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The Homoclinic Orbit Solution for Functional Equation
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Abstract In this paper, some examples, such as iterated functional systems, scaling cquation of wavelet transform,
and Invariant measure systemn, are used to show that the homoclinic orbit sclutions exist in the functional equations too.
And the solitary wave exists in generalized dynamical systems and functional systems.
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1 Introduction

We have shown that the solitary wave solutions exist
in conservative or dissipative partial differential cquations,
where the solitary wave corresponds to the homoclinic
orbit for ordinary differential equations.! % Because we
want to know whether homoclinic orbit can exist in func-
tional equations, we will show in this paper that the ho-
moclinic orbit exists in iferated functional systems, scal-
ing equation systems in wavelet transform and invariant

measure systems.

2 Tterated Functional System

Early in 1989, Prof. Haol8l pointed out that the ho-
moclinic orbit exists in iterated functionzl systems.

The logistic map

(1}
as shown in Fig. 1 obviously has two unstable fixed points
z" = 0 and ™ = 3/4. Starting from z = 1/2, twice itera-
tion will make it arrive at the unstable fixed point z* = 0,
Le., it ieads to definite number sequence

Tntl = f(-'ﬂ-n) = 4$n(1 - Iﬂ) ]

(2)

[u other words, the forward iteration falls into the unsta-
ble fixed point z* = 0. The backward iterations, i.e. from

1/2,1,0,0,0,....

Tni1 t0 z,, return to the same fixed point z* = 0 too.
Therefore, the iterative sequence from = = 1/2 forms
as follows:

(3)

This is a homoclinic orbit which approaches z* = 0 as a
limit when n — #oo. In Fig. 1, it is denoted by thick lines
with arrows. The points 1/2 and 1 are called homeoclinic
Poings, which are immersed into the stable set of z* = G
and the unstable set of * = G, and they are homoclinical
toz* = (.

0,0,---,1/2,1,0,0.
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Fig. 1 The homoclinic orbit in map Eq. {1).

3 Scaling Equation for Wavelet Transform

Wavelet transform is a powerful multi-resolution anal-
ysis tool.["8] The father wavelet or scaling function (¢}
has one particularly desirable property: it is O everywhere
except a small closed interval.

For example, Haar father wavelet is

1,
0,

0<t<l,

o0 = { o

otherwise,

as shown in Fig. 2. Because ¢(t) approaches to 0 as
t — oo, then ¢(¢) is a homoclinic orbit.
It is easily proved that ¢(t) satisfies the following scal-

ing equation {or two-scale relation):®)

¢(t) = o(2¢) + ¢(2t - 1. (5)

From Fig. 2, we see that the left-hand side of Eq. (5) is
a square wave, the scale of the first term @(2t) on the
right-hand side of Eq. (5} is the half as large as ¢(t), and
the second term @(2¢ — 1) is the result that ¢(2t) shifts
rightwards by half unit.
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Fig. 2 Haar father wavelet.

In addition, scaling function for tent map

£ 0<t<l,
¢ty=4{ t-12, 1<t<?2, (6}
a, otherwise ,

is also @ homoclinic orbit. It is the sclution of the following
functional equation

1, o 1
o(t) = o2 +¢(2t —1) + 5920 -2).  (7)
The quadratic Battle-Lemarie scaling function
1
~12, 0<t<,
7 =
a 3
P43t 1<t<?,
ZORE 2 (8)
6(tﬁ3)25 24t <3,
0, otherwise,

is a continuous and differentiable homoclinic orbit and
satisfies the following functional equation

Bft) = 79(20) + 16(2 1) + (26— 2) + Lo(21 - 3).(0)

-

4 Invariant Measure of One-Dimensional Map

If s(x) is & one-dimensional map in unit interval [0, 1],
then density evelution equation of the probability den-
sity function f(x) for the successive iterated sequence zg,
s{xo), 8%(zp),. .. can be written asl!0:*1]

d

Pr@ =g [ s, o)

where P is called Frobenius-Perron operator, 8§~
inverse map of s.

' s an
For example, the tent map

(11)

bt B

2z, <
8(z) = {

21-z), ;<<

whose invariant measure f(z} computed from Eq. {10) is
1 /x 1 sz

pi = 1(3) - G -)
Hay=3135)+3f 5

that is, f{x) satisfies (he functional equation

=305+ 1G]

which is similar to Eq. (5). The scale of f(x) is the half
of f{z/2). The sclution of Eq. (13) is

=

which is a homoclinic orbit too.
In addition, the dyadic transform is

3(3)_{2$’

2r -1, j<z<l,

(12)

(13)

1, 0<z <1,
. (14)
0, otherwise |

O§m<%,

whose density function f{z) is the evolution equation

o= bE) Gy
Le., f(z) satisfies functional equation
1 sz 1./ 1
e =50(3) 5/ (5+2) (7)
The solution of Eq. {17) is
1, 0<e <,
Je) = { 0, otherwise, (18)

which is alse a homeoclinic orbit,

So, it is obvious that there exists a homoclinic orbit
among the iterated functional systems, the scaling equa-
fion systerns in wavelet transform and invariant measure
systems. It is a generalized homoclinic orbit.
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