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Abstract

A simple computational model for the emergence of auto-
catalytic sets as described in (Farmer et al., 1986) is re-
implemented. Results are found to generally agree with the
major theme in the original work: increasing the initial poly-
mer variety in a toy chemical soup scenario increases the like-
lihood that a complex autocatalytic set will suddenly boot-
strap itself into existence. Quantitatively, however, critical
probabilities derived from this careful re-implementation are
very much higher than those reported in the original work.
A full resolution is not reached, but a theoretical argument
supports the simulation results gained in this instance.

Introduction

The principle of an autocatalytic set, a set of molecules
which collectively catalyses its own production, holds in-
tuitive interest. There exists obvious relations to primitive
metabolic systems, and contemporary minimal definitions
of life such as autopoiesis (McMullin, 1999).

By achieving catalytic closure, a set of relatively inert
molecules can organise into a self-sustaining identity, a per-
sistent presence in a chemical soup.

Different questions can be asked of autocatalytic sets. In
general, one might be interested in (1) how a set came to
be and the preconditions necessary for it’s emergence, (2)
which critical molecular species the set consists of, or (3)
how the set chemically operates in real physical space and
time.

Original work on autocatalytic sets (Kauffman, 1986;
Farmer et al., 1986) pursued the first question as the main
point of interest, although all questions are inter-related to
some extent. Question 2 has recently been given a deep
formal treatment (Hordijk and Steel, 2004). Question 3 is
of considerable depth and of most contemporary interest,
involving concepts such as dynamics, spatial compartmen-
talisation, reaction kinetics and concentrations in particular
physical autocatalytic instantiations (see, for example (Ono
and Ikegami, 2000) for application in a spatial abstract cell
model).

This paper describes a careful re-implementation of the
original (graph theoretic) model investigating the inevitable
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emergence of complex autocatalytic sets (Farmer et al.,
1986). Section 1 recaps the motivations and assumptions
of the original model. Section 2 describes in detail the re-
implementation carried out. Remaining sections present and
discuss the results, which generally follow the same quali-
tative pattern as original results, but differ by a factor some
100 in quantitative predictions of the critical probability of
autocatalysis.

1 Original Work

The original work on autocatalytic sets by Stuart Kauffman
is concerned with making a tentative link to the grand prob-
lem of the origin of life itself (Kauffman, 1986, 1993) and
levelling a respectable argument against entrenched expla-
nations of template based replication.

In the original model (Farmer et al., 1986), the emergence
of autocatalytic sets is investigated as a connectivity feature
of directed graphs.

A reaction graph captures the core chemical relationships
in a system of polymers, expressing the reaction possibili-
ties in that system. Operational details such as space, time
and quantity are not represented in this canonical descrip-
tion. The chemical system is assumed to exist in a well-
stirred overflowing reactor environment.

The central idea is built upon the phase transition phe-
nomena in connectivity problems. As systems become in-
creasingly connected a critical limit is reached when, very
suddenly, each component of the system is connected di-
rectly or indirectly to every other. A large component crys-
tallises from a mass of independent sub-systems.

By the same logic, when a reaction network is expressed
as a reaction graph, there must exist some critical catalytic
connectivity beyond which each polymer will directly or in-
directly catalyse every other - at which point the existence
of a complex autocatalytic set can be inferred with almost
certainty.

The original model focuses on finding this critical con-
nectivity. A basic reaction system - where polymers consist
of directional strings of characters - is successively grown
from an original ‘firing disk’ (food set). In this scenario,


mailto:ben@benblundell.com

the reaction system is always autocatalytic in a strict sense,
but criticality is judged when the rate of change of polymer
species becomes exponential (autocatalytic networks which
continually create large complex proteins were of prime in-
terest to the authors).

Significant assumptions of the model include the pre-
requisite of flow reactor conditions and the assumption that
the distribution of catalytic capacities in peptide space can
be modelled by a fixed probability P that any one polymer
will catalyse any other.

Farmer et al. find that that the critical value of P required
for an autocatalytic set decreases as the initial polymer varia-
tion in the system increases, lending support to their general
autocatalytic account for the origin of life from a sufficiently
diverse pre-biotic chemical soup.

2 Re-implementation
Original Graph Growth Algorithm

For clarity, the original graph growth algorithm is presented
below. Square braces represent cross-references to the more
detailed implementation to follow.

