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Abstract. In this paper, we present a robust, decentralized approach to RF-based
location tracking. Our system, called MoteTrack, is based on low-power radio
transceivers coupled with a modest amount of computation and storage capa-
bilities. MoteTrack does not rely upon any back-end server or network infras-
tructure: the location of each mobile node is computed using a received radio
signal strength signature from numerous beacon nodes to a database of signa-
tures that is replicated across the beacon nodes themselves. This design allows
the system to function despite significant failures of the radio beacon infrastruc-
ture. In our deployment of MoteTrack, consisting of 20 beacon nodes distributed
across our Computer Science building, we achieve a50th percentile and80th

percentile location-tracking accuracy of 2 meters and 3 meters respectively. In
addition, MoteTrack can tolerate the failure of up to 60% of the beacon nodes
without severely degrading accuracy, making the system suitable for deployment
in highly volatile conditions. We present a detailed analysis of MoteTrack’s per-
formance under a wide range of conditions, including variance in the number of
obstructions, beacon node failure, radio signature perturbations, receiver sensi-
tivity, and beacon node density.

1 Introduction
Using radio signal information from wireless transmitters, such as 802.11 base stations
or sensor network nodes, it is possible to determine the location of a roaming node with
close to meter-level accuracy [1, 2]. SuchRF-based location tracking systemshave a
wide range of potential applications. We are particularly concerned with applications
in which therobustnessof the location-tracking infrastructure is at stake. For example,
firefighters entering a large building often cannot see due to heavy smoke coverage and
have noa priori notion of building layout. An RF-based location tracking system would
allow firefighters and rescuers to use a heads-up display to track their location and
monitor safe exit routes [3]. Likewise, an incident commander could track the location
of multiple rescuers in the building from the command post. Such capabilities would
have greatly improved FDNY rescue operations on September 11, 2001, according to
the McKinsey reports [4].

We note that our system needs to be installed and calibrated before it can be used.
We consider this part of bringing a building “up to code”, similar to installing smoke
detectors, fire and police radio repeaters in high-rise buildings, and other such safety
devices. For scenarios where an offline calibration is infeasible (e.g. because the emer-
gency is in a remote location such as a field, highway, etc.), our scheme as described in
the paper is not appropriate. It remains an open research question how to address this
issue, and we provide some suggestions in the future work section.

RF-based location tracking is a well-studied problem, and a number of systems have
been proposed based on 802.11 [1, 5, 6, 2, 7] or other wireless technologies [8]. To date,



however, existing approaches to RF-based localization arecentralized(i.e., they require
either a central server or the user’s roaming node, such as PDA or laptop, to compute
the user’s location) and/or use apowered infrastructure. In a fire, earthquake, or other
disaster, electrical power, networking, and other services may be disabled, rendering
such a tracking system useless. Even if the infrastructure can operate on emergency
generator power, requiring wirelessconnectivityis impractical when a potentially large
number of wireless access points may themselves have failed (e.g., due to physical
damage from fire).

In addition, most previous approaches arebrittle in that they do not account for
lost information, such as the failure of one or more transmitters, or perturbations in RF
signal propagation. As such, existing approaches are inappropriate for safety-critical
applications, such as disaster response, in which the system must continue to operate
(perhaps in a degraded state) after the failure of one or more nodes in the tracking
infrastructure.

In this paper, we present arobust, decentralizedapproach to RF-based localization,
calledMoteTrack. MoteTrack uses a network of battery-operated wireless nodes to mea-
sure, store, and compute location information. Location tracking is based on empirical
measurements of radio signals from multiple transmitters, using an algorithm similar to
RADAR [1]. To achieve robustness, MoteTrack extends this approach in three signifi-
cant ways:

– First, MoteTrack uses a decentralized approach to computing locations that runs on
the programmable beacon nodes, rather than a back-end server.

– Second, the location signature database is replicated across the beacon nodes them-
selves in a fashion that minimizes per-node storage overhead and achieves high
robustness to failure.

– Third, MoteTrack employs a dynamic radio signature distance metric that adapts to
loss of information, partial failures of the beacon infrastructure, and perturbations
in the RF signal.

In our deployment of MoteTrack, consisting of 20 beacon nodes distributed over
one floor of our Computer Science building, we achieve a50th percentile and80th per-
centile location-tracking accuracy of 2 meters and 3 meters respectively, which is simi-
lar to or better than other RF-based location tracking systems. Our approach to decen-
tralization allows MoteTrack to tolerate the failure of up to 60% of the beacon nodes
without severely degrading accuracy, making the system suitable for deployment in
highly volatile conditions. We present a detailed analysis of MoteTrack’s performance
under a wide range of conditions, including variance in the number of obstructions,
beacon node failure, radio signature perturbations, receiver sensitivity, and beacon node
density.

2 Background and Related Work
A number of indoor location tracking systems have been proposed in the literature,
based on RF signals, ultrasound, infrared, or some combination of modalities. Our goal
is to develop a system that operates in a decentralized, robust fashion, despite the fail-
ure of individual beacon nodes. This robustness is essential in order for the system to
be used in disaster response, firefighting, or other critical applications in which a cen-
tralized approach is inappropriate.

