An Introduction to the OpenCL Programming Model

Jonathan Tompson™
NYU: Media Research Lab

Abstract

This paper presents an overview of the OpenCL 1.1 standard
[Khronos 2012]. We first motivate the need for GPGPU comput-
ing and then discuss the various concepts and technological back-
ground necessary to understand the programming model. We use
concurrent matrix multiplication as a framework for explaining var-
ious performance characteristics of compiling and running OpenCL
code, and contrast this to native code on more traditional general
purpose CPUs.

Keywords: OpenCL, Matrix Multiply, Barrier Synchronization

1 Introduction

In recent years performance scaling for general purpose CPUs has
failed to increase as predicted by Gordon Moore in the early 1970s
[Sutter 2005], and therefore raw throughput for sequential code has
plateaued between subsequent processor generations. As a result of
the issues of working with deep sub-micron lithography', the pri-
mary motivation for moving to new processing nodes is less about
increased performance or efficiency, but rather economic costs (for
instance decreased cost per transistor and larger wafer sizes). While
we have seen modest performance increases from the latest mi-
croprocessor architectures from Intel and AMD, these certainly
haven‘t resulted in the doubling of performance that computer sci-
entists relied upon from the 70‘s through to the early 2000°s, in
order to see performance increases in their code without changing
the top level execution model.

Motivated by this lack of performance scaling, Graphics Process-
ing Unit (GPU) manufacturers have opened up low level hardware
traditionally used for graphics rendering only, in order to perform
highly parallel computation tasks on what they call General Pur-
pose GPU cores (GPGPU). While low level GPGPU execution
cores lack branch prediction and out of order execution hardware
that allow traditional superscalar CPU architectures to optimize se-
quential code, moving computation to the GPU trades off flexibility
in execution models for raw performance. More-recently, CUDA?
and OpenCL? are two frameworks that have seen significant trac-
tion and adoption by third-party software developers. This paper
will focus on OpenCL (specifically version 1.1 of the specifica-
tion) since it is an open cross-platform & cross-vendor standard.
The paper is not a thorough investigation into the OpenCL stan-
dard (which is itself a massive body of work), but is an overview
of the programming methodologies one should be aware of when
considering writing GPGPU code.

*e-mail:tompson @cims.nyu.edu
Te-mail:ks228 @cs.nyu.edu

'From the author’s experience the most notable of these issues include:
worsened short channel effects, an increase in the ratio of extrinsic parasitics
vs transistor transconductance, limits on unity gain frequency scaling, and
sub-threshold and gate oxide leakage

2from NVIDIA - first released 2006

3originally developed by Apple but now managed by the non-profit tech-
nology consortium Khronos Group - first released 2008

Kristofer Schlachter?
NYU: Media Research Lab

2 The OpenCL Standard

2.1 OpenCL Architecture and Hardware

OpenCL is a programming framework and standard set from
Khronos, for heterogeneous parallel computing on cross-vendor
and cross-platform hardware. It provides a top level abstraction for
low level hardware routines as well as consistent memory and ex-
ecution models for dealing with massively-parallel code execution.
The advantage of this abstraction layer is the ability to scale code
from simple embedded microcontrolers to general purpose CPUs
from Intel and AMD, up to massively-parallel GPGPU hardware
pipelines, all without reworking code. While the OpenCL standard
allows OpenCL code to execute on CPU devices, this paper will
focus specifically on using OpenCL with Nvidia and ATI graph-
ics cards as this represents (in the authors opinion) the pinnacle
of consumer-level high-performance computing in terms of raw
FLOPS throughput, and has significant potential for accelerating
“suitable” parallel algorithms.

Figure 1 shows an overview of the OpenCL architecture. One
CPU-based “Host” controls multiple “Compute Devices” (for in-
stance CPUs & GPUs are different compute devices). Each of
these coarse grained compute devices consists of multiple “Com-
pute Units” (akin to execution units & arithmetic processing unit
groups on multi-core CPUs - think “cores”) and within these are
multiple “Processing Elements”. At the lowest level, these process-
ing elements all execute OpenCL “Kernels” (more on this later).