Our rule for random assignment of reactions is
implemented as follows: For a given starting list of
molecular species, we compute the maximum number
of allowed condensation and cleavage reactions by
counting the number of distinguishable combinations
of string concatenations and string cleavages [see Note
2]. The number of reactions that we actually assign is
obtained by multiplying the number of allowed reac-
tions of each type by a probability P. To assign con-
densation reactions, we chose two molecules at ran-
dom [Box 1], while for cleavage reactions we chose a
molecule and a cleavage point at random [Box 2]. In
both cases enzymes are chosen at random from the set
of species currently present.

Assignment of reactions can be viewed as a dynam-
ical process. We initialise the system by choosing a
starting list, called the “firing disk”, typically chosen
to be all possible strings shorter than a given length
L [Iteration 0, Step 1]. Reactions within the firing
disk are assigned as described above [Iteration 0, Step
2]. Condensation reactions may generate new species
outside the firing disk, thereby expanding the list [It-
eration 0, Steps 3 and 4]. The introduction of new
species creates new reaction possibilities; to take these
into account, on the next time step we count the number
of combinatorial possibilities involving the new species
[Iterations 1 to 1000, Steps 2 and 3]. Multiplying by
P gives the number of new reactions [Iterations 1 to
1000, Steps 6,7,8,9]. This process is repeated on sub-
sequent time steps. As long as new species are created
on each step the graph continues to grow; otherwise
growth stops. (Farmer et al., 1986), p. 54
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Graph Growth Algorithm as Implemented

Definitions

S Set of all distinct polymer species currently in the system.
Initially empty.

N Set of distinct polymer species, new on the current itera-
tion. Initially empty.

sn Size of set S. Number of distinct polymer species in the
system.

n, Size of set N. Number of new distinct polymer species
on current iteration.

B Alphabet size of polymers.

M Order of initial firing disk (or *'maximum sized polymer’
in firing disk, also referred to as L elsewhere in this pa-
per).

P Probability that a random polymer catalyses an arbitrary
reaction.

Iteration 0

1. Seed firing disk. Make set .S contain all possible polymers
of alphabet size B up to length M. S will contain a total
of s,= S°1° | B polymers.

2. Calculate the number of distinct condensation reactions
possible in the firing disk, R} ., = s, X5y. (See Note 2
below).

3. Calculate a number of random condensation reactions to
assign, R;md =P x R*

cond*

4. Assign R::m 4 condensation reactions to the firing disk as
in Box 1 below, thereby expanding the disk. Cleavage
reactions need not be assigned here. The graph currently
consists of all possible polymers up to size M, and thus
cleavage reactions cannot introduce any new species at

this stage.

Box 1: condensation reaction assignment

1. Pick a random polymer of sequence a from .S

b is allowed)

other reaction is not assigned in place.

2. Pick another random polymer of sequence b from S (a =

3. Concatenate a and b to create polymer sequence p = a+b
4. If p ¢ S thenadd p to N (the set of new polymers created)

5. Otherwise, disregard reaction. The condensation does not
create a new species and thus is of no significance. An-




Iterations 1 to 1000
1. Record n,,, the number of new species for this iteration.

2. Calculate the number of possible cleavage reactions that
the set of new polymers N introduces to the system.
R¥1ne = 7 _IN(L) x (L —1)], where J is the maxi-

mum length polymer in set N, and N (L) is the total num-
ber of polymers of size L in V. (See Note 2 below).

3. Calculate the number of possible condensation reactions
that the set of new polymers NV introduces to the system.
R}, .4 = Mnln + 21,8, (See Note 2 below).

4. Add the new polymers N to the total species set S, so .S
becomes S U N.

5.SetN =¢
6. Calculate a number of random condensation reactions to
assign for this iteration, R::m =P x R a-

7. Calculate a number of random cleavage reactions to as-
sign for this iteration, R, = P x R*

cleav cleav*

8. Assign R

onq COndensation reactions as in Box 1 above.

9. Assign R,

lean Cleavage reactions as in Box 2 below.

10. Goto step 1. Perform next iteration.

Box 2: cleavage reaction assignment
1. Pick a random polymer of sequence p from S

2. If the length of p < 2, disregard.

ment substrate sequences p = a + b
4. If a ¢ S then add a to N, otherwise disregard
5. If b ¢ S then add b to N, otherwise disregard

3. Pick a random break point on p, splitting it into two frag-

Determining Criticality of Graph Graph is SUPRA crit-
ical if, during the 1000 graph iterations,

1. The number of polymer species in the system, ns > 10°
2. A polymer in the system exceeds a length of 1000

3. The new condensation reactions possible on any iteration,
R 4> 2x 109

4. The new condensation reactions assigned on any iteration
Rl 4> 5x10°

con

If 1000 iterations are completed, the graph is still judged
SUPRA critical if ng, > 5sp, i.e. if the number of species
in the system after the last iteration are five times greater the
number of species in the firing disk, s¢.

