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ABSTRACT

Clustering is commonly used for analyzing gene expres-
sion data. Despite their successes, clustering methods
suffer from a number of limitations. First, these methods
reveal similarities that exist over all of the measurements,
while obscuring relationships that exist over only a subset
of the data. Second, clustering methods cannot readily
incorporate additional types of information, such as clinical
data or known attributes of genes. To circumvent these
shortcomings, we propose the use of a single coherent
probabilistic model, that encompasses much of the rich
structure in the genomic expression data, while incor-
porating additional information such as experiment type,
putative binding sites, or functional information. We show
how this model can be learned from the data, allowing
us to discover patterns in the data and dependencies
between the gene expression patterns and additional
attributes. The learned model reveals context-specific
relationships, that exist only over a subset of the ex-
periments in the dataset. We demonstrate the power of
our approach on synthetic data and on two real-world
gene expression data sets for yeast. For example, we
demonstrate a novel functionality that falls naturally out
of our framework: predicting the “cluster” of the array
resulting from a gene mutation based only on the gene’s
expression pattern in the context of other mutations.
Contact: eran@cs.stanford.edu

INTRODUCTION

are both statistically sound and computationally tractable
for inferring biological insights from these large datasets.

The most commonly used computational method for
analyzing genomic expression data is clustering, a process
which identifies clusters of genes and/or array experiments
that share similar expression patterns (e.g., (Alon et al.,
1999; Ben-Dor et al., 1999; Eisen et al., 1998)). Genes that
are similarly expressed are often coregulated and involved
in the same cellular processes. Therefore, clustering
suggests functional relationships between clustered genes,
and helps in identifying promoter sequence elements
that are shared among them (Spellman et al., 1998).
Clusters of experiments can imply relationships between
those experimental conditions, implying similarities in the
cellular responses triggered by those conditions (Hughes
et al., 2000).

Despite their successes, clustering methods suffer from
a number of limitations. First, these methods reveal
similarities that exist over all of the measurements, while
obscuring relationships that exist over only a subset of
the data. Second, although clustering identifies genes that
are similar in expression, they cannot readily incorporate
additional types of information, such as clinical data or
experimental details. (See (Barash and Friedman, 2001,
Holmes and Bruno, 2000) for some initial work on this
topic.) In this paper, we propose the use of a single
coherent probabilistic model, that encompasses much
of the rich structure in the genomic expression data,
while incorporating additional information to aid in the

A central goal of molecular biology is to understand thePredictions. We show how this model can be learmned

regulatory mechanisms that govern protein activity. On
of the main mechanisms of regulation controls the rate of
mMRNA transcription of different genes. DNA microarrays
provide a tool for measuring the abundance of thousand

€

from the data, allowing us to discover patterns in the data
nd to elucidate the interdependencies between the gene
expression patterns and additional attributes.

Our approach is based on the languagerobabilistic
relational models (PRMs) (Koller and Pfeffer, 1998;

of mMRNA transcripts simultaneously. This technology rriedman et al., 1999) that extend Bayesian networks to a
facilitates the characterization of every gene’s expressiopg ational setting, where we have multiple interdependent
in response to many different types of experimentalppjects (such as genes and arrays). PRMs overcome many
conditions, generating enormous amounts of complexf the limitations of clustering methods. They allow us to
data, e.g., (Spellman et al., 1998; Gasch et al., 2000). Anclude multiple types of information to identify similar
key challenge is the development of methodologies thabbjects. For example, identifying similarities between
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array experiments can be based on gene expressidPROBABILISTIC MODELS OF GENE
patterns, experimental or clinical data, the cell type orEXPRESSION DATA

strain used in the experiment, the cellular phenotypeconsider a set of measurements for aGete of genes
triggered by each condition, and more. When identifyingacross a seirray of microarrays, reporting the mea-
gene relationships, our approach can use gene expressisared expression (or its logarithmmg o for each gene
data, sequence elements present in the gene promotegs, € Gene and arraya € Array. Regularities in the
functional information, and more. By incorporating all the €xpression data often correspond to important biological
available information into the analysis, more refined gend?henomenaclustering methods are one approach for
and experiment classifications can be achieved. discovering such regularities, providing biological insight

