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ABSTRACT

I derive a generalized version of the fundamental law of active management under
some weak conditions. I show that the original fundamental law of Grinold and
various extensions are all special cases of the generalized fundamental law
presented in this paper. I also show that cross-sectional ICs are usually different
from time series ICs even if the time series ICs are all the same across securities.
The fundamental law derived in this paper is quite robust to forecast model
specification. Our results show that the variation in IC (IC volatility over time)
has a much bigger impact to portfolio IR than the breadth N for a typical
investment universe. I extend the fundamental law to models with multiple factors
and study the impact of missing one or more return or risk factors to portfolio IR.
Our results also show that the transfer coefficient as originally defined by Clarke
et al. (2002) is not able to capture the impact of constraints to portfolio IR in the
presence of IC variation. I redefine the concept of transfer coefficient using the
cross-sectional correlation between the total conditional covariance adjusted
active weights and alphas so that the resulting transfer coefficient has the desired

property.

Since the publication of "The fundamental law of active management" by Grinold (1989)
two decades ago, it has been widely used in the quantitative investment community as a
tool to assess a portfolio manager's ability to add value. According to Grinold (1989), the
fundamental law relates three variables: your skill in forecasting exceptional returns (IC),
the breadth of your strategy (N), and the value added of your investment strategy (IR).
Grinold (1989) claims that "based on assumptions that are not quite true and simplified
with some reasonable approximations" the three variables have the following
relationship:

IR =ICVN , (1)
where IR is the information ratio, IC is the information coefficient, and N is the breadth.
Even though Grinold (1989) did not give a precise definition of breadth N, portfolio



managers or analysts usually use the number of stocks in the investment universe as
breadth. The derivation of the fundamental law is closely related to another Grinold paper
(Grinold (1994)) that shows "Alpha is Volatility Times IC Times Score", i.e.,

a, =0, ICz, ., ()

where o, is the residual return (will be defined below) volatility and z,_, is the

standardized forecast signal (score) that is known at the end of time #-1. The theoretical
and empirical development on this line of the fundamental law culminated in the book by
Grinold and Kahn (2000) titled "Active Portfolio Management." Based on the
fundamental law, Grinold and Kahn (2000) conclude that "you (portfolio managers) must
play often and play well to win at the investment management game. It takes only a
modest amount of skill to win as long as that skill is deployed frequently and across a
large number of stocks."

Unfortunately, the theoretically calculated IR number from Grinold's fundamental law
seems to always overestimate the IR a portfolio manager can reach. For example, given a
forecast signal with a monthly average IC of 0.03 and a selection universe of 1000 stocks,
the expected annualized IR from Grinold's formula is 3.29 which is beyond even the most
optimistic portfolio manager's dreams. Portfolio managers are left wondering why
realized information ratios are only a fraction of their predicted value. Clarke et al. (2002,
pS50) point out "a common rule of thumb in practice is that the theoretical information
ratio suggested by the fundamental law should be cut in half." However, for the above
mentioned example, the IR estimate will still be too high even if cut by half (IR=1.64).
As noted by Grinold (1989, p32) himself "an observed information ratio above 1.5 is rare
indeed." Of course, it can be the case that the N used in our calculation, which is the
number of stocks available in the investment universe, is not what meant to be the right
measure of breadth by Grinold. Grinold (1989) provides a detailed discussion on this
subject and emphasized the importance of counting only independent bets as breadth.
Grinold (2007) provides some further discussion on this topic. Unfortunately, it is still
not a straightforward exercise to determine what breadth should be used in practice.

Clarke et al. (2002) attribute the reduction in performance to the constraints in the
portfolio construction process and proposed the concept of "the transfer coefficient" to
account for the leaking of IR from Grinold's original formula. They show that constraints
in portfolio construction (constraints such as country or sector exposures, long only, etc.),
leads to suboptimal portfolio weights in terms of alpha generation, thus reducing the
maximum achievable IR. They developed a framework for measuring the deviation of the
optimal constrained weights from optimal non-constrained weights and proposed a
generalized fundamental law as follows:

IR =TCICVN , 3)
where TC is the transfer coefficient, defined as the cross-sectional correlation coefficient
between risk-adjusted expected residual returns and risk-adjusted active weights.
According to their simulation study, the typical transfer coefficient is in the range of 0.3
to 0.8. So the original IR calculated from Grinold's formula should be about halved. Even
so, as discussed above, the TC adjusted IR still appears to be too high.



In order to understand why that happens, we need to examine the assumptions made by
Grinold in deriving his fundamental law. The original form of the fundamental law by
Grinold is based on the very unrealistic assumption that time series ICs between an
individual stock's residual return and its forecast signal are the same across all securities
and are a constant over time. Grinold (1989, 1994) and Grinold and Kahn (2000) then
used the time series IC and cross-sectional IC interchangeably. In practice, many
quantitative managers run a Fama-Mcbeth type cross-sectional regression to get realized
ICs at different time periods. The ICs calculated this way are far from constant and often
fluctuate around an average IC. As will be shown later in this paper, the cross-sectional
IC can be quite different from the time series IC even if all the securities have a same
time series IC. Qian and Hua (2004) show that a more appropriate IR to use is average IC
divided by the standard deviation of IC

r=1 @)
O-IC

where o is the standard deviation of IC that Qian and Hua (2004) call "the strategy
risk." In statistics, the quantity 1/ oy is a measure of how close (precise) the realized
information coefficient at time ¢, IC,, is to the mean IC. In this sense, the Qian and Hua
formula states that "Information Ratio equals Skill times Precision."

In a more recent paper, Ye (2008) goes one step further to bridge the gap between the
original Grinold (1989) formula and the Qian and Hua (2004) formula. Based on her
assumptions, she establishes that

IR = e )

JUN+ol
It is obvious that Equation (1) and Equation (4) are special cases of Equation (5) when
O, =0 (as assumed by Grinold (1989)) or N — 0.

With all these different versions of fundamental laws, it can be confusing for practitioners
to decide which one to use. It is crucial to have a full grasp of the different underlying
assumptions and the resulting conclusions from these fundamental laws. In this paper, [
try to set up a coherent econometric modeling structure and show that all the different
forms of fundamental laws discussed above can be special cases of an even more general
form of fundamental law based on much weaker assumptions. I will show that time series
ICs are usually different from cross-sectional ICs even if time series ICs are the same
across all individual securities. They will be the same only under some strong conditions.
I will also show that different forms of fundamental laws are a result of either unrealistic
assumptions (Grinold (1989)) or mis-specified residual return covariance matrices for the
expected residual return used (Grinold (1989), Qian and Hua (2004), and Ye(2008)).
When the more relevant conditional residual return covariance matrices are used, we will
arrive at the more general form of the fundamental law presented in this paper.

The form of the generalized fundamental law derived in this paper is quite robust to
model specification. If one uses the risk adjusted residual returns in the analysis instead
of the raw residual returns, one will get the fundamental law in a similar form. Finally I



extend the fundamental law to models with more than one factor, and discuss the impact
of missing one or more return or risk factors to the portfolio IR. I also show that the
transfer coefficient as defined by Clarke et al. (2002) will not have the desired property
of measuring the impact of constraints to the portfolio IR in the presence of IC variation.
I redefine the transfer coefficient as the correlation coefficient between total risk adjusted
expected residual returns and total risk adjusted active weights (instead of just the
diagonal portion of the covariance matrix). With this modified definition of the transfer
coefficient, the resulting constrained portfolio IR is always the product of TC and the
unconstrained optimal portfolio IR.

Framework and Notation

I will follow the framework and notation in Clarke, de Silva, and Thorley (2002) and Ye
(2008). A variable with subscript i (i =1,---,N) and ¢ (¢t =1,---, T ) represents the variable
value for security 7 at the end of time 7. A variable in bold represents a vector or matrix.

