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ABSTRACT 

In recent years the industrial application of advanced control techniques for the 

process industries has become more demanding, mainly due to the increasing 

complexity of the processes themselves as well as to enhanced requirements in terms 

of product quality and environmental factors. Therefore the process industries require 

more reliable, accurate, robust, efficient and flexible control systems for the 

operation of process plant. In order to fulfil the above requirements there is a 

continuing need for research on improved forms of control. There is also a need, for 

a variety of purposes including control system design, for improved process models 

to represent the types of plant commonly used in industry.  

Advanced technology has had a significant impact on industrial control engineering. 

The new trend in terms of advanced control technology is increasingly towards the 

use of a control approach known as an “intelligent” control strategy. Intelligent 

control can be described as a control approach or solution that tries to imitate 

important characteristics of the human way of thinking, especially in terms of 

decision making processes and uncertainty. It is also a term that is commonly used to 

describe most forms of control systems that are based on artificial neural networks or 

fuzzy logic.  

The first aspect of the  research described in the thesis concerns the development of a 

mathematical model of a specific chemical process, a pH neutralization process. It 

was intended that this model would then provide an opportunity for the development, 

implementation, testing and evaluation of an advanced form of controller. It was also 

intended that this controller should be consistent in form with the generally accepted 

definition of an “intelligent” controller. The research has been based entirely around 

a specific pH neutralization process pilot plant installed at the University Teknologi 

Petronas, in Malaysia. The main feature of interest in this pilot plant is that it was 

built using instrumentation and actuators that are currently used in the process 

industries. The dynamic model of the pilot plant has been compared in detail with the 

results of experiments on the plant itself and the model has been assessed in terms of 

its suitability for the intended control system design application. 
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The second stage of this research concerns the implementation and testing of 

advanced forms of controller on the pH neutralization pilot plant. The research was 

also concerned with the feasibility of using a feedback/feedforward control structure 

for the pH neutralization process application. Thus the study has utilised this control 

scheme as a backbone of the overall control structure. The main advantage of this 

structure is that it provides two important control actions, with the feedback control 

scheme reacting to unmeasured disturbances and the feedforward control scheme 

reacting immediately to any measured disturbance and set-point changes. A non-

model-based form of controller algorithm involving fuzzy logic has been developed 

within the context of this combined feedforward and feedback control structure.  

The fuzzy logic controller with the feedback/feedforward control approach was 

implemented and a wide range of tests and experiments were carried out successfully 

on the pilot plant with this type of controller installed. Results from this 

feedback/feedforward control structure are extremely encouraging and the controlled 

responses of the plant with the fuzzy logic controller show interesting characteristics. 

Results obtained from tests of these closed-loop system configurations involving the 

real pilot plant are broadly similar to results found using computer-based simulation. 

Due to limitations in terms of access to the pilot plant the investigation of the 

feedback/feedforward control scheme with other type of controllers such as 

Proportional plus Integral (PI) controller could not be implemented. However, 

extensive computer-based simulation work was carried out using the same control 

scheme with PI controller and the control performances are also encouraging. 

The emphasis on implementation of advanced forms of control with a 

feedback/feedforward control scheme and the use of the pilot plant in these 

investigations are important aspects of the work and it is hoped that the favourable 

outcome of this research activity may contribute in some way to reducing the gap 

between theory and practice in the process control field. 

 

 



 v 

ACKNOWLEDGEMENT 

 

I would like to express my deepest appreciation to my supervisor, Professor David J. 

Murray-Smith for his admirable way of supervising the work, invaluable guidance, 

assistance and support throughout this research. 

 

My special gratitude goes to my sponsor, Universiti Teknologi Petronas, Malaysia 

for giving me the opportunity and the scho larship for my studies. I would also wish 

to extend my thanks to Universiti Teknologi Petronas for allowing access to the pilot 

plant facilities for experimental investigations and the financial support in carrying 

out this research, especially the investment on the new system. 

 

I would also want to acknowledge the funding provided by the Department of 

Electronics and Electrical Engineering, University of Glasgow, in support of 

conference attendance and aspects of the experimental work carried out at Universiti 

Teknologi Petronas. 

 

An extended acknowledgment to Azhar Zainal Abidin for his assistance during my 

experimental work at the laboratory and also to PCA Automation for their technical 

support during installation of the new system. 

 

My special thanks go to my beloved parents for their endless encouragement and 

prayers throughout the educational years of my life. To my wife and my lovely 

daughters, thank you very much for all their patience, understanding and priceless 

sacrifices. 

 

Last but not least, 'Terima Kasih' to all my fellow friends and colleagues for their 
continuous encouragement especially to my badminton mates and Glasgow 
University's Badminton Club for providing a stress release session every week. 
  
 

 

 



 vi 

TABLE OF CONTENTS 

 

1.0 INTRODUCTION 2 

1.1 Research Overview 3 
1.1.1 Problem Identification 4 
1.1.2 Research Objectives 5 
1.1.3 Significance of the Research 5 

1.2 Overview of the Thesis 6 

2.0 BACKGROUND AND LITERATURE REVIEW  10 

2.1 pH Process Characteristics 10 

2.2 pH Control Techniques 14 
2.2.1 Significance of pH control 14 
2.2.2 Overview of pH control 15 
2.2.3 The Conventional Approach 26 
2.2.4 Fuzzy Logic Control 26 

2.3 Summary and Research Motivation 34 

3.0 THE pH NEUTRALIZATION PILOT PLANT  37 

3.1 Overall System Architecture  39 

3.2 The Reactor Tank 41 

3.3 Instrumentation and Measurements Involved 43 
3.3.1 pH Meters 44 
3.3.2 Conductivity Meters 45 
3.3.3 Flowmeters 46 
3.3.4 Control Valves 47 

3.4 Data Acquisition System 53 

3.5 Practical Issues Associated with the Pilot Plant 56 

 
 
 
 
 
 



 vii 

4.0 MODELLING AND SIMULATION OF THE pH 
NEUTRALIZATION PROCESS PILOT PLANT  59 

4.1 Overview of the pH Neutralization Process Modelling 61 

4.2 Preliminary Development of the Mathematical Model 65 

4.3 Experimental Results from the Enhanced Data Acquisition System 70 

4.4 Empirical Modelling for Development of the Modified pH Model 77 
4.4.1 Investigation of the values of the dissociation constants 77 
4.4.2 Evaluation of the Modified Model 80 

5.0 DEVELOPMENT OF A CONVENTIONAL 
PROPORTIONAL PLUS INTEGRAL (PI) 
CONTROLLER FOR THE PILOT PLANT  88 

5.1 Overview of the PID Controller 89 

5.2 Simulation work on the PI form of Controller 92 
5.2.1 Practical implementation of the PI controller 93 
5.2.2 Experimental and Simulation Results – Set-Point Tracking 97 

5.3 Summary 104 

6.0 ADVANCED CONTROLLER DESIGN, 
DEVELOPMENT, IMPLEMENTATION AND 
TESTING 109 

6.1 Choice of Control System Structure  110 

6.2 Development and Implementation of the Fuzzy Inference System 114 
6.2.1 Fuzzy Inference System for the Flow Controller 115 
6.2.2 Fuzzy Inference System for the pH Controller 124 

6.3 Simulation and Experimental Results 130 
6.3.1 Experimental Results from the pH Neutralization Pilot Plant 131 
6.3.2 Computer-based Simulation Results for the Fuzzy Logic Controller 145 
6.3.3 Computer-based simulation of the feedforward/feedback control strategy 

using PI controllers 158 

6.4 Summary 164 

 
 
 



 viii 

7.0 CONCLUSIONS AND RECOMMENDATIONS 167 

7.1 Research Project Conclusions  167 
7.1.1 The pH neutralization process model 168 
7.1.2 The implementation of the feedback/feedforward control scheme with the 

advanced controller 171 

7.2 Summary of the Main Contributions  173 

7.3 Recommendations for Future Research 174 

8.0 REFERENCES 177 

9.0 LIST APPENDICES 188 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 ix 

LIST OF FIGURES 

 

Figure 2.1: Typical titration curves for monoprotic acid (left) and polyprotic acid 
(right) ................................................................................................. 13 

Figure 2.2: Membership function of  a classical set .................................................. 29 
Figure 2.3: Membership function of a fuzzy set ........................................................ 29 
Figure 2.4: Typical membership function for fuzzy logic systems ........................... 30 
Figure 2.5: General procedures of designing a fuzzy system.................................... 32 
Figure 3.1: Piping and Instrumentation Diagram (P&ID) of the pilot plant.............. 37 
Figure 3.2: Photograph of the pH neutralization pilot plant ...................................... 38 
Figure 3.3: Overall system architecture of the pilot plant showing the three functional 

levels .................................................................................................. 39 
Figure 3.4: The reactor tank ....................................................................................... 41 
Figure 3.5: Photograph of the reactor tank at the pilot plant ..................................... 42 
Figure 3.6: Photographs of the magnetic flowmeters ................................................ 47 
Figure 3.7: Typical characteristic of a control valve ................................................. 48 
Figure 3.8: Photograph of the control valves ............................................................. 49 
Figure 3.9: Control valve characteristics ................................................................... 50 
Figure 3.10: Photograph of the new data acquisition system .................................... 54 
Figure 4:1: The flowchart of the modelling process .................................................. 60 
Figure 4:2: A schematic diagram for the pH neutralization process ......................... 65 
Figure 4:3: MATLAB/Simulink blocks of the pH neutralization on process model. 69 
Figure 4:4: Experimental results obtained using the enhanced data acquisition system 

during a test involving a step change of the flow rate for the alkaline 
stream. ................................................................................................ 71 

Figure 4:5: The dynamic response from the neutralization pilot plant for square-wave 
variation of alkaline flowrate with constant flowrate of acid    
solution. .............................................................................................. 73 

Figure 4:6: Dynamic response – simulation of Experiment 1 ................................... 75 
Figure 4:7: Dynamic response – Simulation of Experiment 2................................... 76 
Figure 4:8: MATLAB/Simulink representation of the modified pH model.............. 77 
Figure 4:9: Dynamic response from the modified pH model – Experiment 1........... 79 
Figure 4:10: Dynamic response from the modified pH model – Experiment 2......... 80 
Figure 4:11: Dynamic responses of the model for the original and modified 

configurations ..................................................................................... 82 
Figure 4:12: Distribution of error .............................................................................. 83 



 x 

Figure 5:1: MATLAB/Simulink representation for the PI controller........................ 91 
Figure 5:2: MATLAB/Simulink representation of the pilot plant for the modified 

model, with a PI controller................................................................. 93 
Figure 5:3: PID tuning (Experiment 1)...................................................................... 95 
Figure 5:4: PID tuning (Experiment 2)...................................................................... 96 
Figure 5:5: PI controller performance........................................................................ 98 
Figure 5:6: Responses obtained from the system with the PI controller tuned for an 

operating point involving a pH set value of 8 .................................... 99 
Figure 5:7: Simulation results of the modified pH model with PI controller .......... 101 
Figure 5:8: Comparison between calculated and implemented tuning parameters . 102 
Figure 5:9: Further computer based investigation of tuning parameters ................. 103 
Figure 5:10: The transient performance measures ................................................... 105 
Figure 6:1: An overview of the controller structure proposed for the pilot plant .... 111 
Figure 6:2: Control valve characteristics ................................................................. 116 
Figure 6:3: Simplifed MATLAB/Simulink model representation for the fuzzy logic 

flow controller.................................................................................. 117 
Figure 6:4: Membership function for input set ........................................................ 119 
Figure 6:5: Membership function for the output set ................................................ 121 
Figure 6:6: The response of the fuzzy logic controller in terms of the manipulated 

variable as a function of the error .................................................... 124 
Figure 6:7: MATLAB/Simulink representation for the overall pH controller................... 125 
Figure 6:8: Membership function for the input set for the pH fuzzy logic     

controllers......................................................................................... 126 
Figure 6:9: Membership function for outputs set for pH fuzzy logic controller ..... 128 
Figure 6:10: The response of the pH fuzzy logic controller .................................... 130 
Figure 6:11: The step response experiment for changes of the pH set point. .......... 132 
Figure 6:12: Additional response from the set point experiment ............................ 135 
Figure 6:13: Set point tracking test results .............................................................. 137 
Figure 6:14: Responses obtained from a load disturbance experiment ................... 139 
Figure 6:15: Responses obtained from the concentration disturbance experiment. 142 
Figure 6:16: Responses from the experiment involving large changes of set point 144 
Figure 6:17: Simulation of the set point change experiment ................................... 146 
Figure 6:18: The new structure of the controller ..................................................... 147 
Figure 6:19: Membership function for the additional input set ............................... 148 
Figure 6:20: Membership function for the additional output set ............................. 148 
Figure 6:21: Simulation of set point change experiment with modified fuzzy logic pH 

controller .......................................................................................... 152 



 xi 

Figure 6:22: Simulation result for set point tracking ............................................... 154 
Figure 6:23: Simulation result for set point tracking with single input for the pH 

fuzzy logic controller (i.e. pH error)................................................ 155 
Figure 6:24: Simulation results for the load disturbance test. ................................. 156 
Figure 6:25: Simulation results for acid concentration disturbances ....................... 157 
Figure 6:26: Simulation of set point change with PI controllers ............................. 159 
Figure 6:27: Simulation result for set point tracking with PI controller .................. 161 
Figure 6:28: Simulation results for the load disturbance with PI controllers .......... 162 
Figure 6:29: Simulation results for acid concentration disturbances with PI    

controller .......................................................................................... 163 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 



 xii 

LIST OF TABLES 

 

Table 2.1: Comparison between classical and fuzzy set operations .......................... 30 
Table 2.2: The graphical representation of fuzzy set operations ............................... 31 
Table 3.1: List of process variables ........................................................................... 43 
Table 3.2: Categories of control valve responses ...................................................... 52 
Table 4.1: Process reaction rate of the dynamic response ......................................... 72 
Table 4.2: Parameter settings for the simulation work .............................................. 74 
Table 4.3: Statistical description of the modified pH model performance ................ 83 
Table 5:1: Ziegler-Nichols tuning formula for a closed loop system........................ 94 
Table 5:2: Tuning parameters for computer based simulation work ....................... 103 
Table 6.1: Membership function description and parameters for input set ............. 120 
Table 6.2: Membership function description and parameters for output set ........... 121 
Table 6.3: If-then-rules statements for the fuzzy logic controller............................ 122 
Table 6.4: Membership function descriptions and parameters for the input set...... 127 
Table 6.5: Membership function descriptions and parameters for output set .......... 128 
Table 6.6: If-then rule statements for the fuzzy logic controller ............................. 129 
Table 6.7: Descriptive statistical values for the process variable for the pH set-point 

change experiment ................................................................................. 133 
Table 6.8: Statistical results for the concentration disturbance experiment ............ 143 
Table 6.9: Membership function descriptions and parameters for the additional input 

and output sets........................................................................................ 149 
Table 6.10: New configuration for the first input set for the pH controller............. 150 
Table 6.11: If-then statements for the new fuzzy logic controller........................... 151 
Table 6.12: Statistical results for the simulation exercises ...................................... 158 
 

 

 

 

 

 

 

 

 

 



 xiii 

ABBREVIATIONS 

 

UTP  Universiti Teknologi Petronas 

MPC  Model Predictive Control 

FLC  Fuzzy Logic Control 

PID  Proportional plus Integral plus Derivative 

PI  Proportional plus Integral 

LMPC  Linear Model Predictive Control 

NMPC  Nonlinear Model Predictive Control 

NGPC  Neural Generalised Predictive Control 

DCS  Distributed Control System 

XPC  Industrial Personal Computer 

CSTR  Continuous Stirred Tank Reactor 

H2SO4  Sulphuric Acid 

NaOH  Sodium Hydrochloride 

NN  Neural Network 

TIC  Theil’s Inequality Coefficient 

 

 



 

 1 

 

 

 

 

 

CHAPTER ONE 

 
 

1.0 INTRODUCTION 2 

1.1 Research Overview 3 
1.1.1 Problem Identification 4 
1.1.2 Research Objectives 5 
1.1.3 Significance of the Research 5 

1.2 Overview of the Thesis 6 
 

 

 



INTRODUCTION 

 2 

1.0 INTRODUCTION 

 

The technology used within the process industries has changed rapidly in recent 

years as plant processes have become more and more complex. These changes are 

due to the increasing need for better product quality and requirements for 

minimisation of operating costs, including those associated with energy usage. As a 

result, significant new constraints have emerged which reflect directly on plant 

process technology. Another important factor that contributes to the development of 

process industry technology arises from environmental legislation which not only 

puts significant demands on the process industries but is also constantly being 

revised.  

 

The capability and availability of new and modern hardware and software also plays 

an important role in this advancement of technology within the process industries. 

Previous researchers have had problems such as signal transmission delays, relatively 

low processing power for computational needs, and poor signal to noise ratios. 

However, with the new technology in instrumentation and measurement, for 

example, more accurate and precise data can be provided. Besides that, the 

introduction of modern computers with vastly increased processing power and 

improved networking capabilities also offers much better solutions in terms of speed 

and capacity. Thus researchers and process control developers in industry utilise 

these new hardware and software capabilities to improve the available technology 

and also introduce new and interesting developments in terms of control.  

 

Generally, developments in classical control system technology have been based on 

linear theory, which is a well proven and generally successful approach when applied 

to process systems. Although all physical systems are nonlinear to some extent, some 

systems can be approximated in a very satisfactory fashion using linear relationships. 

However, certain types of chemical systems or processes have highly nonlinear 

characteristics due to the reaction kinetics involved and the associated 

thermodynamic relationships. In these circumstances, conventional linear controllers 

no longer provide adequate and achievable control performance over the whole 
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operating range. Thus, designing a nonlinear controller which is robust in terms of its 

performance for different operating conditions is essential. There is also increasing 

interest in the potential of “intelligent” control methods for process applications. 

Intelligent control can be described as a control approach or solution that tries to 

imitate important characteristics of the human way of thinking, especially in terms of 

decision making processes and uncertainty. It is also a term that is commonly used to 

describe most forms of control systems that are based on artificial neural networks or 

fuzzy logic. The central theme of this research concerns problems of system 

modelling, control system development, implementation and testing for a specific 

application which involves a pH neutralization process. The control of a pH 

neutralization process presents a significant challenge due to the time-varying and 

highly nonlinear dynamic characteristics of the process. 

 

In general terms this research study can be divided into two main activities. The first 

of these involves pH process model development, together with internal verification 

and external validation of the associated simulation model from test data obtained 

from open- loop and simple closed- loop tests carried out on the actual plant.  

 

The second activity involves controller design and development, including 

preliminary controller evaluation using simulation and, finally, implementation and 

testing on a pH neutralization pilot plant. The key objective has been to develop an 

advanced control strategy that can provide accurate, efficient and flexible operation 

of the particular pilot process plant around which the project was based. Besides that, 

the work involves investigation of issues such as robustness, stability, 

implementation and overall performance optimisation. 

 

1.1 Research Overview  

 

This research project involves collaboration between the University of Glasgow, in 

the United Kingdom and the Universiti Teknologi Petronas (UTP) in Malaysia. This 

research is based upon a pH neutralization pilot plant which is installed at the Plant 

Process Control Laboratory, in UTP.  
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Typically, pH neutralization plant can be found in a wide range of industries such as 

wastewater treatment, oil and gas and petrochemicals. It is a known fact that a pH 

process plant of this kind is very difficult to model and control. This is due to its 

highly nonlinear and time varying dynamic process characteristics. Research based 

on this pilot plant should provide new insight of value for other complex process 

applications involving highly nonlinear systems. 

 

1.1.1 Problem Identification 

 

Effective modelling of a pH neutralization plant is not a recent issue. However, due 

to the nonlinear characteristics and complexity of this type of system, research on 

how to provide a good dynamic model of a pH neutralization process, which was 

first started in the 1970s or earlier, still continues. Thus one of the first main issues 

faced in this research was the fact that currently available models for pH 

neutralization processes did not appear to be an adequate representation of the type 

of pH neutralization plant used in industry and could not be applied to the pilot plant 

at UTP without modification.  

 

The second problem that has driven this research is the “poor control performance” 

which has been demonstrated by current control strategies. As described in the 

previous section, the major problems that contribute to unacceptable and inadequate 

control performance can be summarised as follows:- 

 

i. Increases in plant complexity and strict constraints in terms of environmental 

and other performance requirements present a significant challenge in 

applications such as pH neutralization. 

 

ii. The inherent and severe nonlinearity of a pH neutralization process is a major 

source of difficulty in terms of robust and stable control system design. 
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1.1.2 Research Objectives 

 

There are two main objectives in this research. The first aim is to provide an 

adequate dynamic nonlinear pH neutralization model, based on physical and 

chemical principles that can represent the real pH neutralization plant available at 

UTP. The second goal for this research is to design, develop and implement an 

“intelligent” and advanced form of controller. The research work for the second 

objective mainly concerns the use of a combined feedback/feedforward system as an 

overall control structure and the implementation and testing of fuzzy logic controllers 

within that type of control scheme. The study focuses on the pH neutralization 

process but some aspects of the work have relevance for other process applications. 

Another aim is to investigate benefits and limitations of this type of control algorithm 

and the type of process model developed during this investigation. 

 

1.1.3 Significance of the Research 

 

As stated above, the research utilises the specific pH neutralization pilot plant at 

UTP. This pilot plant is based around the type of industrial instrumentation, 

measurement and actuation systems used within the process industries. Unlike some 

other laboratory test-bed neutralization reactor systems, measurement noise, time 

delays and control valve characteristics typical of full-scale industrial plant of this 

kind are well captured in the dynamic response of the pilot plant. Thus, the dynamic 

characteristics of the experimental system are believed to be representative of an 

actual pH neutralization plant used in industry. 

 

Investigation and evaluation of the performance (e.g. accuracy, dynamic response 

etc.) of a developed simulation model of the pilot plant and detailed comparisons 

between the developed model and the plant behaviour has been an important feature 

of this research. Therefore, it is hoped that one outcome of this research should be 

the provision of a more reliable and more practical model for pH neutralization 

processes having a generic form that could be of some general value for industrial 

plant of this type.  
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It is hoped that the research work could also provide a significant impact in terms of 

the development of intelligent or advanced controllers for plant process control 

applications, especially in terms of the Fuzzy Logic Control approach. Indirectly, a 

further aim of this research is to try to provide additional insight regarding issues 

such as control performance, stability and robustness in an application of this specific 

kind, so that engineers in industry may feel more confident about the use of this 

flexible new industrial intelligent control technology. In this way it is hoped that the 

work may, in some small way, help to bridge the well known “gap” between theory 

and industrial practice. 

 

1.2 Overview of the Thesis 

 

Chapter 1: Introduction 

 

This chapter introduces background information relevant to the research. It also 

highlights the main issues that drive this research study. The two main objectives of 

the research are presented and the chapter includes discussion of the practical 

significance of these aims. 

 

Chapter 2: Literature Review 

 

The chapter summarises the literature survey which has been conducted. It contains 

coverage of the main established concepts and techniques published in the literature 

concerning pH process modelling and control. A short summary of pH neutralization 

process characteristics is also presented in this chapter in order to help readers 

unfamiliar with this application develop a clearer understanding of the subject. A 

survey of the existing results for different controllers applied to pH neutralization 

processes is also highlighted. This chapter concludes by providing a basis or 

motivation for continuation of the research and also presents a discussion of the 

overall scope of the work. 
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Chapter 3:  The pH Neutralization Pilot Plant 

 

This chapter describes the configuration of the pH neutralization pilot plant used in 

this research. The chapter starts by describing the overall architecture of the pilot 

plant. It then continues with a short summary of the instrumentation and 

measurements involved and the associated hardware, including the pH meter, 

flowmeter, conductivity meter and control valves. It also highlights initial work 

required prior to experimentation, such as calibration work and configuring and 

testing of the data acquisition system. This section provides useful information 

relating to the capabilities and limitations of the pilot plant in general and the 

associated equipment. The chapter ends with some discussion of practical issues 

relating to the pilot plant.  

 

Chapter 4: Modelling and simulation of pH neutralization process pilot plant 

 

This chapter presents two aspects of the work concerning system modelling. The first 

part discusses the preliminary development of the first pH model used in this 

investigation. It is based on the mathematical modelling method used by McAvoy 

(McAvoy, Hsu, & Lowenthals 1972) for pH process modelling in an early paper that 

is still regarded as the key publication in this field. This chapter then goes on to 

describe the performance of the first pH model in comparison with the dynamic 

response obtained from preliminary experimentation on the pilot plant.  

 

The second part of this chapter explains the investigation and modifications made to 

the first pH model in order to provide a transient response that better matches 

experimental findings. This section also describes the steps taken during internal 

verification and external validation, with a view to establish the validity and 

adequacy of the dynamic response from the modified pH model in comparison with 

the dynamic behaviour of the pilot plant. 
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Chapter 5: Conventional Proportional Integral (PI) controller 

 

The chapter describes the performance of the system with a conventional controller 

(i.e. Proportional plus Integral (PI) controller) in controlling the pH neutralization 

process pilot plant. The control performance (i.e. experiment and simulation based) 

of the PI controller are also discussed in this section. The chapter ends with 

discussion of some objectives and the associated challenges for the design and 

implementation of more advanced forms of controller. 

 

Chapter 6: Advanced controller design development, implementation and testing 

 

This chapter starts with an overview of the formulation of the overall control 

structure which involves the combined feedback/feedforward principles. This chapter 

then describes in detail all measures taken during the development and 

implementation of the fuzzy inference system for the fuzzy controllers. The next 

section in this chapter presents results of the investigations on the use of the 

feedback/feedforward control scheme through the fuzzy logic approach to control the 

pH neutralization pilot plant. Results from the testing of the controller and associated 

investigations of the robustness and other potential benefits of the controller, 

involving investigations based on the actual pilot plant experiments, are presented. 

This section also presents results of computer-based simulation work on the fuzzy 

logic controller as well as PI controller with the same control structure (i.e. the 

feedback/feedforward control scheme).  

 

Chapter 7: Conclusions and Recommendations  

 

This chapter starts by summarising remarks relating to the first objective of the 

research concerning the performance of the modified pH neutralization model. It 

continues with conclusions relating to the second objective of the research in terms 

of the advanced controller. It highlights the main benefits of the fuzzy logic control 

scheme as an advanced controller for the pH neutralization process and discusses 

implementation issues. Finally, suggestions for further research are made towards the 

end of this chapter. 
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2.0 BACKGROUND AND LITERATURE REVIEW 
 

This chapter summarises the literature survey that was conducted as part of the 

research reported in this thesis. It covers pertinent established concepts and 

techniques published in the literature concerning pH process modelling and control. 

A short summary of the characteristics of the pH neutralization process is also 

presented in this section in order to present the subject more clearly in the context of 

the literature that is being reviewed. A survey of the existing published results for 

different controllers for the pH neutralization process is included. This chapter 

concludes with discussion which provides a basis or motivation for the research as 

well as outlining the scope of the work in more detail. 

 

2.1 pH Process Characteristics 

 

There are many excellent books and references in the field of equilibrium chemical 

processes involving reactions between acids and bases. This section describes, 

briefly, the general properties of acids and bases from a chemical perspective and 

continues with some explanations of the acid-base neutralization reaction process. It 

concludes with a description of methods for pH measurement. The main purpose of 

this section is to provide essential background information about the chemical 

process which is central this research. Sources of information used in this 

preliminary overview are mainly well established textbooks (e.g. (Bates 1973;Butler 

1964;Christian 2004b;Harvey 2000),). 

 

Concepts Relating to Acids and Bases 

 

As described in the Arrhenius theory, an acid is a substance that ionises in water to 

give hydrogen ions (H+) whereas a base is a substance that ionises in water to give 

hydroxyl ions (OH-). The charge balance equations for acid and base reactions with 

water are given in Equation (2.1) and Equation (2.2) respectively.  As shown in these 

equations, the hydrogen ion is actually a mere proton. Thus, based on the Bronsted-

Lowry theory, an acid is described as a substance that can donate a proton and a base 

is a substance that can accept a proton.  
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−+ +⇔+ AOHOHHA 32       (2.1) 

 −+ +⇔+ OHHBOHB 2       (2.2) 

 

Acids and bases can be categorised as monoprotic or polyprotic (i.e. diprotic, 

triprotic, etc). This depends on the number of hydrogen ions or hydroxide ions that 

the substance has. To explain further, phosphoric acid (H3PO4) may used as a 

convenient example. This acid is considered as a triprotic acid. This substance 

ionises in three different stages since it has three hydrogen ions to donate, as shown 

in Equations (2.3), (2.4) and (2.5). Each stage has a different va lue of dissociation 

constant which describes the attributes or characteristic of the substance.  

 

 −+ +⇔ 4243 POHHPOH       (2.3) 

−+− +⇔ 2
442 HPOHPOH       (2.4) 

−+− +⇔ 3
4

2
4 POHHPO       (2.5) 

 

The dissociation constant also describes the strength of the acids and bases. A large 

value of dissociation constant for an acid indicates that it is a strong acid that is able 

to donate or ionise all protons in water. On the other hand, a small value of 

dissociation constant for an acid shows that it is a weak acid and it dissociates 

partially.  