A second advantage to our method is that it presentE.y identifying groups of genes and/or arrays that are

i ; . . Similar in some sense. &vo-sided clustering (Lazzeroni
context-specific relationships between the objects. Man)énd Owen, 1999: Hofmann et al., 1999) partitions the

gene relationships exist only over a subset of the experizat cene to gene clusters Gy, ..., Gk, and the sefrray
ments in the dataset, while similarities in the array experyy agrray clusters Ay, ..., A. This clustering “models”
iments may be different over different subsets of genesthe data by assuming that all genes in the same cluster
We describe learning procedures (related to that of (Barasbehave similarly, and that all arrays in the same cluster
and Friedman, 2001)) that are able to determine which atoehave similarly. More precisely, the model asserts that,
tributes are informative in which context. Our procedurefor geneg € G and arraya € Aj, the expression
identifiesgroupings of measurements that correspond to al®vel Mg.a is governed by a distribution specific to the
subset of both genes and experiments. Thus, unlike staffPMpination of clusteG; and clusterA;. For example,

dard clustering methods, our approach does not productzgiS distribution might be a Gaussian with meps|

indivisible clusters, where all of the objects in a cluster areand varancer’; This type of clustering provides a very

assumed to behave the same in all contexts. compact summarization of the data in terms df « |

. ._matrix of groupings, wher h groupin ntains th
To validate our method, we present two case studie atrix of groupings, where each grouping contains the

for th f he fi | . Theasurements corresponding to a cluster of genes and
or the use of PRMs. In the first, we analyze st 5 cjyster of arrays. The model explains differences of

Stress data of Gasch et al. (2000), which characterizessxpression between groupings, and treats differences be-
the expression patterns of yeast genes under differenfveen the measurements in the same grouping as “noise.”
experimental conditions. Our model identifies groupingsA good clustering — one which is predictive — would be
based on similarities in gene expression, the presence e in which the variancasfj are small, implying that
known transcription factor (TF) binding sites within the most of the differences between expression measurements
gene promoters, and functional annotation of genes. Ougre explained by the model, and not attributed to noise.
approach identifies expected gene clusters, that display TWo-sided clustering is a promising model. However,
similar gene expression patterns and are known to functiof IS Very limited in its ability to take advantage of
in the same metabolic processes. Even more interesting dditional av_allable mformatlon. For genes, we m|g_ht

. : ave annotations such as functional role, cellular location
the discovery of new groupings of genes based both on

ion level and iol bindi ) r the TF binding sites in a gene’s promoter region.
expression level and on possible TF binding sites. For arrays, we might have the treatment applied to the

In the second case study, we use Yhast Compendium  gample, the growth conditions, the strain of yeast used,
data of Hughes et al. (2000), which observed the genomigtc. In the Compendium data set (Hughes et al., 2000),
expression programs triggered by specific gene mutationgach array corresponds to an experiment with a mutated
The goal of these experiments is to assign hypotheticafeast strain, where one or more genes were knocked out;
functions to uncharacterized genes, by comparing théere, the attributes of the knocked out gene can provide
genomic expression program triggered by their deletiorinformation about the array. These attributes might be
to known expression programs. This data allows us td/€"Y informative about the expression level, and we want

exhibit a very different capability of our approach. We to allow models where the expression level depends on

. . their values. However, we do not simply want to define
learn a model based on the genomic expression progranis o N
a separate distribution for each combination of gene and

triggered by different gene mutations. We then use oug o aitributes: the number of resulting distributions
model to predict the cluster thatould be assigned to a \you1d be enormous, and we would not have enough data
mutation for which we do not have the array data. This taskg estimate their parameters. Rather, we want to consider
is a novel one, that falls naturally within our framework models where only some attributes have a direct influence
but not within that of other approaches. on the expression levels. Moreover, we wantiscover
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which are the significant attributes by learning a predictiveis an object inD? (Gene), then we have a random variable
model from the data. G12.GCluster that denotes the cluster of the gese. We