Given a benchmark portfolio, the total excess return (i.e., return in excess of the risk-free
rate) on any stock i can be decomposed into a systematic portion that is correlated with
the benchmark excess return and a residual return that is not by

" = BRy, +7, (6)
where

B. = beta of security i with respect to the benchmark

R = benchmark excess return

Bt

T, = realized residual return

it
The benchmark and the actively managed portfolios are defined by the weights,

wp. andw, , , assigned to each of the N stocks in the investable universe respectively. It
is shown in Clarke et al. (2002) that the portfolio active return, which is defined as the
managed portfolio total excess return minus the benchmark total excess return, adjusted
for the managed portfolio's beta with respect to the benchmark, can be written as

N N
RA,t = RP,t _:BP,t RB,t = Z Wp il = ZAwitrit > (7)
i=1 i=1

where Aw, is the active weight defined as the difference between the managed portfolio

weight and the benchmark weight at the beginning of time period z. ' Note that the active
weights, Aw, , sum to 0 because they are differences in two sets of weights that each sum

it ?

to 1. Also note that the stock returns, 7, , in (7) are residual, not total, excess returns. As

pointed out in Clarke, et al. (2002), residuals are the relevant component of security
returns when performance is measured against a benchmark on a beta-adjusted basis.

We assume that residual returns follow a conditional normal distribution, and define ex
ante alpha of security i (i =1,---,N ) in period ¢ as the expected residual return

conditional on information available at the end of time period r—1: I _,
a =E@II_), (8)



and we define risk related to the alpha expectation as the conditional covariance of the
forecast errors

Q =E[rx —-a)r —-a)ll_], 9)
where a, and r, are N X1 vectors with &, and r, as their elements respectively. The

assumption of asset return normality is one of the fundamental assumptions under
Markowitz's mean-variance portfolio choice theory, and the mean and covariance matrix
fully determine a multivariate normal distribution. Under the residual return normality
assumption, the covariance of the forecast errors is the relevant measure of risk. There is
risk because there is uncertainty, and risk is associated to the part of return that we are not
able to predict. If we know the future returns perfectly then there is no uncertainty, hence
no risk. The conditional risk associated with our alpha estimate should be smaller than
the total risk around the unconditional alpha expectation. If this is not the case, then the
forecast provides no additional information and the lagged information set, I,_,, is

useless. This is the major difference between the risk model used in this paper and the
risk models used in Grinold (1989, 1994), Grinold and Kahn (2000), Clarke et al. (2002),
Qian and Hua (2004), and Ye (2008). Of course, the assumption of stock return normality
may not be valid in practice, and the return and risk models one uses are very likely mis-
specified, which may cause theoretically derived results not to reflect what one gets in
reality. I will give some discussion later on the impact of missing alpha or risk factors in
conditional mean and covariance modeling.

After having specified the conditional mean and covariance matrix, we will then use the
mean-variance analysis tool for portfolio construction based on the theory of utility
maximization. In each period 7, the optimal market-neutral portfolio, P, is selected to

maximize the mean-variance utility function:

Max U, =a,, —%/IO'}Z,T =Aw,'a, —%/IAWT'QTAWT

Aw, : (10)
st.  Aw,1=0
where
o/, =expected active return on the portfolio
o, =active risk of the portfolio based on the portfolio holdings
A =arisk-aversion parameter
1 = NXxI1 vector of 1s
The solution for this optimization problem is
Aw, =%(Qt’la, -kQ'), (11)
r0y-!
where x=———— isa scalar.
1Q1
A certain value of A corresponds to a certain value of o, since
Aw,'Q Aw, =07}, . (12)

Substituting (11) into (12) and by some straightforward algebra we have



A= Jo' 0, — k10, . (13)

O-Pt
The optimal portfolio active weight is then
-1
Aw =g, 2 @ KD (14)
Je,' Q' (o, - K1)

and the expected portfolio return

aPt = Awt ' at

(15)

= 0,40, Q (0, — K1) .
If we assume that the target tracking error remains a constant (0, = 0, ) at each

rebalance of the portfolio, a typical practice for many quantitative portfolio managers,
then the ex ante expected information ratio of the portfolio is

IR :@:li%
o, T30,

:%i\/at'ﬂfl(at ~x) (16)

= E(\/oz,'sz;1 (o, - Kl)).
This is a very general result that should hold as long as the residual return has a
conditional normal distribution with mean @, and covariance matrix €, .

From the above discussion, it is clear that the key is how to forecast the alpha and the
corresponding covariance matrix. As Kahn (1997) points out "active management is
forecasting." Different forecasts will give us different ex ante expected information
ratios. In the literature, two different approaches are used to forecast alpha. One uses time
series models and the other uses a Fama-McBeth type cross-sectional regression
approach. As for covariance matrix, many people use a risk model that does not have a
direct relationship with the alpha estimation, such as the commercial risk models by
BARRA or Northfield. Strictly speaking, a risk model that is detached from the alpha
model will be a mis-specified risk model for the reasons discussed above. This mis-
specification usually results in the underestimation of risk when one runs an actual
portfolio because the very important "strategy risk" is being left out (see Qian and Hua
(2004), Qian, Hua, and Sorensen (2007)).

Time Series Dynamics

In the original papers about the fundamental law, Grinold (1989, 1994) concluded that
"alpha is volatility times IC times score" without providing the explicit model
assumptions and technical derivations of his result. In the endnote of his first paper
(1989) he did mention that technical details are available upon request. Detailed
discussions were given instead in Chapters 10 and 11 of the book by Grinold and Kahn
(2000). Unfortunately, even though their Equation (10.1) is assumed to be for a cross
section of N assets, the result in (10.16) is derived through a time series model for each of
the N individual assets. They then use the time series IC and cross-sectional IC



interchangeably. The discussion below will show that the result from time series
modeling assumptions cannot be applied to cross-sectional modeling structures without
some further assumptions.

If we assume that the true forecasting relationship between the lagged information set,
I,_,, and the residual returns, r, , is a linear one factor model as follows

Ve = 8%y T & (I7)
for security i over time =1, 2, 3, ..., T. In the equation, g, is the time series factor
return ( g, is just a regression coefficient and is different from the usual definition of
factor return from a cross-sectional regression) for security i, z,_,is the factor exposure
that becomes known at the end of time #-1 that has both time series and cross-sectional
mean 0 and standard deviation 1 (as assumed by Grinold and Kahn (2000), p268),

g, ~N(Q, G; ) is the idiosyncratic noise that cannot be predicted. We further assume

T1) E(z,_,€,)=0 forall i and 1,
and

T2) E(g,e,)=0 for i+ j.

T1) is a very general assumption for linear regression models stating that the explanatory
variable and the residual are not correlated, and T2) assumes that the forecast errors are
not correlated across stocks so that the idiosyncratic covariance matrix is diagonal. This
is also a common assumption for idiosyncratic noise.

For ease of exposition, we will focus our attention on population quantity and ignore the
sample estimation error of the parameters. Basic regression of Equation (17) gives us,

g; = Var~'(z,)Cov(z,, )

_ Cov(z;,1;) Var(r,) (18)
\/Var(zi)Var(ri) Var(z,)
=I1C 0. /0,

ts,i

where IC, ; is the time series correlation between residual return 7, and forecast
signal z;,_,, 0, 1s the standard deviation (volatility) of residual returnr, , and o, is the

standard deviation (volatility) of z,_, which is 1 by assumption. The time series prediction
for alpha from this model is

a,=E(r11_)= ICm,iO-ri i1 (19)
and the conditional volatility, or forecast error volatility, is
o, =Var(r, |1_)=(1-IC; )o;. (20)

It should be noted here that o, # o, when IC, ; #0. As we discussed above for
Equation (9), when the forecast signal z, , contains useful information for predicting

residual return r,

it ?

then the resulting error variance (cri ) should be smaller than the

original unconditional residual return variance (o, ). This is the major difference



between the risk estimate here and the risk estimate provided by any commercial risk
model which has no connection with alpha estimation.

