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Abstract—Code authorship information is important for an-
alyzing software quality, performing software forensics, and
improving software maintenance. However, current tools assume
that the last developer to change a line of code is its author
regardless of all earlier changes. This approximation loses im-
portant information. We present two new line-level authorship
models to overcome this limitation. We first define the repository
graph as a graph abstraction for a code repository, in which
nodes are the commits and edges represent the development
dependencies. Then for each line of code, structural authorship
is defined as a subgraph of the repository graph recording all
commits that changed the line and the development dependencies
between the commits; weighted authorship is defined as a vector
of author contribution weights derived from the structural
authorship of the line and based on a code change measure
between commits, for example, best edit distance. We have
implemented our two authorship models as a new git built-in tool
git-author. We evaluated git-author in an empirical study and a
comparison study. In the empirical study, we ran git-author on
five open source projects and found that git-author can recover
more information than a current tool (git-blame) for about 10%
of lines. In the comparison study, we used git-author to build a
line-level model for bug prediction. We compared our line-level
model with a representative file-level model. The results show
that our line-level model performs consistently better than the
file-level model when evaluated on our data sets produced from
the Apache HTTP server project.

I. INTRODUCTION

Information as to who wrote a given piece of code, author-
ship, is used to analyze software quality [5, 11, 32, 35, 38],
perform software forensics [33], and improve software mainte-
nance [13, 14]. Current tools approximate line level authorship
by assuming that the last person to change a line is its
author, while ignoring all earlier changes. In this paper, we
show how to mine a code repository for the development
history of a line of code to assign contribution weights to
multiple authors. Using these contribution weights, we can
attribute a line to the most responsible author in binary code
forensics, directly apply the weights to model source code
familiarity, and trace back to earlier commits to determine
when bugs were introduced in software quality analysis. Our
new method abstracts code repositories as a graph representing
the development dependencies between commits. We perform
a backward flow analysis based on the results of an enhanced
line differencing tool [8] between adjacent commits to extract
the development history of a line of code. We then use the

history to attribute each character of the line to the responsible
author and assign contribution weights. We have implemented
this new functionality as an extension to git.

The methods used by current tools (git-blame [11, 32], svn-
annotate [38], and CVS-annotate [35]) for obtaining line level
authorship loses information. A line of code may be changed
multiple times by different developers to fix bugs, to conform
to interface changes, or to tune parameters. These changes
compose the history of a line of code. For each line of code,
current tools report the last commit that changed the line
and the author of that last commit. These tools take the last
snapshot, while missing the earlier stages of the development
history. Therefore, even when the last commit changes only a
small fraction of a line of code, the author of the last commit
still is credited for the entire line.

In this paper, we define the repository graph, structural
authorship, and weighted authorship to help overcome these
limitations. The repository graph is a directed graph repre-
senting our abstraction for a code repository. In the graph,
nodes are the commits and edges represent the development
dependencies. For each line of code, we define structural
authorship and weighted authorship. Structural authorship is
a subgraph of the repository graph. The nodes consist of the
commits that changed that line. Development dependencies
between the subset commits form the edges. Weighted author-
ship is a vector of author contribution weights derived from
the structural authorship of the line. The weight of an author
is defined by a code change measure between commits, for
example, best edit distance [36]. We use these two models to
extract the development history of a line of code and derive
precise line level authorship.

To evaluate our new models, we implemented structural
authorship and weighted authorship as a new git built-in tool:
git-author. We conducted two experiments to show how often
the new models will produce more information and whether
this information is useful for analysis tools that are based on
code authorship information. In the first experiment, we ran
git-author over the repositories of five open source projects and
found that about 10% of the lines were changed by multiple
commits and about 8% of the lines were changed by multiple
authors. Analysis tools lose information on these lines when
they use the current methods for line level authorship. In
the second experiment, we used git-author to build a new



line-level bug prediction model. We compared our line-level
model with a representative file-level model [22] on our data
sets derived from the Apache HTTP sever project [1]. The
results show that the line-level model performs consistently
better than the file-level model when evaluated on effort-aware
metrics [22, 25].

This work makes the following contributions:
1) The structural authorship model that extracts the devel-

opment history of a line of code and overcomes the
fundamental weakness of current tools.

2) The weighted authorship model that assigns contribution
weights to each change of the line and produces precise
line-level authorship attribution.

3) The tool git-author that is a new built-in tool in git and
implements the structural authorship and the weighted
authorship model.

4) A study of five open source projects that characterizes
the number of lines changed by multiple commits and
multiple authors.

5) A line-level bug prediction model that performs consis-
tently better than the file-level model [22].

We provide an overview of version control systems and
define our graph abstraction for code repositories in Section 2.
We present the structural authorship model in Section 3 and
the weighted authorship model in Section 4. We evaluate our
new models in Section 5. We discuss related work in Section
6 and then conclude in Section 7.

II. REPOSITORY ABSTRACTION

We define the repository graph to capture the fundamental
capability of a version control system (VCS). With the repos-
itory graph, we can focus on the contents of development
history without considering which specific VCS is used. A
VCS records the development history of a project by storing
all the revisions of source code and the dependent relation-
ship between these revisions. Our graph abstraction models
revisions as nodes and the relationship between revisions as
edges. We are able to implement the graph structure based on
any current mainstream VCS.