Probabilistic Relational Models. Probabilistic rea-  Wantto specify a single joint distribution over the values of

tional models (PRMs) (Koller and Pfeffer, 1998: Friedman all of these variables. However, we want this description to
et al., 1999) provide a formal framework for representing2PP!¥ t0 any skeleton we might observe. Thus, we specify
the type of dependencies we described above. A PRM: template” probabilistic model over classes of objects,

provides a probabilistic model overralational schema. which can then be instantiated for all of the objects in
A schema specifies thelasses of objects that appear the class. A PRMT consists of a qualitative dependency

in our data, and the attributes of each class. In gend&fucture,S, and the parameters associated withi,
expression data, we typically have three classasie, The depe_zndency structure is defined by associating with
Array, and Exp, which corresponds to the measurementS2ch attributeX. A a set ofparents Pa(X. A). The parents

of the expression of a specific gene in a particular arrayf)‘c X.A spe_cify the attributes that inflqence it .di“.eCtIY'
Each clasX is associated with a set aftributes A(X). le., the gttrlt_)uf[es whose values determine the distribution
Attribute A of class X is denotedX.A. For example, fr_om which it is sampled. Ea}ch parent has the form of
if we have an annotation of genes according to severafither X.B or X.R.B whereR is a reference to a related

functional categories, the clagene might have several CPject. For example, in a simple two-sided clustering
binary attributes such a®\AM, representing “Amino model, the attributeExp.Level might have the parents

Acid Metabolism”. TheExp class has the attributeevel ~ EXP-Of-Gene.GCluster and Exp.In-Array.ACluster. This
that denotes the measured expression level. In clusterin odel indicates that the distribution from which the value

models, we also introdudatent (hidden) variables that f m.Level is selected is different for different values

represent the division into clusters. Thus, when modelingg]c g.GCIuster and a.ACluster where g and a are the
two-sided clustering, the classene would also have articular geneand array that arerelated to the particular

the attributeGCluster, that denotes the cluster the gene measurement m. .
belongs to; if we havek gene clusters, the attribute The parameters of the PRM specify the parameters of

GCluster would take on the values. 1. k. The class each of these distributions. Thus, for each attribxité,
Array has a corresponding attribuA€] t’Jst.e'r’ ' the parameters describeenditional probability distribu-

The schema describes the type of objects we mighEion (CPD), which specifies the probability of. A, given

encounter; the set of actual objects varies from oné"Y possible instantiation of values to its parents. In our
' §|mple model above, we would have a distribution over

situation to another. For example, in one case we migh .
P g Exp.Level for each of thek x | assignments of values to

have a particular set of, 00 genes, 100 arrays, and
400,000 measurements, in another case, we might havggp.Of-Gene.GCIuster andExp.In-Array. ACluster. As we
iscuss below, we have freedom to determine the form of

16,000 genes, 20 arrays, and ,800 measurements _ o

(some arrays were partial). In any such particular case, wg“s parameterization. . .

need to specify the set of objects we deal withskél eton For any skeleton, a PRM mqlucesBaywan network

o specifies the set of objects. In our example, the skeletoR V&' all of the varla_lbles _deflned by a skeleton. The

specifies the set of gen€@” (Gene), the set of arrays parents of each variable in the network are specified

O° (Array), and the set of measureme$ (Exps). by the PRM eren(jency str_uctu@ a_md the Sk‘?'_e‘
ton. Each variable is associated with a conditional

Note that the objects in our domain are related toprobability distribution, which is copied from the class-

each other. A particular measurement (eMg237) would L
: evel CPD. Continuing our example, the parents of
correspond to a particular gene that was measured (e'%zw.Level would be G12.GCluster and A37.ACluster,

G12) and to a particular array (e.gA37) in which the and its CPD would be a copy oP(ExpLlevel |

measurement was performed. We uskerence slots to
refer to related objects. Thus1237.0f-Gene refers to Exp.Of-_Gene.GCI_uster, Exp.ln—Array.ACIuster). The .
semantics of this network is defined as usual. Letting

G12 andM1237.In-Array refers toA37. A skeleton has to Yu be the set of variables. the ioint distribution is
specify the values of these references for each object. In*> - ~~* 'N N oo J
efined aP (Y1, ..., Yn) =[]i_1 P(Yi | P&Y))).