Substituting the alpha and volatility prediction into Equation (16) we have the ex ante
expected information ratio as

R = Elfa, 2 (a, - &)

NIC 72, X IC, .z, 1)
:E S, 0 Vi— —K ts,1™it— )
\/ZI—IC2 Z(1—1(:2

i=1 ts,i i=1 ts,i )O-r,

If we assume that the cross-sectional distribution of IC, ;and z,_, are independent, then as
N becomes large, we have

IC; zo IC,.2i
IR=E| INE | ——— |-NkE,|—> ——
1= ICrs,i ‘ (1 - Icts,i )O-r,

Ictsi
_NKECS m Ecszit—l (22)

where E_ stands for the cross-sectional expectation operator. In deriving Equation (22)
we used the assumption that the forecast signal, z,, |, is cross-sectionally normalized to

have mean O and standard deviation 1. When all the time series ICs are the same, i.e.
IC,,; =1C, for all i, we have

R=—1C /N = IC,JN. (23)

NI (o

The approximation holds when IC is small which is typically the case in empirical work.

Equation (23) proved that the original fundamental law of Grinold (1989) holds
approximately under the time series model assumption when ICs are the same across all
the assets and is small. The reason that the original formula of Grinold (1989) needs to be

adjusted by /1 —IC:, is that we used the conditional volatility of the residual return

instead of the unconditional one. Some interesting observations can be made from
Equations (22) and (23). When one has the skill to predict some residual returns perfectly
(some IC, . =1) then the IR shall go to infinity no matter what the breadth is. This makes

intuitive sense because if one can predict some residual returns perfectly then she/he can
make a sure bet on these stocks against the rest of the universe to achieve the desired
excess return. The IR will be infinity since the optimization is set in such a way that one
can take a leveraged bet. This is not a feature in the original Grinold formula which states
that the IR will increase with the square root of N evenif IC, =1.

1,0



If, instead of running a time series regression, we run a "mis-specified" cross-sectional
regression for the model in Equation (17),

he =1 2uat 6, (24)
for cross-sectional security i = 1, 2 ,..., N at time ¢. A simple cross-sectional regression
gives us

-ft = Ecx,t (}:t Zit—l) / Ecx,t (Zi—l)

_ Ecs,t(r;'tzir—l) Ecat(’:tz)
VE E (20 | Bar i) (25)
=IC,,,d(r,)/d(z,,)

=IC, d(r,),

where E_ , stands for the cross-sectional expectation operator at time z, IC

cs,t

. is the
cross-sectional correlation between residual return r, and forecast signal z,,_,, d(z,_,) is

the cross-sectional standard deviation (dispersion) > of z,_,, which is 1 by assumption,

it—17?

andd(r,) is the cross-sectional residual return dispersion at time 7.

The expected value of f, is
f=E(f)=EE,, (1,2,.)) = E, (E(,2,.))
=E. (E((8Zy1 + &)%)

N
= Ecs,t(gi) :iz gi (26)
N i=1

1 N
=—>1C,,0,.
N3 S
On the other hand, if we assume IC_, and d(r,) are independent over 7, then from
Equation (25) we have

f=E(f)
=E(C_ d(r))
’ (27)
=E(C, )E(d(r,))
=1C_o0,
where & = E(d(r,))is the expected cross-sectional residual return dispersion.
Substituting (26) into (27) we have
N
IC,, = % >IC,.0,/68, (28)
i=1

i.e., the expected cross-sectional IC, IC,_ , is a weighted average of time series ICs and

they are usually not the same. If the time series ICs are the same across all securities,
ie., IC,, =IC, forall i then



cs

N
IC,, = IC,S%ZGVI /6=1C,G6, /6 , (29)
i=1

~ 1. . .
where &, = —ZO',_ is the cross-sectional average of the residual return standard
i=1
deviation. So as long as G, # J, we have the seemly surprising result that the cross-
sectional IC_ will be different from the time series IC, even if the time series ICs are the

same across all securities.

In the extreme case that all residual return standard deviations are the same, i.e. 0, =0,

for all i, we have &, =0, =dand IC,_, =IC,.> So the discussion here shows that the

cross-sectional IC is usually different from the time series IC for an identical set of return
and factor exposures. They will only be the same under the very strong assumption that
the residual return volatilities are the same across all securities.

Given the "mis-specified" cross-sectional model prediction for each individual security,

a,=1C, o0z, =1C. G, z,, (30)
we have the forecast error term as
§,=1C,0,z,-1C 6z, +¢,=1C, (0, -Gz, + &, (31)
which is different from &, . The conditional covariance matrix has the following elements:
w; =EG,5;)
_JIC; (0, —6,)*+(1-1C;)o; when i=j (32)
B {O when i # j
Substituting (32) into (16) we have
R = E{\/i 2ICfSafzj —2 K'ICTSG,Z; _|. (33)
o IC (0, —6,)" +(1-1C))o,

If we assume that the cross-sectional distribution of o, and z, are independent, then as N
becomes large, we have

N
1
IR =1IC . 34
\/Z‘ IC. (0, /16, -1) +(1-IC})(0, /5,)’ 54)
When all the residual return volatilities are the same we have
R=—2S JN~1Cc N, (35)

J1-1¢?

which is consistent with the result from time series model. When the individual residual
return standard deviation varies across securities, the IR we get from the mis-specified
cross-sectional model will be different from the IR we get from the time series model.

The discussion above shows that the original fundamental law of Grinold (1989, 1994)

only holds under the assumption that the time series ICs are the same across all the
securities and the common IC is small. The cross-sectional IC is only the same as the

10



time series IC if an additional assumption is imposed that all residual return standard
deviations are the same (Ye (2008) made this assumption).

In practice, the above two assumptions (time series ICs and residual return volatilities are
the same across all securities) are overly restrictive and we can almost surely say they do
not hold. As an example, I calculated monthly means and standard deviations for time
series and cross-sectional ICs for book/price ratio (B/P) and Momentum factors for US
stocks in Table 1. The top panels in Figures 1 and 2 show the time series IC distributions
for both factors. It can be seen that the time series ICs have a normal-like distribution
with high dispersion. The bottom panels in Figures 1 and 2 show the cross-sectional IC
distributions for both factors. It can be seen that the cross-sectional ICs are more highly
concentrated and are positively skewed.

It is also interesting to see that the average time series ICs for B/P are much higher than
the average cross-sectional ICs, especially if the time series B/P is not standardized. The
average time series ICs for momentum are negative whether you standardize them in one
or both dimensions. The average momentum factor cross-sectional IC is positive only if
one does not standardize the exposures in the time dimension.

Further research shows that the basic form of the fundamental law under the time series
model assumptions does not change even if I assume the time series ICs to be different
across stocks and follow certain cross-sectional distributions (such as a Beta distribution
in the range of -1 to 1).

Table 1. Mean and Standard Deviation for Factor IC (Time Series and Cross-Section)

Factors Time Series Cross-Section

mean | std | n mean | std | n t-test
Original Signal
B/P 0.088 0.176 | 15232 0.017 0.062 412 1.82
MOM -0.028 | 0.152 | 15232 0.025 0.099 412 -1.58
Both Dimension Normalized
B/P 0.087 0.175 15232 0.050 0.072 412 0.94
MOM -0.028 | 0.152 | 15232 -0.003 0.085 412 -0.74

11



Figure 1. Histogram for Time Series and Cross-Sectional Correlation
One dimension standardized
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Figure 2. Histogram for Time Series and Cross-Sectional Correlation
Both dimensions standardized
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Cross-Sectional Properties

The above discussion shows the assumption that all time series ICs are the same is not
realistic. I will show below it is also not necessary in deriving the (generalized)
fundamental law. In empirical finance work, many people use a Fama-McBeth type
cross-sectional regression in relating the explanatory variables with asset returns.
Ibragimov and Miiller (2009) find that as long as the cross-sectional coefficient
estimators are approximately normal (or scale mixtures of normals) and independent, the
Fama-MacBeth method results in valid inference even for a short panel that is
heterogeneous over time. Due to the small sample conservativeness result, the approach
allows for unknown and unmodelled heterogeneity. Peterson (2009) shows that when the
residuals of a given time period are correlated across firms, the Fama-McBeth method
produces more efficient estimates than OLS and the standard error will be correct.
Another advantage is that the assumptions we have to make to achieve the kind of
fundamental law are much weaker than the assumptions we have to make in the time
series section.

