| p2−1.

This shows that the values
∑

` ` n` are very well distributed among
the values of Fp. It also follows easily from (2) that for |S| ≤ 2 we
have ∆ = 1 so we may restrict attention to S where |S| ≥ 3.

In case S is a subgroup of F∗p such problems were discussed by
Myerson [7, 8]. Here the values of `S run over the cosets of S ex-
actly |S| times. He actually considered the problem of counting the
number of representations of t as a sum of distinct elements of these
cosets. It is easily seen from (2) that this counting problem reduces to
the determination of a natural |S|-th root of ∆. This is a well known
problem of cyclotomy in that it entails the explicit evaluation of the
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norm of a Gaussian period. Except for some subgroups of small in-
dex (see [7]) or of size |S| ≤ 2, such evaluations are apparently un-
known.

In lieu of an explicit evaluation of ∆ when S is a subgroup of
F∗p of fixed size, Myerson introduced the idea of determining the as-
ymptotic behavior of |∆| as a function of p ≡ 1 mod |S| as p → ∞.
When |S| = 3 so that S = {1, ω, ω2}, he proved in [8] that

(3) 1
p
log |∆| →

∫ 1

0

∫ 1

0

log | e(u) + e(v) + e(−u− v)| du dv,

as p → ∞ with p ≡ 1 mod 3. The statement (1) then follows from
(2) and the evaluation of the integral in (3), which follows from [11].
The idea of the proof of (3) is to interpret the formula from (2),

1
p
log |∆| = 1

p

∑

`

log |
∑
n∈S

e(n`/p)|,

as giving an approximation to the integral in (3) by using the fact that
(`/p, ω`/p) becomes uniformly distributed (mod 1) as ` runs over F∗p.
The difficulty lies in the fact that the integrand has singularities, but
it is tractable since they are isolated from the points (`/p, ω`/p). Us-
ing special arguments he was able to quantify this statement well
enough to prove (3). Myerson also conjectured in [8] a result like
(3) for subgroups of any fixed size. However, for |S| > 4 (the case
|S| = 4 being simpler), the singular set is infinite and this seems to
present a serious obstacle in the way of a proof. See [10] and chap-
ter 10 of the book of Konyagin and Shparlinski [4] for some further
developments of these ideas.

This paper will show that 1
p
log |∆| is actually well approximated

by L′(−1, χ) for any set S with |S| = 3, provided that the “width”
w(S) is large. Here, for any S, w(S) is defined to be the length of the
smallest interval in {0, 1, 2, . . . , p − 1} that contains an image aS + b
of S under an affine transformation.

THEOREM 2. Suppose that |S| = 3. Then
1
p
log |∆| = L′(−1, χ) + O

( log w(S)
w(S)

)
,

with an absolute implied constant.

The proof of Theorem 2 uses a uniform asymptotic estimate for
1
p
log |∆| given in terms of the Mahler measure of a certain trinomial.

This is then related to a two dimensional Mahler measure like the
integral in (3). Although this method differs significantly from that
described above, it also encounters difficulties with larger sets S.
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To see that Theorem 1 follows from Theorem 2, it is enough to
observe that w({1, ω, ω2}) À p1/2. Suppose that for some a ∈ F∗p and
some c > 0 the three elements a, aω, aω2 are all contained in some
interval of length cp1/2, where this is interpreted in the obvious way.
Since a + aω + aω2 = 0 this interval must contain either 0, (p − 1)/3
or (2p − 2)/3. Hence 3a, 3aω, 3aω2 must be contained in an interval
around 0 of length 3cp1/2. Let n and m be the integers of smallest
absolute value representing 3a and 3aω, respectively. Then

0 < n2 + nm + m2 ≡ 0 mod p.

This implies that 3
2
(n2 + m2) ≥ p, which is impossible for c > 0

sufficiently small. Thus w({1, ω, ω2}) À p1/2. We remark that any set
S with |S| = 3 satisfies w(S) ¿ p1/2, as will be seen in the proof of
Theorem 5 below.

3. The asymptotic problem for fixed S

Before turning to the proof of Theorem 2, consider first the as-
ymptotic problem when S is a fixed subset of Z, interpreted for each
(sufficiently large) p as a subset of Fp. Recall that the Mahler measure
of a monic f ∈ C[x] is given by

M(f) =
∏
α

max(1, |α| ),

where α runs over the zeros of f , counted with multiplicity. As is
standard we write

(4) m(f) = log M(f).