our example, the skeleton specifies the value of the slot
m.Of-Gene andm.In-Array (i.e., which gene is measured Context-Specific Models. The language of PRMs
and in which array). allows us to introduce gene and array attributes into
The values of the attributes of the objects are notthe model, thereby allowing us to extend substantially
specified in the skeleton. We treat these unknown values abe simple two-sided clustering model discussed above.
random variables. Formally, a skeletowr defines a set of More specifically, we can model the dependency of
(random) variables: one variabteA for each objeck and  Exp.Level on the gene and array attributes. At the level
each attributeA in the object’s class. For exampleGfi2 ~ of the PRM structure, we can model a dependence of
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Fig. 1. (a) PRM model folCompendium data set; (b) Part of the tree CPD in the model.

the expression level on whether the associated genEor example, we might represent the CPDEgp.Level
has the function Amino Acid Metabolism, by adding using the tree shown in Figure 1(b).
Exp.Of-Gene. AAM as a parent oExp.Level. In general, Each leaf node corresponds to a unique path from
we would expect theExp.Level to depend on several the root. The nodes on the path correspond to tests, and
of these attributes, e.g., biochemical functions, cellulathe arcs to their outcomes. This sequence thus defines
locations, etc. If we have of these attribute#\q, ..., A,,  the eventinduced by the leaf — the conjunction (i.e.,
and each of them can influence the expression leveintersection) of the events defined by the arcs in the
the resulting model will require that we specify a sequence. For example. the left-most leaf of Figure 1(b)
CPD P(Exp.Level | Exp.Of-Gene.GCluster, Exp.In-  corresponds to the event’Of-Gene.GCluster = 0 and
Array.ACluster, Exp.Of-Gene. Ay, . . ., Exp.Of-Gene. Ay). m.Of-Array.Mutant. GCluster £ 3 andm.Of-Gene HSF <
A naive representation of this CPD requires that we2". We denote byl eaves(X.A) the set of leaves in the
specify 2 - k - | distributions, which is clearly unrealistic CPD-tree forX.A. If £ is the index of a leaf, we use
even for small values oh. Beyond the computational the notationLx a = ¢ as a shorthand for the event that
consequences of this explosion, this naive representatiogprrespond to the leaf. Each leaf is labeled with a
also hides important patterns that might be present in théistribution over the values oX. A, representing part of
data. For example, consider again the AAM function.its CPD — the distributiorP (X.A| Lx A = ¢).
We might expect that genes of this function will behave Each leaf in the CPD-tree &kp.Level corresponds to a
differently in arrays where this metabolism is very active grouping of expression measurements that are considered
(e.g., during rapid growth), or depressed (e.g., during celto be sampled from the same distribution. Note that
arrest). In other conditions, this distinction is irrelevant. €ach such grouping is a “rectangle” in the expression
Thus, although we consider the functional categorymatrix: a cross-product of a set of genes and a set of
Exp.Of-Gene.AAM as informative about the expression arrays. However, unlike the groupings defined in two-
values, it is relevant only whegxp.In-Array.ACluster ~ Sided clustering, these groupings do not typically define
has specific values. In other words, we want the distri-2 uniform grid over the expression matrix.
bution overExp.Level to be different for the different
values of Exp.Of-Gene. AAM only for certain values of LEARNING THE MODELS
Exp.In-Array.ACluster. Our goal is to learn a PRM model from data. The input to
A natural representation of this type of interaction is us-the learning algorithm is a skeletan and a (potentially
ing tree-structured CPDs, similar to decision trees (Friedpartial) assignment of values to the random variables it
man and Goldszmidt, 1998). Formally,@PD-treerepre-  defines. In our example, the data set will consist of: a set
sentation of a CPD for an attribut¢. A is a rooted tree; of expression level measurements, corresponding to some
eachnode in the tree is either &eaf or aninterior node.  set of genes and some set of arrays, and typically a set of
Each interior node is labeled with a test of the foynB =  attributes for the genes and for the arrays. Note that the
v, whereY.B is a parent ofX. A andv is one of its values. cluster variables for genes and arrays are not part of the
Each of these nodes has two outgo#émgs to its children,  data. The learning task can be decomposed into two parts:
corresponding to the outcomes of the test (true or false)parameter estimation — estimating the parameters for a




RICTT FTODADHISUC VIOUEIS 10T BETNE EAPIESSION

model whose structure is given, ambdel selection —  avoids overfitting the data with complex models. When
choosing among the set of possible structures. the training data is fully observed, the Bayesian score has