]

==

==
. .i
==

N

i

Processing

Element n g I] Host
- %

Compute Device

i

/

Compute Unit

Figure 1: OpenCL Platform Model (from [Khronos 2011])

The specific definition of compute units is different depending on
the hardware vendor. In AMD hardware, each compute unit con-
tains numerous “stream cores” (or sometimes called SIMD En-
gines) which then contain individual processing elements. The
stream cores are each executing VLIW 4 or 5 wide SIMD instruc-
tions. See figure 2 for an overview of ATI hardware. In NVIDIA
hardware they call compute units “stream multiprocessors” (SM*s)
(and in some of their documentation they are refereed to as “CUDA
cores”). In either case, the take away is that there is a fairly complex
hardware hierarchy capable of executing at the lowest level SIMD
VLIW instructions.

An important caveat to keep in mind is that the marketing num-
bers for core count for NVIDIA and ATI aren‘t always a good rep-

Ultra-Threaded Dispatch Processor (UTDP)

v 3
S (I

v 3

T

T
o

e
T

Al E
il

S
3Rl Pl

20l ik

1-1-:-1- 1 --1-:--

o

mﬁ im LITTLa|[&ITIT

Compute Compute Compute
Unit Unit Unit
Instruction
Stream Core and Control

Flow
Branch
Execution
Unit

T-Processing Processing

Element Element

Figure 2: Simplified block diagram of ATI compute device (from
[ATI 2011])

resentation of the capabilities of the hardware. For instance, on
NVIDIA‘s website a Quadro 2000 graphics card has 192 “Cuda
Cores”. However, we can query the lower-level hardware capa-
bilities using the OpenCL API and what we find is that in reality
there are actually 4 compute units, all consisting of 12 stream mul-
tiprocessors, and each stream multiprocessor is capable of 4-wide
SIMD. 192 = 4%12x*4. In the author‘s opinion this makes the mar-
keting material confusing, since you wouldn‘t normally think of a
hardware unit capable only of executing floating point operations
as a “core”. Similarly, the marketing documentation for a HD6970
(very high end GPU from ATT at time of writing) shows 1536 pro-
cessing elements, while in reality the hardware has 24 compute
units (SIMD engines), and 16 groups of 4-wide processing elements
per compute unit. 1536 = 24 x 16 * 4.

2.2 OpenCL Execution Models

At the top level the OpenCL host * uses the OpenCL API platform
layer to query and select compute devices, submit work to these de-
vices and manage the workload across compute contexts and work-
queues. In contrast, at the lower end of the execution hierarchy (and
at the heart of all OpenCL code) are OpenCL “Kernels” running on
the each processing element. These Kernels are written in OpenCL
C that execute in parallel over a predefined N-dimensional compu-
tation domain. In OpenCL vernacular, each independent element of
execution in this domain is called a “work-item” (which NVIDIA
refers to as “CUDA threads”). These work-items are grouped to-
gether into independent “work-groups” (which NVIDIA refers to
as a “thread block™). See Figure 3 for a top level overview of this
structure.

4in our case written in C++, though other language bindings exist

50penCL C is a subset of C99 with appropriate language additions

Work item Work Group

Local Size(0)

(1)9z15 |2207

Global Size(1)

Global Size(0)

Figure 3: 2D Data-Parallel execution in OpenCL (from [Boydstun
2011])

According to the documentation, the execution model is “fine-
grained data parallelism and thread parallelism, nested within
coarse-grained data parallelism and task parallelism” [NVIDIA
2012]. Data-parallel programming is where the domain of execu-
tion for each thread is defined by some region over a data structure
or memory object (typically a range of indices into an N-by-N array
as depicted by Figure 3), where execution over these sub-regions
are deemed independent. The alternative model is task-parallel pro-
gramming, whereby concurrency is exploited across domains of
task level parallelism. OpenCL API exploits both of these, how-
ever since access to global memory is slow one must be careful in
writing Kernel code that reflects the memory access performances
of certain memory locations in the hierarchy (more on memory hi-
erarchy later). In this way work-groups can be separated by task-
parallel programming (since threads within a work-group can share
local memory), but are more likely sub-domains in some larger data
structure as this benefits hardware memory access (since getting
data from DRAM to global GPU memory is slow, as is getting data
from global GPU memory to local work-group memory).

Since hundreds of threads are executed concurrently which results
in a linear scaling in instruction IO bandwidth, NVIDIA uses a
SIMT (Single-Instruction, Multiple-Thread) architecture. One in-
struction call in this architecture executes identical code in parallel
by different threads and each thread executes the code with differ-
ent data. Such a scheme reduces 10 bandwidth and allows for more
compact thread execution logic. ATI‘s architecture follows a very
similar model (although the nomenclature is different).