As mentioned previously, RF-based location tracking has been widely studied [1,
9–11, 8, 12, 5, 6, 2]. Given a model of radio signal propagation in a building or other
environment, received signal strength can be used to estimate the distance from a trans-
mitter to a receiver, and thereby triangulate the position of a mobile node [13]. However,



this approach requires detailed models of RF propagation and does not account for vari-
ations in receiver sensitivity and orientation.

An alternative approach is to use empirical measurements of received radio signals
to estimate location. By recording a database of radio “signatures” along with their
known locations, a mobile node can estimate its position by acquiring a signature and
comparing it to the known signatures in the database. A weighting scheme can be used
to estimate location when multiple signatures are close to the acquired signature. All of
these systems require that the signature database be collected manually prior to system
installation, and rely on a central server (or the user’s mobile node) to perform the
location calculation.

Several systems have demonstrated the viability of this approach. RADAR [1] ob-
tains a75th percentile location error of just under 5 meters, while DALS [12] obtains an
87th percentile location error of about 9 meters. These basic schemes have also been ex-
tended to improve accuracy for tracking moving targets [9]. MoteTrack’s basic location
estimation uses a signature-based approach that is largely similar to RADAR. Our goal
is not to improve upon the accuracy of the basic signature-based localization scheme,
but rather to improve the robustness of the system through a decentralized approach.

Ultrasound-based systems, such as Cricket [14, 15] and the Active Bat [16], can
achieve much higher accuracies using time-of-flight ranging. However, these systems
require line-of-sight exposure of receiver to ultrasound beacons in the infrastructure,
and may require careful orientation of the receiver. Such an approach is acceptable for
infrequent use by unencumbered users in an office environment, but less practical for
rescue workers. A multimodal system would be able to achieve high accuracy when
ultrasound is available and well-positioned, and fall back on less-accurate RF signal
strength otherwise. Infrared-based systems, including the Active Badge [17], can lo-
calize a user to a specific area with direct line-of-sight exposure to the IR beacon, but
suffer errors in the presence of obstructions and differing light and ambient IR levels
(as in a fire).

2.1 MoteTrack goals and challenges
We first define what we mean byrobustnesswith respect to location tracking. Signature-
based localization schemes require a set of base stations, generally at fixed locations,
to either transmit periodic beacon messages or receive signals from mobile nodes. One
form of robustness, then, is graceful degradation in location accuracy as base stations
fail (say, due to fire, electrical outage, or other causes).

Another form of robustness is resiliency to information loss. For example, a mobile
node may be unable to communicate with an otherwise active base station, due to poor
antenna orientation, multipath fading, interference, or other (perhaps transient) effects.
If the tracking system assumes complete information when comparing RF signatures,
this partial information loss may lead to large errors.

A third type of robustness has to do with perturbations in RF signals between the
time that the signature database was collected and the time that the mobile node is using
this information to estimate location. Due to the movement of base stations, furniture,
opening or closing of doors, and other environmental conditions, an RF signature may
no longer be valid after it has been initially acquired. The tracking system should work
well even in the presence of this kind of variance in the received RF signals.

The final type of robustness has to do with the location estimation computation
itself. As mentioned before, most of the previous work in this area has employed a
central server to collect RF signatures and compute a mobile node’s location. This ap-
proach is clearly undesirable since this server is a single point of failure. Traditional
fault-tolerance schemes, such as server failover, are still susceptible to large-scale out-
ages of electrical power or the wired network infrastructure.
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Fig. 1. The MoteTrack location system.B1, B2, andB3 are beacon nodes, which broadcast
beacon messages at various transmission powers (p1, p2, etc.). Each beacon node stores a subset
of all reference signatures.M is a mobile node that can hear from all three beacon nodes. It
aggregates beacon messages received over some time period into a signature. The areas marked
by red perimeters indicate the reachability of beacon messages from the corresponding beacon
node.

Given these goals, a number of challenges arise that we wish to address through
MoteTrack. First, the collection of RF signatures and location calculation must be re-
silient to loss of information and signal perturbation. This requires a signature distance
metric that takes loss into account, avoiding explosion of error when one or more base
stations cannot be contacted.

Another set of challenges has to do with decentralizing the location tracking system.
One approach is to allow the base station nodes themselves to perform location estima-
tion, rather than relying on a central server. This leads to questions about the required
resources and cost of the base stations, and whether they can be readily programmed to
provide this functionality. An alternative is to allow the mobile device to perform loca-
tion estimation directly. In its simplest form, the entire RF signature database could be
stored on the mobile node. In cases where a mobile user only carries a small RF beacon
or listener (e.g., embedded into a firefighter’s equipment), this may not be feasible.

3 MoteTrack Overview
In this section we give an overview of the MoteTrack system, shown in Figure 1. Mote-
Track is based on low-power, embedded wireless devices, such as the Berkeley Mica2
sensor “mote.” The advantages of this platform over traditional 802.11 base stations
are that Mica2 motes are inexpensive, small, low-power, and (most importantly)pro-
grammable— we can easily push new programs and data to each device via their radio.
However, the MoteTrack approach could be readily applied to other wireless networks
based on 802.11, Bluetooth, or 802.15.4, given the ability to program base stations ap-
propriately.