Parameter Estimation. Consider the task of estimating & Simple analytic form (Friedman et al., 1999; Friedman
parameters for a model where we have fixed the deperfd Goldszmidt, 1998; Heckerman, 1998), as a function
dency structureS that specifies the parents of each at-°f the sufficient statistics of that model.
tribute, and the tree structure for each CPD. Our goal is to Having defined a metric for evaluating different models,
estimate the model parametérs: the distribution at each W€ need to search the space of possible models for one
leaf. Most simply, we can estimate parameters by using"@t has high score. As is standard in both Bayesian
maximum likelihood estimate. We define tHikelihood of ~ N€twork and PRM learning (Heckerman, 1998; Friedman
a particular set of parametefis as the probability of the €t @l 1999), we use a greedy local search procedure that
training dataZ given the modelS, 85). This probability maln_tglns_ a “c_urrent” candidate structure aljd |te.rat|vely
is defined according to the PRM semantics, as the probdDedifies it to increase the score. At each iteration, we
bility of the attribute values i in the Bayesian network consider a set of simple local transformations to the
defined by its skeleton. The maximum likelihood parame-current structure, score all of them, and pick the one with
ters are thé g that maximize the likelihood. highest score. Our operators, foIIo_wmg Chickering et al.
When the values of all attributes are fully observed,(1997), consider on_Iy transformations to the CPD-trees.
the maximum likelihood parameter estimation reducesfNe tree structure induces the dependency structure, as
a maximum likelihood estimation of each the separatdhe parents oX.A are simply those attributes that appear
P(X.A | Lx o = ¢) at the leaves of the different CPD- in its CPD-tree. The two operators we use aggit —
trees. The nature of this estimation task depends on thplaces a leaf in a CPT tree by an internal node with
type of attribute. If the attribute is discrete valued, wetwo leafs; andrim — replaces the subtree at an internal
estimate a multinomial distribution. If it is a continuous node by a single leaf. To avoid local maxima associated
valued attribute, we estimate a Gaussian distributionwith the greedy search procedure, we use a variant of
Both estimation tasks are standard and relysafficient ~ Simulated annealing: Rather than always taking the highest
statistics that summarize the data. For example, in thescoring move in each search step, we take a random step
case of multinomial distributions, these are just the countgvith some probability, which decays exponentially as the
Cx_ alv, £1, specifying the number of objeckse ©OZ(X)  search progresses.

for which we observe the combinationA = v and  |pcomplete Data. So far, we have assumed that the
Lx.a = ¢. In the case of Gaussian distributions, theseyaining dataZ specifies the values of all the attributes.
sufficient statistics are the mean and variance of th§, many situations, this assumption is not warranted;
objects in which the ledfis relevant. in particular, it is clearly false when we are learning
Structure Learning. We now consider the task of models withlatent variables, such asene.GCluster, that
selecting among the many possible models, where eacire never observed in the training data. Learning from
of the possible models specifies the set of parents fopartially observed data is substantially more difficult than
each attribute, and the structure of the CPD-trees. Therthe fully observable case: the likelihood function has
are two issues that need to be addressed in this settingiultiple local maxima, and no general method exists for
the scoring function, used to evaluate the “goodness” of finding the global maximum.
different candidate structures relative to the data, and the The Expectation Maximization (EM) algorithm is an
search algorithm for finding a structure with a high score. approach for parameter estimation with incomplete data.
We discuss each of these in turn. It is guaranteed to find a local maximum of the likelihood
We follow Friedman et al. (1999) and use Bayesianfunction. The EM algorithm is an iterative method.
model selection methods to score candidate structures.Starting from an initial guess for the parameters, it
The Bayesian score of a structureS is defined as the repeatedly performs two steps. In the E-step, it computes
posterior probability of the structure given the dafa—  the distribution over the unobserved variables given the
P(S | Z,0). Using Bayes rule, and making a standardobserved data and the current estimate of the parameters. It
assumption that the different structures are equally likelyuses this distribution to “fill in” each missing attributea
a priori, the score reduces tB(Z | S,0). This term  with a soft completion that takes into consideration how
evaluates the fit of the model to the data by averaging théikely its different values are. In clustering models, this
likelihood of the data over all possible parameterizationscompletion corresponds to a soft assignment of objects to
of the model. This averaging regularizes the score andlusters. In the M-step, it uses this completion as if it were