With the framework described above, we can now outline the basic
pipeline for a GPGPU OpenCL application.

1. Firstly, a CPU host defines an N-dimensional computation do-
main over some region of DRAM memory. Every index of
this N-dimensional computation domain will be a work-item
and each work-item executes the same Kernel.

2. The host then defines a grouping of these work-items into
work-groups. Each work-item in the work-groups will exe-

cute concurrently within a compute unit (NVIDIA streaming
multiprocessor or ATI SIMD engines) and will share some lo-
cal memory (more later). These work-groups are placed onto
a work-queue.

3. The hardware will then load DRAM memory into the global
GPU RAM and execute each work-group on the work-queue.

4. On NVIDIA hardware the multiprocessor will execute 32
threads at once (which they call a “warp group”), if the work-
group contains more threads than this they will be serialized,
which has obvious implications on the consistency of local
memory.

Each processing element executes purely sequential code. There
is no branch prediction and no speculative execution, so that all in-
structions in a thread are executed in order. Furthermore, some con-
ditional branch code will actually require execution of both branch
paths, which are then data-multiplexed to produce a final result. I
will refer the reader to the Khronos OpenCL, ATI and NVIDIA
documentations for further details since the details are often com-
plicated. For instance, a “warp” in NVIDIA hardware executes only
one common instruction at a time on all threads in the work-group
(since access to individual threads is through global SIMT instruc-
tions), so full efficiency is only realized when all 32 threads in the
warp agree on their execution path.

There are some important limitations on work-groups to always
keep in mind. Firstly, the global work size must be a multiple of
the work-group size, or another way of saying that is that the work-
groups must fit evenly into the entire data structure. Secondly, the
work-group size (which of a 2D array would be the size?) must be
less than or equal to the CL_LKERNEL_WORK_GROUP_SIZE flag.
This is a hardware flag stating the limitation on the maximum con-
current threads within a work-group. OpenCL will return an error
code if either of these conditions are violated °.

2.3 OpenCL Memory Model

The OpenCL memory hierarchy (shown in Figure 4) is structured
in order to “loosely” resemble the physical memory configura-
tions in ATI and NVIDIA hardware. The mapping is not 1 to 1
since NVIDIA and ATI define their memory hierarchies differently.
However the basic structure of top global memory vs local memory
per work-group is consistent across both platforms. Furthermore,
the lowest level execution unit has a small private memory space
for program registers.

These work-groups can communicate through shared memory and
synchronization primitives, however their memory access is inde-
pendent of other work-groups (as depicted in Figure 5). This is
essentially a data-parallel execution model, where the domain of
independent execution units is closely tied and defined by the un-
derlining memory access patterns. For these groups, OpenCL im-
plements a relaxed consistency, shared memory model. There are
exceptions, and some compute devices (notably CPUs) can execute
task-parallel compute Kernels, however the bulk of OpenCL ap-
plications on GPGPU hardware will execute strictly data-parallel
workers.

An important issue to keep in mind when programming OpenCL
Kernels is that memory access on the DRAM global and local mem-
ory blocks is not protected in any way. This means that segfaults are
not reported when work-items dereference memory outside their
own global storage. As a result, GPU memory set aside for the
OS can be clobbered unintentionally, which can result in behaviors

SIn general, if you don‘t check the return conditions for all the API func-
tions then the Kernel will either cause the host program to crash or crash
your OS. Always check error flags!

Private Private Private Private
Memory Memory Memory Memory

Work-Item Work-Item Work-Item

Local Memory

Workgroup

Work-Item

Local Memory

Workgroup

Compute Device

Host Memory

Figure 4: OpenCL Memory Model (from [Khronos 2011])

Synchronization |
between work <— N
items possible Rﬁ

\) work-group
— work-item

/
e

Cannot
synchronize /\\

=

outside work-group —

Figure 5: OpenCL Work-group / Work-unit structure

ranging from benign screen flickering up to frustrating blue screens
of death and OS level crashes.

Another important issue is that mode-switches may result in GPU
memory allocated to OpenCL to be cannibalized by the operating
system. Typically the OS allocates some portion of the GPU mem-
ory to the “primary-surface”, which is a frame buffer store for the
rendering of the OS. If the resolution is changed during OpenCL
execution, and the size of this primary-surface needs to grow, it
will use OpenCL memory space to do so. Luckily these events are
caught at the driver level and will cause any call to the OpenCL
runtime to fail and return an invalid context error.