In MoteTrack, a building or other area is populated with a number of Mica2 motes
acting asbeacon nodes. Beacon nodes broadcast periodicbeacon messages, which con-
sist of a tuple of the format{sourceID, powerLevel}. sourceIDis the unique identifier
of the beacon node, andpowerLevelis the transmission power level used to broadcast



the message. Each mobile node that wishes to use MoteTrack to determine its location
listens for some period of time to acquire asignature, consisting of the set of beacon
messages received over some time interval. Finally, we define areference signatureas
a signature combined with a known three-dimensional location(x, y, z).

The location estimation problem consists of a two-phase process: anoffline col-
lection of reference signatures followed byonline location estimation. As in other
signature-based systems, the reference signature database is acquired manually by a
user with a laptop and a radio receiver. Each reference signature, shown as gray dots
in Figure 1, consists of a set ofsignature tuplesof the form{sourceID, powerLevel,
meanRSSI}. sourceIDis the beacon node ID,powerLevelis the transmit power level
of the beacon message, andmeanRSSIis the mean received signal strength indication
(RSSI) of a set of beacon messages received over some time interval. Each signature is
mapped to a known location by the user acquiring the signature database.

In MoteTrack, beacon nodes broadcast beacon messages at a range of transmission
power levels. Using multiple transmission power levels will cause a signal to propagate
at various levels in its medium and therefore exhibit different characteristics at the re-
ceiver. In the most extreme case, a slight increase in the transmission power may make
the difference between whether or not a signal is heard by a receiver. Varying transmis-
sion power therefore diversifies the set of measurements obtained by receiving nodes
and in fact increases the accuracy of tracking by several meters in our experiments (see
Section 6.4).

3.1 Location estimation

Given a mobile node’s received signatures and the reference signature setR, the mobile
node’s location can be estimated as follows. (In this section, we discuss the approach as
though it were centralized; in Section 4 we present our decentralized design.) The first
step is to compute thesignature distances, from s to each reference signatureri ∈ R.
We employ the Manhattan distance metric,

M(r, s) =
∑
t∈T

|meanRSSI (t)r −meanRSSI (t)s|

whereT is the set of signature tuples represented in both signatures, andmeanRSSI (t)r

is the mean RSSI value in the signature tuplet appearing in signaturer. Other dis-
tance metrics, such as Euclidean distance, can be used as well. In our experiments,
the Manhattan and Euclidean distance metrics both produced very similar results, and
the Manhattan distance is very efficient to compute on nodes with low computational
capabilities.

Given the set of signature distances, the location of a mobile node can be calculated
in several ways. The simplest approach is to take the centroid of the geographic location
of thek nearest (in terms of signature space) reference signatures. By weighting each
reference signature’s location with the signature distance, we bias the location estimate
towards “nearby” reference signatures. While this method is simple, using a fixed value
for k does not account for cases where the density of reference signatures is not uniform.
For example, in a physical location where few reference signatures have been taken,
using thek nearest reference signatures may lead to comparison with signatures that
are very distant.

Instead, we consider the centroid of the set of signatures within some ratio of the
nearest reference signature. Given a signatures, a set of reference signaturesR, and the
nearest signaturer? = arg minr∈R M(r, s), we select all reference signaturesr ∈ R



that satisfy

M(r, s)
M(r?, s)

< c

for some constantc. The geographic centroid of the locations of this subset of reference
signatures is then taken as the mobile node’s position. We find that small values ofc
work well, generally between 1.1 to 1.2 (see Section 6.9). In this paper, we choose a
specific, empirically-determined value forc. An interesting future research question is
how this parameter can be determined automatically.

4 Making RF-based Localization Robust
In this section, we describe our approach to making RF location tracking robust to
beacon node failure and signal perturbations. MoteTrack must ensure that there areno
single points of failureand that the location estimation algorithm cangracefully handle
incomplete data and failed nodes.

We address the first requirement by making our system completely decentralized.
The location estimation protocol relies only on local data, local communication between
nodes, and involves only currently operational nodes. The reference signature database
is carefully replicated across beacon nodes, such that each beacon node stores a sub-
set of the reference signatures that is carefully chosen to maximize location tracking
accuracy.

We address the second requirement by using an adaptive algorithm for the signature
distance metric that accounts for partial failures of the beacon node infrastructure. Each
beacon node dynamically estimates the current fraction of locally failed beacon nodes
and switches to a different distance metric to mitigate location errors caused by these
failures.

4.1 Decentralized location estimation protocol
Given a mobile node’s signatures and a set of nearby beacon nodes contained ins,
the first question is how to compute the mobile node’s location in a way that only
relies upon local communication. We assume that each beacon node stores aslice of
the reference signature database (which may be partially or wholly replicated on other
nodes). Using Mica2 motes as the beacons, the limited storage capacity (128KB ROM
and 4KB of RAM) implies that the entire database will not generally be replicated
across all beacon nodes.