 

[ ][ ]
[ ]43

42
1 POH

POHH
Ka

−+

=        (2.6) 

[ ][ ]
[ ]−

−+

=
42

2
4

2 POH
HPOH

Ka        (2.7) 

[ ][ ]
[ ]−

−+

=
4

3
4

3 HPO
HPOH

Ka        (2.8) 

 

The acid-base neutralization reaction involves a chemical reaction in which hydrogen 

ions and hydroxide ions are neutralised or combined with each other to form water 

(H2O) while the other ions involved remain unchanged.  
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As an example, Equation (2.9) shows the acid-base neutralization reaction between 

hydrochloric acid and sodium hydroxide. 

 

 −+−+−+ ++→+++ ClNaOHOHNaClH 2    (2.9) 

 

In this example hydrogen and hydroxide ions combined together to form water and 

the mixed solution will also contain some salts.  

 

A titration curve is normally used to describe the characteristic of the acid-base 

neutralization reaction. This curve is able to provide useful and important 

information about the reaction, such as the equilibrium point, the type of acid and 

base involved (strong or weak, and whether monoprotic or polyprotic) as well as the 

total volumes or amounts of the substances involved at the end point of the titration 

process. The titration curve can also show the level of complexity of the acid-base 

neutralization process, especially in terms of the nonlinearity and the time varying 

nature of the process.  

 

As an example, Figure 2.1 shows the typical pattern of a titration curve for a 

monoprotic acid and a polyprotic acid (hydrochloric and phosphoric acids 

respectively). As shown clearly in the figure, the behaviour of the neutralization 

process is highly nonlinear. The figure shows an S-shaped curve in which the slope 

of the curve differs from one type of acid to another. The titration curve also depends 

on the concentration and composition of the acid and base involved in the reaction 

process. Thus it shows that the process gain can vary significantly and this creates an 

important challenge for pH control applications. The S-shaped curve also shows that 

the most sensitive point on the curve is in the region where the pH value is 7. At this 

point we should expect a significant change in output for a very small change of 

input. Thus this operating point involves difficult conditions for open- loop 

experimentation and for control. 
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Figure 2.1: Typical titration curves for monoprotic acid (left) and polyprotic 
acid (right) 

 

The concentration of hydrogen and hydroxide ions determines whether the mixed 

solution is acidic or alkaline. The mixed solution becomes an acidic solution when 

the concentration of hydrogen ions is greater than the concentration of hydroxide 

ions. The opposite is true for the case of a mixed solution that is alkaline. However, 

if the concentration of both ions is the same then the mixed solution has reached a 

condition called a neutral solution. As described in (Christian 2004a), the 

concentration of H+ and OH- in an aqueous solution can vary over an extremely wide 

range (normally between 10-14M and 1M). Thus it is very convenient to measure the 

acidity of the solution by using the logarithm of the concentration of hydrogen 

ions,(log H+), rather than the concentration itself (H+). This concept of pH scaling for 

measuring the acidity of a substance was introduced by Sørenso in 1909 (Bates 

1973;Christian 2004a;Mattock & Taylor 1961). 

 

 ][log 10
+−= HpH        (2.10) 

 

Based on this concept and Equation (2.10), the scale for measuring the acidity of a 

solution is between 1 and 14. At 25oC, if the pH value is below 7 the mixed solution 

has a higher concentration of hydrogen ions and thus the solution is acidic. If the pH 

value is 7 it shows that the mixed solution is neutral and if the pH value is more than 

7, it indicates that the solution is alkaline. 
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2.2 pH Control Techniques 

 

This section contains a short review of the significance of pH control in industry. It 

also summarises some of available control strategies and gives particular emphasis to 

the problems of control for the pH neutralization process. This section also includes 

discussion of the selected advanced control Fuzzy Logic Control (FLC) for an 

application of this kind. One objective of this section, through providing background 

information relating to the problems of pH control, is to establish appropriate 

boundaries for the research being undertaken. 

 

2.2.1 Significance of pH control 

 

The control of pH arises in a wide range of industries including wastewater 

treatment, biotechnology, pharmaceuticals and chemical processing. The general aim 

in this form of control is to maintain the pH value within a liquid at a specific level. 

This can be important in order to comply with and satisfy certain environmental 

requirements or quality standards.  

 

Shinskey (Shinskey 1973) describes wastewater treatment applications as the one of 

the most challenging pH control problems encountered in industry. This is mainly 

due to disturbances in the feed composition which are difficult to handle as different 

compositions will require different sets of control parameters. There are many 

published papers that discuss pH control in the context of this type of application 

(e.g.(Mahuli, Russell Rhinehart, & Riggs 1993;Paraskevas & Lekkas 1997)). In 

general, in this case, the purpose of the chemical plant is to neutralise the waste 

product solution (which may arise as a result of some manufacturing process) before 

discharging it to the environment. In such cases the control of the pH value to a 

certain environmental and legislative standard is very important (Rudolfs 1953). The 

requirement in terms of the pH value for effluent from a wastewater treatment plant 

is usually in the range 6 to 8. This is mainly to protect life (both aquatic and human) 

and also to avoid or prevent damage due to corrosion. 
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A constant pH value is vital for some production processes in the biotechnology 

industry. As an example, efficient pH control is needed to maintain a pH value with a 

small tolerance in order to ensure the optimal performance (e.g. activity and growth) 

of certain cultures of microbial and animal cells (Roukas 1998;Roukas 1999;Roukas 

& Harvey 1988). Normally, in animal cell cultures, the optimal pH value for 

maximum cell growth is, approximately, a pH value of 7.4. In a bioreactor pH 

control is crucial in order to prevent the micro-organisms from dying as these 

microbial populations are very sensitive to the environment. 

 

Pharmaceutical products (Lopes et al. 2002) are also produced under stringent and 

reliable controlled conditions in order to ensure the quality of the product. There are 

a few processes that require special attention such as sterilisation, fermentation, 

extraction and also neutralization. The instrumentation and control schemes used in 

such processes must be highly accurate and reliable. 

 

2.2.2 Overview of pH control 

 

In general pH control methods can be divided into three main categories. The first 

category is an open loop type of control scheme in which the control valve opening is 

kept at certain positions for specific time durations. A specific pH value in the 

reactor tank is not really the main concern. Normally this type of control approach is 

used for start-up and shutdown of a process or at an initial or pre-process stage 

within a multistage neutralization process in which at the later stages of the process 

involve a feedback controller to control the pH value to a specific value or within a 

range of values.  

 

The second category is the most popular and commonly used approach and is based 

on feedback control principles. Unlike the open loop control approach, this type of 

control scheme involves a direct relationship between the control valve opening and 

the pH value in the process. The general idea is that when the pH value is higher than 

the desired value the control valve opening is decreased. Conversely, if it is lower 

than the set point then the control valve opening is increased.  
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This control approach is also known as a corrective control approach. This is because 

the control action will take place once there is a discrepancy between the process 

variable and the required set point. There are many types of feedback control 

schemes that have been published and discussed by previous researchers. The most 

widely used type of controller for this feedback control approach is the Proportional, 

Integral and Derivative (PID) type of controller together with the closely associated 

variations on this control algorithm involving Proportional control (P) or 

Proportional plus Integral control (PI).  

 

The third control method that is widely used in this type of application is 

feedforward control. In this control approach the controller will compensate for any 

measured disturbance before it affects the process (i.e. the pH value in the case of 

this application). In order to implement this control approach it will normally be 

necessary to make more measurements on the process. In the case of a pH process 

the disturbances could arise from unexpected changes in the concentrations of both 

solutions as well as changes in the flowrates for the two streams. Thus, with a 

properly designed feedforward scheme, if a disturbance occurs the controller will 

react before the pH value in the reactor tank is significantly affected. Based on this 

principle this feedforward control approach is also known as a form of preventive 

control. The preventive control approach is very much faster than the corrective 

control approach. Often, in an ideal case, a controller will involve a combination of 

corrective control and preventive control. It is unusual to have a controller which 

involves only feedforward control. This is because the feedback control scheme will 

handle or react to any unknown or unmeasured disturbances (which are 

unmanageable by means of feedforward control alone). At the same time the 

feedforward control scheme will react faster to any measured disturbance before it 

affects the process.  
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Review of selected papers describing previous research on pH control 

 

In summary, pH control is an interesting and challenging research subject which has 

led to a large number of motivating and interesting published papers. As mentioned 

earlier this is mainly due to the nature of the reaction process, which is highly 

nonlinear, together with the challenge of disturbances caused primarily by variations 

in the influent composition and flowrate. In this section, several selected key papers 

were used as a basis for a review of previous work which includes some detailed 

explanations relating to a number of selected types of control schemes. This provides 

general information about previous research work done by other researchers working 

on problems of modelling and control in this field.  

 

McAvoy  and his fellow researchers (McAvoy, Hsu, & Lowenthals 1972) presented 

a paper on a rigorous and generally applicable method of deriving dynamic equations 

for pH neutralization in Continuous Stirred Tank Reactors (CSTRs). This paper and 

the associated model has been used as a platform for many subsequent investigations, 

such as those of  Gus tafsson & Waller, Henson & Seborg and Wright & Kravaris and 

formed the basis for their attempts to introduce new and improved forms of pH 

control, especially in the area of adaptive control. 

 

T.K Gustafsson and K.V Waller have produced several interesting papers concerning 

modelling and control of the pH neutralization process and a number of these have 

been reviewed and cited by others as providing good reference material. In 1982 

(Gustafsson 1982) introduced a new concept concerning the averaging pH value of a 

mixture of solutions. The idea was to utilise reaction invariant variables in 

calculating the pH value of mixtures of solutions instead of using a direct calculation 

involving a simple averaging of hydrogen ions. The paper introduced the concept of 

“invariants species” which represent the species that remain chemically unchanged 

by the governing of reactions in the neutralization process. Thus the paper suggested 

that the final pH value of a mixture of solutions needs to take into consideration the 

concentration of all variables involved in the reaction process.  
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In the following year this research group (Waller & Gustafsson 1983) published a 

systematic method for the modelling of the dynamics of the pH neutralization 

process. It was based on this concept of invariant species and the development of the 

dynamic nonlinear section involved mass balances of all the invariant species 

involved in the neutralization reaction process. This paper has been used as one of 

the key references by most researchers in this field. This is because the paper 

presents some simulation results which highlight the possible use of this pH model in 

implementing an adaptive pH control scheme. In the paper Gustafson and Waller 

also developed an adaptive controller where the developed model was incorporated 

in the controller in order to provide relevant information necessary for the controller. 

They used hypothetical species estimation to obtain the inverse titration curve so that 

overall linearization of the control loop can be utilised. Recursive least squares 

estimation was used in obtaining values of certain unknown parameters.  

 

Gustafsson and Waller also produced another important paper on the investigation of 

the fundamental properties of continuous pH control (Waller & Gustafsson 1983). 

Some results on the investigation of standard and non-standard forms of PID 

controller are also presented in this paper and the paper includes simulation and 

experimental results for an adaptive reaction- invariant controller, the performance of 

which is compared with a conventional PID controller. Apart from these results 

relating to controller performance this paper is important in that it also provides a 

comparison of experimental results for two different capacities of the reactor tank 

(with PID control applied). These results suggest that taking into account the 

capacity of the reactor tank during plant design is important in order to have fast and 

efficient mixing in the tank. There are two further good papers on this subject 

entitled Nonlinear and Adaptive Control of pH (Gustafsson & Waller 1992) and 

Modelling of pH for Control  (Gustafsson et al. 1995) which provide further reviews 

of the some of the above issues of dynamics and control that arise in this type of 

nonlinear control application. 
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The research group of Henson & Seborg (Henson & Seborg 1994) is another group 

that has published work on adaptive nonlinear control applied to a pH neutralization 

process. That publication (Henson & Seborg 1994) is now recognised as an 

important paper and point of reference in the field of pH control. The group 

implemented the controller and evaluated its performance on a bench scale pH 

neutralization system in order to gain additional insight in terms of the practical 

application. The nonlinear controller was developed by applying an input-output 

linearization approach to a reaction invariant model of the process (Gustafsson & 

Waller 1983b;Waller & Makila 1981). The controller also utilised an open- loop 

nonlinear state observer and a recursive least squares parameter estimator. The paper 

highlights results for three different tests carried out to investigate the performance 

of the main types of controllers considered (i.e. a PI controller, and non-adaptive and 

adaptive forms of nonlinear controller). The first test involved set point changes; the 

second test involved buffer flowrate disturbances and finally the third test included 

acid flowrate disturbances. Based on the results from these tests the adaptive 

nonlinear pH control was found to provide the best results for the three controllers 

considered. 

 

A research group from a control engineering laboratory at Helsinki University of 

Technology has also published a number of useful papers on modelling and control 

of pH neutralization processes In 1981 they published a paper on modelling of the 

pH neutralization process in a continuous stirred tank reactor which was based on a 

physico-chemical approach to process modelling (Jutila & Orava 1981). Their 

simulation focused on the changes of a dissociation process involving the use of the 

pH variable as a measure for the acidity. The pH model was able to calculate 

approximately the dissociation constant of the weak species by using a procedure of 

static fits to the titration curve of real liquid samples. The models developed by this 

Finnish group also allow estimation of the unknown concentration of the 

hypothetical species with the aid of a linear Kalman-filter algorithm.  
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In 1983 the research group produced another paper concerned with implementation 

of a form of adaptive pH control for a chemical waste water treatment plant (Jutila 

1983). That paper is widely regarded as being important because the adaptive 

controller was actually being implemented at a chemical waste water treatment plant 

at Viinikanlahti, Tampere, Finland. The same approach presented in the earlier 

published work (Jutila & Orava 1981) was used in modelling and in controller design 

for the pH-reactor where the composition of the incoming waste-water is modelled 

with hypothetical chemical species. The paper reviewed and commented on previous 

work involving adaptive feedback algorithms. It was concluded that the main 

disadvantage of the approach adopted in earlier work was that the controllers were 

unable to implement a proper feedforward control loop. Thus the main idea presented 

in this paper (Jutila &Orava 1981) was to present a new approach for an adaptive 

combined feedback-feedforward control method for pH control which was based on 

a quantitative physico-chemical analysis of the pH neutralization process. As 

presented in the paper (Jutila 1983), the simulation and experimental results were 

very encouraging. Later this research group presented another paper on pilot plant 

testing of the adaptive pH control algorithm (Jutila & Visala 1984). The paper 

highlighted a few problems with the earlier adaptive control methodology and 

presented some improvements that had been made to the controller. The simulation 

results were presented to support the capability of the enhanced adaptive controller. 

 

G.A. Pajunen (Pajunen 1987) published a paper in 1987 on comparisons of linear and 

nonlinear adaptive control of a pH process. She presented two different schemes of 

adaptive control involving linear and nonlinear adaptive controllers. The case 

involving the linear adaptive controller was based on flow and mixing models that 

were initially assumed to be known. The second scheme utilised piecewise-

polynomial approximation to obtain an inverse of the titration curve for the pH 

process. It should be noted that the modelling approach for the pH model was 

different in this case from that of Gustafsson & Waller. It was more of an 

experimental method of modelling rather than involving derivation from a physical 

and chemical point of view. In summary the performance of the nonlinear adaptive 

controller was better than that of the linear controller. However in the case of 

frequent step disturbances the paper suggested use of the linear controller instead.  
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Wright and Kravaris, researchers from the Department of Chemical Engineering, at 

the University of Michigan, have also published several papers on pH control 

applications. In 1991 they introduced a new method of modelling and design of a 

nonlinear controller which was based on the concept of the strong acid equivalent. 

The first paper (Wright 1991) provides a comprehensive review of previous research 

work on pH modelling and control. The strong acid equivalent is one state variable of 

a reduced model which can be calculated online from the pH measurements given a 

nominal titration curve of the process stream. The formulation of the new approach 

transforms the control problem into an equivalent linear control problem which is 

expressed in terms of the strong acid equivalent. The paper presents some simulation 

results on the performance of the new control strategy, which is linear and non-

adaptive. The second paper (Wright, Soroush, & Kravaris 1991) focuses on the 

implementation of the new approach (i.e. strong acid equivalent method) on a 

laboratory-scale pH neutralization process. The experimental results show that in 

addition to a nominal process stream titration curve the proposed control algorithm 

requires no chemical information, such as the dissociation constant and chemical 

species involved. These two main papers (Wright, Soroush, & Kravaris 1991) 

provided a foundation for further research to explore this subject in greater detail and 

this then led to some more interesting papers in later years from the same group.  

 

Three papers were published on on- line identification and nonlinear control of pH 

processes (Wright & Kravaris 1995;Wright, Smith, & Kravaris 1998;Wright & 

Kravaris 2001b). These papers are based on a real industrial process for lime slurry 

neutralization. As described in these papers, the research work focuses on acidic flow 

of unknown contents and large acidic load changes. An online identification method 

for unknown chemical species was used, which is an approach that had been 

developed previously (Wright 1991;Wright, Soroush, & Kravaris 1991). As 

explained previously, the strong acid equivalent approach can be used once the 

identification is realised. In (Wright & Kravaris 1995) the results of the controller 

performance were briefly presented but the paper demonstrated the workability of the 

online identification concept for the unknown nonlinearity of an industrial pH 

process.  
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The next two papers (Wright, Smith, & Kravaris 1998;Wright & Kravaris 2001a) 

presented, in more detail, additional results relating to the investigation of the 

controller performance, such as tracking of the lime flowrate set point, investigation 

of different conditions of normal process operation (i.e. for pH values of 7, 4.5 and 

2.5), and operation without agitation. 

  

Another research group from Korea University, Seoul, has published several papers 

on adaptive nonlinear control for pH neutralization processes. In 1995 they presented 

a new approach to pH control that utilises an identification reactor to incorporate the 

nonlinearities of the pH neutralization process (Sung, Lee, & Yang 1995). As 

mentioned in their paper, they proposed a new method which uses an approach 

involving an identification reactor similar to that introduced previously by Gupta & 

Coughanowr (Gupta & Coughanowr 1978) and by Williams et al. (Williams, 

Rhinehart, & Riggs 1990). The titration curve was to be obtained from the 

identification reactor approach by using an interpolation method (cubic spline) and 

the titration curve was to be updated periodically. This proposed approach to control 

was based upon the Wright & Kravaris approach (Wright 1991;Wright, Soroush, & 

Kravaris 1991) especially in terms of the stability analysis and determination of 

controller parameters. In the year 2002, D.R. Yang and his group published another 

paper (Yoon et al. 2002) concerning indirect adaptive nonlinear control for the same 

process application (i.e. a pH neutralization process). However the proposed 

nonlinear control design strategy in this paper was different from their earlier paper 

(Sung, Lee, & Yang 1995) in which the backstepping technique was used instead. In 

addition to that, the general approach to pH model development described in the 

paper was also based on the work of Henson & Seborg (Henson & Seborg 1994), 

especially in terms of the dynamic model of the process. As described in the paper, 

the simulation results showed an adequate control performance using this approach.  

 

In 2004, another paper was presented by the Korean researchers on nonlinear pH 

control (Yoo, Lee, & Yang 2004). Unlike the previous paper (Yoon, Yoon, Yang, & 

Kang 2002) this paper offers some insight into practical control design issues for a 

pH neutralization laboratory setup. The main concern of this study is to design an 

online identification method based on use of an extended Kalman filter.  
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The filter has been experimentally applied to the simultaneous estimation of states 

and process parameters of the pH neutralization process. The paper provides some 

comparison between simulation and experimental results.  

 

Some groups of researchers have also investigated another type of advanced control 

strategy in the form of  nonlinear model predictive control. As presented by 

Camacho & Bordons and Rossiter (Camacho & Bordons 1999;Rossiter J.A 2003), 

model predictive control can be described as an intelligent control algorithm that 

computes the future dynamic responses of a plant or system by using an explicit 

process model and determines the control input required on the basis of that 

predicted future response. Thus the main concern of this area of research is to 

develop a pH model that is able to demonstrate the nonlinearity of the pH process 

and will eventually be used to predict the future control signals for the controller. As 

an example, in 1994 Kelkar and Postlewaite presented a brief report on research 

work done on fuzzy-model based pH control (Kelkar & Postlethwaite 1994). The 

paper outlined the framework of the controller and the development of the fuzzy 

relational model which was based on a fuzzy logic approach. The control scheme 

was implemented on a small-scale experimental rig and the performance of the 

controller was reported as satisfactory.. In the conclusions section of the paper 

experimental and instrumentation issues relating to reduction of electrical noise were 

emphasised, in order to provide better control performance. 

 

A similar type of control strategy (i.e. nonlinear model predictive control) was also 

presented in a paper by Waller and Toivonen in 2002. Unlike Kelkar and Postlewaite 

(Kelkar & Postlethwaite 1994), this group of researchers has utilised a neuro-Fuzzy 

modelling technique which is also referred to as quasi-ARMAX to model the 

nonlinear characteristic of the pH neutralization process. As described in the paper, 

the developed neuro-fuzzy model is capable of representing the behaviour of a highly 

nonlinear pH neutralization process to a high level of accuracy. The simulation 

results for the  nonlinear model predictive controller show that the controller works 

very well not only for set point changes but also with feed flow concentration 

disturbances.  
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Generally all of the papers that have been discussed in the previous sections were 

concerned with advanced control techniques that can be categorised as model-based 

control approaches. In summary, the primary issue of this type of control approach is 

to obtain an accurate pH model that can provide reliable state and parameter 

information for the controller. Based on this fact, most of the previous approaches 

mentioned above have focussed their efforts on the formulation of various methods 

for modelling the nonlinearity of the pH neutralization process. Their work shows 

that it is quite challenging to identify the process nonlinearity as well as to properly 

evaluate the response predictions of the model representing the actual pH 

neutralization process in a reliable and robust fashion. In addition, most of the above-

mentioned papers show that this model-based control technique involves quite 

complex numerical problems. Thus computational speed and assurance of a reliable 

solution in real time remains critically important and represents an interesting 

challenge for this type of control scheme. 

 

As described previously in the first chapter of this thesis, this research study involves 

the development and implementation of advanced control approaches involving 

fuzzy logic control. The fuzzy logic approach has been chosen due to the fact that 

fuzzy logic control has made a breakthrough in some process industries involving 

highly nonlinear dynamic process behaviour. Besides that the fuzzy logic approach 

can be applied as a non-model-based technique. Instead, the fuzzy logic approach 

uses linguistic methods in control design and development. Thus it is believed that 

many of the problems outlined in the previous paragraphs dealing with model-based 

control methods  can be avoided with this type of control approach. The following 

paragraphs will review several selected papers on pH control that utilise fuzzy logic 

techniques. Hopefully these papers will be able to provide some insight into the 

capabilities of fuzzy logic based methods and support the choice of this type of 

approach for this research.  

 

In 1993, Karr & Genry presented a paper on the use of genetic algorithms in a  fuzzy 

control approach for a pH process (Karr & Gentry 1993). The paper basically 

describes work done by researchers at the U.S. Bureau of Mines as an extension of 

previous investigations on adaptive fuzzy logic controllers (Karr 1991).  
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As described in these papers (Karr 1991;Karr & Gentry 1993), the researchers at the 

Bureau had developed a technique in which the genetic algorithm approach is 

employed to alter membership functions in response to changes in the process. The 

idea presented in the later paper (Karr & Gentry 1993), is to utilise the ability of 

genetic algorithm in terms of optimizing the membership functions for different 

requirements in terms of set point or concentration disturbances. The developed 

controller was implemented on a small scale laboratory setup in which the volume of 

the beaker that represents the reactor tank is 1000mL. The paper presented some 

experimental results showing that the performance of this form of controller is very 

encouraging.  

 

A short paper on enhanced fuzzy control of a pH neutralization process was 

presented in 1993 by Kwok and Wang (Kwok & Wang 1993). The paper proposes a 

new control strategy consisting of three different parts: a fuzzy controller which 

represents the Proportional and Derivate control action, an integrator and a Smith 

predictor. As described in that paper the simulation results demonstrate the 

effectiveness of the proposed controller in comparison with the classical control 

approach involving the conventional PID controller. 

 

In 1994 Parekh and his colleagues published a paper on a new form of advanced 

control system for pH neutralization processes (Nie, Loh, & Hang 1994;Parekh et al. 

1994;Proll & Karim 1994) involving a technique based on the fuzzy logic approach. 

As described in the paper, the main advantages of the new proposed controller 

included a wider operation range, robustness of the controller in hand ling random 

disturbances as well as a relatively simple implementation. The paper highlighted the 

fact that, during the formulation of the fuzzy logic controller, experimental data and 

practical experience of the real process play an important role. It also shows at this 

design stage that the complexity of the mathematical formulation has been reduced 

through the use of linguistic terms. The paper included quite comprehensive 

experimental results which allowed the conclusion to be drawn that the proposed 

form of fuzzy logic controller works very well and provides good control 

performance.  
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2.2.3 The Conventional Approach 

 

The most widely used simple feedback control strategy applied to pH control 

involves the PID algorithm. Equation 2.10 describes the most basic form of 

continuous PID algorithm in the time domain. As shown in the equation, the PID 

algorithm is actually a simple single equation with three control terms; proportional 

gain, (KP), integral gain, (KI) and derivative gain, (KD). The variable mv(t) represents 

the controller output while the variable e(t) is the error, which is the difference 

between the system output (the measured pH in this case) and the set point. 
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This simple feedback control approach will be discussed further in Chapter 4. The 

dynamic performance of a PI controller on the pH neutralization pilot plant is used as 

a benchmark against which more advanced schemes can be compared. As discussed 

in Chapter 4, the conventional controller was not able to provide a good overall 

performance and this is consistent with previously published findings in the literature 

(e.g.(Alvarez et al. 2001)). 

 

2.2.4 Fuzzy Logic Control 

 

Historical Background of Fuzzy Logic 

 

In 1965, Lofti A. Zadeh published an interesting and ground-breaking paper on 

“Fuzzy Sets” (Zadeh 1965b). This paper describes the mathematics of fuzzy set 

theory which then led to the development of the fundamental ideas of fuzzy logic. As 

described in the paper, a fuzzy set is a class of objects with a continuum of grades of 

membership. Such a set is characterised by a membership function which assigns to 

each object a grade of membership ranging between zero and one. Zadeh then 

elaborated on this idea in a subsequent paper in, 1975, which introduced the concept 

of linguistic variables (Zadeh 1975a;Zadeh 1975b;Zadeh 1975c).  
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Since the 1960s many papers on fuzzy logic have been published by Zadeh and by 

other researchers who have followed his lead. As described by Zadeh (Zadeh 1976c), 

the primary aim of fuzzy logic is to provide a formal, computationally-oriented 

system of concepts and techniques for dealing with modes of reasoning which are 

approximate rather than exact.  

 

In 1987, Yager, Ovhinnikov, Tong and Nguyen published an edited volume entitled 

“Fuzzy Set and Applications” (Yager et al. 1987). This book is a compilation of 

selected papers by Zadeh on fuzzy logic. The editors have divided the papers into 

three main categories as follows: formal foundations, approximate reasoning, and 

meaning representation. The first category involves seven papers (Zadeh 

1965a;Zadeh 1968;Zadeh 1971;Zadeh 1973;Zadeh 1976a;Zadeh 1978a;Zadeh & 

Bellman 1970) that introduce fuzzy sets and possibility theory. The second category 

includes six papers (Zadeh 1975a;Zadeh 1975b;Zadeh 1976b;Zadeh 1976c;Zadeh 

1976d;Zadeh 1983b;Zadeh 1985) that define the concept of linguistic variables. The 

last category involves papers that describe directly the problem of meaning 

representation in natural language (Zadeh 1972;Zadeh 1978b;Zadeh 1983a;Zadeh 

1984;Zadeh 1986). 

 

In 1975, Mamdani and Assilian published a paper entitled “An Experiment in 

Linguistic Synthesis with a Fuzzy Logic Controller” (Mamdani & Assilian 1975). 

This paper described the first application of fuzzy set theory in a practical control 

systems context.  The paper presented the steps taken to control a steam engine and 

boiler combination by synthesizing a set of linguistic control rules obtained from 

experienced human operators. The inputs for the fuzzy logic control in this case were 

“error” and “change of error” and this was in many ways similar to the inputs used in 

conventional PI controllers. Other papers presented subsequently by Mamdani and 

his co-authors described the application of this concept of linguistic synthesis to a 

number of control applications (Mamdani 1976;Mamdani 1977;Mamdani & Assilian 

1999;Mamdani & Baaklini 1975). This approach remains one of the most popular 

and commonly used methods in the development of fuzzy logic controllers. In this 

research the Mamdani type of approach has been used to develop a fuzzy logic 

controller for the pH neutralization pilot plant.   
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Apart from the work of Mamdani and his colleagues there are other interesting 

approaches that have proved useful for fuzzy logic control system development and 

the work of Sugeno is particularly important in this respect (Ishii & Sugeno 

1985;Takagi & Sugeno 1985). In this approach the fuzzy logic controller utilises 

experimental data to develop the control strategy. Another important difference 

between Mamdani’s method and Sugeno’s method is in terms of the output 

membership function. For Sugeno’s method the output membership functions are 

either linear or constant (The Math Works 2000). 