Memory fences are possible within threads in a work-group as well
as synchronization barriers for threads at the work-item level (be-
tween individual threads in a processing element) as well as at
the work-group level (for coarse synchronization between work-
groups). On the host side, blocking API functions can perform
waits for certain events to complete, such as all events in the queue
to finish, specific events to finish, etc. Using this coarse event con-
trol the host can decide to run work in parallel across different de-
vices or sequentially, depending on how markers are placed in the
work-queue (as depicted in Figure 6).

Finally, you should also be careful when statically allocating local
data (per work-group). You should check the return conditions from
the host API for flags indicating that you ‘re allocating too much per
work-group, however you should also be aware that sometimes the

Kernel will compile anyway and will result in a program crash 7.

Kernel 2 waits for an event from
Kernel 1 and does not start until
the results are read!

Kernel 2 starts before
the results from Kernel

are ready

Enqueue Kernel 1
Enqueue Kernel 2
Enqueue Kernel 1
Enqueue Kernel 2

|

o
b
c
(2]
v
c

¢
[|

Time —p

¢
[|

Time —»

Figure 6: Concurrency control with OpenCL event-queueing

3 Matrix Multiply Example

3.1 CPU Implementation

Matrix multiplication is an obvious example for data-parallel con-
currency optimizations, since input data is unmodified and the out-
put data range consists of a set of independent computation tasks.
Naive matrix multiply algorithms are O (n3) , and consist of a sim-
ple triple for-loop; the two outer loops iterate over the row and col-
umn index and the inner for loop performs a dot-product of the row
& column vectors. Optimizations for sequential code on a CPU in-
clude cache line pre-fetching and other “cache aware data access”
techniques, as well as the use of SSE SIMD instructions for modest
speed gains. cpu.cpp is a very simple implementation for matrix
multiply on the CPU:

// CPU matrix multiply C = A «= B
void matMul(floatx A, floatx B, floatx C, int dim) {
for (int row = 0; row < dim; row ++) {
for (int col = 0; col < dim; col ++) {
// Dot row from A with col from B
float val = 0;
for (int i = 0; i < dim; i ++)
val += A[row % dim + i] * B[i * dim + col];
Cl[rowx*dim + col] = val;

10° || ;/ﬁ/

g
e

S 10°
g 6
w
2 %
= 102 /e/
[;
3 b
5 o
w

10 =

8
10°
10° 10°

Square Matrix Dimension

Figure 7: cpu.cpp Performance vs matrix dimensions

Better algorithms include Strassen‘s algorithm [Huss-Lederman
et al. 1996]° which is O (n'°2") ~ O (n®®7). The best
known polynomial time algorithm is the Coppersmith-Winograd
algorithm [Coppersmith and Winograd 1987] and has asymptotic
complexity of O (n2'373). However, the constant factors for these
divide-and-conquer approaches are prohibitively high for even rea-
sonably sized matrices.

As an extension of the naive implementation above, we can take
advantage of the fact that modern cpu‘s have multiple cores. In
cpu_mt.cpp below, each thread only calculates and writes a sub-
set of the output matrix. This means that threads do not need
to synchronize their writes. Since the read access patters are the
same as the naive implementation it will still suffer from the same
cache performance issues. Figure 8 shows the measured results of
cpu_mt.cpp. For large matrix dimensions the multi-threaded ap-
proach achieves roughly 4x speedup on a 4 core machine, however
for small matrices the overhead of spawning threads dominates the
runtime performance.

cpu.cpp

The above code was compiled and run on three different machines®;
one laptop running Mac OS X and compiling with gcc, and two
desktops running Windows 7 and compiling with Microsoft Visual
Studio compiler. Figure 7 shows the performance vs matrix di-
mension. The performance is not linear in the loglog plot (there-
fore strictly not polynomial time) which has to do with cache line
thrashing. Since the two vectors are stored row major at least one of
the matrices has to be read sequentially across the columns (which
may not exist in the same cache block) when performing the dot
products. There are many techniques for improving cache perfor-
mance, however, since the focus of this paper is not optimizing sin-
gle threaded matrix multiply, we leave this up to the reader to inves-
tigate the standard references, and we present this data as a frame
of reference only for comparison with OpenCL results.

