A combinatorial problem related to Mahler’s
measure

W. Duke

ABSTRACT. We give a generalization of a result of Myerson on the
asymptotic behavior of norms of certain Gaussian periods. The
proof exploits properties of the Mahler measure of a trinomial.

1. Introduction

This paper was motivated by the following remarkable asymp-
totic result of Myerson [8] about the norm of a Gaussian period. Let
p = 1mod 3 be a prime and w a primitive cube root of unity in the
finite field F,, = {0,1,...,p— 1}. Also let K = Q(() be the p-th cyclo-
tomic field, where ( = ¢>™/?. Then, as p — oo,

(1) Llog [NE (¢ +¢“+¢*)| = L'(-1,x) = 3231,

where L(s, x) is the Dirichlet L-function with x the nontrivial char-
acter mod 3. As a consequence of a more general result we will give
the following refinement of (1).

THEOREM 1. For p = 1mod 3
Llog [N (¢ +¢* + ¢ = L'(=1,x) + O(p~* log p),
with an absolute implied constant.

The method of proof behind Theorem 1 differs from that of Myer-
son and develops further an interesting relationship between a cer-
tain combinatorial problem and Mahler’s measure. In the next sec-
tion we introduce this combinatorial problem, briefly describe Myer-
son’s approach to (1), state the general result, Theorem 2 and show
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that it implies Theorem 1. The five sections that follow contain re-
sults of independent interest that lead up to the proof of Theorem
2.

2. The combinatorial problem

Let S be an arbitrary subset of cardinality |S| of F,, for p an odd
prime. For a given ¢t € F, denote by N, the number of solutions
(n1,...,np-1) € SP~! of the equation

where ) = [, \ {0}. Clearly N, = N, for a € [F; so that N; takes
on only the two values Ny and N;. Furthermore, N, and N, are in-
variant under affine maps S — aS + b for a € F; and b € F,. The
combinatorial problem of interest here is to determine Ny, and N; as
precisely as possible in terms of p and (the affine equivalence class
of) S.

Since it is obvious that Ny + (p — 1)N; = |S|P~?, this problem
reduces to the determination of A = Ny — Ny, in terms of which

Ny =S =2 A and Ny = S| S~ + (1 - 2)A.

We have that A =37, . NV, (", which yields the basic formula

2) A=TT D ¢

LeFy nes

The counting problem is thus equivalent to computing the norm of
the cyclotomic integer ) . (™.

As a consequence of the arithmetic-geometric inequality applied
in (2) it follows that

|A] < |S|E7L

This shows that the values ), ¢n, are very well distributed among
the values of IF,. It also follows easily from (2) that for |S| < 2 we
have A = 1 so we may restrict attention to S where |S| > 3.

In case S is a subgroup of F; such problems were discussed by
Myerson [7, 8]. Here the values of ¢S run over the cosets of S ex-
actly | S| times. He actually considered the problem of counting the
number of representations of ¢ as a sum of distinct elements of these
cosets. It is easily seen from (2) that this counting problem reduces to
the determination of a natural |S|-th root of A. This is a well known
problem of cyclotomy in that it entails the explicit evaluation of the
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norm of a Gaussian period. Except for some subgroups of small in-
dex (see [7]) or of size |S| < 2, such evaluations are apparently un-
known.

In lieu of an explicit evaluation of A when S is a subgroup of
I, of fixed size, Myerson introduced the idea of determining the as-
ymptotic behavior of |A| as a function of p = 1mod |S] as p — 0.
When |S| = 3 so that S = {1,w,w?}, he proved in [8] that

3) %10g|A|—>/0 /0 log | e(u) + e(v) + e(—u — v)| du dv,

as p — oo with p = 1mod3. The statement (1) then follows from
(2) and the evaluation of the integral in (3), which follows from [11].
The idea of the proof of (3) is to interpret the formula from (2),

Llog|A| =13 "log| Y e(nl/p)],
14 nes

as giving an approximation to the integral in (3) by using the fact that
(¢/p,wl/p) becomes uniformly distributed (mod 1) as ¢ runs over F.
The difficulty lies in the fact that the integrand has singularities, but
it is tractable since they are isolated from the points (¢/p,w(/p). Us-
ing special arguments he was able to quantify this statement well
enough to prove (3). Myerson also conjectured in [8] a result like
(3) for subgroups of any fixed size. However, for |S| > 4 (the case
|S| = 4 being simpler), the singular set is infinite and this seems to
present a serious obstacle in the way of a proof. See [10] and chap-
ter 10 of the book of Konyagin and Shparlinski [4] for some further
developments of these ideas.