In MoteTrack, a mobile node first acquires its signatures by listening to beacon
messages, and then broadcastss, requesting that the infrastructure send it information
on the mobile node’s location. One or more of the beacon nodes then compute the
signature distance betweens and their slice of the reference signature database, and
report either a set of reference signatures to the mobile node, or directly compute the
mobile node’s location. Each of these designs is discussed in turn below.

k beacon nodes send their reference signature slice
In this first design, the mobile node broadcasts a request for reference signatures and
gathers the slices of the reference database fromk nearby beacon nodes. The mobile
node then computes its location using the received reference signatures. While this
approach can be very accurate, it requires a great deal of communication overhead. An
alternative is to limit the amount of data that is transferred by contacting onlyn < k
nearby beacon nodes, requesting that each one only send them reference signatures
that are closest (in terms of signature distance) tos. For example, the mobile node can
query then beacon nodes with the largest RSSI value ins.



k beacon nodes send their location estimate

An alternative to the previous design allows each of thek beacon nodes to compute
its estimate of the mobile node’s location using its own slice of the reference signature
database. Thesek location estimates are then reported to the mobile node, which can
compute the “centroid of the centroids” according to its RSSI to each beacon. The
mobile node simply transmits its signatures and receivesk location estimates.

While this version has reasonable communication overheads, our initial evaluations
indicated that it does not produce very accurate location estimates. The problem is that
for k greater than one or two, some of the beacon nodes are too far from the mobile
node and therefore do not store a very relevant set of reference signatures. Since this
design does not seem to perform well, we abandoned it for the design described in the
next section.

Max-RSSI beacon node sends its location estimate

Our third and final design combines the advantages from the first two to obtain both
low communication overhead and accurate location estimates. In this design, we as-
sume that the most relevant (closest in signature space) reference signatures are stored
on the beacon node with the strongest signal. The mobile node sends a request to the
beacon node from which it received the strongest RSSI, and only that beacon node
estimates the mobile node’s location. As long as this beacon node stores an appropri-
ate slice of the reference signature database, this should produce very accurate results.
The communication cost is very low because only one reply is sent to the mobile node
containing its location coordinates.

4.2 Distributing the reference signature database to beacon nodes
Using the decentralized protocol described above, beacon nodes estimate locations
based on a partial slice of the entire reference signature database. Therefore it is crucial
that the reference signatures are distributed in an “optimal” fashion. In addition, we
wish to ensure that each reference signature is replicated across several beacon nodes
in case of beacon node failures. We use two algorithms for database distribution, which
we refer to asgreedyandbalanced.

Greedy distribution algorithm

The greedyalgorithm has one parameter:maxRefSigs , which specifies the maxi-
mum number of reference signatures that each beacon node is willing to store locally.
The algorithm operates by iteratively assigning reference signatures to beacon nodes as
follows. For each signature, a given beacon node accepts and stores the signature if (1)
it is currently storing fewer thanmaxRefSigs or if (2) the new reference signature
contains a greater RSSI value for the beacon node in question.

The advantages of the greedy approach are simplicity and no requirement for global
knowledge or coordination between nodes. For example, beacon nodes can be updated
individually without affecting the signatures stored on other beacon nodes.

Balanced distribution algorithm

One of the problems with the greedy algorithm is that some reference signatures may
never get assigned to a beacon node, while others may be replicated many times. The
balancedalgorithm tries to strike a balance between pairing each beacon node with its
closest reference signature, while evenly distributing reference signatures across bea-
cons. This is a variant of a stable marriage algorithm. To ensure that no reference sig-
nature is paired with too many beacon nodes, the algorithm prevents the match if either



the current reference signature or beacon node have been assigned two more times than
any other reference signature or beacon node.

The advantage of the balanced algorithm is that it can ensure balanced distribution
of reference signatures while attempting to assign reference signatures to their closest
beacon nodes. The disadvantage is that it requires global knowledge of all reference
signature and beacon node pairings, and is therefore only appropriate for an offline,
centralized initialization phase. If one wishes to update a small set of the beacon nodes,
a complete reassignment involving all nodes and reference signatures may have to take
place.

The pseudocode for both algorithms can be found in the technical report [18].

4.3 Adaptive signature distance metric
Given that we do not expect the set of signature tuples represented in the reference
signaturer and mobile node’s signatures to be identical, there is a question about how
to account for missing data in one signature or the other. Ifr contains a signature tuple
not found ins, this can be due tos being taken at a different location in the building,
or the failure of a beacon node. Taking the intersection of the beacon set inr ands
is not appropriate, because we wish to capture the low intersection in cases where one
signature is largely dissimilar to another.

First, we consider the case with no beacon node failures. In this instance, missing
tuples between two signatures indicates that they are at different locations. We define
thebidirectionalsignature distance metric as:

Mbidirectional(r, s) = M(r, s) + β
∑

t∈(s−r)

meanRSSI (t)s + β
∑

t∈(r−s)

meanRSSI (t)r

That is, each RSSI tuple not found in(r ∪ s) adds a penalty to the distance that
is proportional to that signature’s RSSI value. We determined empirically that value
between 0.95 and 1.0 work well forβ.