TIn practice, the maximum likelihood can be noisy in leaves that corresponaeal' and reestimates the parameters using the standard

to rare events. To reduce parameter variance, we use a Bayesian method RAXIMUM "ke"h_OOd estimation procedure. .The process
smooth the estimate. then repeats, using the new parameters, until convergence.
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Table 1. Reconstruction results for synthetic data with very high accuracy. In a second test, we measured the
extent to which we can recover the original gene clusters
g.GCluster, which were hidden in the data. We learned

% parents Cluster recovery o . i
recovered  Naive Bayes PRMs the model on the training data, and then tried to predict
the (nine-valued) cluster attribute in the test data. Our
Simulated Data 85+25 908+042  984+107 reconstruction ability for the clusters is extremely high,

Noisy Simulated Data 56 2.5 767+142  881+152 and much higher than we could obtain by a standard
clustering algorithm using a Naive Bayes model over gene
expression alone.

To fill in the missing data in the E-step, we need to run 10 test the robustness of our methods, we also generated

inference over the entire Bayesian network induced by thé NOisy version of the same data set: within each category
PRM over the objects in. In many cases, these networks 0f data. — function annotations, TFs, and expression
are complex, and exact inference is intractable. Insteadévels — 20% of the entries were permuted among
we usebelief propagation (Murphy and Weiss, 1999), an themselves. We can see that our ability to reconstruct the
approximate inference algorithm which has recently beergtructure is lower, but still quite good given the number
shown to be effective on a wide range of models. of possible parents. Our ability to reconstruct the clusters
For learning structure with incomplete data, we useis still impressively high, whereas the simple naive Bayes
a hard-assignment variant sfructural EM (Friedman, clustering degraded more substantially. Thus our method
1998). We fill in missing attributes with their most iS robust even to a large amount of noise in the data.

probable value, given the current model, and then runyeaq Stressdata. We now consider the data set of Gasch
structure learning on the completed data. When structurg; 5. (2000), who characterized the genomic expression
learning converges, we remove the hypothesized Valueﬁatterns of yeast genes in 12 different experimental
for the unobserved attributes, run EM to fit the parametergynditions. We selected 954 genes that had significant
of the learned structure, and then select a new hardphanges in gene expression (eliminating the ESR genes
assignment for the missing attributes. This process iy \which clustering is trivial), and the full set of 92

iterated until convergence. arrays. We supplemented the raw gene expression data
with additional attributes from two other yeast databases.
CASE STUDIES For every gene, we selected 22 functional classes from

We evaluated our methods on three gene expression datae MIPS database (Mewes et al., 1999), and used them
sets, one synthetic and two real. The results on synthetigs binary attributes of genes. In addition, we introduced
data demonstrate that our approach recovers structure thattributes representing the presence of binding sites for
we know to be present in the data. The models for the reaknown TFs. We introduced one attribute for each of 44
data sets illustrate the wide applicability of our approach.TFs, and generated its value for each gene — 0, &, @r

Synthetic data. We generated a synthetic data set by— by scanning the 1000bp upstream of the gene’s ORF
sampling from a PRM model. To make the data realisticUsing the Matinspector program (Quandt et al., 1995) and
we used PRM models learned from tBeess data set. counting the number of putative sites for the TF.

These models are similar to the two-sided clustering We used the model discussed above, with the classes
models described above. The main difference is that wéene, Array, andExp. The Gene class included a latent
takeArray.ACluster to be the observed experiment type (1 Cluster variable, as well as the 66 attributes described
of 12). TheGene.GCluster attribute is hidden, and takes 9 above. Thearray class included an attribufg/pe with 12
values. We generated data for 1000 (imaginary) genes an¢Rlues, representing the “type” of experiment performed.
90 arrays, for a total of 90,000 measurements. Each gend/e used this attribute as an observed substitute for the
was augmented with 15 function annotations and 30 TFsACluster attribute.