7In general we found that on Mac OS X Lion using ATT hardware these
sort of crashes were more likely.
8Please see the Appendix for details

void xthreadFunc(void* arg) {
for (int row = startRow; row < endRow; row ++) {
for (int col = 0; col < dim; col ++) {
/!l Dot row from A with col from B
float val = 0;
for (int i = 0; i < dim; i ++) {
val += A[row * dim + i] * B[i * dim + col];

Cl[row*dim + col] = val;

cpu_mt.cpp

3.2 Naive OpenCL Kernel

The obvious alternative, is to let our massively parallel OpenCL
architecture execute simple concurrent Kernels, each of which per-
forms one dot-product associated with one output matrix element.
Doing so does not change the asymptotic complexity, however we
can reduce the constant factor significantly. Our first attempt at a

9 Although this algorithm suffers from numerical stability issues it is a
popular approach and is available in many linear algebra libraries (notably
BLAS).

Execution Time (seconds)

10° 10° 10
Square Matrix Dimension

Figure 8: cpu.cpp Single-Threaded vs Multi-Threaded perfor-
mance

matrix multiply OpenCL Kernel is depicted in matmull.cl. This ap-
proach is simple, each thread reads the x row of matrix A and the
y column of matrix B from the global GPU memory and computes
the corresponding (x, y) element of the output matrix C.

/! OpenCL Kernel for matrix multiply. C = A « B
_-kernel void
matrixMul (-_global floatx C,

__global floatx A,

_-global floatx B,

int wA, int wB) {

int tx = get_global_.id(0); // 2D Thread ID x
int ty = get_global_.id(1); // 2D Thread ID y
// Perform dot—product accumulate into value
float value = 0;

for (int k = 0; k < wA; ++k) {
value += A[ty * wA + k] * B[k * wB + tx];

Clty * WA + tx] = value; // Write to device memory

matmull.cl

Figure 9 shows the performance of matmull.cl vs the matrix dimen-
sion for different values of the tunable parameter: work-group size.
As explained in Section 2, each thread in a work-group executes
in parallel, so we expect larger work-group sizes to take advantage
of maximum concurrency. If the work-group size is larger than the
vector width of a compute unit core, the Work-Group is executed in
sequential groups of the maximum width. The surprising result here
is that even work-group sizes that are much larger than the maxi-
mum concurrent thread size'?, serialization of the work-group exe-
cution doesn‘t affect performance and actually improves it. This is
because the overhead of switching groups of work-items (NVIDIA
calls these warps, while ATI calls these wavefronts) of serial exe-
cution is much faster than switching the memory registers for each
work-group (since the GPU stores all work-group registers before
retiring them). The very important take-away is that you should al-
ways try and keep as many threads per work-group as possible to
maximize performance.

10The maximum number of concurrent threads on our NVIDIA hardware
is 32. Since the matrix array is 2D, the number of threads is the work-group
size squared. So in Figure 9, work-group size = 16 results in 256 threads

T
—— Work-group size 1
: — Wor cup size 2
105 — War o s1ze 4
— Waor oup size 8
a W up s1z: // - va
'E — War > s1ze 16 /.
o
® 10° v
2
[}
E
=
S 40 //
= 7
5]
[}
>
Ll
10°

3
10
Square Matrix Dimension

10

Figure 9: matmull.cl Performance vs work-group size and matrix
dimensions

To make sure that these results were consistent across different
GPUs, the code was compiled and run on our three test systems.
The results are shown in Figure 10. The CPU performance results
are also plotted for reference. What is clear from these results is
that the overhead of moving data on and off the GPU (including the
matrices themselves, the Kernel instructions, and the work-queue
information) is significant. As such, for small matrix sizes the CPU
actually outperforms the GPU as we might expect. Another issue
worth noting is that the GPU overhead is platform dependant. Infor-
mally, we have found that running the OpenCL code on ATI cards
the overhead is higher than on NVIDIA hardware.

Desktop 1 GPU, WS=22 &
o' Desktop 2 GFT, WS=18
Laptop 1 GPT, WS=16
----- Desktop 1 CPU

—_
g 10° Y - Desktop 2 CPU
§ ----- Laptop 1 GPT =
w s
= 1 i

10 ';gte
p 4
£ =4
[= e

i

§10° b Z
£
3
[5]
(0]
> &
w1g

10°

10*
Square Matrix Dimension

Figure 10: matmull.cpp performance over hardware types

3.3 Shared Memory OpenCL Kernel

One way to increase the speed of execution for each thread is to
take advantage of the faster memory types in the OpenCL mem-
ory hierarchy. As already mentioned, the slowest memory is the
global memory available to all threads in all work-groups. The next
fastest memory type is local memory that is only visible to threads
of the work-group it belongs to. A loose analogy is that the global

memory to local memory relationship is akin to CPU RAM and pri-
vate L1 cache. matmul2.cl is an OpenCL Kernel that tries to take
advantage of the varying speeds in this memory hierarchy.