A VCS allows programmers to checkpoint their changes.
A new revision is created when a programmer commits their
modifications to the VCS. The dependencies between revisions
also is recorded to maintain the relative order of commits.
Current VCS’s support concurrent development. Programmers
can work on different branches without affecting other peo-
ple’s work and later combine their work by merging branches.
Therefore, it is also necessary to record on which existing
revision the new revision is based. In addition to these basic
capabilities, a VCS often supports reverting previous changes,
browsing development history, and other complementary ca-
pabilities to facilitate daily development work.

The repository graph is a directed graph G = (V,E,∆)
used to describe the basic capability of a VCS. A node in
V represents a revision or a snapshot of the project and is
annotated with information about the snapshot including the
author of the snapshot. The snapshot of node i is denoted

as si, si ∈ V , and the author is denoted as ai. Node s0 is
a virtual node representing the empty repository before any
changes are committed. E is the set of edges, representing
development dependencies between revisions. ∆ is a labeling
of E that represents code changes and there is a one-to-one
mapping between the elements in E and ∆. We adapt our
definition of code changes from Zeller and Hildebrandt [39],
where a change δ is a mapping from old code to new code.
An edge ei,j(δi,j), ei,j ∈ E and δi,j ∈ ∆, means that by
applying the change δi,j to si, we can get code snapshot sj ; so
δi,j(si) = sj . We define δi,j to be a tuple of (Di,j ,Ai,j , Ci,j)
where Di,j is the set of lines deleted from si, Ai,j is the set of
lines added to si, and Ci,j is the set of pairs of lines changed
from si to sj . For node si, sj , and sk such that ei,j ∈ E
and ej,k ∈ E, we define the composition of change sets as
δi,k = δj,k ◦ δi,j meaning applying δi,j first, and then δj,k.
Our definition implies that the operator ◦ is right associative.
One key property of the composition operation is that the result
of composition of change sets is path independent. The result
only depends on the two end nodes.

We illustrate our definition in Figure 1. The repository
consists of ten revisions (ten nodes) and three developers:
Alice, Bob, and Jim. The author information for a node is
represented by its color. The virtual node s0 has no author
information, so we leave it blank. Alice created a branch
for her work and committed s3 and s4. Later Bob merged
Alice’s work back to the master branch and created s7. For
the path independent property, we have (δ4,7◦δ3,4◦δ2,3)(s2) =
(δ6,7 ◦ δ5,6 ◦ δ2,5)(s2) = s7. The first part in the equation is
the composition along Alice’s branch. The second one is the
composition along the master branch. The two paths yield the
same overall effects, which is the third part in the equation.

Our definition of the repository graph is applicable on any
current mainstream VCS. To demonstrate that, we consider
how to derive the nodes, edges, and the change sets on edges
in three popular version control systems: git, svn, and CVS.
Git and svn store each commit as a snapshot of the repository,
so the commits correspond to the nodes in the repository
graph. CVS on the other hand stores commits as the change
set containing added lines and deleted lines. We can derive
the contents of nodes by composing consecutive change sets.
All the three version control systems record branching and
merging, so edges are easy to find. Git and svn provide
built-in differencing tools to calculate change sets, but they
are not sufficient for our definition of δ because they report
changed lines separately as added lines and deleted lines. ldiff
[8] calculates source code similarity metrics (such as best
edit distance and cosine similarity) to match added lines and
deleted lines and derive pairs of changed lines. We use ldiff
to implement our definition of δ. Since we can implement the
repository graph on any mainstream VCS, we assume a code
repository is represented as a repository graph in the following
sections.



Alice Bob Jim

s0 s1 s2

s3 s4

s5 s6 s7 s10

s8 s9

δ0,1 δ1,2 δ2,5 δ5,6 δ6,7 δ7,10
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Fig. 1. An example of the repository graph. Nodes are source code revisions, denoted from s0 to s10. The color of a node shows the author creating the
revision. The virtual node s0 has no author information. Edges represent development dependencies between revisions. δi,j on edge ei,j is the code change
from si to sj .

III. STRUCTURAL AUTHORSHIP

Structural authorship represents the development history of
a line of code. We define structural authorship as a subgraph
Gl of the repository graph G that includes only the revisions
that change line l of code, and the development dependences
between these revisions. We present a backward flow analysis
algorithm on the repository graph G that extracts the structural
authorship. Our analysis processes all lines in a file to provide
sufficient context for programmers to view code history. After
extracting structural authorship, analysis tools have access to
all historical information of a line so that they are not limited
to the last change of that line.

Our structural authorship model can be seen as a generaliza-
tion of the current method that only reports the last change.
Both our model and the current method stop searching the
history of a line when the line is found to be added. The
distinction is that our model can make use of the information
in the set of changed lines C, while the current method cannot.

A. Model definition

For a given line of code l appearing in a revision sv (often
the head revision), the structural authorship of the pair of (sv ,
l) is defined to be a directed graph Gl = (Vl, El,∆l). Vl is
the set of nodes that changed or added line l. El is the set of
edges that represent development dependences between nodes
in Vl. ∆l is a labeling of El that represents code changes.
Before giving the formal definitions of Vl, El, and ∆l, we
first introduce notation to describe the relationships between
nodes and then extend our definition of δi,j .