This paper will show that % log |Al is actually well approximated
by L'(—1, x) for any set S with |S| = 3, provided that the “width”
w(S5) is large. Here, for any S, w(5) is defined to be the length of the
smallest interval in {0,1,2,...,p — 1} that contains an image a5 + b
of S under an affine transformation.

THEOREM 2. Suppose that |S| = 3. Then
og w(S
Llog |A] = I'(=1,x) + O(*%7D),

w(S)

with an absolute implied constant.

The proof of Theorem 2 uses a uniform asymptotic estimate for
% log |A| given in terms of the Mahler measure of a certain trinomial.
This is then related to a two dimensional Mahler measure like the
integral in (3). Although this method differs significantly from that
described above, it also encounters difficulties with larger sets S.



4 W. DUKE

To see that Theorem 1 follows from Theorem 2, it is enough to
observe that w({1,w,w?}) > p'/2. Suppose that for some a € F; and
some ¢ > 0 the three elements a, aw, aw? are all contained in some
interval of length cp!/?, where this is interpreted in the obvious way.
Since a + aw + aw? = 0 this interval must contain either 0, (p — 1)/3
or (2p — 2)/3. Hence 3a, 3aw, 3aw? must be contained in an interval
around 0 of length 3cp'/2. Let n and m be the integers of smallest
absolute value representing 3a and 3aw, respectively. Then

0 < n?+nm +m? = 0mod p.

This implies that 2(n? + m?) > p, which is impossible for ¢ > 0
sufficiently small. Thus w({1,w,w?}) > p'/2. We remark that any set
S with |S| = 3 satisfies w(S) < p'/?, as will be seen in the proof of
Theorem 5 below.

3. The asymptotic problem for fixed S

Before turning to the proof of Theorem 2, consider first the as-
ymptotic problem when S is a fixed subset of Z, interpreted for each
(sufficiently large) p as a subset of I,,. Recall that the Mahler measure
of a monic f € Cl[z] is given by

M(f) = [[max(1,]a]),

where o runs over the zeros of f, counted with multiplicity. As is
standard we write

(4) m(f) = log M(f).
Associated to S = {ni,ns,...,ng/} withn; < ny, <--- < ng, is the
polynomial

fsl@) = a™ " ot s,
The following result shows that for fixed S the basic asymptotic
problem has a simple solution in terms of m( fs).

THEOREM 3. Suppose that S is fixed. Then for p sufficiently large
Slog |Al = m(fs) +O(p~" logp),
where the implied constant depends only on S.
PROOF. Writing fs(z) =[], (z — a), we see from (2) that

A:HH(Oz—CZ) ZHll__O;p,

o LeFy «
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using that p — 1 is even. Since [ (1 — a) = fg(1) = |S| we obtain
(5) Sja=]Ja-an.

This quantity was studied by D.H. Lehmer in his influential paper of
1933 [6]. Thus we have for p sufficiently large

(6) Llog|Al =13 Tlog |1 —a?| — Llog|S|.

If |a| > 1 then [ log |1 — o”| = log| a| + O(| a| ) while if |a| < 1 then
ilog |1 —a?| = O(|afP). Only in case |a| = 1 is there any difficulty,
and this may be handled as in [3, Lemma 1.10] by an application of
Baker’s Theorem, giving that for p sufficiently large

log |1 — o?| <, logp.

Note that the restriction in [3, Lemma 1.11] that o not be a root of
unity is unnecessary here since p is a prime. Thus

1 “log |1 — a?| = m(fs) + O(p~" logp).