Unlike global memory, local memory isn‘t initialized and trans-
ferred to the device from the host. The work-item threads must
fill local memory before they can use it and therefore this is the first
computational task in matmul2.cl. The Kernel fills one location per
thread and then a synchronization barrier waits for all of the other
threads to fill up the rest of the data. Since the local store has limited
size, matmul2.cl implements block matrix multiplication to address
smaller subsets of the global domain, but needs to iterate over mul-
tiple sub-blocks in order to produce a correct matrix multiply. The
memory write pattern is therefore heavy on local memory and only
writes once to the global memory.

// OpenCL Kernel for BLOCK matrix multiply. C = A « B
_-kernel void
matrixMul (-_global floatx C,

_-global floatx A,

_-global floatx B,

int wA, int wB) {

int bx = get_group-id(0); // 2D Thread ID x
int by = get_group-id(1); // 2D Thread ID x
int tx = get-local_-id(0); // 2D local ID x
int ty = get_local_id(1); // 2D local ID y

// first and last sub—matrix of A for this block
int aBegin = wA * BLOCK.SIZE x by;

int aEnd aBegin + wA — 1;

int aStep = BLOCK.SIZE;

// first and last sub—matrix of B for this block
int bBegin = BLOCK.SIZE * bx;
int bStep = BLOCK.SIZE x wB;

float Csub = 0.0;
// Tterate over all sub—matrices of A and B
for (int a = aBegin, b = bBegin; a <= aEnd; a+=aStep,
b+=bStep) {
// Static work—group local allocations
_-local float As[BLOCK_SIZE][BLOCK-SIZE];
_-local float Bs[BLOCK_SIZE][BLOCK_SIZE];

// Each thread loads one element of the block
// from global memory

As[ty J[tx] = A[la + WA x ty + tx];

Bs[ty][tx] B[b + wB * ty + tx];

// Barrier to synchronize all threads
barrier (CLK_LOCAL.MEM_FENCE) ;
// Now the local sub—matricies As and Bs are valid

// Multiply the two sub—matrices. Each thread
// computes one element of the block sub—matrix.
for (int k = 0; k < BLOCK.SIZE; ++k)

Csub += As[ty]J[k] = Bs[k][tx];

// Barrier to synchronize all threads before moving
barrier (CLK_ LOCALMEM_FENCE) ;

}
int ¢ = wB *x BLOCK_SIZE * by + BLOCK_SIZE * bx;
Clc + wB % ty + tx] = Csub; // write to global memory

matmul2.cl

Figure 11 shows the incredible performance improvement associ-
ated with moving data to local storage. The reader should note that
for smaller work-group sizes the performance improvement is less.
This is because the overhead of context-switching local memory
blocks between work-group executions is high.

10° | — Worlegroup size 16 - Matmul2 I

—— Work-group sze 16 - Matmull dl

10°

Execution Time (seconds)

10
Square Matrix Dimension

Figure 11: matmull.cl vs matmul2.cl

4 Conclusion

Figure 12 shows the comparative performance of the best CPU re-
sults and the best GPU OpenCL results. Clearly, for small matri-
ces the overhead of OpenCL execution dominates the performance
benefits of massivly concurrent execution. For our measurements,
below a matrix dimension of roughly 150 x 150 the simple multi-
threaded CPU code out performs OpenCL.

4

[

-
o

Execution Time (seconds)
5

[

\%Pirnﬂ 50: Time=1.44e-3sec

-
(=]

10

107 10° 10
Square Matrix Dimension

Figure 12: Best OpenCL Vs. CPU performance

At this point the authors would like to reiterate the insights we have
gained from our short experience with OpenCL. Firstly, since con-
text switch overheads between warps within work-groups is low,
care must be taken to make sure that all compute-units are running
at full capacity, and that the work-group size is as large as possi-
ble. Said in another way, large work-groups reduce the effects of
memory latency. Secondly, memory locality is extremely impor-
tant. This is intuitive since the number of execution threads is ex-
tremely large (in comparison to conventional CPU multi-threaded
environments), and therefore the performance impact of sharing ex-
ternal global memory (GDDRS in our hardware) is large due to
high memory contention, and also since local memory resides in

extremely fast on-chip SRAM in most cases.