 

Although the first literature on fuzzy logic (Zadeh 1965c) was presented and 

introduced in the U.S.A., researchers and manufacturers in North America were not 

keen to adopt this technology in the initial stages. The Europeans and Japanese were 

the first to aggressively apply the fuzzy approach to real engineering problems and to 

build real products around it. It has been reported that the first industrial application 

that implemented fuzzy logic as a control scheme was a cement kiln built in 

Denmark in 1975 (Jamshidi, Ross, & Vadiee 1993). A decade later, Seiji Yasunobu 

and Soji Miyamoto constructed a simulation that demonstrated the superiority of a 

form of fuzzy control system for the Sendai railway. Two years after that the idea 

was adopted and fuzzy systems were used to control the acceleration, braking and 

stopping of the trains (Schwartz & Klir 1992). In 1987 the first fuzzy chips were 

announced in Japan (Jamshidi, Ross, & Vadiee 1993;Ross, Booker, & Parkinson 

2002) and since then there have been many Japanese-designed electrical appliances 

such as washing machines, dishwashers, air cond itioning units, televisions and 

photocopying machines which use fuzzy logic concepts in some form of control 

scheme.  

 

The Basic Concepts of Fuzzy Logic  

 

This main purpose of this section is to present the general ideas of the fuzzy logic 

approach. Firstly it is necessary to have a basic understanding of fuzzy and classical 

sets, as introduced by Zadeh (George & Yuan B 1995;Jamshidi, Ross, & Vadiee 

1993;Ross, Booker, & Parkinson 2002;Zadeh 1965d). 
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Using the definition provided by Ross (Ross 1993) a fuzzy set is a collection of 

elements in a universe of information where the boundary of the set contained in the 

universe is ambiguous, vague, and thus “fuzzy” in some respects. In a classical set, 

the boundary is certain and rigid so that the boundary can be used to establish, in an 

unambiguous fashion, the set to which the element belongs.  

 

Let X denote the ground set or universe of discourse and let an element of that 

universe be denoted as ‘x’. Set A is a group of real numbers between 0 and 1 which 

is a subset of the universe, X. Figure 2.2 shows the graphical representation of the 

membership function of the classical set for this case and Figure 2.3 shows a 

corresponding graphical membership function of the fuzzy set 

 

 

 

 

 

 

 

Figure 2.2: Membership function of  a classical set 

 

 

 

 

 

 

Figure 2.3: Membership function of a fuzzy set 

 

As shown in the Figure 2.2, there are only two elements for set A which is 0 and 1. 

For the fuzzy set, besides the value of 0 and 1, set A has other values between these 

extremes, as shown in the figure. These values will depend on the membership 

function of set A. Figure 2.4 shows some other examples of membership functions 

that are available and commonly used in fuzzy logic systems. 
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Figure 2.4: Typical membership function for fuzzy logic systems  

 
The simplest membership function which is applicable to most process system is the 

triangular membership function, as shown in Figure 2.3. At the moment there are no 

proper rules or laws that can determine which membership function is most suitable 

for a given system or application.  

 

Table 2.1 shows the basic notations involved in fuzzy sets and provides a basis for a 

comparison between classical and fuzzy set operation. Table 2.2 shows the graphical 

representation of the membership function for each fuzzy set operation given in 

Table 2.1.  

Table 2.1: Comparison between classical and fuzzy set operations  

Descriptions  Classical Set Fuzzy Set 

Union { }BxAxxBA ∈∈=∪ or  |  
( ) ( ) ( )

( ) ( )[ ]xxMax

xxx

BA

BABA

µµ

µµµ

,=

∨=∪
 

Intersection { }BxAxxBA ∈∈=∩  and |  
( ) ( ) ( )

( ) ( )[ ]xxMin

xxx

BA

BABA

µµ

µµµ

,=

∧=∩
 

Complement { }XxAxxA ∈∉=   ,|  ( ) ( )xx AA µµ −= 1  
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Table 2.2: The graphical representation of fuzzy set operations  

Set Operation Set A and Set B Set C

Union

Intersection

Complement

x

µ x

0

1 C

x

µ x

0

1
A B

x

µ x

0

1
A B

x

µ x

0

1
A

x

µ x

0

1
C

x

µ x

0

1
C

 
 

These two tables provide some basic ideas of fuzzy set operation. Zadeh explained 

these fuzzy set operations and provided some relevant theorems (e.g. De Morgan’s 

Theorem and the Distributive Theorem) in his first paper on Fuzzy Sets (Zadeh 

1965e). 

 

Generally the development of the fuzzy logic systems or control schemes involves 

three steps or processes, as shown in Figure 2.5. The first step that is shown is the 

fuzzification process. This process involves a domain transformation in which the 

system inputs or crisp inputs are converted into fuzzy set inputs. In the pH 

neutralization process the system inputs are actually the measured process variables 

such as the pH value in the reactor tank, the flowrates of the streams and the 

conductivity values of the solutions. In this process each input will be transformed 

into its own group of membership functions or fuzzy sets.  
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Thus the development of the controller must include identifying the crucial system 

inputs, determining the type of membership function, as well as establishing the 

degree of the membership function for the input set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: General procedures of designing a fuzzy system 

 

The second step is the Fuzzy Inference process which is described as a process that 

forms the mapping of the fuzzy input and output sets. The main process involves 

establishing the relevant Fuzzy Set and Fuzzy Operator, as well as developing a set 

of “if-then rule statements”. As described in most of the literature such as (George & 

Yuan B 1995;Jamshidi, Ross, & Vadiee 1993;Ross, Booker, & Parkinson 2002) 

fuzzy sets and fuzzy operators are the subjects and verbs of fuzzy logic. Thus the “if-

then” rule statements are used to formulate conditional statements. Each rule 

statement will provide the result of implication. The last process prior to the next step 

is the aggregation process in which all the results of implication of each rule are 

combined into a single fuzzy set. 
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The third step is an inverse process of the first step and is called “defuzzification”. 

The process involves transforming the fuzzy set output into the system output so that 

the output signal can be used to drive some actuators or can be further processed by 

the controller. As described in the previous paragraph, the input for this process is 

actually a fuzzy set. This set comprises all the results of implication of each rule and 

thus contains a range of output values. The final output from the defuzzification 

process is a single value.  

 

There are a variety of methods to transpose the range of output values into a single 

value. These include methods such as the “centroid”, the “bisector” and the “middle 

of maximum” techniques. However the most commonly used method is the centroid 

method in which the centroid of the fuzzy set is calculated.   

 

Advantages of Fuzzy Logic 

 

From the literature, it appears that the main advantages of fuzzy logic control are as 

follows: 

 

i. Fuzzy logic is capable of controlling nonlinear processes by formalising the 

expertise of an operator who has vast experience in handling and tuning the 

process or a designer who has engineering knowledge in that particular area 

of process control engineering. 

 

ii. Fuzzy logic is able to provide a simple solution for model development in 

areas where it is difficult to derive a precise model using mathematical 

approaches based on the application of fundamental physical laws and 

principles. A complex and highly nonlinear process is usually difficult to 

describe quantitatively using such fundamental knowledge. 

 

iii. Fuzzy logic is also capable of resembling human decision making processes, 

with an ability to produce accurate and reliable solutions from vague or 

imperfect information.  
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iv. Formulation of a fuzzy logic system is relatively easy and the resulting 

controllers are usually straightforward to implement, as compared with other 

advanced forms of control system. This is mainly due to the fact that fuzzy 

logic uses a linguistic approach that is easy to understand rather than a more 

complex mathematical form of description. 

 

2.3 Summary and Research Motivation 

 

This chapter has given an overview of the pH neutralization process as well as the 

significance of pH control in industry. The review of the literature on pH 

neutralization processes shows that there is still a considerable challenge in the 

development of good dynamic models for pH neutralization processes and that pH 

control still remains an interesting research activity. This is mainly due to inherent 

nonlinearities in the process.  

 

The availability of a pH neutralization pilot plant (to be described in the next chapter 

-Chapter 3) that uses industrial standard instrumentation, measurement systems and 

control valves has also provided an important stimulus for this research. Although 

numerous papers and research activities have been published and presented on pH 

neutralization processes, the scope of this research is different since it focuses 

particularly on the problems of plant modelling, model validation from experimental 

data and the implementation of advanced forms of control. The process equipment on 

this pilot plant also differs, in a number of important respects, from the equipment 

used in other published experimental investigations. These are important features of 

this research. 

 

This research involves investigation of an advanced form of control strategy which is 

based on fuzzy logic techniques within an overall control structure that involves both 

feedback and feedforward control. Interest in so-called “intelligent control” 

approaches, such as fuzzy logic, has been gradually increasing over the last few 

years. Although there are various other approaches available, such as adaptive 

control and model predictive control, there are a number of issues associated with the 
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performance of these methods in practical industrial applications that are still being 

actively pursued. These include problems of optimisation, constraints and 

disturbance handling, process model nonlinearities and uncertainties and also issues 

of stability and robustness. Due to these issues associated with model-based 

approaches to control, this research has been directed towards investigation of a non-

model-based type of control strategy that involves a fuzzy logic approach.  

 

In general terms, fuzzy logic is now recognised as one of the most successful 

technologies for developing and implementing control systems for a wide range of 

industrial applications. This is due to the fact that fuzzy logic is capable of managing 

complex applications efficiently, even with uncertainties or vague information about 

the system to be controlled. The fuzzy logic concept has also been shown to be 

capable of mimicking human decision making processes for applications where 

manual control is known to produce acceptable control performance. Thus the 

successful application of fuzzy control concepts in other fields has encouraged this 

research activity to investigate the benefits and limitations of fuzzy control in the  pH 

neutralization process. These research activities also reflect interest in improving the 

operation and control of systems involving highly nonlinear process plant. 
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3.0 THE pH NEUTRALIZATION PILOT PLANT 

 

This section describes the pH neutralization pilot plant in detail. The main advantage 

of this plant for research of the type described in this thesis is that it has the 

characteristics that are comparable with a pH neutralization plant used in industry 

and its design uses industrial instrumentation and measurement technology 

throughout.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Piping and Instrumentation Diagram (P&ID) of the pilot plant 

 

Figure 3.1 depicts the main section of the Piping and Instrumentation Diagram 

(P&ID) of the pilot plant. Such a diagram provides useful information relating to the 

overall process configuration and piping layout as well as details of instrumentation 

and control related features. As shown in the figure, the pilot plant consists of three 

main tanks, an acid tank (VE100), an alkaline tank (VE110) as well as a mixing or 

reactor tank (VE120). The acid stream and the alkaline stream are pumped into the 

reactor tank by pump P100 and pump P110 respectively. As shown in the diagram, 

there are two flow transmitters FT120 and FT121 that indicate the flowrate for the 

acid and alkaline streams respectively.  
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The flowrate for both streams can be controlled individually by using the control 

valve CV121 for the acid stream and control valve CV122 for the alkaline stream. 

There is a motorised agitator (AG120) in the reactor that is used to mix the solution. 

A pH sensor (AT 122) measures the pH value of the solution in the reactor tank. The 

conductivity meters in the acid (CT100) and alkaline (CT110) tanks are used to 

monitor the concentrations of the solutions. There is another section which is not 

included in this P&I diagram. This is the discharging section which starts from the 

outlet of the reactor tank (i.e. the product of the neutralization process) and ends at 

the discharged tank. The solution in the discharged tank will be treated before being 

released into the environment. 

 

 

Figure 3.2: Photograph of the pH neutralization pilot plant 

 

Figure 3.2 shows a photograph of the pH neutralization pilot plant. It gives additional 

information about the pilot plant configuration. In general the design of this pilot 

plant involves control of the pH value of the solution in the reactor to a desired level 

by controlling the feed flow of the alkaline stream. This desired level is, in practice, 

usually between pH value 6 and pH value10. 
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3.1 Overall System Architecture 

 

The overall system architecture of the pilot plant is shown the Figure 3.3. As shown 

in the figure there are three different functional levels for this pilot plant. The first 

level is known as the Plant and Field Instrument Layer, the second level is the Data 

Acquisition System Layer and the third level (shown at the top) is the Supervisory 

Computer System Layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Overall system architecture of the pilot plant showing the three 
functional levels 

 

The first level (the Plant and Field Instrument Layer) involves the physical plant 

itself and consists of the primary elements such as the pH meters, conductivity 

meters and flow transmitters that provide information about the relevant process 

variables to the system. This level also has some final elements such as the control 

valve, pumps and agitator. In addition, this level will also provide some status input 

information to the upper levels (e.g. ON/OFF switch status input). 
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The main function of the second level is to establish communication between the first 

layer and the third layer as well as data retrieval and processing functions. The 

second and the third levels are normally very closely interconnected and can be 

considered as one system although they involve more than one processor. Such a 

system may be termed a Distributed Control System (DCS). The computer system in 

the third layer should be compatible and comply with all protocols used in the data 

acquisition system. The third layer provides a platform for monitoring and 

controlling the whole operation of the pilot plant.  

 

The pilot plant was originally equipped with a DCS system which consisted of 

second and third level systems from Honeywell. The PlantScape Honeywell System 

however has some constraints and limited capabilities for experimental work and 

research, as it is a proprietary system. Thus, at an early stage in the current project, 

the Honeywell DCS system was replaced by a new system that has the capability to 

operate as an open system and allows the investigator considerable freedom in terms 

of open- loop testing and controller implementation. This new DCS system uses 

MATLAB/SIMULINK as a platform which provides more flexibility in monitoring 

and controlling of the pilot plant. Thus the author was involved directly with testing 

and configuration work as well as development of the MATLAB/SIMULINK model 

and controllers for the new system. This new system will be described further in the 

next section.  
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3.2 The Reactor Tank 

 

The reactor tank is very crucial in this research as this is where the neutralization 

reaction process takes place and where the output measurements are taken. Figure 

3.4 shows the simplified diagram of the physical arrangement of the reactor tank and 

Figure 3.5 shows a photograph of the actual reactor tank on the pH neutralization 

pilot plant.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: The reactor tank 

 

The outlet point is positioned to provide a maximum storage volume for this tank of 

80L. The minimum operating volume is 30L, as the agitator will not be able to mix 

the solution properly if the volume is smaller than this value. Thus most of the 

simulation and experimental results are based on a volume of mixing solution of 

approximately 80L. As shown in the figure, the pH meter (AT 122) and the agitator 

(AG 120) are installed near the acid feed stream inlet. The main purpose of this 

agitator is to mix both solutions completely and homogeneously. In addition to that, 

it will also accelerate the neutralization reaction process. The agitator produces some 

turbulence in the tank in order to mix the solution satisfactorily. The pH value from 

the online pH meter is also relatively consistent, indicating that the agitator works 

adequately and its turbulence does not adversely affect the measured signals.  
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The outlets for the acid and alkaline streams as they flow into the tank are separated 

by 44cm. In practice, both solutions will take some time to travel and merge before 

the neutralization reaction takes place. Theoretically, if both inlet streams are close to 

each other some of the delays will be eliminated but there will inevitably be further 

lags or time delays before the concentration in the whole tank reaches a steady 

uniform level following a change of an input. Thus this arrangement introduces 

additional dynamic behaviour in the neutralization reaction, especially in terms of 

reaction lags and transport time delays. Most models described in the literature (e.g 

(Gustafsson & Waller 1983a;Henson & Seborg 1994;McAvoy, Hsu, & Lowenthals 

1972;Mwembeshi, Kent, & Salhi 2001)) do not include pure time delays as the 

models are based on laboratory scale equipment where delays are much smaller, 

possibly due to more efficient mixing. As a result, the development of the pH 

neutralization plant model was found to be more challenging than originally 

expected. 

 

 

Figure 3.5: Photograph of the reactor tank at the pilot plant 
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3.3 Instrumentation and Measurements Involved 

 

There are five main process variables that will determine the behaviour of the pH 

neutralization process for this pilot plant. As given in the table below (i.e. Table 3.1), 

the instrumentation that provides the main required process variables from the pilot 

plant involves one pH meter, two flowmeters and two conductivity meters These 

three main measuring instruments are crucial for the control strategy.  

 

Table 3.1: List of process variables 

No Process Variable Instrument 

1 pH value from the reactor tank pH Meter 

2 Concentration in acid tank Conductivity Meter 

3 Concentration in alkaline tank Conductivity Meter 

4 Flowrate for acid stream Flowmeter 

5 Flowrate for alkaline stream Flowmeter 

 

The pH meter provides the main feedback of the process variable to the controller 

whereas the flowmeters and conductivity meters can be used to provide inputs that 

indicate whether or not the system can be controlled. Therefore the accuracy and 

reliability of these instruments are also important in order to ensure that the 

performance of the controller is satisfactory and consistent. 

 

The pH neutralization pilot plant was installed in the process control laboratory at 

Universiti Teknologi Petronas in the year 2000. Since that time no instrument 

recalibration work had been done until the current project began. Thus the main 

activity at the pilot plant before performing any experiments involved a major 

recalibration of all the instruments. Results (see Appendix I) show that the 

performance of the instruments before recalibration was poor. However, after the 

recalibration work was carried out the performance of the instruments was found to 

be satisfactory. Full details are included in Appendix I.  
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3.3.1 pH Meters 

 

The pH meter used in the pilot plant is the alpha-pH1000 model from EUTECH 

Instruments. The detailed specification for this product is given in Appendix II. The 

pH meter can be divided into two parts. The first part is the process electrode, which 

acts as a sensor. This electrode will measure the electrical potential (i.e. in mV), 

which is developed across the surface of a sensing membrane. The second part is the 

controller, the main function of which is to convert the measured electrical potential 

signal into a pH value according to the Nernstian Slope. 

 

The meter is normally installed in waste and water treatment plants, and in chemical 

and food processing industries as well as neutralization process plants. As mentioned 

earlier, the primary objective of this pH neutralization process is to control or 

maintain the pH value in the reactor tank to a desired value. Thus this pH meter will 

provide an important feedback signal for the controller.  

 

The measurement range for the pH meter is set to pH values in the range 0 to 14 and 

the corresponding output range for the meter is 4 to 20mA. The pH meter has been 

calibrated with three standard buffer solutions (of pH values 4, 7 and 9). The 

readings from this meter have been compared and verified with readings from a 

laboratory pH meter that acts as a primary standard and the results are satisfactory 

and acceptable. A few experiments involving a simple laboratory bench-top pH 

neutralization process have been carried out to ensure the consistency of the pH 

meter. The results are encouraging and details can be found in Appendix I. The pH 

meter needs to be re-calibrated from time to time and the measuring probe cleaned in 

order to ensure its reliability and accuracy. Occasionally, samples are taken from the 

reactor tank and the pH value of the mixing solution is measured using the laboratory 

pH meter as a comparison to certify the reliability of the meter used on the pilot 

plant.  
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3.3.2 Conductivity Meters 

 

The conductivity meters used for the pilot plant are also from EUTECH Instruments. 

The model is alpha-CON1000 ¼ DIN and the detailed specification is given in 

Appendix III. The meter also has two parts: the process electrode and the controller. 

The main function in each case is similar to the functions within the pH meter. The 

process electrode measures the density of ions in the aqueous solution in the form of 

an electrical current. Normally the range of the generated electrical current is very 

small. The controller displays the measured current using suitable basic units of 

measurement, which are milliSiemens/cm (mS/cm) and microSiemens/cm (µS/cm).  

 

The conductivity value relates to the concentration value of an aqueous solution and 

a different solution will involve a different relationship. A few sets of laboratory 

experiments had been carried in order to find a suitable or appropriate range for 

concentrations for the pilot plant. The main factor was to be able to achieve a linear 

relationship between the conductivity and the concentration of the solution. In 

addition to that, other factors also had to be considered such as the safety of the pilot 

plant and the cost of the experiments. After considering all factors the best 

concentration values for sulphuric acid and sodium hydroxide range from 0.01M to 

0.1M.  

 

Based on the results from the tests carried out on the meter the relationship between 

conductivity and concentration for the two solutions are as follows:- 

 

i. Sulphuric acid 

 
487.88

Valuety Conductivi
   ion valueConcentrat =  

 

ii. Sodium Hydroxide 

 
210.43

 Valuety Conductivi
   ion valueConcentrat =  
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As mentioned above, there are two conductivity meters. One meter is installed at the 

acid tank and the other at the alkaline tank. The maximum volume of these tanks is 

280L. Both these tanks were cleaned during the refurbishment and recalibration work 

on the pilot plant. This was to ensure that the tanks were free from any contamination 

and thus would not lead to the occurrence of any unwanted reactions. Concentrated 

sulphuric acid and sodium hydroxide are used to prepare the solutions at the required 

concentrations. During the preparation process each solution is stirred manually with 

a special rod in order to ensure that the solution is uniformly mixed. 

 

The measurement range for the conductivity meter is between 0mS and 200mS, 

which correspond to an output range for the meter from 4 to 20mA.  The meter has 

also been calibrated with standard buffer solutions that have conductivity 1413µS 

and 12.88mS. The reading from this meter has also been compared and verified with 

the reading from a laboratory pH meter. After cleaning of the process probe and 

recalibration work the performance of the meters was judged to be satisfactory and 

acceptable. The results of the recalibration process are shown in Appendix I. 

Occasionally, samples are also taken from both the acid and alkaline tanks and are 

measured using the laboratory conductivity meter as a comparison to certify 

reliability of the meters used on the pilot plant.  

 

3.3.3 Flowmeters  

 

There are two magnetic flowmeters installed on the pilot plant. These flowmeters or 

flow transmitters will provide flowrate indications for the acid stream (FT120) and 

for the alkaline stream (FT121). A magnetic flowmeter is suitable for wastewater or 

other dirty fluid applications as there is no direct contact between the fluids being 

measured and the measuring parts or elements. The operating principle of a magnetic 

flowmeter is based on Faraday’s law of electromagnetic induction. The fluid acts as a 

conductor and the induced potential is proportional to the average flow velocity 

which is perpendicular to the flux lines. The magnetic flowmeter can also be 

considered as divided in two parts. The first part is a sensor in which the magnetic 

field is normally mounted along the pipeline.  
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The second part is the transducer. This is where all the conversions of the measured 

variable into a desired form in terms of the electrical signal take place. Figure 3.6 

involves two photographs that show the actual physical form of the sensor and 

transducer parts of the type of flowmeter installed on the pilot plant. The operating 

range for FT 120 is 0-300L/h and as for FT121 is between 0-350L/h. Again the 

output range for these meters is 4-20mA. There was no need for adjustment or 

recalibration of these meters as they were found, from initial tests, to serve the 

intended purpose perfectly. 

 

 

Figure 3.6: Photographs of the magnetic flowmeters  

 

3.3.4 Control Valves 

 

In a process control application control valves represent an important form of final 

element that will determine the performance of a controller. In general there are three 

types of control valve characteristics, which determine the relationship between the 

control valve opening and the actual stream flowrate as shown in Figure 3.7 (Spirax-

Sarco Limited 2007). The first type of control valve characteristic is termed linear 

opening, the second type is called quick opening and the third type is called an equal 

percentage type of valve. In general terms the physical shape of the plug and the seat 

arrangement of the control valve lead to differences in valve opening and thus to the 

different control valve characteristics. Thus the actual setting of the trim (i.e. the 

shape of the plug and seat arrangement) of each control valve is unique as it also 

depends on the process involved.  

Transducer Sensor 



THE pH NEUTRALISATION PILOT PLANT 

 48 

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Inherent Valve Characteristics

% of Rated Travel

%
 o

f M
ax

im
um

 F
lo

w

Quick Opening
Linear
Equal Percentage

 

Figure 3.7: Typical characteristic of a control valve 

 
However any given control valve is likely to have a form and characteristics broadly 

similar to one of these three types shown in the figure. As for the linear opening type, 

this form of control valve is generally required for applications in which the 

differential pressure drop across the control valve is relatively constant over the 

valve travel range. This type of situation commonly arises for control of liquid level 

and flow. 

 

As shown in the figure, the quick opening characteristic valve exhibits a rapid 

increase in flowrate as the valve opens even with a small change of opening. The 

movement of this type of valve can be extremely small relative to small changes in 

the controller output thus the valve has an inherently high range of operability. The 

typical application for this type of control valve is a frequent on-off service and this 

type of characteristic is also useful for processes where immediate large flowrate is 

required. 
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As mentioned above, the third type of control valve is the equal percentage 

characteristic valve. The trim for this type of control valve has been designed so that 

each increment in the control valve opening will lead to an increase of the flowrate 

by a certain percentage of the previous flow. In general, the response for the equal 

percentage type of control valve is much slower or less sensitive compared to the fast 

opening type. This type of control valve is normally being used in processes where 

large changes in the pressure drop are expected. The type of control valve is also 

common in temperature and pressure control applications. 

 

As mentioned previously, there are two main control valves installed on this pilot 

plant. Figure 3.8 shows a photograph of the actual control valves installed. The first 

control valve (i.e. CV121) will control the flowrate of the acid stream and the other 

control valve (i.e. CV122) controls the flowrate of the alkaline stream.  

 
 
 
 
 
 

 

 

 

 

 

Figure 3.8: Photograph of the control valves 

 
The author was not involved in designing and commissioning of the pilot plant and 
relatively little plant documentation was available at the start of the project. Thus the 
author was required to perform experiments to investigate the characteristics of each 
control valve. Each experiment was performed by manually controlling the opening 
of the control valve. As shown in the figure the “up scale” curve was obtained when 
the percentage of opening was initially at 0% opening and the valve opening was 
continuously increased upwards until the valve was fully open (i.e. 100% opening). 
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The “down scale” curve was obtained when the initial control valve opening was at 
100% and the percentage of control valve opening was steadily decreased until the 
control valve was fully closed. This exercise also allowed investigation of the 
hysteresis error. The results of the experiment are shown in Figure 3.9. Based on the 
graphical evaluation, the results from the experiments show that the installed 
characteristic of the control valve that is controlling the acid stream is of the equal 
percentage type. The control valve that is controlling the alkaline stream is of the 
quick opening type. The results also indicate that the control valves do not have very 
significant hysteresis error.  
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Figure 3.9: Control valve characteristics 

 

As shown in Figure 3.9, there is clear evidence of leakage at the control valve CV121 

since there should be zero flow when the control valve has a 0% opening and the 

results indicate that there is still a measured flow of approximately 20L/h under these 

conditions.  
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This situation might be due to problems with the diaphragm or some other 

mechanical part of the control valve. Normally, recalibration work for a control valve 

involves a few specific tests such as the leak test and also a pressure test which 

requires special equipment and expertise. For the intended application in the work 

reported in this thesis the leakage does not adversely affect closed- loop experiments 

on the pH neutralization process as a selected and suitable range of control valve 

opening can be identified for normal operating conditions.  

The characteristic of the control valve CV121 can be divided into three different 

responses as described in the Table 3.2. The responses for the first part of the range 

can be termed as “Low Gain Factor”. This is when the control valve opening is in the 

range from 0% to 60% and provides a flowrate for the acid stream of approximately 

20L/h to 40L/h. The second response is called a “Moderate Gain Factor” response 

and the corresponding range of the control valve opening is between 60% and 80%. 

This range will give a much greater variation of flowrate (from 40L/h to 120L/h). 

Within this part of the range the relationship between the control valve movement 

and the flowrate is more predictable and linear compared with the first range of 

control valve response. The last column in Table 3.2 shows the effective gain factor 

obtained by linearising the response over the specific range. As an example for the 

case of the moderate gain factor (referring to second- last column), the effective gain 

factor is calculated as follows:- 
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Table 3.2: Categories of control valve responses 

Range 

Control valve 
Opening (%) 

Flowrate(L/h) 

Control Valve 
Gain factor 

Effective Gain 
Factor (L/h) 

CV121 

0-60 20-40 Low 0.33 

60-80 40-120 Moderate 4 

80-100 120-240 High 6 

CV122 

5-10 0-100 High 20 

10-60 100-300 Moderate 4 

60-80 300-320 Low 1 

 

As shown in the table a 1% change of the control valve movement will provide a 

4L/h change in the flowrate in this part of the operating range. The third range is 

from an 80% to 100% opening and is termed a “High Gain Factor” response range. It 

should be noted that this third part of the range involves the same amount of control 

valve movement or variation as the second part (i.e. 20%). However, the fast 

response range will provide an even wider range of acid stream flow, from 120L/h to 

the maximum flowrate which is approximately 240L/h. As shown the slope of the 

fast response part of the range is much steeper. Thus it shows that a small movement 

of control valve opening will result in a large change of flowrate. Therefore the 

suitable range for the experiment ranges from 60% to 80% opening that is in the 

moderate response range.  

For the control valve CV122 the response is an inverse form of the response of 

control valve CV121. The first 5% of the control opening provides 0L/h of alkaline 

flow. In order to provide 0-100L/h of flowrate the control valve opening needs to be 

controlled between 5% and 10%. This suggests that it is very difficult to manage the 

control valve movement since a 1% change of opening can produce a change of 

flowrate of the order of 20L/h.  
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As shown in Figure 3.9 for control valve CV122 the flowrate of the alkaline stream 

will reach 300L/h when the control valve opening is at 60%. This gives a 50% 

variation of control valve movement which can produce a flowrate in the range 

100L/h to 300L/h. As given in Table 3.2, for this part of the range, there is a change 

of approximately 4L/h for every 1% opening of the control valve movement. 