We evaluated the ability of our learning algorithm to  Our algorithm learned many dependencies between the
recover the model using two metrics. To robustly estimateexpression measurements, the type of the experiment, the
these, each was evaluated using 10-fold cross validationatent cluster variable, the function attributes, and the TFs.
training on 90% of the data and (where applicable)Before analyzing the model, the first question of interest
testing on the remaining 10%. The results are showrs whether the structure learned is indeed present in the
in Table 1. We first measured the extent to which thedata or perhaps our algorithms would learn dependencies
structure learned is similar to the “true” structure in theeven when no structure is present. To test that, we took
data. More specifically, we saw how many of the parents othe real data set and permuted all of it: annotations with
Exp.Level are recovered in the learned model. Our resultsannotations, TFs with TFs, and expression levels with
indicate that our algorithm recovers the “true” structureexpression levels (even across experiment types). We then
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Fig. 2. (a) Summary of representative gene groupings inStress data. Each grouping corresponds to a cluster of genes in the context
of a particular experiment. The right panel shows the average expression profile of the genes in the grouping in the context of all of the
experiments; the experiment type is indicated by the colored triangles at the top of the figure. The particular experiment type in which the
grouping arises is shown on the left. The left panel shows the functional attributes associated with each of the displayed groupings. Each
box indicates the percentage of each grouping that displayed that attribute. (See http://cs.stanfencrsligmb01/ for additional cluster
data.) (b) The expression of genes in Grouping 666 in response to stationary phase. All genes in this cluster contained two or more potential
Mig1p binding sites within their promoters.

tested three models: model 1 — a PRM trained on thef these annotations and retrain the model based only on
original data set; model 2 — a PRM trained on the noisythe gene expression and TF binding site data. This process
data; model 3 — a PRM with no dependencies trained orallows unannotated genes to be aggregated with charac-
the noisy data. We then evaluated the ability of the modeterized genes, so that we can infer hypothetical functions
to generalize from the training data by evaluating thefor those uncharacterized genes. Overall, around 20% of
log-likelihood of test data. Over 10-fold cross validation, the functional annotations were changed in this process,
we obtained substantial differences between the modelsnostly going from cases where the function was labeled
—117294 272 for model 1,—14680+ 721 for model as absent to cases where it was labeled as present. This
2, and —14923+ 160 for model 3, indicating that our change is quite reasonable, as the MIPS database does not
model indeed explains the data significantly better. Wedistinguish between “unknown” and “known to be false”.
also examined the extent to which the dependencies addekhese changes also led to a substantial improvementin the
in the learning algorithm are informative, in that they average grouping variance: fron602 to 0565. Although
cause a substantial improvement to the Bayesian scoré.is not clear whether the new annotations correspond to
Indeed, the learning algorithm discovered 7 annotatiorthe original meaning of the functions, it appears that they
and 15 TF parents whose score in the model learned frordo represent a biologically predictive property.
real data was around twice as high as the best score of Figure 2(a) shows a summary diagram of a representa-
the dependencies learned from the perturbed data. As otive set of groupings constructed by our model. For exam-
models are much better at explaining the data, this stronglple, Grouping 652 consists of 73 genes that are similarly
indicates that these parents correspond to dependencigsluced during the diauxic shift. A significant percentage
that are indeed implied by the data. of genes in this grouping are annotated as functioning in
Our second experiment tests whether our learning algorespiration or transport and localizing to the mitochondria,
rithm results in coherent clusters. To test that, we comeytoplasm, and endoplasmic reticulum (ER). Inspection of
puted a weighted average of the variances in each of thihe genes in this grouping confirms that many of these
groupings. Over the three structure-modification iterationgyenes are involved in the TCA metabolic cycle, oxidative
of our algorithm, the average grouping variance decreaseghosphorylation, and ATP synthesis (respiration), trans-
substantially, from %92 in the initial model to 14 in  port of sugars and amino acids, and other related func-
the final model. We also experimented with a novel ap-ions. Thus, the attributes associated with this grouping
proach to incorporating the functional annotations recovpaint a picture of the physiological response during sta-
ered from yeast databases: to avoid restricting the aggregéenary phase: when the glucose in the cells medium be-
tion based on previous interpretation of experimental datagomes limiting, transporters are secreted through the ER
we use the functional annotations as a guide in the initiato the plasma membrane, where they import sugars and
training of the model; we then remove the observed valueamino acids to supply the TCA cycle, which promotes res-
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Yeast Compendium Data. The Compendium data

set (Hughes et al., 2000) is very different in nature than

the Stress data. The goal of the experiments was to

assign hypothetical functions to uncharacterized genes, by

comparing the expression pattern triggered by deletion of
Totalpredicted o~ | |  these characterized genes. We selected 528 genes and 207

Correct predictions —— arrays, focusing on genes and mutations that had some

0ar® % 1 functional annotations in the MIPS database.