Assume the basic modeling structures are similar to Equation (17), only this time we
have the relationship at time ¢ for i = 1, 2, 3, ..., N assets,

B = fiZia T & (36)
where f, is the cross-sectional factor return at time ¢, z,,_,is the factor exposure that
becomes known at the end of time #-1 that has both time series and cross-sectional mean
0 and standard deviation 1, &, ~ N(O, 0'; ) is the idiosyncratic noise that cannot be
predicted. We will make the same assumptions as in time series model concerning
Z,,and €, :

Cl) E(z,,€&,)=0 forall i and ¢,
and

C2) E(¢,

L

£;)=0fori#j.

Under the above assumptions, we have,

f,=1Cd(r,), (37)
where d(r,) is the cross-sectional residual return dispersion assumed to be a constant ()
over time,4 and IC,is the cross-sectional IC (all the ICs discussed in this section will be

cross-sectional IC unless otherwise specified) between the residual returns and the
forecast signals. In empirical work, one needs to get an ex ante estimate for the cross-

sectional correlation IC, before making an estimate for the alpha. The most common and
simple method just uses historical average as an estimate. After the fact we can estimate
the ex post realized IC, using the actual r, and z,_,. As shown in the bottom panels of
Figures 1 and 2, usually the cross-sectional factor IC spreads around a mean. For ease of
exposition below, we will assume that the cross-sectional factor IC, follows a normal

distribution with mean IC and standard deviation 5. .’

13



When the alpha model has the linear one factor structure in Equation (36) and under the
above assumptions, we have the conditional expectation (on known z, ) of r, as

a =EI1_)=1Cdz, , (38)
and the conditional covariance as
Q =E(r,—0)r -0)ll )=0.02_z, '*%,, (39)

where X, is the conditional covariance matrix of €, which should be diagonal according to
assumption C2) above 6
X, =diag(o; 0, ,--,0,) (40)

where o =0 —(IC* +0,.)d".

Given the above modeling assumptions and by some straightforward algebra, it is shown
in Appendix A that the ex ante expected portfolio excess return at time 7 to be

Op = Op, € ’ (4D)
JU(GN) + o
where ¢ >1 is a constant that is defined in Appendix A.
So the so-called fundamental law in the more general form should be
R=%r - 1€ 42)

on  JU@GN)+0%

The portfolio IR is positively related to the average cross-sectional IC (skill) and the
square root of N (breadth), but inversely related to the cross-sectional IC standard
deviation, 0y (Qian and Hua (2004) call this strategy risk). This result should not be
surprising to any student of modern portfolio theory. Basically it states that for a portfolio
built upon a sufficiently large universe (large N ), the main risk of the portfolio comes
from the bet on the alpha factor that has an uncertain (but positive average) payoff stream
(strategy risk). As the universe (N) becomes larger, the impact of the idiosyncratic risk
(1/(¢ N) part in the formula) will diminish. Three interesting special cases emerge from
Equation (42):

1) if the cross-sectional IC, is a constant over time, i.e.,0,. =0, and all the residual
return standard deviations (O'n ) are the same across assets (hence ¢ =1/(1-1C?))
then we have IC =IC, , and the adjusted Fundamental Law of Grinold (1989) we

ts 2

derived in the time series dynamics section: IR = L\/ﬁ ~ICV/N .

V1-IC?
2) when the breadth goes to infinity, or N >>1/(¢o.), then we have the IR formula
of Qian and Hua (2004): IR =1C/o.. The formula by Qian and Hua (2004) is

interesting in that they got the final result almost right even though they used a
conditional covariance matrix that is inconsistent with their alpha forecast
assumptions. They realized that there is a "strategy risk" which is a form of
systematic risk for their bets. But they missed this risk in their ex ante risk model
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because they used a third party risk model that is detached from their alpha
model. This is common to all quantitative strategies that use a third party risk
model. Lee and Stefek (2008) give a very good discussion on this topic. The ex
post realized portfolio risk is mainly from the "strategy risk" that cannot be
diversified away by the optimal portfolio. That is why their ex ante target tracking
error is so different from the ex post tracking error they derived.

3) if all the residual return standard deviations (o, ) are the same at time ¢ but the IC

volatility is not zero (hence ¢ =1/(1-1C? - 0.)), then we have approximately

IC _ IC
JA-IC*—62)/N+02 |l/N+02
(empirically factor IC is in the range of 0.02 to 0.05 and IC standard deviation is
around 0.1). The approximation results from Ye (2008) using the unconditional
residual return standard deviation in her risk model instead of the conditional
idiosyncratic error standard deviation that is consistent with the alpha model. In
this formula we will also have the property that IR will go to infinity when IC=1
and o, =0 no matter what the breadth (N) is, while Ye's original formula does

the IR formula of Ye (2008) IR =

not have this feature.

It should be noted that the ex ante and ex post IR calculation should be very close if the
return and risk models are correctly specified (which is a strong assumption!). The
difference between the ex ante and ex post IR should be a result of standard error in
parameter estimation. As the sample size gets bigger, the difference should get smaller. If
this is not the case, then we can be quite sure that the ex anfe model specification is
incorrect. Since we ignored the sample estimation error in this paper, we should expect
the ex ante and ex post IR to be the same when the model is correctly specified.

As an example, let us look at the realized portfolio excess returns from the above model
and calculate the ex post IR based on the realized alphas. For ease of exposition, I will

assume ¢ =1/(1-1C? — o) (as will be shown in next section, this is true if we use risk-
adjusted residual returns in analysis). The realized one period portfolio alpha from the

return and risk model is (based on Equation 41)

IC, , 43)
JA-1C? —62)/ N + 02

where o, is the ex ante portfolio tracking error target set as a constant (0, = 0, ). For a

Op, =0p,

specific time period, IC, can be positive or negative which will result in positive or

negative excess return for the portfolio. The portfolio average excess return over time is
then
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_ 1 <
Up, :_ZaPt

Z IC,
\/(1 IC>—02)/N + 02 )
when N is large
T3
IC
= P 5
O-IC
and the standard deviation of the portfolio average excess return is
Std(a,,)=0,5td €,
JA-IC? —62)/N + 02
=0,5td(IC,)/ 0.  when N is large (45)
=0, .
The ex post realized portfolio IR is then
— ﬁPt
Std(x
() (46)
_Ic
GIC

The approximation holds when N is large. Equation (46) is the same as the ex post IR
formula derived by Qian and Hua (2004).

The interesting extreme case comes when o, =0, i.e., the true IC, is a constant over

time as assumed by Grinold (1989) and Clarke et al (2002). Then the differences among
the ex post estimated IC, are purely a result of sample estimation error. As N gets larger

and larger, one gets a more and more precise estimate for IC and the investment risk
becomes smaller and smaller. The strategy ultimately becomes a money machine when N
is large enough. As discussed in Qian, Hua and Sorensen (2007, p96), the quantity

J(A—=IC*)/ N is the standard error of the sample correlation coefficient with a sample of
size N. So Equations 44) and (45) become

Z:1/(1 IC? )/N

~0,— 47)
zwl(l IC*)/N
IC
=0p—
Oic

and

16



Std(a,,)=0,5td &
\J(A-ICH/N
o — (48)
JA-IC)/N
=0, .
So the portfolio excess return mean and standard deviation estimates here still give
- O
Std(ex,,))
_ (49)
_IC
OA_IC

Tused IC, O, to distinguish the sample mean and standard deviation from the population

values for this special case. The results here show that the ex post portfolio excess return
is proportional to targeted portfolio tracking error, 0, , i.e., the more risk one takes, the
more return one gets. This is consistent with the fundamentals of financial economics.
The ex post portfolio excess return is also positively related to one’s skill that is
represented by the average IC one can achieve, and inversely related to the volatility of
the skill, o, i.e., the more volatile the skill, the less excess return one can get. The
result also shows that when the risk model, which is represented by the conditional
covariance matrix of the forecasting errors, is correctly specified, then the ex post
realized portfolio tracking error should be very close to the ex ante target tracking error
one sets.