Therefore, this is a sensible operating range for experimental work on pH 

neutralization process.  

3.4 Data Acquisition System 

 

As briefly explained in the previous section describing the overall system 

architecture the first data acquisition system installed for monitoring and controlling 

the pilot plant was the PlantScape Honeywell system. The system was designed for 

use in demonstration of the pilot plant in normal operation and was not intended for 

research and development. As a proprietary system it does not allow any 

modification of the control scheme or implementation of new control strategies. The 

system can only allow modification or parameter changes of its controller of specific 

kinds.  

 

These limitations within the existing control system led to a need for modification 

and upgrading of the pilot plant to make it more suitable for research. The plant 

modification involved installation of a new data acquisition and supervisory 

computer system. Much rewiring work and testing was required and specific tests 

carried out included a loop test and a continuity test in order to ensure the integrity of 

the signals to and from the pilot plant. The new system offers much more flexibility 

in terms of implementation of new control schemes and dynamic testing of the 

system under open- loop conditions. Figure 3.10 shows a photograph of the cabinet in 

which the new data acquisition system was installed.  
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Figure 3.10: Photograph of the new data acquisition system 

 

Some preliminary experiments were performed using the original Honeywell system. 

These experimental results were used to verify the pH neutralization process model 

which had been derived from the physics and chemistry of the system. However all 

work concerning the implementation of intelligent controllers and the development 

of a modified pH neutralization model was based on the new system. 

 

The new supervisory computer system uses MATLAB/SIMULINK software as a 

tool to handle all activities of the pilot plant such as process monitoring, data 

manipulation and processing, process control development as well as the human-

machine interface system. In addition, the system requires additional software which 

includes a Microsoft Visual C/C++ compiler (Version 5.0, 6.0, or 7.0) to translate the 

source code from programs developed in MATLAB/SIMULINK environment into a 

low-level machine language for real-time implementation.  

 

The new data acquisition system is also MATLAB based and operates within the 

same Industrial PC (XPC) platform. The main function of this system is to allow real 

time communication between the engineering workstation in the control room and 

the field instruments on the pilot plant. While being based upon a normal PC, this 

system also includes analogue and a digital I/O cards and a communication card.  
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There are five I/O cards in total. There are two Digital Input cards and one Digital 

Output card to provide a gateway for digital signals. Analogue Input and Output 

cards cater for analogue signals in the pilot plant. A detailed list of input and output 

signals for the pilot plant may be found in Appendix IV. There are selector switches 

on the I/O cards to provide options in configuring the function of the cards. 

Appendix IV also provides some information about pin layout of the I/O cards and 

the settings selected for the switches. 

 

The data acquisition system does not require operating system software such as DOS, 

Windows or Linux. It uses a boot disk that includes the XPC Target kernel to start 

up. There are a few settings and tests that need to be performed in order to create the 

boot disk and establish communication between the supervisory computer system 

and the data acquisition system (i.e. XPC). The communication between these two 

systems is based on the TCP/IP protocol. All communication settings or 

configurations can be made at a special user interface menu called xpc explorer. This 

user interface can be retrieved by typing a callout function called xpcexplr at the 

MATLAB command window.  

 

The main advantage of the new system is that the users have the flexibility to 

develop their own Graphical User Interfaces (GUIs). The GUI is used to control and 

monitor the status of the pilot plant or system. Appendix V shows the layout of the 

developed GUI used for the experimental work on the pilot plant. 

 

In between the XPC and field instruments there are signal conditioners. This is 

because all the signals to and from the field instruments are normally in current form 

(i.e. 4-20mA) whereas the XPC can only receive or send signals in voltage form (i.e. 

1-5V).  
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3.5 Practical Issues Associated with the Pilot Plant 

 

It is worth pointing out that there are some practical issues associated with the pilot 

plant that impact upon the overall performance and implementation of the pH 

neutralization process.   

 

i. Process for Preparation of the solutions 

 

As explained earlier, the concentration of both solutions is very important. 

Concentration values can have a major influence on the pH process even though 

the difference between the actual concentration value and the desired 

concentration value may be very small. Thus it is important to prepare the 

concentration value as close as possible to the desired value. However, due to 

practical issues, this is not a straightforward task. 

 

In order to prepare each solution the conductivity value must first be recorded. 

The next step is to fill the appropriate tank with water until it reaches the 

maximum operating level, which is 250L. There is no accurate measurement 

available to provide an exact indication of the level of the solution but an 

attached sight glass provides some guidance. The highly concentrated solution 

(i.e. 18M for acid and 17.5M for alkaline) must then be added. The required 

amount of the concentrated solution, AV, is based on the formula given below in 

Equation 3.1. 

 

( ) ( )
DCHC

MVCCMVDC
AV

−
×−×

=      3.1 

 

In this equation the desired concentration value is DC, the current concentration 

value is CC and the concentration value for the concentrated solution is HC, 

while MV represents the maximum volume of solution.  
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The solution must be stirred by means of a rod to ensure that it mixes perfectly. 

Usually the process will not end at this point and an additional adjustment 

involving further amounts of the concentrated solution is required and sometimes 

additional water in order to obtain the required concentration.  

 

ii. Limitations of the new DCS system 

 

The new DCS system, which is based on the MATLAB/SIMULINK 

environment, is not an established distributed control system intended 

specifically for process control applications. Thus initial setting up of the system 

required a considerable amount of work and proved very time consuming. The 

communication between the data acquisition system and the supervisory 

computer system was found to be somewhat unreliable and it is suspected that 

this problem may be associated with hardware issues.  

 

There are also some limitations in terms the software. The graphic user interface 

for the system is too simple and is not sufficiently user friendly. Thus process 

monitoring, trending and achieving the process variable can be less 

straightforward that it ideally should be and can be somewhat limited in scope. 

Some of the toolboxes are not capable of being used in this real-time application. 

Although the software allows development of new functions there are however 

too many functions that need to be developed. In addition, the development of 

new functions requires time and an in-depth knowledge of the MATLAB 

software system.  
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4.0 MODELLING AND SIMULATION OF THE pH 

NEUTRALIZATION PROCESS PILOT PLANT 

 

In broad terms, this research study can be divided into two main activities. The first 

of these involves process model development, together with internal verification of 

the associated simulation model and subsequent external validation of the model 

from test data obtained from open- loop and simple closed-loop tests carried out on 

the actual plant. The second, activity is controller design and development, involving 

preliminary controller evaluation using simulation and, finally, implementation and 

testing on the pH neutralization pilot plant itself.  

 

The dynamic model of the process has been derived from the application of 

fundamental physical and chemical principles to the system, using a conventional 

mathematical modelling approach. This chapter describes in detail the development 

of this pH neutralization plant model. The model of the pH neutralization plant is 

based on the system configuration described in Chapter 3. Figure 4:1 is a flowchart 

which summarises, in a simplified fashion, the modelling approach adopted and this 

flowchart provides a useful guideline which was followed throughout the process of 

developing the model of the plant. 

 

The first stage of the process involves defining the goal, or the required specification, 

for the developed model at the end of the modelling process. This goal is to develop 

a pH process model that is adequate in terms of the intended application which is the 

development of an improved form of controller. It was decided that the simulation 

model should be able to represent the behaviour of the pH neutralization pilot plant 

with sufficient accuracy in terms of the type of steady state and transient 

performance measures that commonly provide a basis for control system design. 
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Figure 4:1: The flowchart of the modelling process 

 

As shown in Figure 4:1, the modelling process is not a straightforward task involving 

simple linear progression from one stage to the next. There are two decision points 

that may make the modelling process return to earlier stages until a model that is 

acceptable for the intended application is produced. The first decision point is at the 

Simulation Model Analysis block and the other is at the Model Validation block. At 

the simulation model analysis stage, the main concern is internal verification of the 

simulation model to determine whether or not the computer representation is 

consistent with the underlying mathematical representation and also whether or not 

the solution of the model using simulation tools is correct.  

 

Define Goal 

System 
Description 

Model 
Formulation 

Simulation 
Model 

Analysis 

Model 
Validation 

OK 

OK 

Adequate 
Model 

No 

Yes 

Yes 

No 

Implementation 
of Simulation 

Model 



MODELLING AND SIMULATION OF THE pH NEUTRALISATION PROCESS PILOT PLANT 

 

 61 

Internal verification (Gong & Murray-Smith 1998;Murray-Smith 1998;Murray-

Smith 2000;Rudolfs 1953) of the simulation model involves ensuring that the 

equations of the simulation are the equations of the model so that it fully represents 

the underlying mathematical description and also ensuring that there are no issues of 

numerical inaccuracy or numerical instability in the implementation of the simulation 

model. Some more fundamental validation can also be carried out at this stage to 

check, for example that the simulation behaves in a fashion that is generally 

appropriate for the given sets of test conditions. Theoretical knowledge and physical 

understanding of the plant itself, together with results from previous work done by 

other researchers, can provide a useful basis for comparison at this stage.  

 

At the formal model validation stage, the emphasis is on external validation 

processes, with the dynamic response from the developed simulation model being 

critically evaluated through comparison with experimental results. The main idea of 

this exercise is to determine whether the developed simulation model is able 

accurately to represent the pilot plant in terms of the given specification. 

 

As shown in the figure, at both these stages in the flow graph, the developed model is 

being evaluated. If the model is satisfactory it will be possible to move to the next 

stage of the process of model development but, if it is not acceptable, the procedure 

must then involve returning to an earlier stage. The evaluations and decisions must 

be based on the goal set at the beginning of the modelling process. 

 

4.1 Overview of the pH Neutralization Process Modelling 

 

A rigorous and generally applicable method of deriving dynamic equations for pH 

neutralization in Continuous Stirred Tank Reactors (CSTRs) was presented by 

McAvoy in the year 1972 (McAvoy, Hsu, & Lowenthals 1972). The research work 

done by McAvoy was essential to the development of the fundamental modelling 

approach of the pH neutralization process in CSTRs.  
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As cited and described in other literature, the use of the CSTR in developing the pH 

neutralization model was started over 50 years ago by Kramer (1956) and by 

Geerlings (1957). However those early studies concentrated largely on the dynamic 

behaviour of the pH electrode system. Subsequently, two crucial points in developing 

a pH neutralization process model which describes the nonlinearity of the 

neutralization process have emerged from published research. The two points are as 

follows:- 

 

i. Material balances in terms of hydrogen ion or hydroxyl ion concentrations 

would be extremely difficult to write down. This is due to the fact that the 

dissociation of water and resultant slight change in water concentration would 

have to be accounted for. 

 

ii. Instead, material balances are performed on all other atomic species and all 

additional equilibrium relationships are used. The electroneutrality principle 

is used to simplify the equations. 

 

The basic equations describing the chemistry underlying the pH neutralization 

process in the early work by McAvoy was tested and validated through experimental 

work involving small-scale bench-top processes. In those investigations the stirred 

tank typically had a volume of 1L and the total flowrate for acid and alkaline was 

held constant at 600cc/min. The translation of such models to represent the processes 

involved in a full-scale process or pilot plant presents a further challenge. The 

challenges might be due to mixing efficiency, transport delays, unwanted signal 

noise, accuracy of the measurements and some other unexpected causes. 

 

In 1983 Gustafsson and Waller (Gustafsson 1982;Gustafsson & Waller 1983a) 

reinforced McAvoy’s modelling principles for pH neutralization processes and 

emphasised the fact that mass balances on the invariant species are inherently 

independent of reaction rates. As described in this paper, the “invariant species” is 

actually the species that remain chemically unchanged by the governing of reactions 

in the neutralization process whereas the “variant species” are the species that change 

in the neutralization process, such as the hydrogen ions.  
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The main contribution of this work by Gustafsson and Waller was a matrix 

formulation that generalised the approach. Their model and all the associated 

research were also based on the CSTR configuration.  

 

Another interesting and widely used account of work involving the modelling of a 

pH neutralization process is by Wright and Kravaris (Wright & Kravaris 1991). Their 

work provided a new approach to the design of nonlinear controllers for pH 

processes by defining an alternative equivalent control objective. That new approach 

results in a control problem that is linear. A minimal order model was produced by 

assuming that the flowrate of the titrant required to operate the reactor was negligible 

in comparison with the flow rate of the process streams. 

 

There are many useful papers that have presented and discussed issues concerned 

with the design of an appropriate controller for the pH neutralization process using 

the fundamental pH model. Some of the  references such as (Shinskey 1973, Kelkar 

& Postlethwaite 1994, Henson & Serborg 1994, Wright & Kravais 1991, (Gustafsson 

1982;Gustafsson & Waller 1983a)) have been discussed in Chapter 2. These papers 

have been used as a guideline in this work concerned with developing an adequate 

mathematical model of the pilot plant.  

 

All the procedures outlined in the publications mentioned above have involved the 

making of assumptions to reduce model complexity. Without such assumptions 

models can present computational difficulties and can involve major problems in 

terms of validation and tuning. As suggested in previous studies, the assumptions 

underlying the modelling of the pH neutralization process are as follows:- 

 

i. The acid and alkaline solutions in the reactor tank are perfectly mixed at all 

times and a lumped parameter compartmental form of model can be used. 

 

ii. The acid-base reaction process in the reactor tank is instantaneous and 

isothermal. 
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iii. The dissociation of acid and base reaction is complete and the attainment of 

equilibrium is fast. 

 

iv. No other reactions occur in the reactor tank. 

 

v. The time constants for the control valves and measuring instruments are 

negligible compared to those of the process. 

 

vi. The volume of the solution in the tank is constant. 

 

Generally, most of the assumptions mentioned above are suitable for a bench-top 

laboratory-scale reactor setup. Results from the previous studies show that the 

assumptions are appropriate and that the responses from the developed models are 

similar to the results obtained from the laboratory test-bed configuration. Thus these 

assumptions will be used and applied as an initial step in the modelling approach. 

 

The primary advantage of this research is the availability and configuration of the pH 

neutralization pilot plant. The pilot plant configuration represents a practical 

industrial system, albeit on a relatively small scale. As described earlier, the volume 

of the reactor tank is 100 times bigger than the one used in the McAvoy experimental 

setup. Theoretically, a small volume of a stirred reactor tank should provide a more 

efficient and a more perfectly mixed process. With a larger volume in the stirred 

reactor tank it is more difficult to remove the influence of uncertainties on the 

dynamic response of the process especially in terms of the mixing process. 

Therefore, it was recognised, from the outset of the work, that at the model validation 

stage the experimental results should provide some important insight concerning the 

model structure, especially in terms of the mixing process. This could well result in 

some additional function blocks being added to form a modified pH process model to 

represent the pilot plant. Thus the combination of the fundamental approach based on 

physical principles used by previous researchers and suitable practical measured data 

should, hopefully, provide a more realistic pH neutralization model having a level of 

accuracy that is at least sufficient for the intended control application. 
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4.2 Preliminary Development of the Mathematical Model  

 

The second block in the flowchart of Figure 4:1 involves identifying and specifying 

the pH process in detail. The common approach that facilitates this exercise involves 

sketching the process diagram of the system. In the case of the pH neutralization 

process model for this stage, the configuration of the plant has been simplified into 

the form of a Continuous Stirred Tank Reactor (CSTR) model as shown in Figure 

4:2. A detailed description of the pH process neutralization pilot plant can be found 

in Chapter 3. However this diagram and the current section provide a useful 

summary of some of the most important information relating to the reactor tank, 

including the key variables involved and boundaries of the model. 

 

In this schematic diagram the volume of the reactor tank is 80L. The flowrate for the 

acid and alkaline streams are F1 and F2 respectively. The flowmeters provide a 

flowrate of between 0-300L/h and 0-350L/h for the acid stream and alkaline stream 

respectively. The concentration for acid in tank VE100 is C1 and the concentration of 

alkaline in tank VE110 is C2. The selected range for both conductivity meters is from 

0 to 200mS. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:2: A schematic diagram for the pH neutralization process 
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As mentioned earlier, the formulation of the process dynamic model is based on 

fundamental principles. The first principle that is applied is known as the 

conservation balance principle. The conservation balance equations that are 

commonly used in process control are the equations for conservation of material, 

energy and momentum. As far as this research is concerned the variables involved 

relate to the total liquid mass in the reactor tank and the principle of conservation of 

material is used in the derivation of the basic equations of the process. The general 

equation for the conservation of material for the pH process may be written as 

follows: 

 

 

 

 

 

 

Based on this general equation, two equations have been derived to express the pH 

process in the CSTR system. The derivation of these equations follows the general 

approach adopted by previous researchers in this field (e.g. (McAvoy, Hsu, & 

Lowenthals 1972;Mwembeshi, Kent, & Salhi 2001;Nie, Loh, & Hang 1996)).  
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β
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V +−=       (4.2) 

 

As described earlier, the volume V represents a constant volume of 80L of the reactor 

tank. The flowrates for the acid and alkaline streams are F1 and F2 respectively. The 

concentration for acid in tank is C1 and the concentration of alkaline in tank is C2.  
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The non-reactant components in the system are α for acid and β  for alkaline. These 

variables are defined in Equation (4.3) and Equation (4.4) as: 

 

[ ] [ ] [ ]2
4442
−− ++= SOHSOSOHα      (4.3) 

][ += Naβ         (4.4) 

 

The next step is to identify and derive the electroneutrality condition of the non-

reactant components. Based on the principle of electroneutrality all solutions are 

electrically neutral. There is no solution containing a detectable excess of positive or 

negative charge because the sum of positive charges equals the sum of negative 

charges.  

 

The total electroneutrality condition is, 

 

[ ] [ ] [ ] [ ] [ ]2
44 2 −−−++ ++=+ SOHSOOHHNa      (4.5) 

 

 

The equilibrium constant expressions that apply to the acid-base system are, 

 

i. Water (H2O) 

 

]][[ −+= OHHKw        (4.6) 

 

ii. Sulphuric Acid (H2SO4) 
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The quantity Kw (the constant value for the ionic product of water), is equal to 1.0 x 

1014. There are two acid dissociation constants for sulphuric acid K1= 1.0 x 103 and 

K2=1.2 x 10-2 since sulphuric acid falls under category of a diprotic acid, having two 

equilibrium points or dissociation points. However for this case, the first point is 

negligible as the first dissociation constant, K1 is too large. Theoretically the titration 

curve for this acid-base reaction process will only show one break point or 

equilibrium point. 

 

The pH scale is a measure of the hydrogen ion concentration, thus the pH value can 

be calculated by using the equation below. 

 

][log 10
+−= HpH        (4.9) 

 

 

Equation (4.5) needs to be solved in order to find the value of the hydrogen ion, [H+]. 

Eventually, after substitution of Equations (4.3), (4.4), (4.6), (4.7) and (4.8) into 

Equation (4.5) the final equation can be written as a polynomial equation (4.10).  

 

This is commonly referred to in the literature as the pH equation.  

 

4
1

3
2

2
3

1
4 ][][][][ aHaHaHaH ++++ ++++     (4.10) 

 

Where the coefficients a1 to a4 are defined as follows; 

 

β+= 11 Ka         (4.11) 

αβ 12112 KKKKKa w −−+=      (4.12) 

αβ 211213 2 KKKKKKa w −−=      (4.13) 

wKKKa 214 −=        (4.14) 
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Figure 4:3 shows the MATLAB/Simulink blocks that represent the pH neutralization 

process model resulting from the above physico-chemical modelling procedure. 

Generally, there are three main parts that influence the behaviour of this physically 

based model of a pH neutralization process and these relate to the above equations. 

The first block is the dynamic part, which involves the differential Equation (4.1) and 

Equation (4.2). Apart from these equations, the nonlinearity of the model will be 

influenced by Equation (4.10) which forms the second main block. The final block 

involves calculation of the pH value, and this is based on Equation (4.9).  
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Figure 4:3: MATLAB/Simulink blocks of the pH neutralization on process 
model 

 

The next stage of the process modelling process is Model Analysis. At this stage the 

main objective is to analyse and evaluate the dynamic response of the developed 

model to determine whether the response is acceptable, at least to the extent that it 

satisfies the formulation. If the developed model does not produce the expected 

dynamic response then the previous stage of process modelling will have to be 

repeated. The selected simulation results and analysis are described in the next 

section. Following completion of Model Analysis it is then necessary to compare 

simulation results with the experimental results in greater detail within the Model 

Validation stage.  
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4.3 Experimental Results from the Enhanced Data 

Acquisition System 

 

As explained in the previous chapter, the software environment for the enhanced data 

acquisition system is based on MATLAB/Simulink software. At this stage in the 

research (i.e. external model validation) it was appropriate to use the capability of the 

software available in the new combined data acquisition and simulation system to 

further analyse and investigate the dynamic response of the pilot plant and the  

corresponding behaviour of the simulation model. Further investigations involving 

the developed pH model and comparisons with experimental results were all based 

on data obtained using the enhanced data acquisition system.  

 

For these tests, which involve a continuous process, the reactor tank is filled with 

solution up to the maximum level (i.e. 80L) and the level will be constant as there is 

flow going out from the tank at this point. The initial pH value of the solution in the 

reactor tank may be set to a desired value by controlling the two valves for the acid 

and alkaline streams manually. In order to represent this experiment in terms of a 

computer simulation it is appropriate to use the pH model for the continuous process 

of Figure 4.3.  

 

Two experiments were carried out to provide more information about the dynamic 

behaviour of the pH neutralization process. The results from these experiments were 

used to validate, in a more quantitative way, the developed pH model described in 

the previous section and led to important refinements of the model. The first of these 

experiments involves a step change of flow in the alkaline stream. During the 

experiment the control valve for the acid stream was set to the fully closed position.  

 

Figure 4:4 shows the dynamic response of the pH neutralization process for the pilot 

plant for the first experiment. In principle, in this experiment the initial pH should be 

set to the lowest possible value. However the process to achieve the lowest pH value 

is quite time consuming as the reaction process in this region is very slow. In 

addition it requires quite a lot of acid solution to bring down the pH value to the 
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lowest value possible. Thus it is a rather impractical and expensive procedure. Based 

on several trials, a pH value of 3 was chosen as a reasonable initial pH value for this 

experiment.  
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Figure 4:4: Experimental results obtained using the enhanced data acquisition 
system during a test involving a step change of the flow rate for the alkaline 

stream. 

 
As shown in Figure 4:4, before the experiment started the pH value had been brought 

down, approximately, to the specified initial pH value of 3. At t = 150 sec. the 

process continues with the average flowrate for alkaline stream in the reactor tank 

being suddenly increased from zero to a steady value of 135.92L/h. The conductivity 

meters provided average readings for the acid and alkaline solutions of 23.68mS and 

10.29mS respectively. Based on these values for the conductivities of the solutions in 

the two tanks, the results indicate that the concentrations of both of the solutions 

were slightly below the expected concentration value of 0.05M, with a concentration 

value for the acid solution of 0.0485M and a value of 0.0489M for the alkaline 

solution.  
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Figure 4:4 shows clearly the nonlinearity of the process with various different 

reaction rates as the response moves through the operating range in terms of pH 

values. The dynamic response can be divided into five different regions with three 

different reaction rates as given in Table 4.1.  

 

Table 4.1: Process reaction rate of the dynamic response 

Range of pH Value  Reaction rate 

3-4 Low 

4-6 High 

6-8 Moderate 

8-10 High 

10-12 Low 

 

 

The dynamic behaviour shows two different equilibrium points. The first equilibrium 

point, pK1 is approximately at a pH value of 3.2 and the second point, pK2 is at a pH 

value of 6.8. As explained previously, the equilibrium (or break point) depends on 

the value of the dissociation constants. Theoretically, sulphuric acid will have two 

break points as it is categorised as a diprotic acid. However, due to the first 

dissociation constant being fairly large, the first break point cannot be seen on the 

titration curve.  

 

As shown in Figure 4:4, it is believed that the dissociation constant for the acid 

solution has been decreased due to some other reaction in the acid tank. In this 

experiment the sulphuric acid was added to water and it is believed that an additional 

and unknown source of hydrogen and hydroxyl ions existed. Such a situation will 

make the ionic strength of the solution decrease and as a result the dissociation 

constant will also decrease.  
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The results from the second experiment are presented in Figure 4:5. It shows another 

interesting dynamic response of the pH neutralization pilot plant. The idea of this 

experiment is not exactly the same as the previous experiment where the main aim 

was to obtain the process reaction curve of the neutralization process.  
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Figure 4:5: The dynamic response from the neutralization pilot plant for 
square-wave variation of alkaline flowrate with constant flowrate of acid 

solution. 

 

The objective for this second experiment was to obtain further ins ight about how to 

control the alkaline stream and the pH value in the reactor tank with a constant flow 

in the acid stream. The initial pH value was set to a pH value of 7. The valve that is 

controlling the acid stream was set to an opening which provided an average flow 

value of the acid stream of 61.5L/h. The alkaline stream was set to behave as a 

square wave signal with a period of 50s. The average flowrate value of the alkaline 

stream at the peak was 273.68L/h.  
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The average concentration value for the acid was slightly higher (0.0475M) than for 

the alkaline solution (0.0465M). As shown in the figure, the initial pH value is at a 

pH value of 7 and the dynamic response of the pH value increases towards the upper 

range of the pH scale as the experiment continues. This is an expected dynamic 

response as the flowrate of the alkaline stream is three times larger than the flowrate 

of the acid stream. Thus there will be more sodium hydroxide than sulphuric acid at 

the end of the experiment.  

 

Computational work was carried out to simulate the two experiments outlined above. 

The simulated experiments were based on the actual settings and configuration as 

given in Table 4.2 and described in the previous paragraph. The simulation results in 

terms of the dynamic responses obtained from the developed model for both 

experiments are shown in Figure 4:6 and Figure 4:7. 

 

Table 4.2: Parameter settings for the simulation work 

Concentration Flowrate 
Simulation 

Acid Alkaline  Acid Alkaline  

Experiment 1 
(Process 
reaction 
curve) 

0.0485M 0.0489M 

Step change 
from 60L/h to 
0L/h  at 500th 

second 

Step change from 
0L/h to 135.92L/h 
at 1150th second 

Experiment 2 
(Square wave 

signal for 
alkaline 
stream) 

0.0475M 0.0465M Constant flowrate 
at 61.5L/h 

Square wave signal 
with period of 50s 
and peak flowrate 

of 273.68L/h 
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Figure 4:6 shows the dynamic response for the first experiment. This simulated 

dynamic response should be similar to the actual response obtained experimentally 

from the pilot plant during the step response test, as shown in Figure 4:4. The 

simulated dynamic response that represents the second experiment (i.e. using a 

square-wave signal to vary the flowrate of the alkaline stream) is shown in Figure 

4:7. The dynamic response obtained from this simulation experiment should be 

similar to the corresponding experimental result obtained from the test carried out on 

the pilot plant and shown in Figure 4:5.  The simulation results shown in Figure 4:6 

and Figure 4:7 show clearly that the dynamic responses from the simulation model 

are inadequate and do not properly represent the responses from the actual pilot plant 

in a number of ways.  These results suggest that there are further investigations and 

modifications of the pH process model that need to be carried out.  
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Figure 4:6: Dynamic response – simulation of Experiment 1 
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Figure 4:7: Dynamic response – Simulation of Experiment 2 

 

As mentioned earlier the pH process model was developed following some 

assumptions introduced to make the model simpler in structure and computationally 

more convenient to translate into a simulation. The experimental results and the 

findings from the simulation model suggest that some of the assumptions should be 

reconsidered. The next section describes some modifications to the pH process 

model introduced in order to make the pH dynamic model more realistic. Issues such 

as imperfect mixing, dissociation of acid and base reaction and time constants for 

control valves are highlighted.  
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4.4 Empirical Modelling for Development of the Modified 

pH Model 

 

Figure 4:8 shows the MATLAB/Simulink block for the new pH neutralization model 

that represents the pilot plant. There is an additional block that is the initialisation 

block. The purpose of the initialisation block is to make sure that for the first 15 

seconds the dynamic response in terms of the pH value stabilises at a certain value 

which is normally a pH value of 7. This condition actually represents the pH value in 

the reactor tank before any experiment is performed.  
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Figure 4:8: MATLAB/Simulink representation of the modified pH model 

 

The investigation will be focussed mainly on the dissociation constants of the acid 

solution.  The simulation work will be based on the two experiments that have been 

discussed previously. The parameter settings for the simulation work in this 

experiment will be the same as in Table 4.2. 

 

4.4.1 Investigation of the values of the dissociation constants 

 

As mentioned the investigation was to determine the dissociation constants of the 

acid solution from the process reaction curve in Experiment 1 (i.e. Figure 4:4). A 

similar approach to determine the dissociation constant of the acid solution, which is 

based on the titration curves will be used as a guideline (Bates 1973;Christian 

2004b).  
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Therefore, based on the process reaction curve in Figure 4:4, the graphical approach 

was used to calculate the dissociation constants as described in (Bates 1973;Christian 

2004b).  