We define si → sj if and only if there is a directed path in
G from si to sj . For the starting revision sv , its ancestor set
contains the potential revisions that could be in Vl. We define
the ancestor set of a node si as

ance(si) = {sk ∈ V |sk → si}

To determine what lines a node si has changed or added,
we define the total effect of si as:

δi =
⋃

sk∈pred(si)
δk,i

Di =
⋃

sk∈pred(si)
Dk,i

Ai =
⋃

sk∈pred(si)
Ak,i

Ci =
⋃

sk∈pred(si)
Ck,i

Now we can define Vl as the set of revisions of sv and its
ancestors that add or change the line l:

Vl = {sj ∈ (ance(sv) ∪ {sv})|l ∈ (Aj ∪ Cj)}

An edge in El represents a path that does not go through
nodes in Vl. For si and sj such that si → sj , we define

si
Vl−→ sj if and only if there exists one or more directed

paths from si to sj and none of the intermediate nodes on
the path are in Vl. This relationship is used to describe the
development dependency between two nodes in Vl. We can
define El as:

El = {ei,j |(si, sj ∈ Vl) ∧ (si
Vl−→ sj)}

Note that a single ei,j in El can result from multiple directed
paths in the original G.

We now extend our definition of δi,j to the case where
si → sj so that δ can be used to describe ∆l. If
<si, sk1

, . . . , skm
, sj> is a directed path from si to sj , then

δi,j = δkm,j ◦ δkm−1,km ◦ · · · ◦ δi,k1

Note that the specific choice of the path is not important
because the result of composition of change sets is path
independent. ∆l then can be defined as

∆l = {δi,j |ei,j ∈ El}

We illustrate our subgraph definition with an example. In
the repository graph G shown in Figure 1, suppose we have
the following scenario: Line l was first introduced into the
project by Bob in revision 2 (s2). Alice changed l in revisions
3 and 4 in her branch. Jim changed l in revision 9 in his
branch. Bob merged Alice’s branch in revision 7. Since Alice
and Jim made independent changes to l, when Bob finally
tried to merge Jim’s branch, Bob had to solve the conflict by
taking either Alice’s change or Jim’s change; we assume that
Bob took Jim’s change. The structural authorship Gl is shown
in Figure 2.

B. Backward flow analysis

We calculate the structural authorship graphs in two steps.
In the first step, we use a backward flow analysis to calculate



Alice Bob Jim

s2

s3 s4

s7 s10

s9

δ2,7 = δ6,7 ◦ δ5,6 ◦ δ2,5 δ7,10
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δ2,9 =
δ8,9 ◦ δ5,8 ◦ δ2,5
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Fig. 2. An example of the structural authorship graph. Nodes in Vl =
{s2, s3, s4, s7, s9, s10} changed or added line l. Edges represent extended
development dependencies between revisions. δi,j on edge ei,j is the ex-
tended code change from si to sj .

input : V , E, F , and sv
output: {Vl|l ∈ F}
// The live lines that can reach sv

1 liveLines[sv] ← F ;
2 for si ∈ (ance(sv) ∪ {sv}) in reverse topological order in G

do
// Phase 1: calculate δ for si

3 for sk ∈ pred(si) do
4 δk,i ← ldiff (sk, si, F );
5 δi ← δi ∪ δk,i;

// Phase 2: update Vl

6 for l ∈ liveLines[si] do
7 if l ∈ Ai ∪ Ci then
8 Vl ← Vl ∪ {si};

// Phase 3: pass live lines to preds
9 for sk ∈ pred(si) do

10 for l ∈ liveLines[si] do
11 if l /∈ Ak,i then
12 liveLines[sk] ← liveLines[sk] ∪ {l};
13 liveLines[si] ← ∅;

Fig. 3. S-Author: An algorithm that extracts Vl for all lines of code in
file F starting at revision sv

Vl. In the second step, a depth first search is used to calculate
El and ∆l. In our repository graph abstraction, V and E can
be directly accessed through API of the underlying VCS, but
we have to use ldiff to calculate ∆ in our analysis.

In the first step, we use the backward flow analysis shown
in Figure 3 to extract Vl from the repository graph G. We
perform our analysis on all of the lines in a file F rather than
an individual line l for two reasons. First, by processing all
lines in F together, we can order the computation so that we
neither make redundant calls to ldiff nor store the results of
ldiff. Second, programmers usually want to view code history
in a context, so presenting histories of several lines together
is more useful.

Our algorithm calculates dataflow information for each node
and adds nodes to Vl. For node si, its dataflow information
records the live lines that can reach the starting node sv from
si before being deleted. We use a map liveLines that associates
a node to a set of live lines to efficiently update the dataflow
information. At the beginning, all lines in F are live (line 1).

Because G is acyclic, the traditional work list algorithm for
dataflow analysis is not necessary in our case. It is sufficient

to visit each node from sv in the reverse topological order of
G (line 2). For each node si, there are three major phases:
calculating change sets (lines 3-5), updating Vl (lines 6-8) and
passing live lines to the predecessors of si (lines 9-12).