Otherwise, the graph is judged as SUB critical.
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Note 1: Distinct Reactions In a fairly common sense way,
this study regards two reactionsa +b = candz +y = 2
as distinct if their substrates do not match. That is to say,
they are only the same reaction if « = x and b = y (and thus
c=2).

Two reactions may of course have the same product (e.g
aaa+a = aaaa and aa+ aa = aaaa) and still remain dis-
tinct. If two reactions have different products, the reactions
will certainly be distinct.

Note 2: Counting Distinct Condensation and Cleav-
age Reactions Although the original description does not
specify exactly, this paper calculates the number of new con-
densation and cleavage reaction possibilities at each itera-
tion in a straightforward way.

The number of new possible cleavage reactions intro-
duced into the system is simply the sum of the number of
ways the new species can be broken apart. Each new species,
by definition, is a product not encountered before. By Note 1
above, breaking this new product on any of it’s bonds will in
turn reveal a substrate combination not encountered before,
and thus a distinct reaction.

The number of new possible condensation reactions intro-
duced into the system by the new species can be calculated
in two parts. Firstly, each new species polymer can be com-
bined in two ways with every member of the existing species
(by concatenating to the left and right hand side of the exist-
ing species). By Note 1 above, both of these condensation
reactions are distinct, new reactions, because either the left
or right hand substrate is a new species. New species thus
make possible at total of 2n,, s,, new condensation reactions
with the existing species.

Secondly, the new species can be combined amongst
themselves. Each new species polymer can be appended to
the left or right hand side of every other new species poly-
mer, including itself. However, because both substrates in
these reactions are new species, there will be some double
counting.

For example, new species g may be combined with new
species h by left concatenation g + h or by right concate-
nation h + g, yielding two distinct concatenations. When
h is considered and combined with g to the right and left
the mirror is true, yielding two non-distinct concatenations.
The distinct concatenations are thus just the set of left-hand
concatenations between the new species, a total of n,,n,, re-
actions.

Estimation of P..;; algorithm

As in the original paper, estimation of the critical probability
of catalysis, P, is performed by using a simple trial-and-
error algorithm.

For a graph of alphabet size B and firing disk order M, 10
independent estimates of F,;; are made as in Box 3 below
and then averaged to provide a more reliable result.



Box 3: To estimate P.,.;;

to go firmly SUB critical.

graph to go firmly SUPRA critical.

3. Add a little random noise to Py, .

iteration

(a) Set P to the value in-between P,,;,, and P, 4.
(b) Grow the graph at P three times

times, set Pqx = P

set Pin = P

Notes:

ciently converged to the critical probability.

ent descent may be usefully spent.

variability into the *halving’ of P.

1. Set P,,i, to a low probability, known to cause the graph

2. Set P4z to be a higher probability known to cause the

4. Perform 15 iterations of gradient descent, where on each

(c) If the graph goes SUPRA critical at least 2 out of 3

(d) If the graph goes SUB critical at least 2 out of 3 times,

e After 15 iterations, the value of P is found to be suffi-

o P.in and P, are initially set to be fairly close to the
critical probability in order that the 15 iterations of gradi-

e The noise initially introduced to P4, introduces some

Computational Considerations

For a quality source of random numbers, an implementation
of the Mersenne Twister random number generator (Mat-
sumoto and Nishimura, 1998) was used. The random num-
ber generator was re-seeded on at the beginning of each
graph growth run. In this way, no two simulation sessions
used the same sequence of random numbers.

3 Results and Discussion

Figure 1 directly compares main results from this study (blue
lines) to the main results in the original paper (red lines).
Both data sets are in qualitative agreement insofar as the
central idea goes. The downward trend of lines indicates
that increasing the size of the firing disk, or increasing the
alphabet size of the polymers lowers the critical probability
that a complex autocatalytic set (supra-critical graph) will
spontaneously emerge (in a well-stirred environment).

The main point of departure from the original results lies
in the actual values of critical probability. Values gained in
this study are typically two factors of ten higher than those
gained in the original experiment. To validate their results,
Farmer et al. provide a theoretical estimation of P,,.;; for a
chemistry with alphabet size B = 2. However, the mathe-
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matical derivation is largely unexplained and hard to follow,
and thus of limited insightful use.