 

i. First dissociation constant, K1 
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Figure 4:9 shows the simulation result obtained for a similar simulation model as that 

used in the simulation experiment described above but using the modified values of 

the dissociation constants. As shown, the first 1000s brings the pH down to a pH 

value of 3. At time t = 1150 sec. the flowrate of the alkaline stream is increased to 

the average alkaline flowrate of 135.92L/h. All parameters are exactly the same as in 

Table 4.2 for Experiment 1. The dissociation constants used in this simulation work 

are K1 = 6.31 x 10-4 and K2 = 1.59x 10-7. As shown in Figure 4:9, the dynamic 

response from the simulation based on the modified pH model has a similar pattern 

to the dynamic response from the pH neutralization pilot plant itself (Figure 4:4).  It 

has two equilibrium points which are at pH values of 6.8 and 3.2. The dynamic 

response reaches a pH value of 8 at a time which is approximately 360s after the 

application of the step change of alkaline flowrate. This time (i.e. 360s) is almost the 

same as the time found in the actual experiment for the pilot plant for the pH to reach 

a value of 8 (Figure 4:4). Thus the modified pH model has shown very encouraging 

results when compared with the behaviour of the real pilot plant for the step test 

experiment.  
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Figure 4:10 shows the simulated dynamic response from the modified model for the 

second experiment. As shown in the figure the dissociation constants have made 

significant improvement as compared to the previous simulated response shown in 

Figure 4:7. However the dynamic response in Figure 4:10 is not exactly the same as 

the response from the actual experiment (i.e. Figure 4:5). The next section will 

evaluate in detail the performance of this modified model which was based on this 

figure (Figure 4:10). This will indicate whether the response of the developed model 

is similar to the response from the pilot plant or otherwise and will be used to assess 

whether the model has the accuracy required for the planned control system design 

application. 
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Figure 4:9: Dynamic response from the modified pH model – Experiment 1 
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Figure 4:10: Dynamic response from the modified pH model – Experiment 2 

 

4.4.2 Evaluation of the Modified Model 

 

The evaluation of the modified pH model is very important in order to ensure that the 

developed model is able to provide an adequate dynamic response in comparison 

with the actual dynamic from the pilot plant. Several issues of model accuracy and 

external validation for control system design have been highlighted by Murray-Smith 

in his papers (Murray-Smith 1998;Murray-Smith 2006).  

 

Murray-Smith has also suggested a few methods on external validation in which will 

provide a good indication of the closeness of the developed model with the actual 

system (Murray-Smith 1998). One of the suggested methods that provides more 

quantitative information than is possible from a graphical comparison involves 

Theil’s Inequality Coefficient (TIC).  
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The equation of the TIC is defined as follows:- 
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This equation involves comparison of two time series; the measured response from 

the actual plant, yi and the corresponding response from the developed model, zi. 

Thus the numerator of the equation is actually the sum of the squares of the error 

values representing the difference between the actual value and the simulated value.  

As explained in the paper the main advantage of this method is that the calculated 

value of TIC ranges between zero and unity. If the TIC value is close to zero it will 

indicate that the response of the developed model is very similar to the response from 

the pilot plant. However if the value is close to one it will show that the dynamic of 

the developed model is significantly different from the actual response.  

 

Figure 4:11 shows a comparison between the first model and the modified model. It 

may be seen that there are distinctly different dynamic responses for the three cases 

presented. This first dynamic response (i.e. Figure 4:11(a)) is the response from the 

first model that was developed. This is exactly the same as the dynamic response 

shown in Figure 4:7. 

 

Simulation results shown in Figure 4:11(b) were based on the modified pH model 

and was obtained for the same set of condition as in Figure 4:11(a). All of these 

simulation results correspond to the experimental record shown in Figure 4:11(c) and 

represent the response to a periodic test input.  
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Figure 4:11: Dynamic responses of the model for the original and modified 
configurations  

 

As shown in the Figure 4:11(a) the pH response fluctuates in the range between pH 

value 4 and pH value 10 from the start of the simulation. This transient does not 

adequately represent the actual dynamic response from the pH neutralization pilot 

plant. The impact of the new value for the dissociation constant can be observed by 

comparing Figure 4:11(a) and Figure 4:11 (b). The new response obviously shows a 

significant improvement in terms of the overall pattern of the dynamic response. The 

overall pattern and shape is quite similar to the dynamic response from the 

experiment. However, in the first 150 seconds the pH value increases rapidly unlike 

the actual response from the pilot plant.  
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Thus this initial behaviour of the simulation indicates the main differences between 

the model and the actual dynamic behaviour from the pilot plant. As shown in the 

figure, the first significant difference is the initial high peak for the pH response. At 

the 50th second the peak for the response is approximately at a pH value of 8.4. This 

does not correspond to the actual dynamic response from the pilot plant around that 

time, as shown in Figure 4:11(c), where the response at t=50 s is only slightly above 

a pH value of 7 and thus is very close to the initial value. 

 

 Figure 4:12 shows the distribution of error for this simulation. This plot represents 

the difference between dynamic responses in Figure 4:11(c) and Figure 4:11(b). As 

mentioned previously, in this simulation work actual measured data (i.e. the actual 

measured values for the concentrations of acid and alkaline as well as the flowrate 

for both streams) obtained from the pilot plant are used as input time histories in 

simulating the behaviour of the pilot plant. The overall pattern of the dynamic 

response from the modified pH model is quite similar in most respects to the 

response obtained from the pilot plant. Table 4.3 shows the summary of the 

performance of the modified pH model from a quantitative perspective. A total of 

500 samples were considered in the analysis of these simulation results. The data 

obtained in the actual experiment act as the true values or expected values that the 

modified pH model needs to match.  
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Figure 4:12: Distribution of error 

 

Table 4.3: Statistical description of the modified pH model performance 
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Descriptions  Pilot Plant Modified 
pH Model 

Min pH Value 6.83 7.18 

Max pH Value 9.73 9.63 

Min Error -1.44 

Max Error 0.54 

Average 
Absolute Error 0.5 

TIC Value 0.036 

 

As shown in the table the minimum pH value in the reactor tank from the experiment 

is a pH value of 6.83 which is lower than the simulated minimum value of 7.18. 

However the highest pH value for the actual pilot plant is pH value 9.73 and for the 

modified model the corresponding pH value is 9.63. This, together with the graphical 

results (i.e. Figure 4:12) shows that the error between the actual pilot plant and the 

modified pH model is higher in the initial part of the response, especially for the first 

150s of the experiment. However the error decreases in the later part of the 

experiment. 

 

As given in the table the error indicates the difference between the true value and the 

value from the simulation results. As shown in the table, the modified pH model 

produces error values that range from -1.44 to 0.54. These two values provide the 

range of the accuracy of the developed model.  

The actual value from the pilot plant at this minimum and maximum error is 7.33 and 

9.23 respectively. The accuracy of the pH model is determined by using the 

following equation. This will show the ability of the pH model to match the actual 

value from the actual experiment. 

 

( ) %100
Value True

1% ×







−=

Error
Accuracy     (4.17) 

 

As shown in the table (i.e. min error and max error values) the modified pH model is 

able to produce a level of accuracy between 80.35% and 94.15%.  
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As mentioned at the beginning of this section the objective of this exercise is to 

develop a pH neutralization model that can represent the dynamic behaviour of the 

neutralization pilot plant with 80% accuracy. It appears, therefore, that the objective 

has been achieved.  

 

Further evidence to support the conclusion that the modified model is adequate 

comes from analysis of the TIC measure. As explained at the beginning of the 

section, the TIC value gives a good indication of the performance of any developed 

linear or nonlinear dynamic model. As given in the table, the TIC value for the 

modified pH model is 0.036. This value is very much closer to zero than to a value of 

one which supports the observation that the dynamic response from the developed 

model is similar overall to the dynamic response from the pilot plant. As suggested 

by Murray-Smith in his paper (Murray-Smith 1998), a TIC value that is smaller than 

0.3 generally will give a level of agreement between the developed model and the 

actual transients that is adequate for applications such as control system design. The 

TIC value provides a quantitative measure of model performance that can be useful 

in further model optimisation and tuning.  

 

Generally, the modified pH model has demonstrated adequate performance 

compared with the actual pilot plant data. Thus, in general terms, the development of 

the nonlinear dynamic model for the pH plant has been achieved. The simulation 

results demonstrate behaviour that is quite similar to the actual pilot plant, taking into 

account the uncertainties in measured quantities and model parameters.  

 

However there are still some improvements that can be made to the modified pH 

model in order to increase the accuracy of the pH model. As highlighted the 

dissimilarity at initial response suggests that the model could be modified and 

enhanced further. The discrepancy between the initial behaviour of the system and 

model are suggestive of some issues in terms of imperfect mixing or valve 

characteristics. Some additional experimental work to investigate the efficiency of 

the mixing process, the transport delays of the controlled stream and also the 

movement of the actual control valve need to be carried out.  
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If there are significant findings that suggest additional dynamics need to be 

incorporated with the pH model there should be a further stage of model refinement 

and optimisation. It is believed that with these additional representations and more 

rigorous external verification and evaluation, the developed pH model will be able to 

represent the behaviour from the pilot plant accurately.  

 

Some preliminary work on the effects of imperfect mixing has been carried out. The 

general idea of the approach for the imperfect mixing model development was based 

on previous work by Bar-Eli & Noyes (Bar-Eli & Noyes 1986). However the 

dynamics of the imperfect mixing model were represented by a simple first order lag 

and pure time delay instead of a more complex form of mathematical representation 

developed-- in the paper. The first order lag with pure time delay was chosen to 

represent the imperfect mixing characteristics as this form of model structure had 

previously been found to be useful in representing complex behaviour in terms of the 

dynamics of a helicopter rotor (Black & Murray-Smith 1989;Bradley, Black, & 

Murray-Smith 1989). The successful use of simple dynamic elements of this kind to 

represent modelling uncertainties in the helicopter application led directly to 

consideration of its use in representing the uncertainties of the mixing process. It is 

consistent also with one of the simpler forms of lumped-parameter model structure 

suggested in the paper by Bar-Eli and Noyes referred to above. The response of the 

pH model with an additional block representing imperfect mixing was inconclusive 

in the absence of further experimental evidence. In addition, measures of goodness of 

fit between the simulation results and the corresponding experimental time history 

were not significantly different from the response without this additional block. 

Further optimisation of the parameters representing the imperfect mixing process 

was not attempted in the absence of additional experimental data as it was not 

believed that this was justifiable on the basis of the available data sets from the pilot 

plant.  
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5.0 DEVELOPMENT OF A CONVENTIONAL 

PROPORTIONAL PLUS INTEGRAL (PI) 

CONTROLLER FOR THE PILOT PLANT 

 

As an introduction this section will provide an overview of the Proportional Plus 

Integral and Derivative type of controller (PID controller) in this type of process 

application although, in the specific case of this pilot plant, the development process 

led to a decision to use a Proportional Plus Integral (PI) controller and to dispense 

with the Derivative component. In reaching such a decision it is of considerable 

interest and importance to understand fully the impact of each individual control 

action on the behaviour of the controlled system. The PID form of controller has 

been used successfully in the process industries since the 1940s and remains the most 

widely used algorithm today for a very wide range of applications.  The success of 

this type of controller is due to the fact that the PID control algorithm is very simple 

in structure, the controller is relative ly easy to design for most applications and has 

properties that make it much more straightforward to understand in simple physical 

terms than many other forms of controller. It therefore provides a kind of standard 

against which the performance of other fo rms of controller may be compared.   

 

In the simplest forms of PID controller there are three adjustable control parameters 

that influence the control performance and, in most cases, PID control algorithms are 

able to provide a reasonably good performance when the adjustable control 

parameters have been properly tuned. However the control performance also depends 

on the nature of the process. Processes having significant nonlinearities are, 

inevitably, more difficult to control than processes with more linear characteristics 

using the PID algorithm because parameter values of the controller that are optimised 

for one part of the operating range may be completely inappropriate for some other 

operating point. For such cases a simple PID controller is very often unable to 

provide a satisfactory level of control performance and in applications involving 

significant nonlinearity in the process plant some non-zero tolerance level needs to 

be defined for the steady-state error and a range of acceptable dynamic performance 

has to be considered. 
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5.1 Overview of the PID Controller 

 

Generally a PID controller has three control terms; Proportional, Integral and 

Derivative. The proportional term is a simple gain factor and provides a means of 

influencing the rate of adjustment of the manipulated variable. For most process 

applications the proportional control action has a very straightforward effect on the 

performance of the controller, especially in terms of the influence of this term on the 

overshoot and rise time of the output response to a step change of reference. This 

control action is capable of reducing the offset error but it does not provide a zero 

offset in typical process applications involving a Type 0 plant transfer function.  

 

The second term in the PID controller is the integral action term. The main advantage 

of this control action is its influence on the final steady state error value, although it 

adjusts the manipulated variable in a slower manner than pure proportional action 

and the integral action can have a destabilising effect in terms of the dynamic 

response of the closed- loop system. Integral action is capable of bringing the steady 

state output value to the desired set point with zero offset for a plant that shows 

linear behaviour and may be described by a Type 0 transfer function.  

 

In the PID controller one important issue that arises with the integral action is the 

phenomenon of “Integral Windup”. This problem is associated with saturation effects 

and occurs when the integral action continues to integrate the error (in a positive or 

negative direction) but the manipulated variable is unable to control the process 

variable. This is because the control valve or other form of actuator reaches a hard 

limit at one end or the other of its travel (0% or 100% in the case of a control valve). 

There are many different anti-windup strategies which have been suggested in order 

to avoid this situation. As mentioned in a number of  papers (Bohn & Atherton 

1994;Bohn & Atherton 1995), there are three commonly used  methods or schemes 

that can reduce or prevent the integral windup problem.  
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The first scheme involves clamping the integrator output at specific a minimum and 

maximum value. This scheme is normally referred to as a “Limited Integrator” 

approach. The saturation values usually correspond to the hard limit of the actuator. 

The main idea of this simplest scheme is that the integrator will stop integrating 

when the integrator output reaches the limit of the acceptable range.  

 

The second scheme involves switching off or resetting the input to the integrator 

when the control signal for the actuator reaches the saturation value. The scheme is 

called “Conditional Integration” and requires an additional feedback loop to track the 

control signal. The third scheme is a classical approach called “Tracking Anti-

Windup”. The structure of this approach is quite similar to the second scheme 

involving another extra feedback loop that will track the output signal. The general 

idea of this scheme is that it will track the difference between saturated and 

unsaturated control signal and reduce the input signal to the integrator accordingly. 

The two papers mentioned above discuss a software package that has been developed 

in the SIMULINK/MATLAB environment to investigate the performance of these 

four different anti-windup implementations for PID controllers. Some simulation 

results on the capability of each scheme have also been presented and it can be 

concluded that the limited integrator approach is a satisfactory method, provided the 

integrator elements of the controller allow implementation of this form of limiting 

 

The final control term is the derivative term. This control action will have no direct 

influence to the final steady state value of error. However, properly tuned, it can 

provide rapid correction based on the rate of change of the controlled variable. In 

many situations the derivative term is omitted because it tends to increase the effect 

of measurement noise and can thus degrade the overall performance of the controller.  

In cases where there is no derivative term the PID controller is reduced to a PI 

controller having only the proportional and integral terms and thus has only two 

principal parameters for adjustment. For PID and PI controllers inappropriate tuning 

of the adjustable parameters can result in instabilities within the controlled process.  
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Many previous researchers have used the performance of a PI controller as a 

benchmark against which the performance of other forms of controller for the pH 

neutralization process can be compared. In this research, the PI controller is again 

used as a reference against which other forms of control can be compared. This 

section describes the procedures followed in attempting to tune a PI controller for the 

pH neutralization pilot plant. Based on the performance of this controller some 

objectives will be outlined for more advanced types of controller (such as a Fuzzy 

Logic Controller). 

  

Figure 5:1 shows the MATLAB/SIMULINK representation of the PI controller for 

the pH neutralization pilot plant. As shown in the figure there are two controller 

gains; the Proportional Gain and the Integral Gain which represent the first two 

control terms that have been discussed previously. 
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Figure 5:1: MATLAB/Simulink representation for the PI controller 
 

 

Since the research is not focusing on the investigation of integral windup 

phenomena, the first anti-windup approach (i.e. the use of Limited Integrators) has 

been chosen and the other approaches have not been applied. As described above, the 

use of limited integrators is the simplest approach to overcome the problem of 

windup and involves setting low and high saturation limits on the integral action. 

Thus, when the output reaches either of these the limiting value, the integral action is 

turned off to prevent integral windup.  
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As shown in the Figure 5:1 the MATLAB/Simulink environment includes an 

integrator function which has an option of limiting and allows upper and lower limits 

to be set by the user. The output of the integrator is determined for three different 

conditions. The first condition is when the output integral is less than or equal to the 

Lower saturation limit and the input is negative. For that case the output is held at the 

Lower saturation limit. The second condition is when the output integral is between 

the Lower saturation limit and the Upper saturation limit. The output for this 

situation is simply given by the integral of the input. The third condition is when the 

integral is greater than or equal to the Upper saturation limit and the input is positive 

and the output in this case is held at the Upper saturation limit. For this application 

involving the pH neutralization process pilot plant the limited integrator in the PI 

controller of Figure 5:1 was set to 0 for the lower limit and 100 for the upper limit. 

These values represent the fact that the position of a valve cannot be any more open 

than fully open (100% opening) and also cannot be driven in a negative direction 

beyond the fully closed condition (0%valve opening). 

 

5.2 Simulation work on the PI form of Controller 

 

Figure 5:2 shows the MATLAB/SIMULINK representation of the complete pH 

neutralization plant simulation model including the controller block with PI control. 

As shown in the diagrams there are two function blocks; Con1 and Con2. These 

blocks convert the conductivity value for acid and alkaline into an equivalent 

concentration value.  

 

The CV121 block in the figure represents the control valve movement for the 

alkaline stream. A first order transfer function is used to provide a linearised 

representation of the movement of the control valve for flow values between 80L/h 

and 350L/h. There is no model representation for the control valve that is controlling 

the acid stream as the actual measured flow values will be utilised throughout the 

computer simulation exercise. The main function of the scaling block is to change 

the units of the error into a percentage so that the PI controller reacts correctly 

according to the value of the error. 
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Figure 5:2: MATLAB/Simulink representation of the pilot plant for the 
modified model, with a PI controller 

 

5.2.1 Practical implementation of the PI controller  

 

The classical approach and method most widely used in practice for establishing 

appropriate values for the control parameters of a PID controller is the Ziegler-

Nichols tuning method (Marlin 2000). Although the approach is a proven method it 

may, especially in the case of highly nonlinear systems, require an modified trial-

and-error procedure to find the most appropriate parameter settings. In such cases the 

tuning procedure often produces an implementation which gives a performance that 

is far from ideal in some parts of the operating range of the system..  

 

The steps involved in this tuning approach may be described in terms of the 

following sequence of operations. Firstly the Proportional gain must be set to a 

minimum value and the other parameters (i.e. Integral and Derivative terms) should 

be set to give zero action. The Proportional gain should then be gradually increased 

until oscillations start to appear in the measured closed- loop system response. The 

gain should then be adjusted so tha t the oscillations are maintained with constant 

amplitude. The value of gain that is used to achieve this condition is termed the 

ultimate proportional gain (Gu) and the period (Pu) of the oscillation resulting from 

that gain must be measured.  
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Based on these two values (i.e. Gu and Pu)  and some standard formulae (Table 5:1), 

all of the controller parameters can be determined. In the Zeigler-Nichols formulae 

for the closed loop tuning method, as summarised in the table below, the ultimate 

proportional gain is shown as Gu while Pu is the period of the closed loop system 

response using that particular ultimate proportional gain value. 

 

Table 5:1: Ziegler-Nichols tuning formula for a closed loop system 

Type of 
Controller P PI PID 

Proportional, 
KP 

0.5Gu 0.45Gu 0.6Gu 

Integral, KI - 1.2KP/Pu 2KP/Pu 

Derivative, Kp - - KPPu/8 

 

Several experiments were carried out for this PID tuning exercise. Based on the 

conductivity meters the average value of the concentration for acid and alkaline for 

those tests was 0.0467M and 0.0504M respectively. This batch of solution was used 

for the PID tuning process as well as for testing the performance of the controllers. 

Thus the effect of the concentration of the solution need not be considered further for 

this whole process.  

 

As explained in the previous paragraph the first step is to find the value of the 

proportional gain that can produce a maintained oscillation. Figure 5:3 shows the 

responses in terms of the pH value in the reactor tank during the process of 

determining the suitable proportional gain. The initial value chosen for the 

proportional gain was 10, as shown in the first part of the time histories of Figure 

5:3. However, this value is not an optimal value. This is because the amplitude of the 

oscillation decreases over the first 300 seconds for both responses: the pH value and 

the flowrate for the alkaline stream. After the 300th second the proportional gain was 

increased to 15. As shown in the figure the amplitude of the responses increases for 

about 2 cycles and then starts to gradually decrease again. This pattern indicates that 

the proportional gain should be increased further.  
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Figure 5:3: PID tuning (Experiment 1) 

 

At the 525th second the value of the proportional gain was increased to 18. As shown 

in the figure, the responses in terms of the pH value and flowrate both appear to 

show a constant amplitude of oscillations. This suggests that 18 is the appropriate 

value for Gu. Figure 5:4 shows the results of the second experiment. This experiment 

was performed to ensure that the identified proportional gain value (i.e. Gu=18) is 

reliable and is able to produce the same required response repeatedly.  

 

As shown in Figure 5:4, the amplitude in terms of the oscillatory pH response is 

quite consistent, with a peak-to-peak value of approximately 1.2. The flowrate for the 

alkaline stream also shows that it follows the same pattern for each cycle. Generally, 

these results indicate that the pH neutralization pilot plant is controllable even with a 

Proportional controller.  
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Figure 5:4: PID tuning (Experiment 2) 

 

Thus, based on Figure 5:4, the ultimate proportional gain is 18 and the period for the 

oscillations can be determined from the period of the measured pH response signal,  

which is approximately 33s. The PI controller parameters can then be calculated as 

follows:- 

 

Proportional Gain, KP = 0.45 x 18 

    = 8.1  

 

 Integral Gain, KI = (1.2 x 8.1) / 33 

    = 0.29 
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The next experiment was performed to check the performance of the PI controller. 

The settings for the controller parameters are based on the values calculated above. 

However through a trial-and-error procedure the integral action was subsequently 

reduced to 0.03 as the controller with the calculated value of integral gain 

demonstrated an excessively aggressive control action. Although this value of 

integral gain may not be the optimal value it was used for the experimental 

investigation and it provided some useful general information about the capabilities 

of the PI form of controller. 

 

5.2.2 Experimental and Simulation Results – Set-Point 

Tracking 

 

Experimental Results 

 

Figure 5:5 and Figure 5:6 show the performance of the PI controller with respect to 

set-point changes. This experiment may be termed Set-Point Tracking and involves a 

few step changes in the set point of pH over the range of pH values of importance for 

this pilot plant application. The test results start with a pH set point value of 7 and 

then the set-point is moved to pH values of 8, 6 and 9 and, finally, back to a pH value 

of 7. The duration of the experiment is approximately 950s and the concentration for 

both solutions is exactly the same as in the previous experiment described in section 

5.2.1. 

 

As shown in Figure 5.5, the overall performance of the PI controller is not very 

encouraging. When the set point for the pH is 7 the corresponding process variable 

from the pilot plant is approximately 6.75. This condition can be seen clearly at the 

100th and 900th seconds. Also, there is approximately 20% overshoot when the pH 

set-point value increases from a pH value of 7 to a pH value of 8. For this particular 

condition the steady state of the process variable (i.e. the pH value) is still 4-5% 

below the target pH value. Typically this problem can be eliminated through further 

tuning of the integral action (i.e. the integral gain).   
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Figure 5:5: PI controller performance 
 

However, the inherent nonlinearity of the process remains an important issue and can 

be seen in the closed- loop behaviour. For example, when the pH value set-point 

changes from a pH value 8 to a pH value 6 the offset error decreases and the 

measured output moves closer to the require value. However, the process variable 

takes quite a long time (approximately 150 seconds) to reach to the target pH value 

and the corresponding control valve opening for the alkaline flow is at 0% opening. 

Another interesting situation is observed when the set point fo r the pH value changes 

from pH value 6 to pH value 9. In this case the process variable (i.e. the measured 

pH value) never settles to the desired pH. Instead it oscillates between a pH value of 

8 and a pH value of 9.2. As shown in the figure the alkaline flowrate also oscillates 

between values of 0L/h to 310L/h, approximately. The gain in this process is 

undoubtedly a function of the operating point and these findings suggest that 

nonlinearity within the acid-base reaction is the main factor that contributes to this 

poor control system performance.  
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As shown in Figure 5:5 and Figure 5:6, the 60% valve opening will produce an 

approximate flowrate of 300L/h. The steady state value for the alkaline flowrate is  

approximately 110L/h, which corresponds approximately to an opening of  10%. 

Therefore the operating condition for the control valve is between 8% and 60% 

opening in order to get a flowrate of 0L/h and 300L/h respectively. These 

fluctuations in the control valve opening present obvious problems. In addition, it 

should be noted that the type of valve used in this case is the quick opening type of 

control valve where even very small movements will provide significant changes in 

the flowrate. As indicated above, the main reason for this situation is likely to be the 

inherent nonlinearity of the process.  
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Figure 5:6: Responses obtained from the system with the PI controller tuned for 
an operating point involving a pH set value of 8 
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Generally, a conventional controller like the PI controller operates in a purely 

corrective fashion so that when the control valve starts to make the corrective action 

to the pH value the error changes proportionately.  In the case of this plant the acid-

base reaction process will react differently at different operating points. As explained 

earlier, the PI controller was tuned at a pH value of 8 and it is believed that because 

of the nonlinearity of the reaction process the PI controller is unable to provide 

satisfactory control performance at other set point values 

 

Simulation Results 

 

Figure 5:7 shows the simulation results for the modified model with the PI controller 

included. The simulation work is based on the simulation model shown in Figure 5:2. 

The modified model used in this computer-based simulation includes the new 

dissociation constant values as well as the initialisation block. Data obtained from the 

above Set-Point Tracking experiment such as the pattern of set point changes, 

concentrations for both solutions as well as flowrates for the acid streams experiment 

are used in this simulation work.   

 

As shown in the simulation model the actual data from the pilot plant are set point 

changes, concentration values for acid and alkaline, and flowrate for the acid stream. 

The controller parameters (i.e. proportional gain and integral gain) used in this 

exercise are exactly the same as the one used in the Set Point Tracking experiment. 

Generally the simulation results for this exercise can be seen to be similar in form to 

the experimental results shown previously (i.e. Figure 5:5 and Figure 5:6). These 

results clearly show that the modified pH model produces responses that are very 

similar in terms of the system behaviour with the PI controller. However the 

simulated response using the developed process model is slightly slower compared to 

the responses obtained from the pilot plant itself. This condition can be observed 

clearly when the pH value set-point changes from pH value 8 to pH value 6. The 

time taken for the response to reach the set point (i.e. pH value 6) is approximately 

130s for the pilot plant itself and 180s for the corresponding simulation involving the 

modified model.  
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Figure 5:7: Simulation results of the modified pH model with PI controller  

 

The same situation can also be observed when the set point changes from pH value 6 

to pH value 9. At this set point the behaviour from the modified ph model is slightly 

different from that of the pilot plant. As described previously, the response from the 

pilot plant never settles to the desired pH value but instead oscillates between a pH 

value of 8 and a pH value of 9.2. From the simulated results with the modified pH 

model, the response oscillates at the beginning and continues with a decaying trend. 

Thus it is believed that the response would eventually settle to its final or steady state 

value. This condition might be due to the linearization of the control valve (i.e. 

CV121 block in Figure 5:2) in the simulation model. 
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Figure 5:8 shows the comparison between calculated values of tuning parameters and 

the values implemented during the experimental work. As described in Section 5.2.1 

the calculated value for integral gain is 0.29 however during the experimental stage 

the value has been reduced to 0.03. As for the proportional gain the calculated value 

and implemented value are the same. As shown in the Figure 5:8(a) the pH response 

for the calculated value of integral gain (0.29) demonstrated slightly higher 

overshoot and longer settling than for the controller that was implemented 

experimentally involving the much smaller value of 0.03 for this parameter. In terms 

of set point offset error the pH response is better compared to the response for the 

implemented value. However as shown in Figure 5:8(b) the control valve action for 

the calculated value is slightly more aggressive than the response from the 

implemented value. This simulation based investigation shows that the optimal 

integral gain is probably between the calculated value and implemented value.   
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Figure 5:8: Comparison between calculated and implemented tuning 
parameters  
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Further computer based investigation on the effect of each control action has been 

performed. For this investigation the tuning parameters are given in Table 5:2 and 

the pH response from the simulation exercise is shown in Figure 5:9. As shown in 

Figure 5:9 the simulation exercise has been divided into two parts. 