Associated to S = {n1, n2, . . . , n|S|} with n1 < n2 < · · · < n|S|, is the
polynomial

fS(x) = xn1 + xn2 + · · ·+ xn|S| .

The following result shows that for fixed S the basic asymptotic
problem has a simple solution in terms of m(fS).

THEOREM 3. Suppose that S is fixed. Then for p sufficiently large
1
p
log |∆| = m(fS) + O(p−1 log p),

where the implied constant depends only on S.

PROOF. Writing fS(x) =
∏

α(x− α), we see from (2) that

∆ =
∏
α

∏

`∈F∗p
(α− ζ`) =

∏
α

1− αp

1− α
,
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using that p− 1 is even. Since
∏

α(1− α) = fS(1) = |S| we obtain

(5) |S|∆ =
∏
α

(1− αp).

This quantity was studied by D.H. Lehmer in his influential paper of
1933 [6]. Thus we have for p sufficiently large

(6) 1
p
log |∆| = 1

p

∑
α

log |1− αp| − 1
p
log |S|.

If |α| > 1 then 1
p
log |1− αp| = log |α|+ O(|α|−p) while if |α| < 1 then

1
p
log |1 − αp| = O(|α|p). Only in case |α| = 1 is there any difficulty,

and this may be handled as in [3, Lemma 1.10] by an application of
Baker’s Theorem, giving that for p sufficiently large

log |1− αp| ¿α log p.

Note that the restriction in [3, Lemma 1.11] that α not be a root of
unity is unnecessary here since p is a prime. Thus

1
p

∑
α

log |1− αp| = m(fS) + O(p−1 log p).

By (6) we finish the proof. ¤
This proof serves to underscore that the main challenge in un-

derstanding the behavior of |∆| when S is not fixed, at least by this
method, is to control small values of |1 − αp| for α a zero of fS in
terms of p. Baker’s theorem does not seem to yield enough informa-
tion without making some very restrictive assumptions on w(S).

4. Zeros of a trinomial

The assumption that |S| = 3 allows us to control how close a root
of fS , which is a trinomial, can be to a p-th root of unity. This in turn
can be used to estimate how small |1 − αp| can be. The following
theorem formulates this idea precisely.

THEOREM 4. Suppose that p > 3 and 0 < m < n. Then there is an
absolute constant c > 0 so that for α a root of f(x) = xn + xm + 1 = 0
with |α| ≤ 1 we have

|1− αp| > c

n
.

PROOF. As before let ζ = e2πi/p. We first show that there is an
absolute constant c1 > 0 so that for all ` ∈ Z
(7) | ζ` − α| > c1(pn)−1.
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Fix ` and α and let L denote the line segment from α to ζ`. By the
complex mean value theorem given in [2] there are z1, z2 ∈ L so that

Re
f(ζ`)− f(α)

ζ` − α
= Re f ′(z1) and Im

f(ζ`)− f(α)

ζ` − α
= Im f ′(z2).

Thus ∣∣∣∣
f(ζ`)− f(α)

ζ` − α

∣∣∣∣ ≤ 2 max
z∈L

|f ′(z)| ≤ 4n,

which yields

4n|ζ` − α| ≥ |f(ζ`)| = |ζn` + ζm` + 1|.
Since p > 3 this sum three of p-th roots of unity cannot vanish and
in fact must satisfy |ζn` + ζm` + 1| ≥ c2p

−1 for some c2 > 0 (see [9]),
giving (7).

Write α = reiθ. By (7) there are constants c3, c4 > 0 so that at least
one of the following holds:

r < 1− c3

pn
or

∣∣∣θ − 2π`

p

∣∣∣ >
c4

pn
for all ` ∈ Z.

In the first case

|1− αp| > 1−
(
1− c3

pn

)p

=
c3

n
+ O(n−2),

while in the second |pθ − 2π`| > c4n
−1 and hence

|1− αp| ≥ sin(c4n
−1) =

c4

n
+ O(n−3),

since sin(c4n
−1) is the minimal distance from 1 to the ray at angle

c4n
−1. This finishes the proof. ¤

5. The Mahler measure of a trinomial

Suppose that for some p > 3 we have a set S ⊂ Fp with |S| = 3.
This S can be transformed by an affine transformation to one of the
form {0,m, n}, where 0 < m < n and n is minimal: that is n = w(S).
Write f(x) = xn + xm + 1 for some such choice of m.