To support results gained here, it is clear that a critical
probability for autocatalysis P.,;; has to satisfy the greater
of the two following conditions:

1. Firstly, as a bare minimum, the value of P..;; must be
able to create at least one new species outside the firing
disk. In a firing disk of s species, there exist s viable
condensation reactions, and so it follows that P,,.;; > Sf%
in order to catalyse at least one of these.

2. Furthermore, the value of P,.,.;; must be set such that at
least one new species continues to be created at each iter-
ation. The graph must exhibit continual growth.

At this stage, it must be noted that the values of P, re-
ported in the original results do not satisfy the first condition.
In the simplest case, for example, when the firing disk con-
sists of the two monomers a and b, the critical probability is
cited to be less than 10~ !. However, with four condensation
reactions aa, ab, ba, bb being initially viable in this scenario,
this probability would assign around 0.4 reactions on itera-
tion 1, which would be computationally truncated to 0. The
graph would stop growing immediately, and would have no
chance of being critical.

Additionally, the value of P.,;; for condition 2 is often
higher than that for condition 1. As condition 2 concerns
the time behaviour of the graph leading to it’s eventual fate,
it can be calculated by equating the growth of the graph to
the evolution of a discrete dynamical system (and finding the
bifurcation point in that system).

The formulation of this dynamical system is possible pro-
viding that the following assumptions are made about the
graph growth procedure described in Section 2:

1. Cleavage reactions can be ignored. (This assumption is
feasible since, at each graph iteration, the number of vi-
able cleavage reactions is very much smaller than the
number of viable condensation reactions. Furthermore
(through general simulation observations), of the cleav-
age reactions assigned, even fewer produce new polymer
species outside the current system).

2. Every condensation reaction assigned creates a new
species previously not in the system.

Assuming all assigned condensation reactions produce new
polymer species leads to the “luckiest case” of the reaction
graph, which is in fact the situation desired, whereby the
graph grows at the absolute minimum value of P possible.

The dynamical system describing the graph growth, then,
starts at iteration O with the total number of species in the
firing disk and the total number of condensation reactions
these species will have assigned amongst them:



M
Neg = Sf = ZBL
L=1

n, = trunc [Pnsﬂ

where trunc denotes a truncation to the nearest integer
(polymers only exist as wholes).

At each successive iteration, the total number of polymer
species ng is equal to the total number of species at the be-
ginning of the last iteration, plus the number of new species
assigned on the last iteration

ns(t+ 1) = ng(t) + n,(t)

and the number of new species n,, is equal to the number
of new condensation reactions viable on the last iteration
multiplied by P (since we are assuming every condensation
reaction assigned creates a new species):

nn(t 4+ 1) = trunc [P(n, (t)* + 2ns(t)n,(t))]

The dynamical system is parameterised by the alphabet
size B, the initial order of the firing disk M and the probabil-
ity of catalysis, P. Increasing the parameter P over a critical
value causes a bifurcation in the dynamics. Below this bifur-
cation point, the reaction graph goes sub-critical and settles
to a fixed point whereby the number of new polymers n,, per
iteration become 0, and the total number of species ng rest
at an arbitrary value. Above the bifurcation point, the reac-
tion graph grows exponentially. The bifurcation point thus
corresponds to the phase transition in this scenario, and the
value of P at which it occurs is the critical probability P, ;.

Figure 2 shows the nature of the bifurcation point for the
dynamical system described above with firing disk B = 2,
M = 6. More importantly, Figure 3 shows that the theo-
retical bifurcation points for different alphabet sizes and fir-
ing disk orders correspond more or less precisely to the re-
sults derived from the simulation in Section 2 (even though
the simulation does allow cleavage reactions and does not
require condensation reactions to necessarily produce new
species).

Despite the described differences in critical probability
estimates to original work, reaction graph growth curves de-
rived from this work (Figures 4-6) tally fairly well with those
presented for the original model ((Farmer et al., 1986), p55,
Fig 2) both in terms of form and numerical axis values.

Figure 4 shows that a low probability of catalysis leads
the reaction graph (which has an initial firing disk of size
L; = 6 and alphabet B = 2) to decay until there is no fur-
ther growth. By contrast, increasing the probability of catal-
ysis past the critical threshold leads to supra-critical growth
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(log scale)

crit

P

Firing disk order, Lf

Figure 1: Main comparison of results [blue lines] with those
obtained by (Farmer et al., 1986) [red lines]. Graph shows
how critical probability of catalysis P.,;; scales with order
of firing disk L ; for different alphabet sizes (labels on lines).
Red lines should only be viewed as an estimate of original
data.