In phase 1, we call ldiff to calculate a subset of ∆ that are
sufficient and necessary for the next two phases. In phase 2,
for each live line l, we determine whether si is in Vl or not
(line 7). In phase 3, we check whether the current live lines
will still be live in each predecessor sk of si (line 11). It is
possible that l will be dead along one branch, but still be live
along another branch.

The analysis finishes after it visits the virtual node s0. As a
special case, we can add s0 to Vl to represent the state where l
has not yet been introduced into the repository. For any l ∈ F ,
Vl are the nodes in the structural authorship graph.

The memory used for the results of ldiff in phase 1 can
be freed after the phase 3 in this iteration. ldiff produces the
δ between two files and has a relative high time complexity,
quadratic in terms of the size of the files [8]. Caching the
results of ldiff can avoid redundant calls to ldiff. But we
estimate that caching the results of ldiff on a large code
repository could take a few gigabytes of memory, which is
too much for a built-in tool for a VCS.

In the second step, for each node that we have determined
is in Vl, we can do a depth first search in G to calculate El

and ∆l according to our definitions.
The running efficiency of our algorithms both depends on

the actual sizes of structural authorship graphs. Gl could be as
large as G in theory. However, Gl is usually small in practice
(Section 5.1) and our algorithms show good performance.

IV. WEIGHTED AUTHORSHIP

The structural authorship graph Gl represents the complete
development history of a line of code l. However, existing
analysis tools typically operate on numerical or ordinal fea-
tures rather than a graph, so we wish to provide summaries
of this information in a form such tools can consume. We
define the weighted authorship of l to be a vector of author
contribution weights. For each author, we can then use the
weighted authorship to determine their contribution, model
their familiarity of the line, or estimate their efforts spent
on the line. This type of summary information is often used
to analyze software quality [5, 32], help familiarize new
developers [13], and estimate software development cost [26].

A. Model description

For a line of code l, we define the weighted authorship Wl

as a vector (c1, c2, . . . , cm). Each element ci is the percentage
of contribution made by developer i; elements in Wl sum
to 1. m is the total number of developers that changed l.
By examining Gl, we can determine the value of m. We
define each ci to be the number of characters attributed to
developer i divided by the total number of characters in l.
For example, if Alice, Bob and Jim are developers 1, 2 and
3, Wl = (30%, 20%, 50%) means that Alice, Bob, and Jim
contribute 30%, 20%, 50% of the line respectively. We use



input : l, Vl, El, and ∆l

output: attr: maps a character in l to its attributed node
1 Let sv be the last node that changed l;
// The live characters that can reach sv

2 liveC[sv] ← l;
3 for si ∈ Vl in reverse topological order in Gl do
4 if |pred(si)| == 1 then

// si is created by a normal commit
5 Let sk be the element in pred(si);
6 chars ← AC-BestEdit(l, δk,i);
7 for c ∈ liveC[si] ∩ chars do
8 if (c /∈ attr.keys()) or (tstamp(si) < tstamp(attr[c]))

then
9 attr[c] ← si;

10 liveC[sk] ← liveC[sk] ∪ (liveC[si] − chars);
11 else

// si is created by a merge commit
12 for sk ∈ pred(si) do
13 chars ← AC-BestEdit(l, δk,i);
14 liveC[sk] ← liveC[sk] ∪ (liveC[si] − chars);

Fig. 4. W-Author: An algorithm calculating the attribution map for l

characters as the unit of contribution because it is simple
and avoids being dependent on the programming language
used. While we do not consider the semantics of the code,
we do collapse white space to minimize the effects of simple
formatting changes. We do not isolate the affect of each
of these choices, however the experiments in the following
section show that these choices produce satisfactory results.

B. Algorithm

We calculate Wl based on Gl. We first attribute each
character in l to the node that introduced that character and
then attribute each node to the appropriate developer. We
define the attribution map attr to maintain this character-
to-node attribution. The node-to-developer attribution can be
done by checking the author label of each node.

We use the algorithm shown in Figure 4 to compute the
attribution map attr. The idea is to attribute a character to
the node in which the character is added or changed. The
algorithm first finds the last revision sv that changed l; this sv
is the starting point of our algorithm (line 1). For each node
in Gl, we maintain the live characters that can reach sv before
being deleted. All characters in l at sv are live (line 2). We visit
each node in Gl in reverse topological order. For each node si,
we distinguish whether si is created by a normal commit or
a merge commit by checking the number of its predecessors
(line 4). In both case, we define AC-BestEdit to calculate the
set of characters added or changed in this node (line 6 and
13). These characters are not passed to the predecessors of si.
For a normal commit, we update the attribution map and pass
the live characters (lines 5-10). For a merge commit, we only
pass the live characters (lines 12-14).