Here we can exploit much more of the expressive power

""" *-o o-00g, |  Of PRMs. In this model, th&ene class has the same set

of attributes as in thestress data set above. Tharray

class has an attributaCluster, representing a cluster of

02 03 02 os os o7 o8 os 1  thearray (mutation). Most interestingly, we introduced a

reference slot —Array.Mutation (indicated in Figure 1(a)

_ o _ _ by the thick dashed line connecting the gene object to the

Fig. 3. P_redlctlng_the array (mu_tatlon) cluster without observing |tsarray object) — which refers to the object for the mutated

expression data in theompendium data. gene used to generate the array.

The explicit relationship between the array object and

o . . , . the associated mutated gene, and the dependencies that it
piration in the mitochondria. The algorithm also assigNSyermits, allow us to perform a task which is outside the

15 uncharacterized genes to this grouping, suggesting thakpe of other approaches: predicting the array (mutation)
these genes are likely to play a similar role in the cell.  ¢jster of an array without performing the experiment!
The algorithm also identified groupings of genes thatrye pasic insight is that mutations that cluster together
were related by the presence of known transcription factend to induce similar effects on the genomic expression
tor binding sites in the their promoters. Most interestingpattern when they are mutated because they are involved
is Grouping 666 identified in iteration 1, shown in Fig- iy similar functional processes. This insight suggests the
ure 2(b). This grouping is over a set of 17 genes 'nVOlvedfollowing type of inference: For a given gene, we can
in sugar metabolism that each contain two or more bindinfer the gene cluster to which it belongs, and then
ing sites for the Mig1 repressor. Mig1p represses genes inyredict which mutation cluster if would fall into if it
volved in alternative sugar metabolism when external gluyyere to be mutated, based on teh observed correlations
cose levels are high, but the repressor becomes deactivatggdiween the gene clusters and mutations clusters. We
when glucose becomes limiting during the diauxic shift, tried out this hypothesis by hiding 20 of the mutant arrays
leading to the increased expression of its targets. All ofy the data, and training the model on the remaining
the genes in the grouping are substantially induced at thgnes. We then tried to predict the mutation cluster of the
diauxic shift. Included in this grouping is the SUC2 gene,20 hidden arrays, based only on our knowledge about
a well known target of Mig1p, as well as genes involved inthe gene that was mutated. We compared this to the
glucose and maltose metabolism (e.g., MAL31), cell wallcluster we would have placed the array in after seeing
proteins (e.g., ECM13), and a number of genes involved ints expression pattern. We repeated this experiment ten
other aspects of carbon metabolism. These proteins wetgmes, for different choices of the 20 held-out arrays. A
not previously known to be regulated by Mig1lp, howevergraph of the results is displayed in Figure 3. For each
the presence of the Miglp binding site in their promot-prediction, the algorithm outputs a confidence measure
ers, along with the similarities in their biochemical func- — the probability that the unobserved array is assigned
tions and gene expression patterns, suggests that they ate the most probable cluster. For each such confidence
also regulated by Miglp derepression. We note that th¢evel, we graph the percent of the arrays at that confidence
context-sensitive nature of our groupings played an imporievel (or higher), and the accuracy of the prediction if
tant role in identifying this cluster. Many of the genes in we consider only those arrays at this confidence level.
this grouping were also present in the much larger GroupWe can see that approximately 22% of the arrays (or 44
ing 652, which represented genes that were related in gersrrays) are predicted with 95% accuracy. Thus, there is
expression and functional annotation but not necessarilg significant number of genes for which we can predict,
sharing the Miglp promoter element. A traditional clus-with high accuracy, the mutation cluster to which they
tering algorithm that does not allow genes to participate irbelong, without conducting the experiment of mutating
multiple groupings may not have been able to isolate thesthem. This allows us to predict hypothetical functional
two clusters, and would not have revealed this new clusteinformation for these genes. Moreover, our approach tells
of Miglp-regulated genes. us which are the arrays for which we can make a high-

0.2r

Accuracy / Predicted

Prediction confidence
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