This distance metric is appropriate when few beacon nodes have failed, since it
penalizes for all RSSI tuples not found in common betweenr ands. In case of beacon
node failures, however, a larger number of RSSI tuples will appear in the set(r − s),
leading to an explosion of error. To minimize the errors introduced from failed nodes,
we define theunidirectionaldistance metric:

Munidirectional(r, s) = M(r, s) + β
∑

t∈(s−r)

meanRSSI (t)s

which only penalizes tuples found ins (the mobile node’s signature) and not inr (a
reference signature). Assuming that the reference signatures were acquired while all
beacon nodes are operational, the unidirectional metric only compares signatures be-
tween operational nodes.

As an example, consider the following signatures:

r s
BN 1, RSSI 20 BN 1, RSSI 45

BN 2, RSSI 15
BN 3, RSSI 70
BN 4, RSSI 90 BN 4, RSSI 60

Mbidirectional = |20 − 45| + |90 − 60|
+15 + 70

Munidirectional = |20 − 45| + |90 − 60|
+15

For simplicity, we do not show multiple power levels in this example. As we will
see in Section 6.9, when few beacon nodes have failed, the bidirectional distance metric
achieves greater accuracy than the unidirectional metric, because its comparison space



is larger. With the unidirectional metric, only operational beacons are considered, but
overall accuracy is diminished when few beacon nodes have failed.

Therefore, we employ anadaptivescheme that dynamically switches between the
unidirectional and bidirectional metrics based on the fraction of local beacon nodes that
have failed. Beacon nodes periodically measure their local neighborhood, defined as
the set of other beacon nodes that they can hear. This neighborhood is compared to the
original neighborhood(measured shortly after the system has been installed or recon-
figured). If the intersection between the current and original neighborhoods is large, the
bidirectional distance metric is used, achieving higher accuracy. If the fraction of failed
nodes exceeds some threshold, the unidirectional distance metric is used instead.

This approach makes two assumptions. The first assumption is that the connectivity
between beacon nodes does not change substantially over time. To mitigate this prob-
lem, we only include a beacon node in the original neighborhood if its RSSI is above
some threshold. However, for the current neighborhood we include all beacon nodes
regardless of RSSI, and that exist in the original neighborhood. Note that we only in-
clude a beacon node if it exists in the original neighborhood. This will eliminate cases
when a beacon node’s signal temporarily reaches more nodes. The second assumption
is that there are no beacon node failures between the time that the reference signature
database is collected and the system is deployed for normal operation. We believe this is
a valid assumption for most installations and can be readily addressed by reinitializing
the original neighborhood set of each node.

5 Implementation and Data Collection
MoteTrack is implemented on the Mica2 mote platform using the TinyOS operating
system [19]. We chose this platform because it is designed for low-power operation, is
relatively small, and can be deployed unobtrusively in an indoor environment. In addi-
tion, the motes incorporate a low-power 433/916 MHz FSK radio, the Chipcon CC1000,
which provides both programmable transmission power levels and direct sampling of
received signal strength. We expect that MoteTrack could be readily ported to use forth-
coming 2.4 GHz 802.15.4 radio chips. We note that MoteTrack runs entirely on the mote
devices themselves and does not require a supporting infrastructure, such as back-end
servers or PCs, in order to operate. A laptop connected to a mote is used to build the
reference signature database, but thereafter the system is self-contained.

The total code size for the beacon and mobile node software is about 3,000 lines of
NesC code. In our implementation, the reference signatures for each beacon node are
loaded into program memory on the mote storing that segment of the database. This
could be readily modified to use a combination of RAM and serial flash or EEPROM.
Recall that each beacon node stores a different set of reference signatures depending on
the distribution mechanism used.

5.1 Deployment
We have deployed MoteTrack over one floor of our Computer Science building, mea-
suring roughly1742 m2, with 412 m2 of hallway area and1330 m2 of in-room area.
Our current installation consists of 20 beacon motes (Figure 2).

We collected a total of 482 reference signatures. Each signature was collected for 1
minute, during which time every beacon node transmitted at a rate of 4 Hz, each cycling
through 7 transmission power levels (from−20 to 10 dBm in steps of5 dBm).

We note that in a normal deployment, amuchsmaller dataset is required and the
amount of time spent collecting a signature can be on the order of several seconds rather
than 1 minute. The large number of reference signatures was gathered in order to eval-
uate the system under various conditions and parameters. Likewise, we collected many
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Fig. 2. Signature locations in the testing data set.The blue dots represent the fixed beacon
nodes. The red squares represent acquired signature locations; those with a green triangle were
tested with 3 different motes.

Training data Testing data
Total signatures 282 200

Daytime 282 170
Nighttime – 30

Using 3 motes – 30
Hallway 151 79

In room, door open 67 81
In room, door closed 64 40

Fig. 3. Summary of the number of samples for each scenario of the training and testing data.

samples for each beacon message transmission power pair, because we suspected the
RSSI to vary across samples; however, we discovered that there isvery little variation
between samples and therefore we only need on the order of 2 to 3 samples.