AC-BestEdit adapts the Wagner-Fischer algorithm [36] for
computing the best edit distance to calculate the set of
characters in l added or changed by si. In the Wagner-
Fischer algorithm, the best distance is defined as the minimum
number of steps needed to change a source string to a target

string. Each step can be adding, deleting, or substituting a
character. The algorithm computes a shortest path and returns
the minimal number of steps. For an edge ek,i ∈ El, the string
in sk is the source string and the string in si is the target string.
AC-BestEdit calculates the shortest path to change the source
string to the target string using Wagner-Fischer, and it returns
the set of characters added or changed by si.

A normal commit has a single predecessor sk. A character
that is added or changed in this node may be also added
or changed independently in other nodes (in other branches).
Since characters are the unit of contribution, we do not divide
the contribution of a character among the multiple commits.
In this case, we attribute the character to the node with the
earlier commit timestamp (line 8).

For a merge commit, we assume that the commit is either
produced during an automatic merge by the VCS or manual
selections from one of the multiple branches; therefore a merge
commit does not introduce new characters. Since the added
or changed characters in one branch actually come from other
branches, we just ignore these characters in this merge commit
and attribute them to other branches.

The performance of the algorithm depends on the size of
Gl. As we will discuss in the next section, the size of Gl is
usually small. In our experience, running this algorithm on all
lines in a file finishes in around second.

V. EVALUATION

We implemented our structural authorship model and
weighted authorship model in a new git built-in tool: git-
author. git-author uses a syntax similar to that of git-blame
so has a familiar feel to current users of git. We designed
two experiments to compare our new authorship models to the
current model that only reports the last change to a line. In the
first experiment, we ran git-author on five open source code
repositories to study the number of lines that were changed in
multiple commits and the number of lines that were changed
by multiple authors. This experiment shows that git-author
can recover more information than git-blame on about 10% of
lines. The results show that most lines are touched only by one
author in one commit and the cooperation between developers
is restricted to small regions of code. We hypothesized that
these small regions of code contain rich information about
the software development process and that analysis tools can
benefit from this extra information. We conducted our second
experiment to verify this hypothesis. Our second experiment
evaluated whether the additional information would be useful
to build a better analysis tool. We built a new line-level model
for source code bug prediction and compared it with the best
previously report work on a file-level model [22]. We found
that our line-level model consistently performed better than the
file-level model. This demonstrates that our new authorship
models can help build better analysis tools.

A. Multi-author study

In this experiment, we ran git-author on the following
five open source projects: Dyninst [31], the Apache HTTP



Repository Multi. Commits Multi. Authors # of lines

Dyninst 53K (12.11%) 40K (9.12%) 434K
Httpd 27K (10.90%) 20K (8.15%) 247K
GCC 279K (8.08%) 217K (6.27%) 3454K
Linux 1440K (9.69%) 1072K (7.22%) 14857K
GIMP 122K (12.82%) 78K (8.12%) 955K

TABLE I
NUMBER OF LINES CHANGED BY MULTIPLE COMMITS AND MULTPLE

AUTHORS. THE SECOND COLUMN SHOWS THE NUMBER OF LINES
CHANGED IN MULTIPLE COMMITS AND THE PERCENTAGE THEY ACCOUNT

FOR IN THE REPOSITORY. THE THIRD COLUMN SHOWS THE SAME
INFORMATION FOR LINES THAT CHANGED BY MULTIPLE AUTHORS.

server [1], GCC [15], the Linux Kernel [24], and Gimp [16],
extracting the structural authorship for each line of the code.
We then counted the number of nodes and the number of
authors in each structural authorship graph. Note that we did
not run git-blame on the five projects because git-blame would
output only one commit and one author for each line of code.

The results are shown in Table I. About 10% of lines
are changed by multiple commits and about 8% of lines
are changed by multiple authors. git-author produces more
information than git-blame on these lines.

B. Line-level bug prediction

Our second experiment evaluated whether the information
provided by git-author would be helpful to build a better bug
prediction model. We show that we can build a line-level bug
prediction model that is more effective than the best previously
reported work on a file-level model by Kamei, Matsumoto at
el. [22]. To the best of our knowledge, we are the first project
to try to predict bugs at the line level.

We first give an overview of bug prediction and our ex-
periment. We then introduce our new line-level model and
the file-level model we compared it to. We discuss our data
sets and the metrics used to evaluate the models. Finally, we
present our results.

1) Overview: Many research efforts have been dedicated
to source code bug prediction to prioritize software testing
[18, 20, 22, 29, 30]. Two comprehensive surveys are from
Arisholm, Briand, al el. [2] and D’Ambros, Lanza al et. [9].

Three decisions affect the performance of a bug prediction
model: the granularity of prediction, a set of bug predictors,
and a machine learning technique that trains the model and
predicts bugs. Using git-author changes the granularity of
prediction to the line level and introduces new bug predictors.
We do not explore the influence of different machine learning
techniques as it is beyond the scope of this paper.