Another issues that is not well represented by the content of this
paper alone, is that there is a huge code overhead on the Host side
with setting up and running OpenCL code. Even though our small-
est Kernel size might be only 15 lines, there is an additional 1500
lines of code on the Host side in support. In our opinion this is one
of the biggest drawbacks to the OpenCL platform, as is familiariz-
ing oneself with the considerable complexity of OpenCL API and
execution models in general.

As a side note, as a result of our experiences with the OpenCL plat-
form, as well as having spoken with colleagues expertly familiar
with GPGPU programming, our belief is that the OpenCL toolkits
are less mature. We experienced many unexplained driver crashes
(though sometimes the fault of our own), and the Khronos doc-
umentation isn‘t as clear as we feel it should be. Hopefully, the
platform will improve in the near future.

Acknowledgements

‘We would like to thank Eric Hielsher for his invaluable insights into
GPU architectures. Also Starbucks was very helpful -=.

References

ATI, 2011. Programming guide: Amd accelerated parallel
processing. http://developer.amd.com/sdks/
amdappsdk/assets/amd_accelerated_parallel_
processing_opencl_programming_guide.pdf.

BoyDSTUN, K., 2011. Introduction opencl (caltech lec-
ture). http://www.tapir.caltech.edu/~kboyds/
OpenCL/opencl.pdf.

COPPERSMITH, D., AND WINOGRAD, S. 1987. Matrix multipli-
cation via arithmetic progressions. In Proceedings of the nine-
teenth annual ACM symposium on Theory of computing, ACM,
New York, NY, USA, STOC ’87, 1-6.

HUSS-LEDERMAN, S., JACOBSON, E. M., Tsa0, A., TURN-
BULL, T., AND JOHNSON, J. R. 1996. Implementation of
strassen’s algorithm for matrix multiplication. In Proceedings of
the 1996 ACM/IEEE conference on Supercomputing (CDROM),
IEEE Computer Society, Washington, DC, USA, Supercomput-
ing *96.

KHRONOS, 2011. Opencl overview. http://www.khronos.
org/assets/uploads/developers/library/
overview/opencl-overview.pdf/.

KHRONOS, 2012. Opencl 1.2 reference pages. http:
//www.khronos.org/registry/cl/sdk/1.2/
docs/man/xhtml/.

NVIDIA, 2012. Opencl programming guide for the cuda architec-
ture, version 4.2. http://developer.download.
nvidia.com/compute/DevZone/docs/html/
OpenCL/doc/OpenCL_Programming_Guide.pdf.

SUTTER, H. 2005. The free lunch is over: A fundamental turn
toward concurrency in software. Dr. Dobb’s Journal.

http://developer.amd.com/sdks/amdappsdk/assets/amd_accelerated_parallel_processing_opencl_programming_guide.pdf
http://developer.amd.com/sdks/amdappsdk/assets/amd_accelerated_parallel_processing_opencl_programming_guide.pdf
http://developer.amd.com/sdks/amdappsdk/assets/amd_accelerated_parallel_processing_opencl_programming_guide.pdf
http://www.tapir.caltech.edu/~kboyds/OpenCL/opencl.pdf
http://www.tapir.caltech.edu/~kboyds/OpenCL/opencl.pdf
http://www.khronos.org/assets/uploads/developers/library/overview/opencl-overview.pdf/
http://www.khronos.org/assets/uploads/developers/library/overview/opencl-overview.pdf/
http://www.khronos.org/assets/uploads/developers/library/overview/opencl-overview.pdf/
http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf

Appendix

Computers Used When Profiling

Device

CPU

GPU

RAM GRAM Max Compute | Proc. Local
WG size | Units Elem. mem
size
Desktop 1 | Intel Xeon W3550 NVIDIA Quadro 2000 18GB 1024MB | 1024 4 192 49152
Desktop 2 | Intel Core i7 930 ATI Radeon HD 5850 6GB 1024MB | 256 18 1440 32768
Laptop 1 Intel Core i7 2820QM | ATI Radeon HD 6750M | 4GB 1024MB | 1024 6 720 32768