A beacon messageconsists of a three-byte payload: 2 bytes for the source node ID
and one byte representing the transmission power level. Therefore, all beacon messages
from a source node ID require2+T bytes: 2 bytes for the ID andT ∗1 bytes for each of
theT power levels, i.e.{sourceID,RSSIp=1, ..., RSSIp=T }. A completereference
signatureconsists of 6 bytes for the location size (3 coordinates time 2 bytes per coordi-
nate), 2 bytes for the ID, and up toN beacon nodes withT power levels each. The stor-
age overhead for one reference signature is therefor6+2+N ∗(2+T ) = 8+2N +TN
bytes. In our deployment,N = 20, T = 7, for a total of 188 bytes per reference sig-
nature. The code size for MoteTrack is about 20 KB, leaving 108 KB of read-only
SRAM on each beacon node for storing a partition of the reference signature database.
Therefore each beacon node can store up to 588 reference signatures. In Section 6.3 we
discuss the impact of limiting the amount of per-beacon storage to estimate the effect
of much larger reference signature databases.

We divided the collected signatures into two groups: thetraining data set(used to
construct the reference signature database) and thetesting data(used only for testing
the accuracy of location tracking). Our analysis investigates effects of a wide range
of parameters, including whether signatures are collected in a hallway or in a room,
whether the room’s door is open or closed, the time of day (to account for solar radi-
ation and building occupancy) and the use of different mobile nodes (to account for
manufacturing differences). We collected at least 30 signatures for each of the various
parameters to ensure that results are statistically significant. Figure 2 shows a map of
the testing data sets, and Figure 3 summarizes the data.



6 Evaluation
In this section we present a detailed evaluation of the performance of MoteTrack along a
number of axes. First, we look at the overall accuracy of MoteTrack. Although accuracy
is not our focus, we do need to understand how the system performs under various
parameters. We evaluate the accuracy on our entire floor which includes hallways and
rooms, the location estimation protocols, algorithms for selecting reference signatures,
type of database distribution, number of transmission powers used, and the density of
beacon nodes and reference signatures.

Second, we look at robustness with no beacon node failures. Here we investigate the
effects of radio signature perturbations, using different motes, time of day, and obstacles
such as doors.

Finally, we look at robustness with beacon node failures. Here we examine how
MoteTrack performs under extreme failures of the beacon infrastructure and evaluate
our adaptive signature distance metric.

These results were obtained using an offline simulation of the MoteTrack protocol
in order to give us the maximum flexibility in varying experimental parameters. In all
cases the real reference signature database acquired in our building was used to drive the
simulation. The simulator captures the effect of beacon node failure, RF perturbations,
distribution of the reference signature database, and the different algorithms for signal
distance and centroid calculation. The system is fully implemented on real motes and
we have demonstrated a full deployment of MoteTrack in our building along with a
real-time display of multiple user locations superimposed on a map.

6.1 Location estimation protocols
We first evaluate the accuracy of the system over the entire floor in the context of three
location estimation protocols. Two decentralized location estimation protocols and a
centralized one: having a closest (in terms of RSSI) beacon node compute the location,
receiving reference signatures from several (k = 3) nearby beacon nodes, and comput-
ing the location based on all of the received signatures. The centralized version is used
as a benchmark for comparison purposes.

Figure 4 shows the cumulative distribution function (CDF) for the protocols. As we
can see, the accuracy of the 3 versions is nearly identical suggesting that the closest
beacon node does in fact store most of the relevant reference signatures for accurately
estimating the mobile node’s location. Likewise, the additional overhead of receiving
reference signatures fromk beacon nodes is unjustified.

Our deployment uses the first decentralized protocol (i.e., closest or maxRSSI bea-
con node sends the location estimate), and it’s the accuracy a user of the system should
expect to get. As we can see, 50% and 80% of the location estimates are within 2 m
and 3 m respectively from their true location. This is more than adequate for applica-
tions that require locating persons, such as tracking the location of rescue personnel or
locating patients.

For the rest of this section we consider only the decentralized version where the
closest beacon node computes the location.

6.2 Selection of reference signatures
The next parameter of interest is the algorithm used to select reference signatures that
are close (in terms of signal space) to the mobile node’s signature. Figure 5 compares
thek-nearest selection approach to the relative signature distance threshold technique.
Thek-nearest algorithm computes the centroid location of thek closest reference sig-
natures. The relative threshold scheme limits the set of reference signatures based on a
threshold that is proportional to the signature distance to the nearest reference signature.



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  1  2  3  4  5  6  7  8  9  10

P
er

ce
nt

 o
f e

st
im

at
ed

 lo
ca

tio
ns

 (%
)

Error distance (meters)

Location Estimation Protocols

  centralized - MN has all ref. sigs.
decentralized - 1 BN sends ref. sigs.
decentralized - k BNs send ref. sigs.

Fig. 4. Location Estimation ProtocolsUnder
normal circumstances both decentralized pro-
tocols perform nearly identical to the central-
ized one.

 3

 3.5

 4

 4.5

 5

 5.5

 1  1.1  1.2  1.3  1.4  1.5  1.6  1.7  1.8  1.9  2

 0  2  4  6  8  10  12  14  16  18  20

80
th

  %
-ti

le
E

rr
or

 d
is

ta
nc

e 
(m

et
er

s)

relative threshold - Ratio of ref. signature distances

Selection of Reference Signatures

k nearest - Nbr. of ref. signatures

relative threshold
k nearest

Fig. 5. Two reference signature selection al-
gorithms. The relative threshold algorithm
performs better than the k-nearest one.