Most of the existing source code bug prediction models
predict at the granularity of a source file [18, 28] or even a
module [29, 30]. The disadvantage of coarse-grained predic-
tion models is that, even if the prediction results are accurate,
developers still have to spend effort to locate the bugs within
a module or file. Predicting at a finer granularity, such as at
the method level can help to reduce the problem [20, 23]. Our
line-level model can locate the suspected lines and help focus

Level Predictor
name

Definition

Line WA Weighted authorship defined in Section 4
NOA # of authors
NOC # of commits
LEN Length of the line
VAR Variance of the length of the line across all

commits in Gl

FIX # of times a line involved in a bug-fix commit
REF # of times a line involved in a refactoring commit
COM Whether a line is a comment
AGE The age of the line

File [22] Codechurn Sum of (added lines of code - deleted lines of
code)

LOCAdd Sum of added lines of code over all revisions
LOCDel Sum of deleted lines of code over all revisions
Revisions # of revisions
Age The age of the file
BugFixes # of times a file involved in a bug-fix commit
Refactor # of times a file involved in a refactoring commit

TABLE II
BUG PREDICTORS USED IN THE STUDY.

testing efforts. It uses the development history of lines of code
provided by git-author to make prediction. Note that since the
development history of a line of code produced by git-blame
is incomplete, it is impractical to do line-level prediction with
git-blame. We compared our line-level model to the file-level
model because predicting at a file level is well understood.

Two types of bug predictors are commonly used: product
predictors that summarize code in the predicting snapshot
[41] and process predictors that summarize the history of
the predicting snapshot [28]. The process predictors have
been shown to be more effective than the product predictors
[22, 28]. In our experiment, most of our predictors are process
predictors.

Many machine learning techniques have been adopted for
bug prediction. However, previous studies have shown that
the influence of bug predictors on the final prediction results
is much larger than the chosen machine learning technique
[2, 22]. Therefore, we selected linear learning techniques for
both our line-level model and the file-level model. We do not
believe this choice will have a noticeable effect on our results.

2) Models: The goal of our line-level model is, given a
line of code, to output the probability that the line is buggy.
Based on these outputs, a developer could prioritize testing
of the software to the lines with higher probabilities of being
buggy. We used a linear SVM as the learning technique in
our line-level model [12]. The predictors in our new model
are shown in Table II. We introduce new predictors including
the weighted authorship, the length of the line, the variance of
the length of the line across all commits in Gl, and whether
the line is a comment. The other predictors were adapted from
existing file-level predictors. We compute the values of these
line-level predictors from the outputs of git-author.

We compared our line-level model to the file-level model
from Kamei, Matsumoto et al. [22]. Their model outputs the
predicted fault density when given a file. They compared
the prediction results of using process predictors and product



predictors with three learning techniques: linear regression
[10], regression tree [7], and random forest [6]. Their results
showed that using process predictors produced consistently
better results than using product predictors and combining
them together did not provide further advantages. Therefore,
we implemented the file-level process predictors listed in
Table II. We chose the logistic regression [12], one type of
linear regression, as the learning technique of the file-level
model to match the linear SVM used in our line-level model.

Note that when evaluating the effects of git-author, it
would have been preferable to use the same machine learning
technique in the line-level model and the file-level model.
However, because the outputs of the line-level model and the
file-level model are different, we cannot use the exact same
learning technique. Therefore, we can only try to minimize the
effects on performance from the factors rather than git-author.

3) Data collection: We are unaware of existing bug predic-
tion data sets with line-level predictors; instead we generated
new such data sets. Producing a bug prediction data set takes
two steps. We first create a bug map from a bug record in
the bug database to the pair of commits that caused the bug
and fixed the bug. We then choose a time point, typically
a release, and use the bug map to produce data instances
for this snapshot. The second step is repeated at several
different release time points so that we could do cross release
prediction.

For the first step, we used the SZZ algorithm [35] to find
buggy commits and the corresponding fixing commits that
fixed the bugs in the Apache HTTP server repository. The
quality of the results in this step is improved by Relink [37],
which addresses the problem of missing valid mappings in the
original SZZ algorithm [4].

In the second step, we projected the bug map onto the
chosen snapshot. A bug is relevant to the snapshot if and
only if the snapshot is inside the time interval between the
buggy commit and the fixing commit. For each relevant bug,
we first produced line-level data, and then summarized the
data into file-level data. We assume the lines that are deleted
or changed in the fixing commit are the buggy lines. Two
methods can be used to summarize the line-level data. We
can either count all buggy lines as a single bug or count the
lines separately. The first method assumes that it takes the
same effort to fix every bug, while the second method takes
this factor into consideration. We adopted both methods and
produced two data sets.

We collected data for seven releases in the Apache HTTP
server project and produced two data sets described above.
The first data set is denoted as “Bug count” and the other one
is denoted as “Line count”. Table III summarizes our data sets.

4) Evaluation metrics: Many metrics are used to evaluate
bug prediction models. The most commonly used metrics
include precision and recall [29, 30], the area under the curve
(AUC) of ROC curves [27, 28], and effort-aware metrics
[22, 25]. Comparison studies have shown that the choices of
metrics can significantly affect the performance of prediction
models [2, 9]. The difference of performance on metrics does

Release # of files # of bugs SLOC # of buggy lines

2.1.1 305 129 177K 670
2.2.0 319 171 202K 746
2.2.6 320 167 205K 708
2.2.10 321 172 207K 664
2.3.0 383 179 207K 680
2.3.10 372 195 218K 747
2.4.0 362 181 223K 555

TABLE III
SUMMARY OF THE DATA SETS. EACH ROW IN THE TABLE SUMMARIZES
THE NUMBER OF FILES, BUGS, LINES OF CODE, AND BUGGY LINES IN A

RELEASE SNAPSHOT OF APACHE.

not mean inconsistent results because different metrics are
designed to answer different questions. We use the effort-
aware metrics because they are domain specific metrics for
bug prediction. They measure not only the accuracy of the
predicting results but also the efforts needed to fix the bugs.