By (6) we finish the proof. 0

This proof serves to underscore that the main challenge in un-
derstanding the behavior of | A| when S is not fixed, at least by this
method, is to control small values of |1 — o”| for « a zero of fg in
terms of p. Baker’s theorem does not seem to yield enough informa-
tion without making some very restrictive assumptions on w(5).

4. Zeros of a trinomial

The assumption that |S| = 3 allows us to control how close a root
of fs, which is a trinomial, can be to a p-th root of unity. This in turn
can be used to estimate how small |1 — a”| can be. The following
theorem formulates this idea precisely.

THEOREM 4. Suppose that p > 3 and 0 < m < n. Then there is an
absolute constant ¢ > 0 so that for o a root of f(x) = 2" + 2™ +1 =0
with |a| < 1 we have

11— a?| > <
n

PROOF. As before let ( = ¢>™/?. We first show that there is an
absolute constant ¢; > 0 so that forall / € Z

(7) [¢F—al > e(pn)™
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Fix £ and « and let L denote the line segment from « to ¢‘. By the
complex mean value theorem given in [2] there are 2, 25 € L so that

F(¢) = fla) F(¢) = fla)

Ro ™o — % =Re f'(s) and Im#27—5 = Tm /(=)
Thus
L < sl ) < an
which yields

dnl¢* —al = [f(C)] = 1¢" + ¢ + 1.

Since p > 3 this sum three of p-th roots of unity cannot vanish and
in fact must satisfy [¢™ + (™ + 1| > cop~! for some ¢ > 0 (see [9]),
giving (7).

Write a = re. By (7) there are constants c3, ¢y > 0 so that at least
one of the following holds:

7“<1—C—3 or ‘9—2—M>2 for all ¢ € Z.

p pn

In the first case

1-a>1-(1- ﬁ)p =24 0m™),
pn n

while in the second [pf — 27| > c¢4n~! and hence
11 —a?| > sin(eyn™) = oy O(n™?),
n

since sin(cyn') is the minimal distance from 1 to the ray at angle
c4n~ . This finishes the proof. O

5. The Mahler measure of a trinomial

Suppose that for some p > 3 we have a set S C F, with |S| = 3.
This S can be transformed by an affine transformation to one of the
form {0,m,n}, where 0 < m < n and n is minimal: that is n = w(55).
Write f(x) = 2™ + 2™ + 1 for some such choice of m.

THEOREM 5. Given S with |S| = 3 and f as above, we have
Llog |A] = m(f) + O(p~"/logn)

with an absolute implied constant.
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PROOF. By (5) we are reduced to considering
(8) A= —an),

where « runs over all the zeros of f. Now

Zlog|1—a”\ —pm(f) = Z log |1 — of| + Z log|l — a7

o<1 la]>1

<nlogn
by Theorem 4 applied to f(x) and its reciprocal
2" f(xh) = 2" a4 1
Thus by (8) we have
nlogn
).

%log|A| =m(f)+O(

To finish the proof of Theorem 5 we will show that n < p'/2.
By performing a suitable affine transformation we may suppose that
S, ={0,1,¢} where1 < ¢ < p. Lets = [\/p| = [\/p] + 1 and observe
that at least one difference k¢ — j¢ for 0 < j < k < s must lie in
{1,2,...,stor{p—s,p—s+1,...,p—1}. Taking a = k — j and some
b we see that aS, +b C {0,1,...,2s}. It follows that n < p'/2. O

6. Limits of Mahler measures

Recall that the Mahler measure of a non-zero polynomial f €
Clz,y] is defined by

©) n(f) = / / log | £(e(u), e(v)] dudv.

This reduces to (4) for monic f € C[z] by Jensen’s formula [3, p.7],
which states that for any z € C,

1
(10) / log | e(u) — 2| du = log™ |2],
0

where log" z = log max(1, |2] ).

The following result expresses m(x + y + 1) as a uniform limit of
Mahler measures of trinomials. The proof is modeled after that of
Boyd, who gave the case m = 1in [1, p.463].

THEOREM 6. For 0 < m < n with (m,n) =1
m(z" + 2™+ 1) =m(z +y+ 1)+ a(m+n)n" 2+ O(mn™?),
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where

V3 ifn = 0mod3;
(1) a<n>={ e

Mg, otherwise.