Fork-nearest, small values ofk are appropriate for computing the location centroid, but
values above this introduce significant errors. The relative thresholding scheme is more
accurate as it limits the set of locations considered according to the signature distance
metric. The optimal distance threshold is around 15-20% of the closest reference signa-
ture.

6.3 Distribution of the reference signature database
Next we look at the different techniques for replicating reference signatures across bea-
con nodes. This aspect of the design is crucial because each beacon node stores only
a subset of the full signature database. We look at two algorithms:greedyandbalance
reference signature distribution. For each of these we also vary whether a given sig-
nature is stored only on the beacon node that is closest to the signature (closest BN),
or replicated acrossk = 3 beacon nodes (k=3 BN). To estimate the effect of growing
the reference signature database beyond its current size (282 signatures), we artificially
limited the maximum number of reference signatures that each beacon node could store.

Figure 6 shows the results of this experiment. As the maximum storage capacity
of each beacon node is decreased, the balanced distribution achieves the best results. In
most cases, replicating each signature acrossk beacon nodes achieves better results than
storing it only on the closest beacon node. When the memory capacity of the beacon
nodes is not limited, there is less noticeable difference between the approaches as it is
more likely that any given beacon node has the relevant set of signatures.

6.4 Transmission of beacons at multiple power levels
Recall that beacon nodes cycle through transmitting beacons at different power levels
ranging from−20 dBm to10 dBm. Initially it was not clear if transmitting at multiple
power levels would noticeably improve accuracy. Figure 7 shows the80th percentile
error distance as the number of beacon transmission power levels is varied. The error is
averaged across all combinations ofN power levels, withN ranging from 1 to 7, i.e.(

7
N

)
. As the figure shows, increasing the diversity of power levels increases the80th

percentile accuracy by nearly 2 m. However, increasing the number of transmission
power levels involves a trade-off in terms of higher storage for reference signatures.

6.5 Density of beacon nodes and reference signatures
Of particular interest to someone deploying MoteTrack is the number of beacon nodes
and reference signatures needed to achieve a certain accuracy. For this experiment we
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artificially restricted the set of beacon nodes represented in the reference signature
database. For each number of beacon nodes we hand-selected the appropriate num-
ber of nodes that were approximately uniformly distributed throughout the building,
avoiding any “clusters” of beacon nodes.

Figure 8 shows how location error varies with the number of beacon nodes deployed
in the building, which also represents the overall density of nodes. It appears that there
is a critical number of beacon nodes required after which the accuracy of the system
increases marginally. In this case the critical density is around 6 to 7 nodes which is
about0.004 beacon nodes

m2 .
Likewise, varying the number of reference signatures has a strong effect on loca-

tion tracking accuracy. Figure 9 shows that the error distance decreases quickly up to
the first 25 reference signatures and begins to stabilize after 75 reference signatures,
representing a signature density of0.043 reference signatures

m2 .

6.6 Robustness to perturbed signatures
We now turn our attention to the robustness of the system under no beacon failures. We
begin by looking at the effects of radio signature perturbations.

The RF propagation in a building may change slightly over time or more drastically
in a disaster, when the building’s characteristics may alter from events such as walls col-
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lapsing. To understand these implications, we evaluate how the accuracy of MoteTrack
changes for various perturbation levels of a signature’s RSSI measurements.

For each percentage, we perturbed the RSSI measurements of all signatures (i.e. the
testing data) by up to amaximum percentageof the entire RSSI range. The perturbation
amount for each RSSI is taken from a uniform distribution between zero and maximum
percentage. As we can see in Figure 10, MoteTrack is quite robust to RSSI perturba-
tions. For a maximum perturbation of 40%, the80th percentile has an accuracy of under
5 m and, for the50th and25th percentiles it has an accuracy of under 3 m and under
2 m respectively.

6.7 Time of day and different motes
Next we look at the effects of two other parameters: the time of day and manufacturing
differences between motes. Time of day examines how the system reacts to changes in
building occupancy and movement; the use of different motes accounts for the overall
effect on the system from variation between motes.

For this experiment we collected a daytime data set between the hours of 9:00am
and 4:00pm on a weekday, using 3 different motes. We also collected a nighttime data
set at 1:00am, when few occupants are in the building, using only a single mote. Mote
1 was used to collect a larger number of data points. To ensure a fair comparison, only
the locations that are common to all four data sets (three motes during the day and one
mote at night) were used here.

Figure 11 shows that the accuracy is largely unaffected by these parameters, so we
expect it to work well even for different mobile nodes and times of day.

6.8 Effect of hallways, rooms, and door position
Hallways tend to act as waveguides while walls and doors contribute to signal attenu-
ation. We first investigate how the accuracy of a mobile user is affected by its location
in the building. Figure 12 shows the cumulative distribution function (CDF) of the lo-
cation error for signatures obtained in the hallway and inside rooms, with doors opened
and closed. In the hallway, nearly 80% of location estimates are within 2 m of their true
location, while in rooms the80th percentile is slightly under 4 m.