In our study, we use two effort-aware metrics: Popt, which
measures the closeness of a model to the optimal file level
model [25] and cost-effectiveness (CE), which measures the
advantages of that model over a random prediction model [2].
The idea of effort-aware metrics is that a developer can first
test or inspect the most suspicious lines or the files with largest
fault densities and see how many percent of bugs can be found.
The assumption is that the effort needed to test a piece of code
is roughly proportional to the size of the code [2]. Using the
percent of lines tested as the x-axis and the percent of bugs
covered as the y-axis, we can draw a curve to visualize the
performance of a model. We denote the area under the curve
of a model m as AUC(m). Popt and CE can be defined as:

Popt(m) = 1− (AUC(FileOptimal)−AUC(m))

CE(m) = AUC(m)−AUC(Random)
AUC(FileOptimal)−AUC(Random)

In the above formulas, the file optimal model tests files in
decreasing order of the fault densities. It represents the upper
bound of a file level model. The random model orders the
files randomly. We use the average performance of the random
model in the CE formula, which is a straight line from (0, 0)
to (1, 1). For both Popt and CE, larger values mean better
performance. When the values are larger than 1, the model m
performs better than the optimal file-level model.

5) Results: We performed cross release prediction on our
data set. We chose cross release prediction instead of cross-
validation inside a release because the cross-release prediction
represents the real practice of how a bug prediction model is
used. We used Liblinear to do training and prediction on our
two data sets [12]. We denote our line-level model as lm, the
file-level model as fm, and the optimal file-level model as
fmo.

In the “Bug count” data set, we need to aggregate line-
level prediction results into the bug count. We provide three
interpretations for our line level models. The first one is that
we can identify a bug as long as any line comprising bug is
identified. This is the optimistic interpretation and represents
the maximal benefits that can be acquired by using our line-
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Fig. 5. Cross release prediction from 2.2.10 to 2.3.0 on “Bug count” data
set. The x-axis is the percentage of source line of code to test. The y-axis is
the percentage of bugs that can be identified.

level model. The second one is that we take partial credit
when we identify a buggy line. For example, if we identify
one buggy line for a five-line bug, we say we find 20% of a
bug. This is the average interpretation and assumes that the
more information about a bug is provided, the more likely
the bug can be identified. The third one is that only after we
identify all buggy lines of a bug, we cover the bug. This is
the pessimistic interpretation. We denote the three views as
lmopti, lmavg , and lmpes.

The results for the “Bug count” data set are shown in
Table IV. Our results of Popt(fm) are consistent with the
results shown by Kamei, Matsumoto at el. [22]. The results
of CE(fm) are slightly better but still consistent with the
results shown by Arisholm, Briand et al. [2]. Therefore, we
believe that our implementation of fm is comparable to other
implementations and that we can compare our lm to this
implementation of fm.

The optimistic interpretation and the average interpretation
are consistently much better than the file model in both Popt

and CE. The pessimistic interpretation loses to the file model
slightly in two rounds of prediction but has a much higher
mean value. All the three interpretations have much smaller
standard deviation than the file model, so prediction results are
more stable on line level. Notice that the value of Popt(lmopti)
and CE(lmopti) in row “2.3.10 → 2.4.0” are larger than 1,
which shows that the performance of the line level model can
even exceed the upper bound of file level models.

Figure 5 shows the prediction results of training on release
2.2.10 and predicting on release 2.3.0. If we only test a small
amount of code, the lmopti is actually better than the fmo,
but the lmpes is a little bit worse than the fm. As we test
more code, the three interpretations of the line-level model
are consistently better than the fm.

The “Bug count” data set assumes that every bug involves
the same amount of work to fix. We use the “Line count”
data set to measure how many buggy lines can be covered
during testing. The overall results are shown in Table V and
confirm that the line level model consistently performs better

Train → Predict Popt CE
lm fm lm fm

2.1.1 → 2.2.0 0.9148 0.8113 0.7925 0.5404
2.2.0 → 2.2.6 0.9425 0.7704 0.8578 0.4321
2.2.6 → 2.2.10 0.9470 0.7860 0.8658 0.4579
2.2.10 → 2.3.0 0.9153 0.8288 0.7834 0.5624
2.3.0 → 2.3.10 0.8660 0.7711 0.6590 0.4173
2.3.10 → 2.4.0 0.9343 0.8860 0.8299 0.7050
Mean 0.9200 0.8089 0.7981 0.5192
Standard Deviation 0.0271 0.0404 0.0692 0.0988

TABLE V
RESULTS OF “LINE COUNT” DATA SET.
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Fig. 6. Cross release prediction from 2.2.10 to 2.3.0 on “Line count” data
set. The x-axis is the percentage of source line of code to test. The y-axis is
the percentage of buggy lines that can be identified.

in both Popt and CE. Figure 6 shows the results of training
on release 2.2.10 and predicting on release 2.3.0 in the “Line
count” data set. The line level model performs better than the
file level model over all ranges of the curve.