THEOREM 5. Given S with |S| = 3 and f as above, we have
1
p
log |∆| = m(f) + O(p−1/2 log n)

with an absolute implied constant.
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PROOF. By (5) we are reduced to considering

(8) ∆ = 1
3

∏
α

(1− αp),

where α runs over all the zeros of f. Now
∑

α

log |1− αp| − p m(f) =
∑

|α|≤1

log |1− αp|+
∑

|α|>1

log |1− α−p|

¿n log n

by Theorem 4 applied to f(x) and its reciprocal

xnf(x−1) = xn + xn−m + 1.

Thus by (8) we have

1
p
log |∆| = m(f) + O

(n log n

p

)
.

To finish the proof of Theorem 5 we will show that n ¿ p1/2.
By performing a suitable affine transformation we may suppose that
Sp = {0, 1, `} where 1 < ` < p. Let s = d√p e = [

√
p ] + 1 and observe

that at least one difference k` − j` for 0 ≤ j < k ≤ s must lie in
{1, 2, . . . , s} or {p− s, p− s+1, . . . , p− 1}. Taking a = k− j and some
b we see that aSp + b ⊂ {0, 1, . . . , 2s}. It follows that n ¿ p1/2. ¤

6. Limits of Mahler measures

Recall that the Mahler measure of a non-zero polynomial f ∈
C[x, y] is defined by

(9) m(f) =

∫ 1

0

∫ 1

0

log | f(e(u), e(v))| du dv.

This reduces to (4) for monic f ∈ C[x] by Jensen’s formula [3, p.7],
which states that for any z ∈ C,

(10)
∫ 1

0

log | e(u)− z| du = log+ |z|,

where log+ z = log max(1, |z| ).
The following result expresses m(x + y + 1) as a uniform limit of

Mahler measures of trinomials. The proof is modeled after that of
Boyd, who gave the case m = 1 in [1, p.463].

THEOREM 6. For 0 < m < n with (m,n) = 1

m(xn + xm + 1) = m(x + y + 1) + α(m + n)n−2 + O(mn−3),
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where

(11) α(n) =

{
−
√

3π
6

, if n ≡ 0 mod 3;√
3π

18
, otherwise.

PROOF. For x = e(u) = e2πiu with cos(2πmu) > −1/2 we have

(12) log(1 + xm + xn) = log(1 + xm) +
∑

`≥1

(−1)`−1

`

( xn

1 + xm

)`

,

while when cos(2πmu) < −1/2 we have that

(13) log(1 + xm + xn) = log(xn) +
∑

`≥1

(−1)`−1

`

(1 + xm

xn

)`

.

By (10) applied in (9)

m(x + y + 1) =

∫ 1

0

log+ |1 + e(u)| du(14)

=

∫ 1

0

log+ |1 + e(mu)| du =

∫
log | 1 + e(mu)|du,

where the range of the last integral consists of those subintervals of
[0, 1] that satisfy cos(2πmu) > −1/2. Thus set

(15) I1(`) =

∫
e(n` u)(1 + e(mu))−`du,

where the range of integration is over those subintervals of [0, 1] that
satisfy cos(2πmu) > −1/2, and

(16) I2(`) =

∫
e(−n` u)(1 + e(mu))`du,

where the range of integration is over those subintervals of [0, 1] that
satisfy cos(2πmu) < −1/2. By (12-14) we have the identity

(17) m(xn + xm + 1) = m(x + y + 1) + Re
∑

`≥1

(−1)`−1

`
(I1(`) + I2(`)).
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After changing variables u 7→ mu we have from (15)

I1(`) = 1
m

m−1∑

k=0

( ∫ k+1/3

k

+

∫ k+1

k+2/3

)
e(n` u

m
)(1 + e(u))−`du

= 2
m

Re
m−1∑

k=0

e(kn`
m

)

∫ 1/3

0

e(n` u
m

)(1 + e(u))−`du

= 2 Re

∫ 1/3

0

e(nq u)(1 + e(u))−qmdu(18)

when ` = qm and I1(`) = 0 otherwise. Here we use the assumption
that (n,m) = 1. Similarly, from (16)

(19) I2(`) = 2 Re

∫ 1/2

1/3

e(−nq u)(1 + e(u))qmdu

when ` = qm and I2(`) = 0 otherwise. Integrating by parts three
times in (18) and (19) we get after some calculation that

(20) I1(qm) + I2(qm) =

√
3

π

m

n2q
(−1)qm cos

(
2π
3

(m + n)q
)

+ O
( m2

n3q

)
.