 

Table 5:2: Tuning parameters for computer based simulation work 

Simulation Proportional 
Gain 

Integral Gain 

Sim1 8.1 0.03 
Sim2 8.1 0.5 
Sim3 8.1 1 
Sim4 1 0.29 
Sim5 10 0.29 
Sim6 20 0.29 
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Figure 5:9: Further computer based investigation of tuning parameters 
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The first three simulations (i.e. Sim1, Sim2 and Sim3) were performed to investigate 

the general effect of the integral term. In this case the proportional gain remains the 

same as the calculated value (i.e. 8.1) and the integral gain varies over the range 

given in Table 5:2. Figure 5:9(a) shows that as the integral gain increases the pH 

response becomes more aggressive and produces poorer control performance, 

displaying large overshoot values and modified settling times. The last three 

simulation exercises (i.e. Sim4, Sim5, and Sim6) were carried out to investigate the 

significance of the other control action which is the proportional term. For this 

exercise the integral gain was maintained at the calculated value which was 0.29 

while the proportional gain varies as shown in Table 5:2. As shown in Figure 5:9(b) 

the dynamic response from Sim4 is unaccepted because the transient is very slow. As 

for Sim5 and Sim6, the difference in dynamic response is small although it does 

suggest that the response for the case of Sim6 is slightly more aggressive.    

 

5.3 Summary 

 

As mentioned earlier, the control performance of the PI controller may be used as a 

point of reference for other control approaches to the problem of control of the pH 

neutralization pilot plant. Therefore some control performance objectives have been 

outlined and these objectives will be used as guidelines in order to achieve improved 

control performances. 

 

The control performance objectives are as follows: - 

 

1. Peak-response related criteria for process variable 

 

There are two peak-related criteria that are generally used to measure 

transient performance in control systems; peak overshoot ratio and decay 

ratio. As shown in the Figure 5:10, peak overshoot is denoted by A whereas 

the decay ratio can be calculated from B/A. 
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Figure 5:10: The transient performance measures 

 
A small value for both criteria is usually desired. A value for peak overshoot 

ratio that appears to be widely accepted in the literature is around 10% and 

for decay ratio a widely accepted value is 0.25. However, the new control 

performance objective for the advanced controller is aimed for 0% peak 

overshoot and zero decay ratio. As shown in the Figure 5:5, in the case of the 

PI controller, there is approximately 70% peak overshoot ratio when the set 

point changes from pH value 7 to pH value 8. However the peak overshoot is 

smaller when the set point changes from pH value 8 to pH value 6. The decay 

ratio is very small and can be neglected. 

 

2. Time related criteria  

 

In the case of time related criteria there are two criteria that are widely used 

to provide some indication of the controller’s performance. The first of these 

is the rise time and the other is the settling time. Rise time is actually the time 

from initiation of the step change in the set point until the process variable 

first crosses the new set point level.  
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Usually a short rise time is desired. The settling time is the time for the 

process variable to reach and remain within 5% of its final value. Again a 

short settling time is required. It should be noted that the rise time for the PI 

controller is approximately 50seconds and the settling time is 110 seconds 

when the set point changes from pH value 7 to pH value 8. As explained 

earlier, the rise time and settling time for the next set point change (i.e. pH 

value 8 to pH value 6) are longer, approximately 120 seconds and 180seconds 

respectively. Since the previous objective is to have zero peak overshoot and 

decay ratio, this would mean that the settling time would be a crucial time 

related performance indicator. Based on this result it is sensible to specify the 

target for the settling time as below 100seconds. 

 

3. Steady state error (Offset error) 

 

The steady state error indicates how close the process variable is to the 

desired set point value after all transients have died away. Generally zero 

offset error is required for all steady state control performance objectives. As 

shown in Figure 5:5, the offset error (the difference between the process 

variable and the set-point value) for the PI controller ranges from 0.25 to 0.3. 

Although the acceptable pH value for the neutralization process in most cases 

is between pH value 6 and pH value 9, some other applications might involve 

much stricter requirements in terms of the pH value of the product. Thus the 

objective for the advanced controller is to provide zero offset error to cater 

for any process and not only the neutralization pilot plant considered in this 

application. In practice, external disturbances and measurement noise will 

contribute to the steady state error and make it impossible to achieve zero 

steady state error at all times. In such cases the process variable will be 

unable to provide the exact required set point value. Thus the settling band 

(that is the difference between the process variable and the set point value) 

should be specified rather than prescribing a zero steady state error value. For 

this process the acceptable settling band in terms of pH value is taken as +/- 

0.1. 
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4. Robustness of the controller 

 

The final objective for the new controller is its robustness. The controller 

should be able to react to other disturbances such as concentration and flow 

variations without any retuning work. In the case of the PI controller it would 

obviously be necessary to perform some retuning when changes are made to 

the concentration or the flowrate of the acid. Thus this final objective for the 

advanced controller is to provide more flexibility when the changes are 

imposed and avoid the need for controller retuning  
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6.0 ADVANCED CONTROLLER DESIGN, 

DEVELOPMENT, IMPLEMENTATION AND 

TESTING 

 

This chapter describes the development, implementation and testing of one specific 

form of advanced controller which represents the second main research activity, 

following from the development of the pH neutralization model for the pH 

neutralization pilot plant. The form of advanced control scheme which has been 

considered in this research study is a flexible non-model-based intelligent control 

approach applied to the pH neutralization process using a Fuzzy Logic Controller. 

The structure of this controller involves a combination of feedforward and feedback 

control. This chapter is mainly concerned with the development, implementation, 

testing and evaluation of this form of intelligent controller on the pilot plant. 

 

As mentioned in the literature review, the development of this control strategy (i.e. a 

Fuzzy Logic Controller) is based on Mamdani’s methodology (Mamdani 

1976;Mamdani & Assilian 1975;The Math Works 2000). This approach allows the 

development of the fuzzy logic system from a basis of some theoretical knowledge 

together with practical experience gathered from work on the specific system for 

which the controller is being developed.  This has led to careful consideration of the 

structure for the proposed advanced control scheme using knowledge of the pH 

neutralization process system and its nonlinearities. Although designed using the 

Mamdani approach it was found that during the implementation process for the fuzzy 

logic controllers some final tuning work needed to be performed on site in order to 

ensure the correct functioning and reliability of the controllers. 

 

The chapter includes important results concerning the experimental testing of the 

implemented fuzzy logic controller based on the proposed control system structure. 

Associated investigations of the robustness of the controller involving pilot plant 

experiments are presented, as well as additional simulation results relating to various 

aspects of the controller performance.  
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Further investigations of the chosen form of control system structure used for the 

fuzzy logic system implementation are included through comparative simulation 

studies based on use of another control algorithm (in the form of PI control). Deatiled 

performance comparisons are made with the fuzzy control implementation 

 

6.1 Choice of Control System Structure 

 

This section describes the development of the structure of the proposed advanced 

controllers and associated sources of information. The first source represents 

knowledge of the theory of the chemical process involved, such as the characteristic 

of the acid-base reaction process. Information about the structure of the plant and its 

measurement systems also contributed much relevant information that was used in 

designing the controller, especially in terms of the characteristics of the control 

valve. Knowledge of some of the main parameters of the process is also important. In 

addition to these sources of information, the first version of the pH neutralization 

process model was also used to build up a comprehensive understanding of the 

dynamic behaviour of the pH neutralization plant.  

 

As mentioned in an earlier chapter (i.e. Section 3.3) there are two important input 

variables that have a major influence on the neutralization process. These are the 

flowrate for the acid and the concentrations of both solutions. The development of 

this control strategy was designed to ensure that the system would respond 

appropriately to these inputs, unlike some previous approaches that have been 

discussed in Chapter 4 which assume or require that some of the inputs to have 

constant values (Gustafsson & Waller 1983a;Henson & Seborg 1994;McAvoy, Hsu, 

& Lowenthals 1972;Mwembeshi, Kent, & Salhi 2001;Wright & Kravaris 1991).  

 

Figure 6:1 shows the block diagram or structure of the overall control system that has 

been considered in this research. The structure involves a combination of feedback 

and feedforward control strategies.  The feedback control is included to reduce or 

eliminate the error between the pH value in the reactor tank and the desired value  

which is set by the operator.  
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Meanwhile, the feedforward control in this structure predicts the required amount of 

alkaline flow that will provide a satisfactory steady state control performance. 

 

 

Figure 6:1: An overview of the controller structure proposed for the pilot plant  

Colour coding of the blocks are as follows:- Green – Process Variable, Pink – Pilot 
Plant, Blue – Controller, Turquoise – Set Point. Note that the dependence of the set 

point for the flowrate of alkaline on other process variables. This feature is discussed 
in the text. 
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As shown, there are three dedicated controllers that have three different 

responsibilities. The figure also shows that there are five process values that are 

recorded from the pH neutralization pilot plant. The process value from the pH Meter  

provides the pH value from the reactor tank while the Flow Transmitters and 

Conductivity Meters provide the flowrate and conductivity readings, respectively, for 

both the acid and the alkaline. Generally, the main purpose of the flow controllers is 

to control the amount of each solution flowing into the reactor tank. The pH 

neutralization controller controls the pH value in the reactor according to the desired 

value, which is normally a pH value between 6 and 10. 

  

The Flow Controller 1 is assigned to manage the amount of acid flow into the reactor 

tank. The controller will ensure that the amount of acid flow will be as close as 

possible to the required set point. As the amount of acid flow increases the amount of 

alkaline flow will also increase. This will eventually increase the amount of the final 

product in the reactor tank. The amount of acid flow thus provides important 

information for determining the set point for the Flow Controller 2 and will also act 

as a "load" to the neutralization process in the system, depending on the set point for 

the pH. The amount of the final product from the reactor tank will also depend 

directly on this flow rate. Therefore it is appropriate to have flow controllers for both 

the acid and the alkaline flow.  

 

In addition to the amount of acid, the concentrations of both the acid and alkaline 

solutions are also important for determining the set point for the alkaline flowrate as 

shown in the block diagram. Theoretically the concentration of both solutions will be 

a constant value throughout the process as the preparation of the solution is based on 

a batch process. However, due to practical issues that can arise during the preparation 

of the solutions, the concentration value is usually not precisely the same as the 

expected value. In addition to that, the concentration of the solutions might change 

slightly over a period of time from the original value. This condition might be due to 

some other reaction in the tank. The alkaline solution is particularly prone to 

concentration changes as it can precipitate over time. Due to this situation, it is 

important to monitor the concentration value and use this as a variable in the system 

rather than just assuming it to have a constant value.   
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As depicted in the block diagram of Figure 6.1, the set point for alkaline flow will be 

generated automatically whereas the other set point, for pH, is entered manually. The 

main idea of this set point calculation block is to compute and predict the required 

amount of alkaline flow that can neutralise the amount of acid that is flowing into the 

reactor tank. The calculation is based on the balanced chemical equation for an acid-

base process reaction.  

OHSONaNaOHSOH 24242 22 +→+     (6.2) 

 

Based on this equation it can be shown that the required amount of alkaline flow is 

double the amount of acid flow, for the case where the concentrations of both 

solutions are the same. Therefore the equation for the set point calculation block can 

be derived as follows; 

 

Alkaline ofion Concentrat
Acid ofion Concentrat

Flow Acid ofAmount 2 

 Flow Alkaline ofamount  Required

××=
 

 

Therefore, the main responsibility of the Flow Controller 2 is to ensure that the acid 

that is flowing into the reactor tank will be neutralised. This is done by controlling 

the amount of alkaline flowing into the tank. For this particular situation the pH 

value in the tank will remain the same as the current value and should be the same as 

the pH set point value. If there is any pH value variation between the current pH 

value and the set point value for pH, the pH controller will react and change the set 

point for the alkaline flow to some other value. When the pH value in the tank 

follows the pH set point value, the pH Controller will give “zero” output and the 

Flow Controller 2 will track the set point back to the value determined by the set 

point calculation block. This control approach can be considered as a form of 

cascade control. As clearly shown in the diagram, in addition to the output of the set 

point calculation block, the set point for the Flow Controller 2 also depends on the 

output variable of the other controller. In this case it is the output from the pH 

controller. Therefore the pH controller will act as a primary controller and the Flow 

Controller 2 will act as a secondary controller.  
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As explained in the literature (Marlin 2000), the primary controller will manage or 

control the process since it is slower than the process in the secondary loop. 

Obviously, in the case of this system, the response of the pH process is much slower 

than that of the flow process, thus satisfying the criteria very well. Other criteria that 

suit well for use of this cascade approach are the causal relationship between the 

control valve and the two processes. Any changes of opening of the control valve 

will definitely have an impact on both process values; the pH value and the alkaline 

flowrate.  

 

6.2 Development and Implementation of the Fuzzy Inference 

System 

 

A fuzzy inference system is a process that forms the mapping for the input and 

output variables using a fuzzy logic approach. This process involves several steps. It 

usually starts with identifying and defining the boundary of the input and output 

variables involved (i.e. establishing the relevant Fuzzy Set). This first procedure is 

quite crucial as the result of this will show the pattern of the input and output sets and 

provides general ideas about how these variables are linked. This information makes 

it is easier to move on to the next process, which involves identifying the 

membership functions for the input and output sets. The simplest and most 

commonly used membership function is the triangular membership function, which 

is used in this study. The final process is to develop a set of if- then rule statements. 

Such statements are used to formulate the conditional statements that comprise the 

fuzzy logic approach. 

 

As shown in the overview of the control strategy, there are two different types of 

controller; the flow controller and the pH controller. These controllers are actually 

both designed using a fuzzy logic approach. The design for the flow controller will 

depend on the characteristics of the valve that is controlling the particular stream or 

flow. The control valve performance will indicate some of the constraints that need 

to be considered when designing the fuzzy logic controller. Variables such as the 

operating range, the flow rate for a given control valve opening and the sensitivity of 
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the control valve to electrical inputs will determine the performance of the fuzzy 

logic controller. In the case of the pH controller, the fuzzy inference system is based 

on other factors. In addition to the control valve characteristics for alkaline flow, the 

dynamic reaction of the acid-base neutralization process is of crucial importance in 

the design. Another important criterion, which needs to be taken into consideration, 

is the reaction rate. This is a measure of how fast the pH value reacts when a specific 

quantity of reactant has been pumped into the reactor tank. 

 

6.2.1 Fuzzy Inference System for the Flow Controller 

 

As described in Section 3.3.4, the type of valve that controls the acid stream is called 

an "equal percentage" type whereas the alkaline stream valve is termed a "fast 

opening" valve. The response for the equal percentage type of control valve is much 

slower and less sensitive compared with the fast opening type of control valve. Thus, 

designing the fuzzy inference system for a highly sensitive type of control valve is 

difficult compared with the corresponding task for the less sensitive type of control 

valve. However a suitable range has been identified from the control valve 

characteristic curve so that the designed fuzzy logic controller can be utilised for 

both the acid and alkaline flow control.  

 

Figure 6:2 shows the characteristics of both control valves involved on the pilot plant 

and these are described in detail in Section 4.3.3. Referring to the characteristics for 

the valve that is controlling the acid flow, the selected operating range lies roughly 

between 60% and 90% valve opening. This will give a flowrate between 50L/h and 

150L/h. The minimum acid flow rate should not be less than 50L/h when both 

solutions have the same values of concentration as the required alkaline flow would 

otherwise be below 100L/h. This is based on the characteristic curve for the alkaline 

flow valve which presents difficulties for control of flowrates of less than 100L/h, 

with an allowance of less than 5% control valve opening.  
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On the other hand, for the upper part of the range, it is not possible to have a flowrate 

that is more than 150L/h. This is because the required alkaline flow would be more 

than 300L/h. and the curve for alkaline flow shows that the maximum flowrate of 

alkaline flow is roughly around 320L/h. The control valve that is controlling alkaline 

flow will thus provide a flowrate between 100L/h to 300L/h by controlling the 

control valve opening from 10% to 60%.  

 

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

200

220

240

260

% Control valve opening

Fl
ow

ra
te

 (
L/

h)

(a) Acid stream

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

% Control valve opening

Fl
ow

ra
te

 (L
/h

)

(b) Alkaline stream

Up scale
Down scale

Up scale
Down scale

 

Figure 6:2: Control valve characteristics 

 

The input set for the fuzzy logic controller is based on the "error", as shown in Figure 

6:3. This error is actually a difference between the set point and the corresponding 

current value of the relevant process variable. Based on the selected operating range 

for both control valves, the range for the error that will represent the input set in the 

fuzzy controller is preferred to be within the range from -100L/h to 100L/h. This 

range has been selected because the gap between the upper and lower range for acid 

flow is 100L/h.  
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Figure 6:3: Simplifed MATLAB/Simulink model representation for the fuzzy 
logic flow controller 

 

The control valve characteristic curves shows that there is quite a significant change 

in the flowrate (about 20L/hr) for the acid stream as well as the alkaline stream, for a 

step change of the control valve opening of around 5%. Therefore it is sensible to 

choose the output set range for the fuzzy logic controller to correspond to 0% to 

2.5% change in valve opening.  

 

It is important to understand the simplified MATLAB/Simulink model before 

selecting any particular configuration of membership function. This model is used as 

a basis for the flow controller for the acid as well as for the alkaline stream. 

Depending on the present error, which is the difference between the set point and the 

current process value, the fuzzy logic controller will react according. The largest 

value of error should be 100L/h hence the controller will react with the maximum 

output involving 2.5% change in control valve opening.  

 

The output from the fuzzy logic controller is termed the manipulated variable which 

is then sent to the pilot plant as an input signal to the particular control valve. At the 

same time the present manipulated variable will be stored in the memory block as 

shown in the diagram. The output from the memory block will also contribute to the 

variation of the control valve movement or opening.  
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As shown in the arrangement in Figure 6:3, the memory block will act as an 

accumulator. When the fuzzy logic controller provides a positive value, the value in 

the memory block will increase and when it is negative, the value in the memory 

block will decrease. As the error decreases towards zero the process value gets closer 

to the desired set point. The output value from the fuzzy logic will also move 

towards a zero value. At this point the value in the memory block will tend towards a 

steady state. Finally, the manipulated variable that drives the final movement of the 

control valve would be obtained from the value in the memory block. 

 

Selection of the type of membership function depends, in general terms, on the 

behaviour of the input and output set. Based on the results of a literature survey, most 

of the fuzzy cont rollers used in the past for control of the pH neutralization process 

have used two types of membership function: triangular and trapezoid (George & 

Yuan B 1995;Jamshidi, Ross, & Vadiee 1993;Postlethwaite 1994;The Math Works 

2000). Such membership functions are also recognised as the simplest and most 

commonly used types of membership function in many other control applications. 

Thus, triangular and trapezoid membership functions were also selected for initial 

investigations in this application. Both sets, input and output, use the same type of 

membership function.  

 

There are no specific guidelines in selecting the parameter settings for the 

membership functions in a fuzzy inference system. However, based on the 

boundaries and the overall control strategy, the chosen configuration of the 

membership functions for the input set is as shown in Figure 6:4. Figure 6:5 shows 

the corresponding membership functions for the output set. Usually the tuning 

process for parameters is not a straightforward procedure and requires understanding 

the input and output behaviour of the process as well as knowledge of fuzzy logic 

principles.  
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As shown in Figure 6:4, there are eleven groups of membership functions that will 

represent the input set. This figure also shows that the setting for the input range is 

between -100L/h and 100L/h. As explained in an earlier paragraph, the input set 

actually represents the error and this is defined simply as:     

 

Error = Set Point – Process Variable      (6.3) 

 

Figure 6:4: Membership function for input set 

 

A detailed description of the symbols as well, as the actual parameters used in Figure 

6:4, is given in Table 6.1. The centre point is when the error is zero and it is clear 

that the whole range of input can be divided into two regions, one for negative error 

and one for positive error. The values for the positive error region mirror those of the 

negative error region. 

 

As mentioned there are no specific rules for configuring the membership function. In 

this case 11 sets of membership functions have been chosen which were mainly 

based on the control valve characteristic and some trial-and-error procedures. During 

this exercise it was observed that grouping the membership function in the central 

part of the input range, as shown in Figure 6.4, will ensure  that control effort is 

focused on the specific targeted control range. 
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Thus, when the error lies between -20L/h and 20L/h the membership functions are 

very close to each other in order to provide a region in which the response is highly 

sensitive. This is to ensure that the fuzzy controller will provide a good response with 

zero steady state error as well as minimum overshoot. Meanwhile the range between 

20L/h and 100L/h and also between -20L/h and -100L/h will contribute to the overall 

system performance by ensuring a reasonably fast rise time, which is another 

important measure of performance. 

 

Table 6.1: Membership function description and parameters for input set 

Symbol Descriptions  Type Parameters  

NVL Negative Very Large Trapezoid -100 -100 -80 -40 

NL Negative Large Triangular -60 -40 -20  

NM Negative Medium Triangular -30 -20 -10  

NS Negative Small Triangular -15 -10 -5  

NVS Negative Very Small Triangular -10 -5 0  

Z Zero Triangular -5 0 5  

PVS Positive Very Small Triangular 0 -5 -10  

PS Positive Small Triangular 5 10 15  

PM Positive Medium Triangular 10 20 30  

PL Positive Large Triangular 20 40 60  

PVL Positive Very Large Trapezoid 40 80 100 100 
 

 

Figure 6:5 shows the arrangement of membership functions for the output set. There 

is a one-to-one relationship between the input set and the output set and there are also 

eleven groups of membership function for the output set. As shown in the figure the 

output set range is from -2.5% to 2.5% valve opening. A detailed description of the 

symbols as well, as the actual parameters used in Figure 6:5, is given in  

Table 6.2.  
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Since the range for the output set is considerably smaller than that for the input set 

the arrangements of the membership functions are quite consistent. However, as 

shown in Figure 6:5, there is no concentrated region unlike the arrangement of the 

membership function for the input set where the concentrated region is at the centre. 

As in the case of the membership functions for the input set there are also two 

distinct regions, for positive valve opening and the negative valve opening. The 

positive valve opening will provide a response for the positive error region whereas 

the negative valve opening will react appropriately for the negative error region.   

 

 

 

 

 

 

 

Figure 6:5: Membership function for the output set 

 

Table 6.2: Membership function description and parameters for output set 

Symbol Descriptions  Type Parameters  

NVLo Negative Very Large Trapezoid -2.5 -2.5 -2.0 -1.25 

NLo Negative Large Triangular -1.65 -1.25 -0.85  

NMo Negative Medium Triangular -1.15 -0.85 -0.5  

NSo Negative Small Triangular -0.75 -0.5 -0.25  

NVSo Negative Very Small Triangular -0.5 -0.25 0  

Zo Zero Triangular -0.15 0 0.15  

PVSo Positive Very Small Triangular 0 0.25 0.5  

PSo Positive Small Triangular 0.25 0.5 0.75  

PMo Positive Medium Triangular 0.5 0.85 1.15  

PLo Positive Large Triangular 0.85 1.25 1.65  

PVLo Positive Very Large Trapezoid 1.25 2.0 2.5 2.5 
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The choice of parameters for the membership function is also crucial. These 

parameters will determine whether the output  from the fuzzy logic controller is too 

sensitive to the input set, which then produces a high level of ripple in the output, or 

are too insensitive and lead to a very sluggish output response. Thus the key 

performance index of the fuzzy logic controller will also depend on these parameters. 

 

Table 6.3 shows that the relationship between the input set and the output set of the 

fuzzy logic controller. These if- then rule statements are quite straightforward since 

this is a one- input one-output case. As shown in Figure 6:3 there is only a single 

input and a single output for the fuzzy logic flow controller. 

 

Table 6.3: If-then-rules statements for the fuzzy logic controller 

No Statement Error (L/h) Statement 

Manipulated 
Variable 

(% Control 
Valve Opening) 

1 IF NVL THEN NVLo 

2 IF NL THEN NLo 

3 IF NM THEN NMo 

4 IF NS THEN NSo 

5 IF NVS THEN NVSo 

6 IF Z THEN Zo 

7 IF PVS THEN PVSo 

8 IF PS THEN PSo 

9 IF PM THEN PMo 

10 IF PL THEN PLo 

11 IF PVL THEN PVLo 
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Figure 6:6 is a two-dimensional curve that represents the mapping from the input set 

to the output set. This curve provides an indication of how the fuzzy logic controller 

will behave or respond when there is a difference between the set point and the 

measured value from the flow transmitter. 

The diagram provides an indication of how the if-then rule statements work. 

Basically, when the value of error is positive (that is when the value of the process 

variable is below the set point), the opening action of the control valve should be 

increased. This action is also in the positive direction, as indicated in Figure 6:6. On 

the other hand, when the value of error is negative (indicating that the process 

variable is above the set point), the opening action of the control valve should be 

decreased. This action is thus in a negative direction as shown clearly in the Figure 

6:6. The overall form of the controller is seen to be approximately linear for error 

values between -60 and 60 L/h. The main objective for this flow controller is to 

provide zero error with zero action for the manipulated variable.  

 

As shown in Figure 6:6, each side of the response (i.e. Positive and Negative errors) 

can be divided into three regions which correspond to the control valve action. At the 

positive error side, the first region is when the error is bigger than 40L/h where fast 

and large control action is required. The second region is between 20L/h and 40L/h 

in which the control action is slightly lower than the first region. In the last region the 

range of error is between 0L/h and 20L/h. In this region the control action is the 

slowest but just enough to provide some amount of flow. The region was designed so 

that the transient will not produce unwanted overshoot. As shown in the figure, there 

is a flat area between these regions. This is mainly to make sure that the flowrate 

does not change too rapidly from one region to another. Since the flow process is a 

fast response process this flat area will help to avoid transients provide ensure a more 

consistent flowrate before the next control action takes place.  
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Figure 6:6: The response of the fuzzy logic controller in terms of the 
manipulated variable as a function of the error 

 
6.2.2 Fuzzy Inference System for the pH Controller 

 

As explained earlier, at the beginning of this chapter, the pH controller will also be 

responsible for establishing the set point of the flow controller which determines the 

alkaline flow. In addition to the auto-calculated value, the set point for the flow 

controller will also depend on the variation of the pH value in the reactor tank with 

the desired pH set point.  

 

Figure 6:7 shows the MATLAB/Simulink representation of the overall system for 

control.  Generally the idea of the control approach adopted is that when the current 

pH value is below the desired value the Fuzzy Logic pH Controller will provide a 

new set point for the Fuzzy Logic Flow Controller. The new value for the set point 

will depend on the difference between the pH value in the reactor tank and the 

desired pH value. The difference is called “pHerror”, as shown in the figure.  
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The range for this variable is within the range from -5 to 5 and this is matched to the 

controllable range for the pH value for the neutralization process which involves pH 

values between 6 and 10. Thus the input set for the pH Fuzzy Logic Controller 

represents the pHerror and is in the range from -5 to 5.  

 

The output set for the controller will correspond to the flowrate of the alkaline 

stream. The range for the output set is configured to be between -100L/h and 100L/h, 

which is exactly the same as the input set range for the Fuzzy Logic Flow Controller. 

The saturation block that comes before the Fuzzy Logic Flow Controller will limit 

the error to the range from -100L/h to 100L/h. This block will prevent any value to 

the fuzzy controller being missed if the error value lies beyond this range. Thus, if 

the value is over 100L/h the input signal to the controller will be limited to 100L/h.  
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Figure 6:7: MATLAB/Simulink representation for the overall pH controller 

 
As shown in the figure there is a saturation block (denoted Saturation1 in the 

diagram) before the signal is sent to the actuator (i.e. control valve). This is a normal 

practice to ensure that the amount of signal to the actuator is within the appropriate 

range. In this case it is between 0% and 100% control valve openings 
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This condition will occur when there are variations in both the pH value and the 

alkaline stream at the same time. Since these variations are inter-connected the 

controllers will react accordingly and bring the error down to zero. Figure 6:8 shows 

the membership functions for the input set for the pH controller and the detailed 

description of the symbols and the exact parameter settings used are given in Table 

6.4. Unlike the input set for the flow controller there are nine groups of membership 

functions that will represent the input set for the pH controller. This is because of the 

smaller range of the input set compared to the range of the input set used for the flow 

controller. Thus fewer membership functions are needed to cover the range. A 

further reason for using a smaller number of membership functions for the pH 

process is that the dynamics of this process are significantly slower compared to the 

flow process. Therefore it is less sensitive and requires a smaller number of 

membership functions. 

 

As in the flow cont roller the number of membership functions is increased towards 

the middle point of the range. The mid condition is positioned between -1 and 1 as 

shown in Figure 6:8. This may also be seen from the figures in Table 6.4. This 

critical range will determine the smoothness of the settling condition and to ensure 

that the zero offset for the steady state is achievable. However the overall system 

performance of the fuzzy logic controller will depend on the combination of 

membership function for the input and output sets.  

 

 

 

 

 

 

 

 

Figure 6:8: Membership function for the input set for the pH fuzzy logic 
controllers  
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Table 6.4: Membership function descriptions and parameters for the input set 

Symbol Descriptions  Type Parameters  

NVLph Negative Very Large Trapezoid -5.0 -5.0 -4.0 -2.0 

NLph Negative Large Triangular -3.0 -2.0 -1.0  

NMph Negative Medium Triangular -2.0 -1.25 -0.5  

NSph Negative Small Triangular -1.0 -0.5 0  

Zph Zero Triangular -0.5 0 0.5  

PSph Positive Small Triangular 0 0.5 1.0  

PMph Positive Medium Triangular 0.5 1.25 2.0  

PLph Positive Large Triangular 1.0 2.0 3.0  

PVLph Positive Very Large Trapezoid 2.0 4.0 5.0 5.0 
 

 

Figure 6:9 shows the membership functions for the output set of the pH controller 

and the detailed descriptions are given in Table 6.5. The parameter values in this case 

were determined from the results of experiments that were designed to establish facts 

about the process such as the values of flowrate needed to increase or decrease the 

pH to a specific value and provide a reasonable time response. 