PROOF. For z = e(u) = €™ with cos(2rmu) > —1/2 we have

(_1)£71 " ¢
log(1 m ™) = log(1 m
(12) og(l+ 2™+ z") =log(1l + x )+Zz>; / (1+xm>’

while when cos(2rmu) < —1/2 we have that

1 —i—xm>f
" '

1)1
(13) log(1+ 2™ 4 2") = log(z") + Z ( 12 (

>1

By (10) applied in (9)
1
(14) m(z+y+1) :/ log™ |1+ e(u)| du
0
1
:/ log® |1 + e(mu)| du = /log | 1+ e(mu)|du,
0

where the range of the last integral consists of those subintervals of
[0, 1] that satisfy cos(2mmu) > —1/2. Thus set

(15) L(0) = /e(n€ u) (1 + e(mu))“du,

where the range of integration is over those subintervals of [0, 1] that
satisfy cos(2rmu) > —1/2, and

(16) Ly(¢) = /e(—nE u) (1 + e(mu))‘du,

where the range of integration is over those subintervals of [0, 1] that
satisfy cos(2rmu) < —1/2. By (12-14) we have the identity

(17) m(z" + 2™+ 1) =m(z +y+1) + Re » | (—12“ (I, () + I(0)).

>1
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After changing variables u — mu we have from (15)

k+1/3 k1
I ( / / e(") (1 4 e(u) “du
k+2/3
m—1 1/3
_ 2Ry gk / e(22)(1 + e(u))'du
k=0
1/3
(18) = 2Re/ e(nqu)(1+ e(u)) du
0

when ¢ = gm and [;(¢) = 0 otherwise. Here we use the assumption
that (n, m) = 1. Similarly, from (16)

1/2
(19) L) =2 Re/ e(—ngqu)(1 + e(u))™du
1/3
when ¢ = ¢gm and I,(¢) = 0 otherwise. Integrating by parts three
times in (18) and (19) we get after some calculation that

V3 m o m?

- n2q<_1)qm cos (3 (m +n)q) + O<n—3q>

Here the real part of the sum of the boundary terms obtained after
the first integration by parts vanishes and we use that (ng £1)™! =
(ng)"'+0((nq)~?) in the boundary terms after the second integration
by parts. Also, we estimate the final integrals that arise by

(20) Ii(gm) + Ia(gm) =

1/3 1/3
/ ’1 + €(u)|—qm—3du _ / (2 + 2cos U)(_qm_3)/2du
0 0

1/3
< / (4 — 9u) I3 qy <« (gm) 7,
0
and similarly

1/2
/ 11+ e(u)| ™ 3du < (gm)~.
1/3

Theorem 6 now follows easily from (17) and (20). 0

7. A uniform result

Theorem 2 is a consequence of the the following more precise
result together with the fact that n = w(S) < p'/2, which was proved
in Theorem 5.
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THEOREM 7. Suppose that |S| = 3 and that n = w(S). Then
Llog |A] = L'(=1,x) + O(p~*logn+n"?),
with an absolute implied constant.

PROOF. In the notation of §5, since {0, m,n} is assumed minimal
we must have that (m,n) = 1. Thus Theorem 7 follows from The-
orems 5 and 6 together with Smyth’s evaluation [11] (see also [1,
p-462]):

m(z+y+1)=28L2,x) = L'(~1,x).
O

Some of the ingredients in the proof of Theorem 7 generalize to
sets S with |S| > 3. For instance, an analogue of Theorem 4 holds for
quadrinomials, since one has a lower bound for the non-zero sum of
four p-th roots of unity. Also, nontrivial upper bounds for the width
of a set can be given more generally and an analogue of Theorem 5
can be proved for sets S with |S| = 4. Also, Theorem 6 can be gener-
alized in certain ways (see [1] and [5]). However, the next interesting
case of Myerson’s conjectured asymptotic when S is a subgroup oc-
curs for |S| = 5, and here no sufficiently strong lower bound for
non-zero sums of five p-th roots of unity is known (see [9]). In fact,
this interesting problem seems to be the central difficulty in extend-
ing the methods given in this paper to prove this conjecture.
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