Here the real part of the sum of the boundary terms obtained after
the first integration by parts vanishes and we use that (nq ± 1)−1 =
(nq)−1+O((nq)−2) in the boundary terms after the second integration
by parts. Also, we estimate the final integrals that arise by

∫ 1/3

0

|1 + e(u)|−qm−3du =

∫ 1/3

0

(2 + 2 cos u)(−qm−3)/2du

≤
∫ 1/3

0

(4− 9u)(−qm−3)/2du ¿ (qm)−1,

and similarly
∫ 1/2

1/3

|1 + e(u)|qm−3du ¿ (qm)−1.

Theorem 6 now follows easily from (17) and (20). ¤

7. A uniform result

Theorem 2 is a consequence of the the following more precise
result together with the fact that n = w(S) ¿ p1/2, which was proved
in Theorem 5.
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THEOREM 7. Suppose that |S| = 3 and that n = w(S). Then
1
p
log |∆| = L′(−1, χ) + O(p−1/2 log n + n−2),

with an absolute implied constant.

PROOF. In the notation of §5, since {0,m, n} is assumed minimal
we must have that (m,n) = 1. Thus Theorem 7 follows from The-
orems 5 and 6 together with Smyth’s evaluation [11] (see also [1,
p.462]):

m(x + y + 1) = 3
√

3
4π

L(2, χ) = L′(−1, χ).

¤
Some of the ingredients in the proof of Theorem 7 generalize to

sets S with |S| > 3. For instance, an analogue of Theorem 4 holds for
quadrinomials, since one has a lower bound for the non-zero sum of
four p-th roots of unity. Also, nontrivial upper bounds for the width
of a set can be given more generally and an analogue of Theorem 5
can be proved for sets S with |S| = 4. Also, Theorem 6 can be gener-
alized in certain ways (see [1] and [5]). However, the next interesting
case of Myerson’s conjectured asymptotic when S is a subgroup oc-
curs for |S| = 5, and here no sufficiently strong lower bound for
non-zero sums of five p-th roots of unity is known (see [9]). In fact,
this interesting problem seems to be the central difficulty in extend-
ing the methods given in this paper to prove this conjecture.

Acknowledgements. This paper is the result of a visit in September,
2006 to the Division of Information and Communication Sciences at Mac-
quarie University as a Visiting Fellow in Computing. I thank them for their
support and hospitality. I also thank Igor Shparlinski for inviting me, Gerry
Myerson for introducing me to the problems treated in this paper and both
for their helpful suggestions. Finally, I thank the referee for several useful
comments.

References

[1] D.W. Boyd, Speculations concerning the range of Mahler’s measure. Canad. Math.
Bull. 24 (1981), 453–469.

[2] J.-Cl. Evard and F. Jafari, A complex Rolle’s theorem. Amer. Math. Monthly 99
(1992), 858–861.

[3] G. Everest and T. Ward, Heights of polynomials and entropy in algebraic dynamics.
Universitext. Springer-Verlag London, Ltd., London, 1999.

[4] S.V. Konyagin and I. E. Shparlinski, Character sums with exponential functions
and their applications. Cambridge University Press, Cambridge, 1999.

[5] W. M. Lawton, A problem of Boyd concerning geometric means of polynomials. J.
Number Theory 16 (1983), 356–362.



A COMBINATORIAL PROBLEM RELATED TO MAHLER’S MEASURE 11

[6] D.H. Lehmer, Factorization of certain cyclotomic functions. Ann. of Math. (2) 34
(1933), 461–479.

[7] G. Myerson, A combinatorial problem in finite fields. I. Pacific J. Math. 82 (1979),
179–187.

[8] G. Myerson, A combinatorial problem in finite fields. II. Quart. J. Math. Oxford
Ser. (2) 31 (1980), 219–231.

[9] G. Myerson, Unsolved Problems: How Small Can a Sum of Roots of Unity Be?
Amer. Math. Monthly 93 (1986), 457–459.

[10] G. Myerson, A sampler of recent developments in the distribution of sequences.
Number theory with an emphasis on the Markoff spectrum (Provo, UT, 1991),
163–190, Lecture Notes in Pure and Appl. Math., 147, Dekker, New York, 1993.

[11] C.J. Smyth, On measures of polynomials in several variables. Bull. Austral. Math.
Soc. 23 (1981), 49–63.

UCLA MATHEMATICS DEPT., BOX 951555, LOS ANGELES, CA 90095, USA
E-mail address: wdduke@ucla.edu