 

As in the case of the input set membership functions, there are also nine groups of 

membership functions in the output set for pH control. As shown in the figure, the 

triangular shape of the membership function in the middle of the range is very 

narrow. This is to cater for small variations of the pH error for conditions below a pH 

value of 0.5. When this condition occurs the pH controller will then make a small 

step change of the set point which will then make the control valve react accordingly. 

If this membership function were too wide it would contribute to poor control 

performance through introducing features in the response such as a large overshoot, 

unwanted oscillations or a ripple under nominally steady state conditions. In contrast 

with this membership function in the middle of the range, the rest of the triangular 

membership functions are all similar in form and are evenly distributed. 
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Figure 6:9: Membership function for outputs set for pH fuzzy logic controller 

 

Table 6.5: Membership function descriptions and parameters for output set 

Symbol Descriptions  Type Parameters  

NVLpho Negative Very Large Trapezoid -100 -100 -60 -45 

NLpho Negative Large Triangular -50 -40 -30  

NMpho Negative Medium Triangular -35 -25 -15  

NSpho Negative Small Triangular -20 -10 0  

Zpho Zero Triangular -0.05 0 0.05  

PSpho Positive Small Triangular 0 10 20  

PMpho Positive Medium Triangular 15 25 35  

PLpho Positive Large Triangular 30 40 50  

PVLpho Positive Very Large Trapezoid 45 60 100 100 
 

 

The relationship between the input set and the output set of the pH Fuzzy Logic 

Controller is given in Table 6.6. Again, the if-then rule statements for the pH 

controller represent a straightforward process since this is a one- input one-output 

case as shown in the table. From the result of this fuzzy inference system, a two-

dimensional curve that represents the overall input and output response of the 

controller is obtained and is shown in Figure 6:10.  
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Table 6.6: If-then rule statements for the fuzzy logic controller 

No Statement Error (L/h) Statement 

Manipulated 
Variable 

(% Control 
Valve Opening) 

1 IF NVLph THEN NVLpho 

2 IF NLph THEN NLpho 

3 IF NMph THEN NMpho 

4 IF NSph THEN NSpho 

5 IF Zph THEN Zpho 

6 IF PSph THEN PSpho 

7 IF PMph THEN PMpho 

8 IF PLph THEN PLpho 

9 IF PVLph THEN PVLpho 
 

 

As shown in the figure, positive and negative regions can be divided into three 

specific ranges or regions with three different controller responses. For the positive 

part of the range, the first region is when the error in the pH value lies between pH 

value 0 and 0.8. In this region the output or action from the pH controller involves a 

flow of less than 20L/h. This small flowrate requires less than 0.8% opening of the 

control valve. Although this region and the associated control valve movement is 

very small it is of critical importance as it will determine the steady state condition of 

the system. Thus this region can be called as the “settling region”. Towards the upper 

end of the range two-thirds of the positive region can be termed the “fast response 

region”. This condition occurs when the pH error is larger than 2. For differences 

between the pH set point and the process variable of this magnitude, an immediate 

action involving a large amount of additional alkaline flow is necessary.  The third 

region involves a pH error of between 1 and 2. This is known as the “transition 

region” which has lower gain and provides a form of “cushion” between the fast 

action region and the slow action region. 
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Figure 6:10: The response of the  pH fuzzy logic controller 

 

6.3 Simulation and Experimental Results 
 

The main idea of this section is to discuss the feasibility and reliability of the control 

strategy shown in Figure 6:1. This section also describes the performance of the 

developed fuzzy logic controllers when applied to the pH neutralization pilot plant. A 

number of experiments performed to investigate the robustness of the system are 

discussed. Practical implementation issues are highlighted as well as the benefits 

obtainable using these controllers. In addition, some results obtained from computer-

based simulations based on the modified pH model are also presented in this section. 

These simulation results allow conclusions to be reached concerning the accuracy 

and reliability of the modified model and some limitations in the control system 

performance across the whole of the operating range of the system. 
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6.3.1 Experimental Results from the pH Neutralization Pilot Plant 

 

This section describes in detail some of the experiments that have been performed 

during this investigation. All of these results are based on the control strategy 

described previously. In order to verify the reliability and performance of the fuzzy 

logic controller several types of experiments and testing have been performed. Each 

experiment gives specific information about different aspects in terms of the 

capability of fuzzy logic control in general, and more especially the benefits and 

limitations of the specific approach adopted for the control strategy in this 

application.  

 

The first experiment considered involved "set-point change" testing. The objective of 

this experiment is to observe the control performance of the fuzzy logic controllers 

when a set point change has been introduced. The experiment  was based on 0.05M 

H2SO4 mixed with 0.05M NaOH. These values were chosen because they are typical 

values for a neutralization process of this kind. The flow controller set point for the 

acid stream was set at 80L/h and two step-changes were made for the pH value in the 

reactor tank. The first change was made from pH value 7 to pH value 10 and the 

second set-point change was a change in the negative direction from pH value 10 to 

pH value 7. 

  

The experiment was successfully performed and the results are shown in  

Figure 6:11. The figure shows the five process variables that were recorded from the 

pilot plant, as explained earlier. Figure 6:11(a) shows the response from the pH meter 

in the reactor tank and this variable provides a useful indication of the overall 

performance of the controllers. At a glance the performance of the fuzzy logic 

controllers appear very good. 
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Figure 6:11: The step response experiment for changes of the pH set point. 

The uppermost record, (a), shows the measured and set pH values while the 
lower traces, (b) and (c), show the flow rates and conductivity measurements for 

both acid and alkaline. 

 

The figure shows that the approach that was implemented has produced a control 

system that successfully reacted to the set point changes. The first set point change 

was at 295 seconds and the second change was made at 600 seconds. The response 

took less than 100 seconds to reach the steady state values in each direction. The 

transient responses were also very encouraging as there was zero offset and a very 

small overshoot. Figure 6:11(b) and (c) show the other process variables, the 

flowrate and conductivity value for both solutions. As shown in Figure 6:11(b), the 

control valve that is controlling the alkaline stream has responded appropriately to 

the set point changes. At the steady state condition the flowrate was fluctuating 

between 130L/h and 150L/h with an average flowrate value of 140L/h. 
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As explained previously, the set point for alkaline flow is a dynamic value and is 

dependent on the other process variables. Thus the response shown in the figure was 

an expected and acceptable behaviour. The figure also shows that the fuzzy logic 

controller for flow control in the acid stream has reached the required set point value 

of 80L/h within a few seconds. In order to obtain more insight concerning the 

capability and performance of this flow controller at the steady state condition, data 

from the 100th second to the 900th second has been analysed using statistical methods 

and the results are shown in Table 7.0. As shown in the table, the average flowrate 

for the acid stream under steady state conditions is 79.96L/h and most of the time the 

value of the flowrate has a steady value of 79.75L/h. The difference between the set 

point for acid and these actual values is less than 0.5L/h. This is a significant 

achievement in a process of this kind.  

 

As shown in Table 6.7, the average values from the conductivity meter for acid and 

alkaline are 24.23mS and 12.34mS respectively. These values correspond to average 

concentration values for acid of 0.0497M and for alkaline of 0.0586M. The 

concentration value for acid is very close to the set up value, which is 0.05M. 

However the true concentration value for alkaline is slightly above the target value. 

This discrepancy was found in every experiment and thus each test will have a 

different combination of concentration values. 

Table 6.7: Descriptive statistical values for the process variable for the pH set-
point change experiment 

Conductivity (mS) 
Descriptions  

Flowrate for 
acid (L/h) Acid Alkaline  

Mean 79.96 24.23 12.34 

Median 79.97 24.23 12.34 

Mode 79.75 23.81 12.31 

Standard 
Deviation 

0.98 0.11 0.12 

Minimum 76.47 24.22 11.77 

Maximum 83.4 24.59 12.73 
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The performance of the conductivity meters can also be evaluated based on the 

information given in Table 6.7. The average conductivity value and the standard 

deviation value for the acid are 24.23mS and 0.111mS respectively. The average 

conductivity value for the alkaline is 12.34mS with a standard deviation value of 

0.123mS. These results show that the values are close to each other and are very 

consistent. It also indicates that the conductivity meters can provide reliable and 

precise data. Therefore the auto-calculation set point for the alkaline stream will also 

be reliable and consistent. Based on these average values obtained from the flow 

transmitter for acid and also from the conductivity meters, the set point for alkaline 

flow can be calculated as follows:- 

 

hL
mS

mShL

/63.135
0586.0

0497.0/96.792
Alkalinefor Point Set 

=

××
=  

 

It should be noted that this set point value is generated when there is no error in the 

pH value at the reactor tank.  

 

Figure 6:12 shows in detail how the control approach works. All responses in the 

figure are based on the same experiment as described above. The set point for 

alkaline flow was gradually increased at the beginning of the experiment and settled 

at an average value of 134.48L/h. As shown, there was zero pH error at the 

beginning of the experiment and this continued until the 295th second. The difference 

between expected value and the actual average value is about 1.15L/h. Therefore the 

accuracy of the auto-calculation block is about 99.15%. This result is also very 

encouraging and shows that all of the process variables are reliable and accurate. 
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Figure 6:12: Additional response from the set point experiment 

 

When a step change from pH value 7 to pH value 10 was performed at the 295th 

second, the pH error was transiently increased to 3. As shown in the figure, the set 

point for alkaline flow increased to a maximum of about 210L/h at this time. This 

additional flow, 75L/h, was from the pH fuzzy logic controller. Once the pH value 

reached the set point, which in this case is 10, the set point for alkaline flow was 

brought back to the steady state value for that set point. On the other hand, when the 

pH error was moving in the negative direction at the 600th second, the set point for 

the alkaline flow was also moving towards a negative value which decreased to 

around 80L/h. Once again, when there was no error between the pH set point and the 

desired pH value the set point for the alkaline flow settled at the average set point 

flowrate of 134.48L/h.  
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As shown in Figure 6:12, the manipulated variable for the control valve also varies 

between 28% and 30% control valve opening at the steady state condition. According 

to the control valve characteristic for the alkaline stream these values correspond to 

130L/h and 150L/h. An additional 10% was added (approximately) during the set 

change from pH value 7 to pH value 10 to increase the flowrate to 220L/h. The 

control valve reacted immediately by maintaining the opening at the steady state 

range although some fluctuations could be observed. For the case of the step down 

change, the response for the control valve opening is different. This is due to the 

constraints of the control valve. As shown in the figure and explained in an earlier 

paragraph, the new set point for the alkaline steam is 80L/h. In order to reach this 

value the control valve must vary within a range from 5% to 10% opening. It is not 

an easy task for the controller to operate with such a small movement of the control 

valve. Thus the form of the response shown in the plot for control valve behaviour is 

to be expected. 

 

The next test or experiment involved a set point tracking test. This experiment was 

performed to test the robustness of the fuzzy logic controller for a series of a random 

set point changes. Although the target pH value for the specific neutralization 

process considered in the current application is always 7 some other processes might 

involve control with other solutions at different pH values. Thus this test will 

determine whether the fuzzy logic controller can provide good responses at different 

set points.  

 

The experiment was performed successfully and the results are shown in Figure 6:13. 

These results were obtained after 2500seconds and there were eight set point changes 

in the pH value. The initial set point for the pH value is 7 and the final required pH 

value is also 7. The minimum set point value is a pH value of 6.5 and the highest set 

point value was pH va lue 10. The average value for the conductivity was 22.7mS and 

10.93mS for acid and alkaline respectively. These values agree with the 

concentration value. In the case of acid the concentration value was 0.0495M and for 

alkaline it was 0.0519M.  
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The set point for the fuzzy logic flow controller for acid was 70L/h. Based on the 

results shown in the figure data were taken for more detailed analysis from the 250th 

second to 2500th second.  Over this time interval the actual flowrate of the acid 

stream ranges between 69L/h and 71L/h. The average flowrate value was found to be 

70L/h which was exactly the same value as the set point for the fuzzy logic flow 

controller. The standard deviation of the samples was very small. The statistical 

summary indicates that the flow controller successfully controlled the flowrate of the 

acid stream with a negligible offset. Therefore, once again, the results show that the 

flow fuzzy logic controller for the acid stream was capable of providing a good 

control performance as required. 
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Figure 6:13: Set point tracking test results 
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As shown in the figure the results from the testing are very promising. The pH 

controller reacts to the set point changes immediately and the responses for all the 

step changes are broadly similar in form. However it is worth pointing out that the 

response for the step change from pH value 6.5 to pH value 7.5 at t = 1500 seconds is 

slightly slow compared with the other responses. This might be due to the process 

gain or acid-base reaction activity in this region. As mentioned earlier, this pH 

neutralization process involves an acid-base reaction between sulphuric acid and 

sodium hydroxide. Sulphuric acid falls within a group of diprotic acids and one of its 

attributes is that it has two equilibrium points. The first point is between pH value 6 

and pH value 7 and the other point is between pH value 7 and pH value 8. Based on 

the acid-base titration curve shown in Section 4.4 (i.e. Figure 4:4) and the 

explanation relating to Table 4.1, these two regions have a slightly reduced value of 

process gain. Thus the response shown in the figure is understandable and was to be 

expected.  

 

The flow rate for the alkaline stream for the steady state condition ranges between 

about 130L/h and 150L/h. The response of this stream was expected to fluctuate 

slightly since the type of control valve was "fast opening", meaning that the flow rate 

changes significantly when there is a very small change of control valve opening. 

Thus the fluctuation or variation of acid stream was acceptable considering that the 

movement of the control valve was very small.  

 

The third experiment involved “Load Change” tests. In these tests the flow rate for 

the acid stream acts as a load or demand for the entire system. The aim of this 

experiment is to observe the response of the fuzzy logic pH control system when a 

load disturbance occurs. The expected response from the fuzzy logic pH controller is 

an immediate and appropriate control action to maintain the pH value at the desired 

set point (i.e. the pH value of 7) regardless of the changes in the acid stream. The 

experiment was carried out successfully and the results suggest that the system 

performed very well, as shown in Figure 6:14. 
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Figure 6:14: Responses obtained from a load disturbance experiment 

 

Based on the average conductivity value, the concent ration values for acid and 

alkaline were 0.0486M and 0.0496M respectively. As shown in the figure, a series of 

random set point changes in the acid flow rate were imposed at 200-second intervals, 

ranging from 50L/h to100L/h. From the responses shown in the figure, it may be 

seen that the flow controller for the acid stream reacted in a satisfactory and 

appropriate fashion for these set point changes.  

 

As explained previously, the flowrate of the acid stream is one of the variables that 

will determine the set point for the alkaline stream. As shown in the figure, the 

flowrate for the alkaline stream also reacts in response to the set point changes of the 

acid stream. The responses are satisfactory in terms of their form and show that the 

control valve for the alkaline stream is properly controlled and managed. As the 

result of this control valve movement the response in terms of the pH value in the 

reactor tank is also very satisfactory as shown in the figure.  
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Once again, a set of data has been collected (i.e. from the 100th second to 1100th 

second) and analysed using the same statistical methods as before. The results are 

given in Table 6.8. The average pH value during the experiment is found to be a pH 

value of 7.03. That is a very encouraging result and shows that the controller is able 

to control the pH value with a high level of accuracy at the required set point despite 

the disturbance in the acid stream. 

 

The maximum pH value is 7.25 and the minimum pH value is 6.89. These values 

occur at 1048th and 1102nd second respectively and differ from the set point pH value 

of 7. This may be due to the magnitude of the step change (80L/hr to 50L/hr) 

introduced to the process just before this time. In this case the flow controller takes 

about 10seconds to reach and settle to the new set point. Meanwhile the flowrate for 

the alkaline stream needs approximately another 10seconds to reach and settle at its 

new set point value. Thus this 20seconds of delays causes a significant amount of 

alkaline to reach the reactor tank. This additional amount of alkaline generates a 

slightly higher pH value than the average pH value. As shown in the figure the pH 

controller immediately takes an appropriate action to recover from the excess 

alkaline by bringing the alkaline flowrate down. Because of this recovery action 

there is a slight overshoot which takes the pH value to its lowest value (6.89). 

However, it should be noted that this is still within an acceptable range (as discussed 

in Section 5.3). This form of transient can be improved further with some minor 

adjustments to the fuzzy logic pH controller. Generally, the results for this 

experiment are acceptable.  

  

The fourth experiment involves a test that is similar to that used in the load changes 

experiment, but with a different type of disturbance. As in the previous experiment, a 

change of concentration of the acid solution provides the basis for the disturbance for 

the whole reaction process, but with a concentration decrease in this case. The 

expected outcome will be the same as in the previous experiment and the test 

involves investigation of the capability of the controller to maintain the pH value at 

the required value in the presence of the disturbance.  
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In this experiment the concentration of acid is decreased while the concentration of 

alkaline will be kept to a constant value. The method used to decrease the 

concentration was by filling in the tank with more water (i.e. a dilution process). At 

the same time the acid solution was stirred manually to ensure as near perfect mixing 

as possible in the solution. The expected response from the alkaline stream involves 

a reduction of flow rate. This is because the concentration of the alkaline solution 

becomes larger compared to the concentration of acid. Based on the balanced 

chemical equation, the new condition requires a smaller amount of alkaline solution 

for neutralization. As the result the auto-calculated set point for alkaline flow will 

also decrease in order to reduce the alkaline flowrate. 

 

The experiment was carried out successfully and the responses from all five process 

variables were recorded as shown in Figure 6:15 below. The average flowrate for the 

acid stream was 70L/h and the average conductivity value for the alkaline stream was 

12.5mS (i.e. 0.0594M). The initial conductivity value for acid was 22.5mS and then 

it decreased to 21.5mS, 20.5mS, 18.5ms and finally it settled at 16.55mS as shown in 

the figure. These values represent concentrations of acid of 0.0462M, 0.0441M, 

0.042M, 0.0379M and 0.0339M respectively.  

 

As explained in the previous paragraph, the flow rate for the alkaline stream will 

decrease when the concentration of the acid decreases. This form of transient can be 

seen clearly in the figure. The initial flowrate of alkaline is approximately 150L/h 

and it then decreases to its final value which is approximately 100L/h. This result 

shows that the pH controller is able to control the pH value in the reactor at different 

combinations of concentration value for acid and alkaline solutions. In addition to 

this, it is noted that each experiment mentioned above will involve a different 

combination of concentration values. All of the results from the experiment indicate 

a satisfactory performance. 
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Figure 6:15: Responses obtained from the concentration disturbance 
experiment. 

 

As shown in the figure the pH fuzzy logic control managed to control the pH value at 

the required value (i.e. a pH value 7) very effectively. Again samples from the data 

are taken for statistical analysis from the 100th second onwards and a summary of the 

results is given in Table 6.8. From this statistical summary it may be seen that the 

average value for the pH value is 7.026 which is a very encouraging performance. In 

addition, the maximum pH value for this experiment is 7.12 which is better than in 

the previous experiment and is well within the acceptable range. These results show 

that the type of control scheme shown in Figure 6:1 is capable of producing very 

reliable responses and can handle disturbances effectively. 
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Table 6.8: Statistical results for the concentration disturbance experiment 

pH Value 

Descriptions  Load 
Changes 

Experiment 

Concentration 
Changes 

Experiment 

Mean 7.03 7.026 

Median 7.028 7.023 

Mode 7.04 7.04 

Standard 
Deviation 

0.044 0.043 

Minimum 6.89 6.9 

Maximum 7.25 7.12 
 

 

The final experiment is similar in nature to the previous set-point tracking 

experiment but involves larger changes applied at regular intervals In the previous 

set-point tracking experiment the set point of the pH values was changed in a more 

random way for values from pH 6 to pH 10. In this additional experiment the set 

point variation has a square wave-form. The initial pH value is 7 and the amplitude 

of the square wave is 1.5 with a period of 600s. The concentration values for acid 

and alkaline are 0.0487M and 0.0496M respectively. The average flowrate for the 

acid stream is 69.99L/h. The purpose of this experiment is to observe the 

performance of the pH controller in tracking a large and continuous step in terms of 

the set point change.  

 

The experiment was carried out successfully and all responses are shown in Figure 

6:16. The response from the pH meter is very encouraging. The pattern for the first 

cycle is very similar to the corresponding pattern of the second cycle. The flow rate 

of the alkaline stream has the expected form and the transient responses are almost 

exactly the same for each cycle of the set-point changes. 
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Figure 6:16: Responses from the experiment involving large changes of set point 

 
As explained previously, in the development of fuzzy inference system for the pH 

controller the expected response from the controller can be divided into three 

regions, as may be seen from Figure 6:10. These are the fast response region, the 

transition region and the settling region. The control actions associated with these 

different regions can be seen clearly in Figure 6:16. For example, when the step 

change is from pH value 7 to pH value 10 the pH error has an initial value of 3. This 

value of error falls rapidly due to the fast response control action. As shown in the 

figure the flowrate of alkaline increases rapidly to give a maximum flowrate of 

approximately 225L/h. As the flowrate increases the pH value also rises very rapidly 

from pH value 7 to pH value 8. However the rate of change of pH reduces as the pH 

moves from pH value 8 to pH value 9. This is because the control action is in a 

transition region. The flowrate for the alkaline flow is then approximately 170L/h.  
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Finally when the current pH value gets closer to the target value, with pH error 

values less than 0.8, the alkaline flowrate settles to a more or less steady value with 

some minor fluctuations. This situation shows that the control action is in a steady 

condition appropriate for the new set value. The pH value is then close to the target 

value and is trying to reach a steady state condition. 

 

6.3.2 Computer-based Simulation Results for the Fuzzy Logic 

Controller 

 

This section discusses some dynamic responses obtained from computer-based 

simulation work.  All of the results shown in this section are based on the 

performance of the fuzzy logic controller with the modified pH model. This model is 

in actual fact the final version of the modified model (referring to information in 

Section 4.5.3), which includes the new set of dissociation constant values as well as 

the additional part for initialisation purposes. As mentioned earlier, the main goals 

for this exercise are to evaluate the reliability of the model as well as to investigate 

some benefits and limitations of the fuzzy logic approach. 

 

Selected experimental data have been chosen to assist in this investigation such as 

the value of conductivity for both solutions, flowrates for acid as well as set point 

values in the reactor tank. There are four simulation results that represent the same 

four experiments which have been presented and discussed in the earlier section (i.e. 

the experimental results). 

 

The first simulation result, shown in Figure 6:17, is based on the configuration for 

the set point change experiment.  The actual response from the pilot plant for this 

exercise is shown in Figure 6:11. As explained earlier, the idea of this experiment is 

to observe the control performance of the fuzzy controllers when a set point change 

has been introduced. 
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Figure 6:17: Simulation of the set point change experiment 

 

As shown in the figure, for the first step change, which is from pH value 7 to pH 

value 10, the simulation result shows a response that is similar to the experimental 

result. However, at the second step change (from pH value 10 to pH value 7) the 

dynamic response in the simulation shows a different transient behaviour, 

particularly from pH value 8 to pH value 7. This might be due to the variation of the 

process gain for different parts of the range of pH value. As explained in Section 4.4 

(referring to the explanation for Figure 4:4), the process gain for the region from pH 

value 6 to pH value 8 is lower than the process gain for the region from pH value 8 to 

pH value 10. However, as shown in Figure 6:17, the transient takes a much longer 

time to reach the new set point at pH value 7 compared with the transient results 

obtained from the pilot plant. The result suggests that the acid-base reaction process 

from the modified pH neutralization process model is slightly slower than the actual 

reaction in the pilot plant in this part of the operating range.  
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Some modifications have been made in order to consider the above-mentioned 

problems in more detail. These changes are intended to improve the dynamic 

response of the model between pH value 6 and pH value 8. Figure 6:18 shows the 

new structure of the controller. As shown in the figure, there is an additional input to 

the pH fuzzy logic controller that represents the critical region (i.e. from pH value 6 

to pH value 8). There is also an additional output from the controller that reacts to the 

additional input. The main idea of this new configuration is that whenever the set 

point of the pH value is set within the critical region the total value of the 

manipulated variable, MV will depend on the second output (i.e. the additional 

output) from the pH controller. The function of the additional control valve opening 

from the second output is to make the system more sensitive through more 

aggressive control valve movements. However, if the set point of the pH value 

occurs outside this region, the pH controller will only respond to the first input set, 

which is the pH error. For this condition the second output from the fuzzy logic 

controller will always be zero. This shows that outside the critical region the pH 

controller will utilise the same configuration as that used in the experimental work on 

at the pilot plant. For the fuzzy logic flow controllers, the configuration remains the 

same as that being used in the experiment on the pilot plant.  

 

1
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Figure 6:18: The new structure of the controller 

 

Figure 6:19 shows the membership functions for the additional input while Figure 

6:20 shows the membership functions for the additional output for the pH controller. 

There is a single membership function for the additional input, which indicates the 

critical set point pH value. However there are six triangular shapes of membership 

functions for the additional output.  
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Figure 6:19: Membership function for the additional input set 

 

 

 
 

 

 

 

 

Figure 6:20: Membership function for the additional output set 

 

Table 6.9 provides the detailed description of the controller and the actual parameter 

values used for the membership functions for both the additional input and the 

output. The investigation of parameters values for the membership functions was 

mainly based on the performance of the modified pH model. Some titration curves 

from the modified model and also the performance of the pH controller shown in 

Figure 6:17 were used as guidelines. Once the structure of the new pH controller was 

identified the final choice of the parameters for the membership function was based 

on a trial and error approach. 
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Table 6.9: Membership function descriptions and parameters for the additional 
input and output sets 

Additional Input 

Symbol Descriptions  Type Parameters  

CReg Critical Region Trapezoid 6 6 7 8 

Additional Output 

Symbol Descriptions  Type Parameters  

CNLpho 
Critical Negative 
Large 

Triangular -100 -95 -90  

CNMpho 
Critical Negative 
Medium 

Triangular -60 -35 -15  

CNSpho 
Critical Negative 
Small 

Triangular -30 -18 0  

CPSpho 
Critical Positive 
Small 

Triangular 0 18 30  

CPMpho 
Critical Positive 
Medium 

Triangular 15 35 60  

CPLpho 
Critical Positive 
Large 

Triangular 80 90 100  

 

 

Apart from the additional input and output there are also four additional membership 

function that have been added to the previous input set (i.e. pH error) of the pH 

controller. Table 6.10 provides the description of the new configuration of 

membership function for the input set. As given in the table, the additional 

membership functions are highlighted as CNSph, CNVSph, CPVSph, and CPSph. 

The main purpose of the additional membership functions is to make the fuzzy logic 

controller more sensitive to the pH error (that is to the difference between the set 

point and the process variable).  
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Table 6.10: New configuration for the first input set for the pH controller 

Symbol Descriptions  Type Parameters 

NVLph 
Negative Very 
Large 

Trapezoid -5.0 -5.0 -4.0 -2.0 

NLph Negative Large Triangular -3.0 -2.0 -1.0  

NMph Negative Medium Triangular -2.0 
-

1.25 
-0.5  

NSph Negative Small Triangular -1.0 -0.5 0  

CNSph 
Critical Negative 
Small 

Triangular 
-0.6 -0.3 -0.1  

CNVSph 
Critical Negative 
Very Small 

Triangular 
-0.3 -0.1 0  

Zph Zero Triangular -0.5 0 0.5  

CPVSph 
Critical Positive 
Very Small 

Triangular 
0 0.1 0.3  

CPSph 
Critical Positive 
Small 

Triangular 
0.1 0.3 0.6  

PSph Positive Small Triangular 0 0.5 1.0  

PMph Positive Medium Triangular 0.5 1.25 2.0  

PLph Positive Large Triangular 1.0 2.0 3.0  

PVLph Positive Very Large Trapezoid 2.0 4.0 5.0 5.0 
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Table 6.11 shows the rules for the new configuration of the pH fuzzy logic 

controller.  