As we can see from the table in Figure 3, the density of reference signatures in the
hallway is higher then inside rooms. In the hallway the density is0.36 reference signatures

m2
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and inside rooms it is0.05 reference signatures
m2 . In order to make a fair comparison, we

pruned the hallway data set to have the same density as the rooms data set, and plotted
the pruned hallway data set (labeledhallway pruned). As we can see, the error distance
for the 80th percentile increased to just under 2.9 m. Forhallway and rooms, after
pruning the hallway part of the data set, we found a slight increase in error from 3.2 m
to 3.5 m. We also looked at the effect of the position of doors and found that they don’t
make a significant difference.

6.9 Robustness to beacon node failure

Finally, we evaluate MoteTrack’s ability to continue providing accurate location esti-
mates even when a large number of beacon nodes have failed. We consider this aspect of
MoteTrack to be essential for its potential use in disaster response scenarios. Here, we
simulate the effect of failed beacon nodes by selectively eliminating beacon nodes from
mobile node signatures, as well as preventing those beacon nodes from participating in
the decentralized location calculations.

We evaluated robustness to failure using both the unidirectional and bidirectional
algorithms for calculating signature differences. Beyond a certain failure threshold, we
expect the unidirectional version to perform better than the bidirectional version, since it
only considers RSSI values from beacon nodes that are present at the time the signature
is constructed. As we can see in Figure 13, after about 16% of the beacon nodes have
failed, the unidirectional version indeed produces more accurate results.

For comparison purposes, we also show the ideal case. The ideal case is when we
have perfect knowledge of which nodes failed. This is the best case scenario and al-
though under normal circumstances it’s unachievable in a completely decentralized sys-
tem, it shows the lower bound. In this case the bidirectional algorithm is used but only
over RSSI measurements from nodes that did not fail.

Although unidirectional signal distance is more robust, it is less accurate when there
are few failed nodes. As mentioned in Section 4.3, MoteTrack decides dynamically
which algorithm to use based on the local failure percentage that it last computed.
MoteTrack starts out using the bidirectional algorithm and after it estimates that the
beacon failure is greater than 16%, it switches to the unidirectional algorithm.



7 Future Work
The current system as described in the paper, requires an offline installation and calibra-
tion prior to use. In many cases, such as responding to a mass casualty incidents in an
arbitrary area (e.g. a train wreck or a multi-car highway accident), pre-installation and
calibration of a beacon node infrastructure is clearly not feasible. For these scenarios,
we need anad hocmechanism for rapidly deploying the location tracking system and
populating the beacon nodes with reference signatures.

In an outdoor environment, one approach is to leverage GPS to automatically pop-
ulate the signature database. For example, medics responding to the scene of a disaster
can place beacon nodes at well-spaced (and arbitrary) points around the site. Rather
than require every patient or medic to carry a GPS receiver (which are often higher
power and bulkier than sensor motes), several medics can carry a PDA equipped with
a GPS receiver and MoteTrack transceiver. The PDA can automatically record refer-
ence signatures as the medics move around the site, populating the reference signature
database on the fly using the greedy distribution, which does not require global knowl-
edge of the beacon nodes and reference signatures. Signature acquisition can be per-
formed rapidly, since each signature requires only a few beacon messages from each
node and transmission power, which can be acquired in a very short period of time [20].
In our experiments we obtained good results in about one second. Location tracking
accuracy will improve over time as more reference signatures are acquired.

One of the challenges faced is how to deal with the additional error introduced by
the GPS location estimate. While in North America, GPS devices using the Wide Area
Augmentation System (WAAS) can yield location estimates to within 3 m 95% of the
time [21], it is not clear how much this will impact the overall accuracy of the system.

We have already ported our system to the Telos and MicaZ mote platforms, which
support the CC2420 802.15.4 radio chip, and observed very similar results in terms
of accuracy. For the immediate future, we intend to re-run our measurements with
identically-placed beacon nodes to directly compare the performance of MoteTrack
with 433 MHz and 2.4 GHz radios.

8 Conclusions
In this paper, we describe how to extend the basic RF approach for localization in order
to make it highly robust and decentralized. We achieve this through a decentralized
location estimation protocol that relies only on local data, local communication, and
operational nodes; by replicating the reference signature database across beacon nodes
in a fashion that minimizes per-node storage but achieves high level of robustness to
failure; and by using a dynamic signature distance metric that handles incomplete data
and adapts to the locally failed beacon nodes.

We implemented, deployed, and extensively evaluated our approach through a sys-
tem called MoteTrack, based on the Berkeley Mica2 mote. We choose this platform
because we believe that many of the applications where robustness is important will
want to use small, inexpensive devices that can be embedded in the environment such
as walls, in the equipment of rescue personnel, or integrated with vital-sign sensors
placed on patients [22].

MoteTrack achieves a50th and80th percentile of 2 and 3 meters respectively, and
can tolerate a failure of up to 60% of the beacon nodes and signature perturbations of
up to 50%, with negligable increase in error.
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