Figure 3 plots the relationship between portfolio IR and breadth N for various forms of
the fundamental law discussed above. The parameters are assumed to be IC=0.03,

0, =0.1 and ¢ =2. The portfolio IR based on the Grinold fundamental law increases at
the rate of the square root of breadth N. As the breadth increases, the portfolio IR will
increase without a limit. According to our analysis above, this is true if the manager can
pick stocks consistently at certain skill level (so that the cross-sectional IC is a constant
over time). In reality, this is hardly the case. A forecast signal's IC changes constantly
over time, and o,. # 0. Under this more realistic situation, the fundamental law by Qian
and Hua (2004) sets a "Chinese Wall" as the limit one can achieve. According to Qian
and Hua, as long as IC/ o, does not improve, one will not be able to improve the

performance even if the breadth increases.

The fundamental law by Ye (2008) bridges the gap between Grinold's original formula
and Qian and Hua's limit formula. At the limit as N — oo, it collapses to Qian and Hua's
formula. The ex ante IR we derived in Equation (42) is more realistic than Ye's
calculation in that it allows the residual returns to have different standard deviations. It
can be seen that our IR calculation is higher than Ye's but lower than Qian and Hua's.

Figure 3. Various Forms of the Fundamental Law
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Our discussion above shows that the marginal contribution of breadth (N) on portfolio IR
diminishes as N increases. Here we are using the number of stocks in the selection
universe as breadth, which may not be the same as what Grinold uses for breadth in his
original paper. Grinold (1989) gives a quite lengthy discussion on the importance of
independent bets when determining what N is. For example, one should not count two
dependent bets as different bets. In practice, it is quite difficult to quantify dependent bets
and to make appropriate adjustments. The formula in (42) shows that even if N increases,
the portfolio IR will not improve much for a typical investment universe of 1000 or 2000
stocks as long as the average IC and volatility of IC stay the same. The important thing is
to play often (try to increase N) when N is small but to play precisely (low 0. ) and to

play well (high IC) when N is already large.

In Figure 3, we assumed ¢ to be a constant over time. In reality, it is well known that
stock returns exhibit heteroskedasticity so ¢ will be time varying too. Figure 4 shows the
estimated ¢ values for Russell 1000, 2000 and 3000 universe from 1978:12 to 2009:08
assuming an IC of 0.03 and o, of 0.1. We can observe the following:
1) ¢@istime varying,
2) usually the bigger the sample size, the larger the @ is,
3) the minimum value of @is around 1.5, and during most times ¢ is within the range
of (1.5, 2),
4) there was a dramatic bubble-burst period for ¢ during the tech bubble time of 1999
to 2002.

Figure 4. ¢ Values for Different Universes over Time
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Table 2 shows the average number of stocks (N ), average ¢ (¢ ), N¢ , and 1//N¢ for
Russell universes of stocks. It will be seen later that for most quantitative factors people

use, 1/4/N¢ is much smaller than the factor IC standard deviation, which suggests that

for the most commonly used investment universes the Grinold factor (1/ JN ) has a much
smaller impact than the Qian and Hua factor (o). This is also obvious from Figure 3.

Table 2. Average Number of Companies and ¢ for Russell Indices
(1978:12-2009:8)

Index N ¢ N¢ 1/ \/W
Russell 1000 949 1.74 1653 0.025
Russell 1000 Growth 507 1.66 843 0.034
Russell 1000 Value 578 1.57 908 0.033
Russell 2000 1833 2.01 3685 0.016
Russell 2000 Growth 1249 1.88 2347 0.021
Russell 2000 Value 1300 1.90 2465 0.020
Russell 3000 2782 2.12 5903 0.013
Russell 3000 Growth 1756 1.95 3425 0.017
Russell 3000 Value 1878 1.99 3729 0.016

Robustness of the Fundamental Law to Model Specification
In deriving the generalized fundamental law in Equation (42), we assumed the true

relationship to be a linear one factor model between the residual return and the forecast
signal. The residual returns are not risk-adjusted. The cross-sectional heteroskedasticity
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across residual returns resulted in the @ parameter in Equation (42). In practice, people

may use risk-adjusted residual return as dependent variable to correct for the cross-
sectional heteroskedasticity, i.e.,

Ro=nlo, =f +E, (50)
where 7, is the risk-adjusted residual return, o, is the conditional volatility for residual
return r, as of time ¢, ]7; is the cross-sectional factor return at time ¢ (which will be
different from the factor return in Equation (36)), z,_, is the factor exposure that has both
time series and cross-sectional mean 0 and standard deviation 1,&, ~ N(0, 5‘2) is the
idiosyncratic noise that cannot be predicted. Under these assumptions, we will have the
cross-sectional IC between risk-adjusted residual return 7, and z,_,to be the same as ]7, ,
1.e.,

IC, =corr(7,,z,.) = f,, (51)
and

&, =1-1C’ -6y, (52)
where IC and 0 are the mean and standard deviation of I(~3,. By using the same
algebra in the previous section, we can get

IC
JA-1C* -62)/N+ &L
The formula is identical to Equation (42) when¢ =1/(1— IC* — O'IZC) , 1.e., when the
residual standard deviations are the same across all the securities. One thing we have to

IR =

(53)

be aware of is ICand & in Equation (53) will be different from IC and o,. in Equation
(42).

The above discussion shows that the form of the fundamental law is quite robust to the
forecast model specification. In both cases, the most important impact to portfolio IR is
the IC volatility over time. One insight from Equations (42) and (53) is that a quant
manager should preprocess the residual returns and factor exposures in such a way so that
the resulting cross-sectional IC will have a higher average and lower standard deviation.
One disadvantage with the model specification in Equation (50) is that one has to
estimate the conditional volatility o, which can involve estimation errors. A GARCH

type model will be useful for this purpose.
Multifactor Fundamental Law and the Impact of Missing Factors

The fundamental law we discussed so far only concerns one factor. In practice, analysts
or portfolio managers rarely use only one factor. Residual return forecast almost always
involves multiple factors. It will be interesting to see the form of fundamental law with
multiple factors and study the consequences of missing one or more factors in modeling.
In deriving the fundamental laws presented in previous sections, we either made the
assumption that the residual return dispersion is a constant over time or used the risk-
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adjusted residual return in analysis. But this is not necessary if we work on residual
security returns and factor returns directly.

If we assume residual returns follow a linear relationship with factor exposures

r, =72 _F +¢,, (54)
where r, is an N X1vector of residual returns, Z,_, is an N X K matrix of factor
exposures, F, is a K X1 vector of factor returns, and €, is an N X1 vector of

idiosyncratic noise. It is shown in Appendix B under some weak regularity conditions
that the ex ante expected portfolio IR has the following relationship with the expected
factor return (F) and factor return covariance ( Xy )

IR = \/F'(l (NI +X.)"'F

~F'Z'F

where 7=E_(1/ 0'; ) represents part of the risk related to idiosyncratic noise. As in the

(55)

univariate case, this part of the risk will be diversified away as N gets larger, and the
remaining dominant risk is the "strategy risk" represented by the factor return covariance
that cannot be diversified away. When there is only one factor, Equation (55) reduces to

R = zf = -
J(Ew (1/62)" /N +o? (56)
-
oy

So the expected portfolio IR is just the IR of the factor-mimicking portfolio.