In summary, our two experiments confirm the effectiveness
of our new authorship models. The first experiment shows
that git-author provides more information than git-blame by
the structured authorship model. The second experiment shows
that the information is useful to build better analysis tools.

VI. RELATED WORK

Three types of studies are related to our work: code author-
ship extraction and visualization [14, 21], software quality and
maintenance analysis using code authorship [5, 13, 32], and
mining software repositories for histories of source code enti-
ties [3, 17, 19, 34, 40]. The first type is similar to our work in
terms of the final goal that is to present authorship information
to users, but the approaches and the granularity are different.
The second type consumes authorship information to analyze
software quality or to improve developer familiarization. The
third type shares a similar approach with our work. We now
discuss each type of studies in more detail.

Syde [21] is a system built on Eclipse that collects every
change made by developers. Syde records changes made by
developers when they try to compile the code. They then define
the owner of a file as the developer making the most number
of changes. With Syde’s change log, refined ownership can



Train → Predict Popt CE
lmopti lmavg lmpes fm lmopti lmavg lmpes fm

2.1.1 → 2.2.0 0.9695 0.9392 0.9023 0.8321 0.9132 0.8243 0.7220 0.5221
2.2.0 → 2.2.6 0.9884 0.9632 0.9297 0.8166 0.9664 0.8935 0.7965 0.4693
2.2.6 → 2.2.10 0.9997 0.9706 0.9339 0.8453 0.9990 0.9148 0.8082 0.5509
2.2.10 → 2.3.0 0.9647 0.9325 0.8965 0.8716 0.8956 0.8007 0.6943 0.6208
2.3.0 → 2.3.10 0.9664 0.9275 0.8848 0.8870 0.8961 0.7756 0.6433 0.6504
2.3.10 → 2.4.0 1.0013 0.9665 0.9245 0.9267 1.0040 0.8979 0.7700 0.7769
Mean 0.9817 0.9499 0.9120 0.8632 0.9457 0.8511 0.7391 0.5984
Std. Dev. 0.0154 0.0173 0.0184 0.0368 0.0460 0.0532 0.0585 0.0998

TABLE IV
RESULTS OF “BUG COUNT” DATA SET. THE TWO BOLD NUMBERS IN ROW “2.3.10 → 2.4.0” ARE LARGER THAN ONE INDICATING THAT THE

PERFORMANCE OF OUR LINE LEVEL MODEL CAN EXCEED THE UPPER BOUND OF ANY FILE LEVEL MODEL.

be extracted on file level. Our work differs from Syde in two
ways. First, our authorship models are on line level. Second,
our models are applicable to existing repositories and do not
require extra compile-time information.

Rahman and Devanbu [32] analyze the relationship between
code authorship and the number of defects in four open
source projects. They define a file-level authorship model that
computes the percentage of lines owned by each developer
using git-blame. Fritz, Ou and et al. [13] use code authorship
data and developer interaction data to model source code
familiarity. Their authorship model is at the source code
element level including class, method and field. We believe
these studies can benefit from our new authorship models by
aggregating accurate line-level authorship information into the
corresponding granularities.

Kenyon [3], APFEL [40], Beagle [17] and Historage [19]
mine software repositories to produce the history of code
entities at granularities finer than files. Their goal is to
produce rich semantics for code changes including adding,
deleting, modifying, renaming and moving. Our work differs
from theirs in two perspectives. First, these tools use heavy-
weight semantic analysis for rich semantics of code changes.
Therefore, results have to be stored in a relational database for
later queries. On the contrary, our tool is light-weighted and
can produce results on the fly. Second, our tool is designed to
be a built-in tool of git, so it is easy to use for users who are
familiar with git.

Servant and Jones [34] define the history slice to represent
the history of a line of code. Like our structural authorship, it
contains the revisions that changed the line. Unlike our model,
it ignores branches and assumes that a later revision is based
only on a prior revision. Therefore, two independent revisions
in different branches can be dependent in history slice.

VII. CONCLUSION

We have presented two line-level authorship models: the
structural authorship, which represents the complete devel-
opment of a line of code, and the weighted authorship,
which summarizes the structural authorship to produce author
contribution weights. Our two authorship models overcome
the limitations of the current methods that only report the last
change to a line of code. We define the repository graph as a
graph abstraction for a code repository and define a backward

flow analysis on the repository graph that derives the structural
authorship. Another backward flow analysis is used on the
structural authorship to compute the weighted authorship. We
have implemented our two authorship models in a new git
built-in tool git-author. We have evaluated git-author in two
experiments. In the first experiment, we ran git-author on
five open source projects and find that git-author can recover
more information than git-blame on about 10% of the lines.
In the second experiment, we built a line-level model for bug
prediction based on the output of git-author. We compared
our line-level model with a representative file-level model and
found that our line-level model is consistently better than the
file-level model on our data sets. These results show that our
new authorship models can produce more information than
the existing methods and that information is useful to build a
better analysis tool.
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