(Figure 6) where a small initial decay is followed by expo-
nential growth without bound.

Right on the critical threshold, the reaction graph was
found to be incredibly fickle, sometimes turning sub-critical,
and sometimes supra-critical (Figure 7). Figure 5 was
obtained by running the reaction system with firing disk
B = 2, Ly = 6 over many trials at the critical threshold
P.riy = 0.002194 and recording the longest instance of an
eventually supra-critical graph. In this study, reaction graphs
surviving for any length of time at the critical threshold were
delayed supra-critical graphs where fortuitous assignment of
condensation reactions meant that only a single new species
would be assigned at each iteration (the other condensation
reactions being assigned to produce polymers already in the
system). This marks another minor departure from the orig-
inal work where the number of new species per iteration is
reported to be erratic at criticality.
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Figure 2: Overlay of phase portraits for the graph growth
dynamical system with firing disk B = 2, Ly = 6. Each
trajectory corresponds to the system portrait at a different
value of the parameter P. When P approaches P.,;;, the
dynamical system bifurcates and instead of settling to a fixed
point (corresponding to a sub-critical graph - red lines), the
system spirals to infinity (corresponding to a supra-critical
graph - black lines).
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Figure 3: Similarity between theoretical and simulation re-
sults. Bifurcation values of P for the graph growth dynami-
cal system (black dotted lines with circle markers) coincide
nearly exactly with results obtained in the re-implemented
simulation (blue lines) - so much so that the black dotted
lines are often obscured on this plot.
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Figure 5: B = 2, Ly = 6, P = 0.002194. “Critical”.
Graph initially decays to a steady growth rate of 1 polymer
per graph iteration (on the line of the x-axis) until an even-
tual explosion happens around iteration 230.
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Figure 6: B = 2, Ly = 6, P = 0.0025000. Supra-critical.
The graph initially decays, but quickly recovers and then
snowballs.
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Figure 7: Characterising the phase transition for firing disk
B = 2, Ly = 6 in terms of trial frequency. The reaction
graph was grown 100 times for all values of P between
0.00205 to 0.00235 with interval 0.00001. Red bars rep-
resent how many trials went sub-critical, and black bars rep-
resent how many trials went supra-critical. The phase tran-
sition is clearly visible as a disjoint region separating two
regions of stable sub and supra-critical behaviour.



4 Conclusions

This work has sought to conduct a careful re-implementation
of one of the first models investigating network autocatalysis
(Farmer et al., 1986). Results here follow the same qualita-
tive pattern, and thus do not invalidate the general abstract
aims of the original work, but they do present a (fairly major)
quantitative discrepancy to the critical catalytic probabilities
reported from the original model.

Such discrepancies probably do not hold significant con-
notations for subsequent work published in the last 20 years,
since the spirit of the Farmer et. al. study is one of proving
a very general point, but nevertheless they would be nice to
resolve. Indeed, the introduction of the original work states
that many of the results should be experimentally testable.

In theoretical support of critical catalytic probabilities
presented here, a simple discrete dynamical systems model
is proposed as an approximation to the more involved reac-
tion graph growth algorithm. The critical catalytic probabil-
ities of the original work can be seen as too low to produce
bifurcations in this dynamical model, whereas the bifurca-
tions correspond more or less exactly to the simulation re-
sults of this study.

The source of the discrepancy is not ultimately resolved,
but it seems that the most outstanding grey area lies with the
calculation of the number of new condensation and cleavage
reactions at every iteration. However, even with no explicit
details mentioned in the original publication, there is little
room for manoeuvre, and this study implements a straight-
forward common-sense interpretation.

Specifics aside, it is worth finally noting that in the last
two decades, models relating to the origin of life have gained
(considerably) in fidelity from pure abstract autocatalytic
notions. Whilst autocatalytic sets remain an important cor-
nerstone, one branch of enquiry for instance ((Mavelli and
Ruiz-Mirazo, 2007), (Ruiz-Mirazo and Mavelli, 2008)) fo-
cuses on the origins of minimal cells in terms of how active
self-producing *proto-cellular’ systems could have started to
couple internal chemical reactions to membrane processes.
Such efforts are beginning to address the deeper issues
raised in Question 3 of the Introduction.
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