If, instead of using the raw residual return in Equation (54), we use the risk-adjusted
residual returns, then the multi-factor fundamental law in Equation (55) becomes (see
Appendix B)

IR =/IC' (62 / N1+£,)"'IC
~JIC'TlIC,

K
where o} =(1- Y (0, +1C}))is the variance for idiosyncratic noise, ICis the cross-
k=1
sectional correlation vector between factor exposures and risk-adjusted residual returns,
and X, is the factor IC covariance matrix. Equation (57) reduces to Equation (53) when

(57)

there is only one factor.

The above conclusion is based on the assumption that the model is correctly specified
which is almost surely not the case in practice. A natural question to ask is what happens
if the return or risk model is mis-specified. With the fundamental law in multi-factor
format, we can easily study the impact of missing one or more return or risk factors. For
ease of exposition, I will only present the analysis for a 2-factor system here. More
detailed analysis with missing multiple factors can be found in Appendix B. In the
analysis below, I will not purposely distinguish risk factors from alpha factors.
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Statistically, the only difference should be that the expected IC (or factor return) for risk
factor is zero while that for alpha factor is different from zero.

For a 2-factor system, Equation (B15) reduces to

2 2
1 IC IC IC, IC
IR = 5 L+ 2 - = Pic, ic,
1- pIC, JIC, GIC, GICZ O-ICI O-ICZ

2 2
IC, 1 IC, IC,
= + ~ P, — (58)
[O-IC, ] 1- :012(1l IC, (O-ICZ e Oy, J
> IC, '
Oy,

where . ;¢ 18 the time series correlation of the two factor ICs.

From Equation (58), it is clear that a mis-specified model, whether it is mis-specified in
the return forecast part or the risk forecast part, will almost always hurt the performance.
For a missing return factor, the adverse impact comes from both the missing return

forecast, IC,, and the resulting conditional covariance mis-specification, (1— ,012(3],ICZ ).
For a missing risk factor, the adverse impact only comes from the resulting conditional
covariance mis-specification (1— prIYICZ ). This is not surprising indeed! The only
exception is when the missing factor is a risk factor and the risk factor IC is not time-
series correlated with the return factor IC (i.e. when IC, =0 and p,¢ ,, =0). When the
risk factor is missing, the ex post realized portfolio tracking error will be larger than the
ex ante targeted portfolio tracking error by a factor of 1/,/1— pIZC] c, 21.Soif pie ¢ 18

small, then the impact of missing a risk factor is small.

Fundamental Law with Transfer Coefficient

Clarke et al. (2002) proposed the concept of "transfer coefficient" to incorporate the
impact of additional constraints into the fundamental law. They define the transfer
coefficient as the cross-sectional correlation coefficient between the residual return
volatility adjusted active weights and alphas

TC =corr(Aw, 0, ., /0,)

cov(AW,0, @, ! 0,) (59)
d(AW,0,)d(a, 10,)

L

This definition has the desired property of measuring the impact of constraints on
portfolio IR when the factor IC is a constant so that o, =0 and the residual return

covariance is a diagonal matrix. Under this assumption, the transfer coefficient is the
ratio of the constrained portfolio IR and the unconstrained optimal portfolio IR
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IR=TCIR, (60)
so the transfer coefficient does represent the portion of optimal portfolio IR that can be
transferred into the constrained portfolio.

Ye (2008) extended the transfer coefficient into her version of fundamental law with time
varying IC. Using her approach, she got the following relationship
IR = I€ :
JUNTC?) + o2,
One surprising observation from Equation (61) is that the transfer coefficient as derived

by Ye (2008) will have diminishing impact as breadth N increases. The constrained
portfolio IR will approach the unconstrained optimal portfolio IR as N increases (both

approach IC/o,. as N — o) no matter what constraints one imposes on the portfolio.

(61)

This conclusion is quite counter-intuitive to practitioners as it can lead one to believe that
any portfolio can have the same IR.

So why does this happen? When the cross-sectional IC is time varying as discussed in Ye
(2008) and this paper, the total risk of the residual return is no longer a diagonal
covariance matrix. In fact the majority risk comes from the strategy risk which causes
the off-diagonal elements of the conditional covariance matrix to be non-zero. The
transfer coefficient will not have the desired property if we only use the diagonal portion
of the conditional covariance matrix to adjust the weights and alphas in deriving the
transfer coefficient. Under this more practical situation, the transfer coefficient needs to
be redefined using the total risk adjusted active weights and alphas as follows:
AW, 'a,
JAW, QAW Ja,'Q'a,

where AW, is the active weights of the constrained portfolio. Using this modified transfer

TC =

(62)

coefficient definition, we get the constrained portfolio's expected excess return as,

&PT = Awt'ar
:AW VQI/ZQ—I/Za
t t t t (63)
=Corr(Q’AW,, Q. %a,) \JAW,' Q AW, \Ja,'Q 0.,
=TCo,IR,

where 0, is the targeted portfolio tracking error and IR is the information ratio for the

unconstrained optimal portfolio. So the constrained portfolio information ratio (IR), the
transfer coefficient (TC) and the optimal unconstrained portfolio information ratio (IR)
have the following relationship

IR = op o,
=TCIR.
The impact of the constraints on portfolio IR will be the same as in Clarke ef al.'s (2002)

original definition. In this way, a transfer coefficient of 0.5 will reduce the portfolio IR by
50% from the unconstrained optimal level.

(64)
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Empirical Factor IR Comparison

In order to compare the differences between the different forms of the fundamental law, I
calculated the IR that can be achieved by various quantitative factors using different
formulas. For each factor, I calculate the ex post realized cross-sectional correlation (IC)
between lagged factor exposures and residual returns, and then calculate the mean and
standard deviation of the time series IC. The results are then substituted into various
formulas to generate Table 3. For all the factors considered here, o, is much more

important than 1/4/N¢ . I calculated ;.\ N ¢ for each factor and they are in the range

of 4 to 10 which means o . is 4 to 10 times more important than 1/{/N¢@ . From the last

four columns of the table, we can see that the expected IR from the Grinold formula is
always much higher than the other three while the other three stay very close to each
other. This is not surprising given the result in Figure 3 and the above discussion.

Table 3. Factor IR Comparison (monthly, data ends 2009:8)

Fact dex | —m— | IC |CSWev O¢ | R | R | R | IR
actor | NG | Mean | o | 1//Ng | GK | QH | YE | DING
R1000 | 0.024 | 0.014 | 0.139 5.67 0.44 | 0.10 | 0.10 | 0.10
Book to

R2000 | 0.016 | 0.025| 0.113 6.95 1.12 1 0.22 | 0.22 | 0.22

Bo

nee R3000 | 0.013 | 0.020 | 0.114 876 | 1.06 | 0.17 | 0.17 | 0.17
ot R1000 | 0.024 | 0.039 | 0.119 488 | 121033032 032
toagrice(’w R2000 | 0.016 |0.066| 0.122 7.49 293 | 054 | 053 | 0.54

R3000 | 0.013 | 0.058 | 0.111 8.59 3.17 1 052 ] 0.52 | 0.52
R1000 | 0.024 | 0.031 | 0.140 5.70 095 | 022 | 0.21 | 0.22
R2000 | 0.016 | 0.067 | 0.120 7.37 296 | 0.56 | 0.55 | 0.55

Earnings to

-
Hee R3000 | 0.013 | 0.059 | 0.121 935 | 3.19 | 048 | 048 | 0.48
Sales R1000 | 0.024 | 0.019 | 0.129 526 | 058|015 | 0.14 | 0.14
Pi‘icej ° R2000 | 0.016 | 0.026| 0.104 6.41 1.16 | 025 | 024 | 0.25

R3000 | 0.013 | 0.023 | 0.107 8.22 125 ] 022 | 021 | 021
Moy |R1000 [ 0.024 [0.029 | 0.179 731 091 | 0.16 | 0.16 | 0.16
Momen R2000 | 0.016 | 0.055 | 0.128 786 | 2.46 | 043 | 043 | 043
omentum

R3000 | 0.013 | 0.049 | 0.137 1059 | 2.68 | 0.36 | 0.36 | 0.36
< R1000 | 0.024 | 0.015 | 0.089 363 | 046 ] 017 | 0.16 | 0.16
R are R2000 | 0.016 | 0.026 | 0.084 5.20 1.16 | 0.31 | 030 | 0.30
epurchase

R3000 | 0.013 | 0.024 | 0.083 6.38 130 | 029 | 028 | 0.29
Percent R1000 | 0.024 | 0.022| 0.118 481 067 | 0.18 | 0.18 | 0.18
Sflfrf“ R2000 | 0.016 | 0.037 | 0.105 6.48 1.67 | 036 | 035 | 0.35

R3000 | 0.013 | 0.029 | 0.101 7.80 1.56 | 0.28 | 0.28 | 0.28

Empirical findings here show that the theoretically calculated IR number from Grinold's
fundamental law needs to be cut by much more than half to be realistic. For a typical
investment universe of 1000 or 2000 stocks, the empirically calculated IR numbers from
formulas derived by Qian and Hua (2004), Ye (2008) and this paper give a more realistic
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estimate of achievable IR. For investment universes less than 500, an IR using the
formula derived in this paper will give a better estimate. The difference will become
more significant for investment strategies with a much smaller selection universe, such as
a global macro strategy, or a tactical asset allocation strategy. The idiosyncratic risk still
plays a role when N is small. Table 4 shows theoretical examples when the investable
universes have much less choices.

Table 4. Theoretical IR Comparison when N is Small

GK | QH | YE |DING| GK | QH | YE | DING
IC O N=10 N=50

0.10 0.32 1.00 0.30 0.41 0.32 1.00 0.58 0.71
0.10 0.15 0.32 0.67 0.29 0.37 0.32 0.67 0.49 0.55
0.20 0.32 0.50 0.27 0.33 0.32 0.50 0.41 0.45
0.10 0.47 1.50 0.45 0.61 0.47 1.50 0.87 1.06
0.15 0.15 0.47 1.00 0.43 0.56 0.47 1.00 0.73 0.83
0.20 0.47 0.75 0.40 0.50 0.47 0.75 0.61 0.67
N=100 N=200
0.10 0.50 0.50 0.35 0.41 0.50 0.50 0.41 0.45
0.05 0.15 0.50 0.33 0.28 0.30 0.50 0.33 0.30 0.32
0.20 0.50 0.25 0.22 0.24 0.50 0.25 0.24 0.24
0.10 1.00 1.00 0.71 0.82 1.41 1.00 0.82 0.89
0.10 0.15 1.00 0.67 0.55 0.60 1.41 0.67 0.60 0.63
0.20 1.00 0.50 0.45 0.47 1.41 0.50 0.47 0.49

Conclusion

I have derived a generalized version of the fundamental law of active management under
some weak assumptions. The original fundamental law of Grinold (1989), the generalized
fundamental laws of Clarke ef al. (2002), Qian and Hua (2004), and Ye (2008) are all
special cases of the fundamental law derived in this paper. I show that cross-sectional ICs
are usually different from time series ICs, and they will be the same only under the strong
assumption that either the residual return volatilities are the same across all the securities
or the ICs are calculated using risk-adjusted residual returns with the forecast signal.

I also show that the form of the fundamental law derived in this paper is quite robust to
forecast model specification. According to our generalized fundamental law, the variation
in IC (IC volatility over time) has a much bigger impact to portfolio IR than the breadth
N for a typical investment universe. The fundamental law by Qian and Hua (2004) sets a
"Chinese Wall" as the upper limit for the portfolio IR a portfolio manager can reach when
the cross-sectional IC varies over time. The fundamental law by Grinold (1989) is
derived under some unrealistic assumptions and always overestimates by a large margin
the IR a portfolio manager can actually reach. I extend the fundamental law to models
with multiple factors and study the impact of missing one or more return or risk factors. It
is shown that a mis-specified model, whether it is mis-specified in the return forecast part
or risk forecast part, will almost always hurt performance. The exception occurs when a
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missing risk factor (IC=0) has a zero time series IC correlation with all the other factors.
For the commonly used quantitative return and risk factors, I found that the impact of a
missing risk factor is usually small.

Our results also show that the transfer coefficient as originally defined by Clarke et al.
(2002) is not able to capture the impact of constraints to portfolio IR in the presence of IC
variation. One will get the wrong conclusion that portfolio constraints do not have much
impact on portfolio IR in the presence of IC variation when N is large. I redefine the
concept of transfer coefficient using the cross-sectional correlation between the total
conditional covariance adjusted weights and alphas. The modified transfer coefficient
captures the impact of portfolio constraints on portfolio IR as desired.

One insight from this paper is that portfolio managers should try to play well (high IC)
and play precisely (low 0. ). Extra efforts should be made to process the information and
to build models that can increase IC and reduce IC variation.

I thank Xiaohong Chen, Roger Clarke, Russell Fuller, Tom Fuller, John Kling, Doug Stone, Wei Su, Yixiao
Sun, Yining Tung, Jia Ye, and two anonymous referees for helpful discussions and comments. Richard
Grinold provided me with his original technical notes. Yining Tung helped with some empirical
calculations in the paper.

Appendix A

Given the conditional forecasting error covariance matrix in Equation (39) and based on
the Woodbury matrix identity, we have the inverse matrix of €, as
Q'=%"-¢x'z, z 'L, (Al)
where
o
1+0.0°z, 'S 'z,
Substituting (A1) into Equation (15) we have
a, =0, \/a,'Q;‘ (a, — k1)

P= (A2)

=0p \/o’t'(zt_l - ¢Et_lzt—lzt—1'2t_l)(o’t - Kl)

=0p \/o’t'(zt_l - ¢Et_lzt—lzt—1'2t_l)o’t - Ka,'():t‘l - ¢Et_lzt—lzt—1'2t_l)1

_ 1y -1 1y -1 1y -1 ' -1 -1 1y -1
- O-Pt\/o’t Zt a, —Qa, Et Z,,7,, Et a, —Ka, (Zt _¢Et Z,,7,, Et )1

=0,1C8\(z, 'z, , — k2, £ 1/(ICE)(1 - 9z,,'E]'z,,)

=0, ICé\/(Zr_l'Zr_er_l - xz, 'X'1/(ICS))/(1+ 040z, ,'E'z, ) .
(A3)
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When o, , z,,_,are cross-sectionally independent, then as N becomes large we have

N N N -1
Op = UP,IC5\/(Z (Zn—l / Ge, )2 N é Z Zit-1 / Gj; J(l + 612C52 Z (Zit—l / O-ﬁ )Zj
i=1

i=1 i=1

N N
= O-P,ICa\/Z(zﬁ_l /o, ) /(1 + 61%52z(zit_1 /o, )?)
i=1 =l

=0,ICYNS\[E, (z,,10,) 1+ Now8E, (2, , | 0,)")

=0, ICY/N. 5\/ E, (z; )E,(1/0.)/(1+ Nod’E, (z; )E, (1/0}))

=0, ICN[8°E,,(1/ 62 ) 1+ NoL.5°E,, (11 57 )
s IC
" JUGE, (1 62)N) + o
IC
=0

" Ny + ot

(A4)
where

iM=
FMQN‘ -

]
UN

1
2—(IC* +02.)8" (A5)

\q.\,

]
LN

<
Il
Z|—= =~
M=

2= oz z|—
M=
Q)

T
1=
8-

\Y
.MZ
\QN

V

The last line in (AS5) is based on Jensen's inequality. In the derivation we used the fact

1 & . . .
that —Z z,,/0. =0 when N — cosince z, ,and o, are cross-sectionally independent
N ) i i
by assumption.

Appendix B

Assume residual security returns r, and security factor exposures Z,_, are related through
a linear factor model as follows

r,. =72 _F +¢,, B1)
where r, is an N X1vector of residual returns, Z,_, is an N X K matrix of factor
exposures that become known at the end of time -1, F, is a K X1 vector of factor

returns, and ¢, I, ~ N(0, X,) isan N X1 vector of idiosyncratic noise with mean 0

2

and covariance X, = aliag(Gﬁl Oy, O'SZN ). The factor exposures are normalized to have
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both time series and cross-sectional mean O and standard deviation 1, and are cross-
sectionally orthogonal to each other so that Z,_,'Z,_,/ N =1, Other regularity

assumptions like those in C1) and C2) also apply. We further assume that factor returns
follow a multivariate normal distribution

FII_ ~NGF, £,.). (B2)

Based on the above assumptions, we have

o =72_F, (B3)
and

Q=7 _X.Z '+X,. (B4)
Applying Woodbury matrix identity, we get the inverse of the conditional covariance
matrix as

Q'=x'-32'7 () +Z, Y7 )'Z 'L (BS)

t £

Substituting Equations (B3) and (B5) into the two components of the IR formula in
Equation (16) we get

o0,'Q'a =F'Z _'E'-X'Z (X' +Z, ,'X'Z, )'Z, 'E)Z, F
=FZ, %7 (A-Z/+Z, %2, )"'Z, 'L'Z, )F
=FZ /'X'Z, (X'+Z 'X'Z )'XI.F
=F (X +Z,,'5'Z, )2, ,'E'Z, ))'F (B6)
=F(Z,,'2]'Z, )" +Z.)'F
=F'(Z,,'L,Z, /N /N+X.)'F
=F'1/(zN)I+X,)"'F
and
0,'Q'1=FZ _'E'-X'Z, (X' +Z, ,'X'Z, )"'Z '
=F1A-2,,'%'Z, (X' +Z, ,'2'Z, )Y"Z, 'L
=F'(1/(zN)I+X.)"'Z, ,'E'1/(TN)
=0,
where we assumed z,; and o, to be cross-sectionally independent and used the facts that
for k,1=1,2,---,K, |

(B7)

28



Q.

-E. Zp 180 ]

EC?(Zkzt lzln‘ 1 E (1/0- )

(B8)

E (1/0})=— Z(l/a )=7 whenk=1
i=1
when k #1

and

N
Zk,t—llz‘:l/N = %Z(Zk,it—l /o;
i=1

=E (z,,/0,) (BY)
= Ecs (Zk,it—l )Ecs (1/ O-é )
=0.

So the ex ante expected portfolio IR is
IR = E( a,'Q " (a, —1))

= E(«/a,'ﬂ;lat)

(B10)
= JF(/(zN)I+X,)"'F

FX.'F.

For a one factor model, Equation (B10) simplifies to

IR = /_
JE1a2) 1N +0?

(B11)

i.e., the expected portfolio IR is just the IR of the factor-mimicking portfolio. When the

) ) ) .. . / 1 &
cross-sectional residual return dispersion is a constant, i.e., d(r,) =0 = WZO'E, , then

i=1
Equation (B11) becomes
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ICo
\/ (B, 016" 1N +5%2
IC

IR =

= = (B12)
\/(52Em (/62 IN + a2
B IC
JU(N 9)+ o
where ¢ is the same as defined in (AS). The formula above is exactly the same as
Equation (42) which is what should be expected.
By applying the same assumptions for deriving Equation (B12) to Equation (B10),
we get the multifactor fundamental law in terms of IC as follows:
IR = \/F'(l/(TN)I +X.)7'F
= \/IC'(l (@N)T+2Z,. ) IC (B13)

=~ JIC'ZIC
where IC =F/dis the cross-section correlation vector between factor exposures and
residual security returns, and X,. =X, /8" is the factor IC covariance matrix. It should
be emphasized that the results in Equations (B12) and (B13) are only valid when the
cross-sectional residual return dispersion is a constant. When this assumption is violated,
then the IR calculated from Equations (B10) and (B11) will usually be smaller than that
from (B12) and (B13).

To avoid the problem of cross-sectional heteroskedasticity in cross-sectional regression,
one can use the risk-adjusted residual security returns as the dependant variable, i.e.,

Ft = At_llzrt = Zr—IICt tég,
where A, = diag(O',?, 0'32 oo, 0',.2N ), and o is the residual return variance for security i. By
using the same algebra one can get

R =IC(c?/NT+%,. ) 'IC
~ JICE1C

K
where o} =1-) (0j, +IC}) . It should be emphasized again that the ICs in Equation
k=1
(B14) are the cross-sectional correlation between risk-adjusted residual security returns
and factor exposures, while the ICs in Equation (B13) are the correlation between the raw
residual security returns and factor exposures, hence they will usually be different.

(B14)

With the fundamental law in multifactor format, we can easily study the impact of
missing one or more return or risk factors. In the analysis below, I will study the impact
of missing factors based on factor ICs, the analysis based on factor returns is almost
identical. I will not purposely distinguish risk factors from alpha factors. Statistically, the
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only difference should be that the expected IC (or factor return) for risk factor is zero
while that for alpha factor is different from zero. I will separate the factors into two
groups with IC, and X, (i=1,2) as their factor IC and IC covariance respectively. I will

also assume that the inter-group factor IC covariance to be X ,. Under these assumptions,
we can write Equation (B13) as follows ’

IR =/IC'Z/ IC

_ ' ' L, I, B IC1
= |dc,' 1C,")
X, X,) UG, (B15)

= \/ICI'):.I_lllC1 +IC, -X,'EIC)E™C, -X,,'E]IC))

> JIC,'L,/IC,

where E=X, -X 'E/Z,, .

So IR? will be reduced by a amount of

IC,-X,'X/IC) (X, -X,'EX,,) ' dC,-X,'E,/IC,)>0 (B16)
when the second group of k, factors are missing. The impacts come from both alpha
model mis-specification (when IC, # 0) and risk model mis-specification (when
IC, =0 but IC,'E/Z,,(X,, - X,'E/X,)" X, LIC,)>0).

Alternatively the IR can be expressed as

IR = \/ICZ'Z;;ICZ +(IC,-X,Z,IC,)D'(IC, - X ,X1IC,) (B17)
where D=X,, — X, X'% '. When IC, =0, then the missing group is purely risk
factors,

IR = \/ICI 'SIC, +IC,'E /2, (2, —X,'E/2,) ' 2, I IC,

:\/ICI'(ZM _2122;;212')_11(:1 (BI8)

> JIC,'Z;'1C,

so the reduction in IR comes only from missed risk allocation. When X, =0, i.e., the

alpha group factor ICs and risk group factor ICs are not correlated, then missing risk
factors will not impact the final portfolio performance.

Notes

! We used the fact that the benchmark residual return is zero in deriving Equation (7), i.e.,

N
ZWB,nrn =0.
i=1

This is true because
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N N N
Toral _
Bt z WB ir"it z WB,inBitRB,t + z WB,itr;'t - RB,t + z WB,itr;'t :
i=1 i=1 i=1

* We define the reahzed cross-sectional residual return dispersion at time ¢ as
d(r,) \/ Z( \/ Z(r —73) =yE (r; = 77).

where 1, = — Z r, 1s the average cross-sectional residual return which we will assume to be

zero in this article. The expected cross-sectional residual return dispersion is then

5=E<d(r,>)=E[J Z(rz—r ] (\/Emf—riz)).

3 —
We can decompose r, as r, =0,e, where e, ~ N(0, 1).So

§=Ed(x,)= E{ %erz O',E[ /%24]: o,

as N — oo by law of large numbers.

4 . . . . . .
When we assume the cross-sectional residual return dispersion is a constant, i.e.,

o= [T e

then
O=E(d(r))=d.
On the other hand,
E(d*(r,)) =iiE(r2) =iio2 =d”.
N3 ! N5 !
So we have
N

S=Edr))=d= %ZGZ :

> The assumption of normality in the information coefficient is approximate because IC is
bounded by +1.

® The unconditional covariance of ris E(rr,') = (IC* + GIC)5 ZZZ + X, where X _is the

covariance matrix of z, ; with 1 in the diagonal.

’ The inverse of a partitioned matrix is repeatedly used in the derivation, see Magnus and
Neudecker (2002, p11) .
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