 

Table 6.11: If-then statements for the new fuzzy logic controller 

No 

Manipulated Variable 

(% Control Valve 

Opening) 

 

 

pH Error 

(L/h) as 

Input 1 

 

Critical 

Set 

Point 

as 

Input 2 

 

Output 1 Output 2 

1 IF NVLph  - THEN NVLpho - 

2 IF NLph  - THEN NLpho - 

3 IF NMph  - THEN NMpho - 

4 IF NSph  - THEN NSpho - 

5 IF Zph  - THEN Zpho - 

6 IF PSph  - THEN PSpho - 

7 IF PMph  - THEN PMpho - 

8 IF PLph  - THEN PLpho - 

9 IF PVLph  - THEN PVLpho - 

10 IF NVLph AND CReg THEN NVLpho CNLpho 

11 IF NLph AND CReg THEN NLpho CNLpho 

12 IF NMph AND CReg THEN NMpho CNLpho 

13 IF CNSph AND CReg THEN NSpho CNMpho 

14 IF CNVSph AND CReg THEN NSpho CNSpho 

15 IF PMph AND CReg THEN PMpho CPLpho 

16 IF PLph AND CReg THEN PLpho CPLpho 

17 IF CPSph AND CReg THEN PSpho CPMpho 

18 IF CPVSph AND CReg THEN PSpho CPSpho 
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Figure 6:21 shows the dynamic response for the same experiment as before with the 

modifications made to the configuration of the pH fuzzy logic controller. As shown 

in the figure the dynamic response is very similar to the actual dynamic response 

from the plant shown in Figure 6:11. This encouraging result shows that the new 

configuration is able to provide additional control valve movements within the 

critical region as required.  
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Figure 6:21: Simulation of set point change experiment with modified fuzzy 
logic pH controller 

 

As shown, the controllers are able to respond to the two instances of set point 

changes. The major difference between the previous pH controller and the new 

configuration of the pH controller is in terms of the behaviour of the control valve 

that is controlling the alkaline stream. The control valve movement for steady state 

conditions is more active at pH value 7 compared to pH value 10. This obvious 

difference is due to the effect of the new pH fuzzy logic controller. 
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As shown, the flowrate for the alkaline stream fluctuates more obvious than the 

previous response as well as the response from the actual pilot plant. This limit-cycle 

like fluctuation may create an issue in terms of the practicality of this controller for 

an actual plant application but it should be noted that this fluctuation, which is 

around 50L/h in peak-to-peak magnitude, corresponds to less than 10% of control 

valve opening, which is a relatively small movement for a control valve. As 

mentioned in the literature (Marlin 2000), large and high frequency variations in the 

control valve movement will reduce the life expectancy of the control valve. Thus it 

is believed that this behaviour is acceptable. It should be noted this modified pH 

fuzzy logic controller is used throughout all of the remaining simulation exercises. 

 

The second simulation experiment represents the exact situation that applies for the 

set point tracking experiment on the pilot plant. The simulation result in this exercise 

should match the experimental result shown in Figure 6:13. The aim of this exercise 

is to investigate the robustness of the fuzzy logic controller for a series of random set 

point changes. The dynamic response for this test is shown in Figure 6:22. 

 
As shown in the figure, the transient responses for changes in pH set point value 

from the computer-based simulation are very similar to the experimental transient 

responses shown in Figure 6:13. However there are, inevitably, dissimilarities 

between these two results. Obviously this is due, in part, to the developed pH process 

model itself. It seems that the response from the modified pH model is quite slow as 

compared to the actual response from the pilot plant. This can be observed when the 

pH value changes from pH Value 9 to pH value 6.6. Thus this result suggests that 

there are still plenty of room for improvement and further investigation of the pH 

model. In addition to that the differences may also be due to the linearised transfer 

functions representing the control valve in the computer-based simulation. 

Unfortunately, further plant tests with the modified fuzzy logic controller and 

investigation on pH model validation could not be carried out because further access 

to the plant was impossible at this stage in the work.  
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Figure 6:22: Simulation result for set point tracking 

 

For the purpose of comparison, Figure 6:23 shows the response of the same 

simulation exercise without any modification on the configuration of the pH fuzzy 

logic controller. As shown in the figure, the responses at the critical region are 

unsatisfactory. The simulation result shown in Figure 6:22 has demonstrated clearly 

the effectiveness of the new configuration of the pH fuzzy logic controller within the 

critical region.  
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Figure 6:23: Simulation result for set point tracking with single input for the pH 
fuzzy logic controller (i.e. pH error)  

 

In general these encouraging results suggest (from both experimental results and the 

computer-based simulation studies) that the fuzzy logic control approach is able to 

react to the set point changes appropriately and also shows that the modified pH 

model provides a level of performance that is generally adequate with the modified 

form of fuzzy control. 

 

The objective for the third simulation is exactly the same as in the load change 

experiment, which is to investigate the capability of the controllers to handle load 

disturbances. The dynamic response from the actual pH neutralization pilot plant is 

shown in Figure 6:14 and Figure 6:21, with the corresponding computer-based 

simulation results being shown in Figure 6:24. The response from the computer-

based simulation exercise confirm that the fuzzy logic controllers are able to provide 

a good transient response in terms of the pH value despite having a series of flowrate 

disturbances in the acid stream. 
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Figure 6:24: Simulation results for the load disturbance test. 

 

Statistical analysis performed for this simulation gives the results shown in Table 

6.12. Once again the results show that the fuzzy logic controllers are able to maintain 

the pH value at pH value 7 with high accuracy and repeatability. These results 

suggest that the performance from the computer-based simulation is better than the 

experimental results obtained from the pilot plant (i.e. comparison between Table 6.8 

and Table 6.12). However the behaviour of the alkaline stream from the actual pilot 

plant experiment is more stable and encouraging. As shown in Figure 6.24, the 

alkaline stream fluctuates aggressively when the set point for acid flow was brought 

down from 80L/h to 50L/h. This behaviour is mainly due to the control valve 

characteristic in which as explained previously in Section 3.3.4 there is no flow when 

the opening control valve is less than 5%. At this particular condition the required 

alkaline flow that will neutralise 50L/h of acid stream is 100L/h. In order to provide 

100L/h of flowrate the control valve opening needs to be controlled between 5% and 

10% where the control valve movement is very difficult to manage.  
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As shown in Figure 6:25, the final simulation result shows the capability of the fuzzy 

logic controllers when there are disturbances in the concentration of the acid 

solution. As explained previously, the experimental results for this exercise are 

shown in Figure 6:15. Again the idea of this exercise is to observe whether or not the 

fuzzy logic controls are able to maintain the ph value at pH value 7 regardless of the 

disturbances in the concentration of the acid solution. 
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Figure 6:25: Simulation results for acid concentration disturbances 

 

As shown in the figure the fuzzy logic controllers are capable of maintaining and 

controlling the pH value at its set point value. Once again it shows that the fuzzy 

logic controllers are reliable and able to perform their task within the required 

performance specification. Table 6.12 also provides a statistical evaluation of the 

simulation results and shows that the simulation results for this exercise are similar to 

those obtained for the plant experiments involving flowrate disturbances. It indicates 

that the controllers provide good control performance in the presence of disturbances 

in the flowrate and concentration for the acid solution.  
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The results also indicate the same pattern of behaviour of alkaline flow through this 

computer-based simulation work where the flowrate is slightly more oscillatory than 

the actual behaviour of the pilot plant.  

 

Table 6.12: Statistical results for the simulation exercises 

pH Value 

Descriptions  Load 
Changes 

Experiment 

Concentration 
Changes 

Experiment 

Mean 7.00 7.01 

Median 7.00 7.00 

Mode 7.00 7.00 

Standard 
Deviation 

0.019 0.017 

Minimum 6.95 6.99 

Maximum 7.15 7.11 
 

6.3.3 Computer-based simulation of the feedforward/feedback 
control strategy using PI controllers 

 

This section discusses some dynamic responses obtained from the computer-based 

simulation work with the same control structure described in Section 6.1. The only 

difference from the previous section (i.e. Section 6.3.2) is that the simulation results 

shown in this section are based on the performance of the PI controller. The 

simulation exercises were performed based on the modified pH model. The same 

experimental data used in the previous section such as the value of conductivity for 

both solutions, flowrates for acid as well as set point values in the reactor tank were 

utilised in this simulation work. The main objective for this exercise is to evaluate 

the reliability of the control structure which is the Feedback/Feedforward control 

described earlier. In addition the investigation will also provide some information on 

the consistency and performance of the modified pH model. 
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As explained, the difference between the previous computer-based simulation 

exercises is that the two fuzzy logic controllers will be replaced by two PI 

controllers. One PI controller will be handling the flowrate of the alkaline streams 

and the other controller will be responsible of controlling the pH value. These 

conventional controllers have been tuned in a traditional way and they have shown 

individually an acceptable control performance. 

 

As described previously there are four simulation results that represent the same four 

experiments which have been presented and discussed in the earlier sections (i.e. the 

experimental results and computer-based simulation for fuzzy logic controllers). The 

first simulation result, shown in Figure 6:26, is based on the configuration for the set 

point change experiment.  The actual response from the pilot plant for this exercise is 

shown in Figure 6:11. Figure 6:21 shows the simulation result with the fuzzy logic 

controller.  
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Figure 6:26: Simulation of set point change with PI controllers  
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As shown the figure (i.e. Figure 6:26) the controllers are able to respond to the two 

instances of set point changes. It shows that the control structure is reliable and able 

to provide good control performance. However the main difference between the 

previous simulation results (i.e. with fuzzy logic controllers) is that the transient 

response of the alkaline stream for the PI controller is more aggressive. This can 

clearly be seen throughout the simulation. As shown, the frequency of the response is 

quite high. This is unlike the response from the fuzzy logic controller (i.e. Figure 

6:21) where the response in terms of the alkaline flow oscillates with reasonably low 

frequency.  From a maintenance point of view this condition of high frequency 

movement of the stem with the PI control could produce unwanted vibration to the 

control valve. This will also increase the amount of routine maintenance required for 

the control valve in question.  

 

The next simulation result shown in Figure 6:27 represents the set point tracking 

experiment. As explained, the aim of this exercise is to investigate the robustness of 

the controllers for a series of random set point changes.As shown in Figure 6:27, the 

PI controllers managed to track the set point changes appropriately. Thus once again 

these encouraging results suggest that the feedback/feedforward control approach is 

reliable. As also shown in the figure, the transient responses for changes in the pH set 

point value from this simulation are very similar to the simulation transient responses 

with the fuzzy logic controller shown in Figure 6:23 (i.e. simulation exercise without 

any modification on the configuration of the pH fuzzy logic controller). These two 

results (i.e. Figure 6:27 and Figure 6:23) show that the modified pH model is 

consistent in that it behaves with a similar transient, especially when the pH value 

changes from pH value 9 to pH value 6.5. The response at this particular set point 

change shows that the developed pH model is relatively slow when compared with 

the actual response from the pilot plant. However the fuzzy logic control approach 

has flexibility in the control design, unlike the PI controller where the control design 

process is quite rigid and is less able to deal directly with such problems even with 

new tuning parameters.  
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Figure 6:27: Simulation result for set point tracking with PI controller 

 
Meanwhile the response for the alkaline stream in Figure 6:27 demonstrates transient 

performance which is very similar to the previous simulation result in Figure 6:26. 

The response oscillates roughly between 100L/h and 130L/h with very high 

frequency when one would expect a steady state condition. The response becomes 

even worse when the pH value changes from pH value 9 to pH value 6.5 and also 

from pH value 9 to pH value 7. In practical terms this unwanted response is likely to 

cause damage to the control valve, especially the parts associated with the stem and 

seat of the control valve. 

 

The third simulation exercise is the load change experiment. As explained 

previously, the objective of this investigation is to observe the capability of the 

controllers to handle load disturbances. The dynamic response for this exercise is 

shown in Figure 6:28.  
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The simulation results shown in the figure indicate that the feedback/feedforward 

control with PI controllers is able to provide a good transient response in terms of the 

pH value despite having a series of flowrate disturbances in the acid stream. 

However, a problem similar to that encountered in the other simulation experiments 

involving the PI controllers can be observed for the alkaline stream where the 

response oscillates with a very high frequency. Unwanted control valve behaviour is 

also shown between 1000s and 1200s. A similar situation at the same part of the time 

range has been explained earlier in Figure 6:24 for the fuzzy logic controller. 

However the responses found with the PI controllers shown in Figure 6:27 and 

Figure 6:28 are far more critical as compared to the behaviour with fuzzy logic 

controllers. 
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Figure 6:28: Simulation results for the load disturbance with PI controllers  
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The fourth set of simulation results are shown in Figure 6:29. Once again the results 

show that feedback/feedforward control strategy with the PI controllers has managed 

to control the pH value at the required value (i.e. a pH value 7) effectively. Thus, 

based on all the computer-based simulation results shown for all four experiments it 

can be summarised that the type of control scheme shown in Figure 6:1 is capable of 

producing very reliable responses in terms of pH value and can handle disturbances 

effectively. However throughout these four simulation experiments the results also 

indicate that the responses from the alkaline stream oscillates with high frequency 

leading to unwanted control valve activity in some situations. Thus the particular 

fuzzy logic controllers developed in the course of this work have some potential 

advantages over PI controllers for the same overall controller structure. 
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Figure 6:29: Simulation results for acid concentration disturbances with PI 
controller 
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6.4 Summary 
 

This final sections of Chapter 6 can be summarised in terms of  a few main points. 

The first involves the successful performance of feedback/feedward control scheme. 

The performance of this control strategy has been confirmed with the implementation 

of the control strategy with fuzzy logic controllers on the pilot plant. This combined 

feedforward and feedback control strategy has also provided very encouraging 

computer-based simulation results with the fuzzy logic controllers as well as with 

conventional PI controllers. 

 

The second point concerns the development of the fuzzy logic controller. The chapter 

clearly reveals the main advantage of this approach to controller development which 

is its simplicity. As described, the development of the controllers is based on 

theoretical knowledge of the chemical process and on basic engineering principles. 

Information about the configuration of the pH neutralization pilot plant and some 

limited information from the developed pH process model provided additional 

insight relating to the dynamic behaviour of the system. 

 

This chapter has also provided information about the performance and capabilities of 

the fuzzy logic controllers used in this application which involves a highly nonlinear 

system. The fuzzy logic controllers have been tested for a number of different types 

of experiment with different control objectives. In addition the testing also provides 

evidence concerning practical issues relating to this new control approach involving 

a calculated set-point for a flow controller. The results from the experiment on the 

actual pH neutralization pilot plant are very encouraging which generally indicates 

that this control approach is workable and feasible. These experimental results also 

show that the fuzzy logic controller is able to provide a reliable and highly accurate 

control performance.  
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The computer-based simulation results support the conclusion that the fuzzy logic 

controller is robust and capable in handling different types of disturbance. The 

simulation results with PI controllers also showed very encouraging control 

performance in terms of handling the pH value, although some concerns exist in 

terms of the control valve activity observed in the simulation studies for this type of 

controller. The flexibility in control design for fuzzy logic controller has also been 

demonstrated in this chapter which provide an advantage of these controllers over PI 

controllers. Unlike the classical control approach (i.e. PI controllers) the ease of 

adding some additional inputs and formulation or modifications of membership 

functions can be made in order to handle exceptional control behaviour.  

 

Finally this chapter has shown that the modified pH model shows also similar 

behaviour to that obtained from the pilot plant.  Thus this developed model can be a 

platform for further investigation of other type of advanced controller. However 

some further investigation can be made to improve this process model especially on 

the reaction rate of the pH process.   
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7.0 CONCLUSIONS AND RECOMMENDATIONS 

 

The first section of this final chapter reviews the main features and contributions of 

this research. It provides a summary of the achievements relating to the first 

objective of the research concerning the development of the pH neutralization model 

and concludes with discussion of the results achieved in terms of the second 

objective of the research which is the implementation of the advanced controller. It 

highlights the main benefits of the feedback/feedforward control scheme using a 

fuzzy logic control approach as an advanced controller for the pH neutralization 

process and discusses implementation issues. The section also provides insight 

obtained from computer-based simulation results for the same control structure (i.e. 

feedback/feedforward) with a conventional Proportional plus Integral controller. 

Suggestions for further research which builds upon the developments made during 

the course of the current work are also made in the final section of this chapter. 

 

7.1 Research Project Conclusions 

 

At this point it is important to consider once again the objectives of this research, as 

outlined in Chapter 1. As described in the first chapter of this thesis, there were two 

primary objectives of this research. The first was to develop a dynamic nonlinear pH 

neutralization process model, based on physical and chemical principles, that can 

represent the specific pH neutralization pilot plant installed at UTP. The accuracy of 

this model should be sufficient to allow development of conventional and advanced 

control systems through simulation for subsequent implementation and testing on the 

plant itself.  

 

The second goal for this research was to design, develop and implement an 

intelligent or advanced controller, based possibly on a Fuzzy Logic Control 

approach, involving use of an appropriate controller structure. In addition to these 

two main objectives, it was also intended to investigate benefits and limitations of 

the chosen control algorithms and the type of process model developed during this 

investigation. 
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Generally, both the main objectives have been achieved. The developed model of the 

pH neutralization process is capable of providing dynamic responses that are 

sufficiently similar to those obtained from tests on the available pH neutralization 

pilot plant to allow the model to be used as a basis for design and development of 

control systems. This similarity has been demonstrated both through qualitative 

graphical comparisons of time histories and by means of quantitative measures such 

as Theil’s Inequality Measure. In terms of the second objective, the control 

performance obtained from the implementation of the intelligent controller based on 

fuzzy control principles was very encouraging. The next sub-sections provide more 

comprehensive discussion and conclusions for each of the objectives. 

  

7.1.1 The pH neutralization process model 

 

As explained above, the first primary objective of this research involved modelling a 

pH neutralization process for the pilot plant installed at UTP. The main feature of 

interest in this pilot plant is that it incorporates instrumentation and types of actuators 

that are currently being used in the process industries. It is believed that, from this 

point of view, the investigation has provided realistic solutions which may be of 

direct interest to industry.  

 

The approach adopted for the modelling process is based on the use of physical and 

chemical principles and fundamental laws, using a conventional mathematical 

modelling process, coupled with information obtained from preliminary tests carried 

out on the pilot plant itself in order to obtain estimates of certain parameters which 

were not known a priori. This physico-chemical modelling approach is a rigorous 

and generally applicable method of deriving dynamic equations for a pH 

neutralization process using a type of representation based on the concept of a 

continuous stirred tank reactor (CSTR) model. This was the modelling approach 

introduced by McAvoy in 1972 for this type of process application. 
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The pH neutralization process model that was first developed provided a form of 

dynamic response which was in agreement with most published results in the 

literature, especially in terms of the simple titration curve experiments. During the 

model analysis stage, the developed model provided useful insight associated with 

the theoretical understanding of factors such as the influence of concentration and 

flowrate on the pH neutralization process. In terms of the initial model verification 

and validation process, the computer-based simulation results also demonstrated 

behaviour that is broadly similar to the dynamic characteristics found from tests 

carried out on the actual pilot plant. However, some important differences were 

found between responses of the model and system for particular test conditions. 

Thus, it may be concluded that the first model is satisfactory, reliable and adequate 

for representation of the actual behaviour of the pH neutralization plant but has some 

important limitations. Although these results were encouraging and suggested that 

the developed model could be used to provide a model for the development of 

various types of intelligent controller, subsequent enhancement of the data 

acquisition system and the associated user interface made more complex experiments 

possible. These allowed an improved simulation model to be developed which led to 

the possibility of further improvements in the performance of control systems 

implemented on the pilot plant. 

 

Further investigation of the improved model at the formal model validation stage has 

also been performed successfully. Transients observed in computer-based simulation 

of the developed model were critically evaluated through comparison with 

experimental results. This more detailed investigation of the model was feasible 

using the new and improved system for distributed data collection and control system 

that was installed on the pilot plant mid-way through the current investigation. This 

new system offers much more flexibility in terms both of implementation of control 

schemes and dynamic testing of the system under open- loop conditions. It was 

observed that the model first developed showed some discrepancies when its 

responses were compared with the response from the pilot plant. Thus, based on 

these differences in behaviour and more detailed analysis of the model it was 

concluded that some assumptions made during development of the first model were 

unacceptable and needed to be revised.  
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In the re-evaluation of the pH model it has been established that two factors could be 

changed to ensure that the model provides dynamic responses more consistent with 

those observed on the plant itself. The first of these related to the values of the 

dissociation constants. Using the dynamic response from the pH neutralization pilot 

plant new dissociation constant values were determined from plant observations 

rather than from theory.  

 

The modified dynamic model of the pilot plant has been compared in detail with the 

results of experiments on the pilot plant.  Detailed investigations were carried out, 

during the model validation process, where the dynamic response from the pH model 

was tested and analysed in several ways. Based on graphical evaluation, the dynamic 

response from the improved model was very similar to the dynamic transient of the 

pilot plant. In terms of more detailed point by point evaluation within records and 

statistical analysis, it has been shown that the data from the computer-based 

simulation are very close to the experimental data. The final evaluation involved a 

comparison of experimental and model time series using Theil’s Inequality 

Coefficient (TIC). The outcome from the TIC analysis has successfully shown that 

there is a good agreement between the developed model and the actual transients in 

the measured responses from the actual plant.   

 

Therefore, in general terms, it may be concluded that the developed pH model with a 

new set of dissociation constant s has successfully demonstrated dynamic 

performance which is adequate for control system design purposes when compared 

with the actual pH neutralization pilot plant. Thus the development of the nonlinear 

dynamic model for the pH plant has been successfully achieved. The simulation 

results from the computer-based simulation demonstrate behaviour that is very 

similar to the actual pilot plant, taking into account the uncertainties in measured 

quantities and model parameters. 
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The second significant factor related to imperfect mixing. Although representation of 

imperfect mixing was not incorporated in the final version of the pH model, 

investigations indicate it is a key factor that needs to be explored further. It was 

observed that the volume of the reactor tank in the pH neutralization pilot plant is 

larger than the volume of reactor tank used in most previous reported studies. Thus 

the initial assumptions in which the acid-base reaction process in the reactor tank is 

taken to be instantaneous and the tank is assumed perfectly mixed at all times were 

judged to be inappropriate. It is believed with an additional representation and more 

experimental work involving rigorous external validation and evaluation of models, a 

new pH model can be developed which will be able to represent the behaviour of the 

pilot plant even more accurately. 

 

7.1.2 The implementation of the feedback/feedforward control scheme 

with the advanced controller 

 

The second main objective of this research concerns the implementation of advanced 

forms of controller with a feedback/feedforward control structure on the pH 

neutralization pilot plant. Based on the literature survey, a non-model based type of 

control strategy has been considered. The controller will not depend too significantly 

on the developed model, although insight gained from the modelling process 

undoubtedly provided useful insight in the development of the control schemes 

considered. Investigation and implementation of the feedback/feedforward control 

scheme in this research have shown the effectiveness of “correction of error” and 

“prediction of disturbances” control strategies. 

 

The advanced controller that has been considered and implemented on the pilot plant 

is based on the fuzzy logic control approach. This advanced control was incorporated 

within the feedback/feedforward control scheme.. Based on the implementation 

process of this control approach it can be concluded that the process of developing 

the fuzzy logic controller was less complicated than the process for many other forms 

of control algorithm.  
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However, prior to this implementation process it is essential to have a good 

understanding and working knowledge of the system to be controlled, including 

information about the capability of the instrumentation and actuators involved, as 

well as the affect of the main parameters of the system model. It is believed that this 

research has successfully demonstrated the viability of the feedback/feedforward 

control structure. In addition to that the fuzzy logic approach has also shown the 

practicality of its implementation as an advanced control system on this highly 

nonlinear type of process. Thus this study provided useful insight concerning the use 

of a fuzzy logic approach to control the nonlinear and time varying processes in 

general.  

 

A wide range of tests and experiments have been performed successfully on the pilot 

plant in order to provide insight regarding issues such as control performance, 

stability and robustness of the feedback/feedforward control structure with the 

chosen fuzzy logic controller. Generally all the control performance objectives have 

been achieved successfully. The experimental results were very encouraging and the 

controlled dynamic responses of the plant with the fuzzy logic controller were judged 

satisfactory in terms of the initial requirements. In general the controllers were able 

to handle various types of disturbances. Thus it has been shown that the intelligent 

controller based on fuzzy logic control principles is capable of providing a good 

control performance. Through this study, it is also believed that these promising and 

encouraging results should encourage engineers to give more consideration to the use 

of this control approach within the process industries. However further experimental 

investigations relating to the use of conventional control algorithms with the same 

control structure were not possible because of time limitations in terms of access to 

the pilot plant.  

 

The investigations on the performance of the feedback/feedfoward control structure 

also involved computer-based simulation work. An extensive computer-based 

simulation study was carried out using advanced controllers (i.e. fuzzy logic) and 

conventional controllers (i.e. PI controllers). Generally, the computer-based 

simulation results based on the fuzzy logic controllers and PI controllers showed 

results and control performances similar to those demonstrated in the experimental 
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results. However, the performance in terms of the control valve activity suggested 

that the advanced control system structure based on combined feedforward and 

feedback principles with fuzzy logic controllers was capable of giving an overall 

control performance which was generally better than that for the same controller 

structure with a conventional PI control algorithm. The simulation work supported 

the fact that the fuzzy logic approach was able to provide more flexibility in handling 

a specific control problem and also offers fewer complications in terms of control 

system design and development. In conc lusion, the fuzzy logic control approach with 

combined feedforward and feedback controller structure has been shown to be 

capable of providing good control performance in terms of set-point tracking, 

disturbance rejection, stability and robustness. 

 

7.2 Summary of the Main Contributions 

 

One of the main contributions of the research reported in this thesis is the 

development of a form of process model that can be applied to real plant involving 

industrial actuators and industrial measuring devices and instrumentation. This 

model has a generic form and has been implemented using widely used simulation 

tools. This makes the simulation model modifiable for other plant. External 

validation tests carried out using the pilot plant at UTP have provided useful 

evidence about the strengths and weaknesses of the model and have demonstrated its 

suitability as a nonlinear dynamic model for use in the design of conventional and 

advanced forms of a controller.  

 

The development, implementation and testing of the feedback/feedforward control 

scheme with fuzzy logic control principles on the actual pH neutralization process 

pilot plant represents the second important contribution. It is believed that there are 

few previous published examples involving pilot plant implementation. Most 

previously published work on advanced forms of control applied to pH neutralization 

processes have either involved simulated processes or relatively small laboratory 

bench-top rigs that do not involve industrial actuators or instrumentation systems.  
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It has been demonstrated, from tests on the pilot plant and through simulation 

studies, that the fuzzy controller has performance advantages in terms of tracking, 

disturbance rejection and robustness compared with a conventional proportional plus 

integral controller with the same control structure. 

 

7.3 Recommendations for Future Research 

 

As part of the key contribution of the research, the outcome from the research study 

has also suggested and established some areas of work for other researchers to 

consider. Thus this section presents some suggestions and recommendations for 

future research.  

 

This research study has shown that there is a need to improve the widely used pH 

neutralization process model so that it will provide dynamic behaviour similar to that 

found in the existing types of pH process plant used in industry. The current 

investigation suggests that adapting the pH neutralization process model to fit the 

practicalities of a specific plant is not a trivial undertaking, especially when factors 

such as imperfect mixing are significant. 

 

 A rigorous study on how to incorporate the more practical elements of the pH 

neutralization process plant within an improved form of modular and generic 

simulation model is necessary. In the initial investigation it might be useful to 

reconsider the assumptions made by previous researchers. Thus it is hoped that the 

results of such an investigation may provide a good platform for a further off- line 

computer-based simulation study to investigate open- loop and closed- loop dynamic 

characteristic of specific examples of pH neutralization process plant.  

 

It is also believed that a more accurate pH process model is needed in designing 

other types of advanced control approach which utilise a process model to provide an 

accurate and reliable prediction. It is also hoped that developments of this type can 

help bridge the well known “gap” between theory and industrial practice.  
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As mentioned from the beginning of the thesis, this project involves an acid-base 

reaction process between Sulphuric acid and Sodium Hydroxide. Thus, an 

investigation on how different types of acid and alkaline would react and behave 

with this control approach has to be a further recommendation for future work. 

Another recommendation would be the use of a buffer solution in the neutralization 

process. This would also be another interesting investigation especially from the 

chemical engineering point of view.  

 

An additional recommendation would be an investigation of the implementation 

issues of additional types of advanced controller on this particular pH neutralization 

pilot plant. This is basically to fully utilise the advantages of the pH neutralization 

pilot plant configuration. As an example, further investigations of other methods 

based on the Tagaki-Sugeno approach would also be useful.  

 

It would be interesting to find out the differences in terms of control performance, 

stability, robustness possible with this approach, as well as the implementation issues 

that arise. Also, based on the literature survey (Postlethwaite 1994;Sing 1997;Sing & 

Postlethwaite 1996) the use of a fuzzy logic approach to develop a pH neutralization 

process representation as a model predictor for a model based predictive control 

approach has been successfully implemented on a small laboratory scale. This 

provides an interesting area for further modelling, design and experimentation using 

the pilot plant at UTP to investigate the control performance possible with this type 

of on-line modelling and control approach. This would again, hopefully, provide 

information of potential value to industry.  
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Appendix I: Recalibration Results 
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Appendix II: Technical specification of the pH meter 
 
• Controller 
 

Model : alpha-pH1000 1/4 DIN pH/ORP Controller 
 

 

 
 

Product Features 

:: Built-In Programmable Limit, Proportional (Pulse Length or Pulse Frequency) - ideal for precision 
process control applications 

:: User-Customization through Advanced Setup Menu offers flexibility in matching the controller's 
functions to suit individual's specific requirement  

:: Automatic Calibration with Auto-Buffer Recognition e liminates mistakes during calibration  
:: Symmetrical Mode Operation eliminates electronic noise problems when used with solution ground  
:: One-Point Online Calibration without shutting down the line  
:: Hold Relay for use with float switches/flow switches and other controllers as a failsafe function  
:: Two Level Password Protection prevents un authorized tampering with settings 
:: 0 to 2000 Second Time Delay Adjustment on control and alarm delays  
:: Two Galvanically Isolated Scaleable 0-20/4-20 mA  Outputs for pH/ORP  
:: Wash Contact Relay controls electrodes cleaning systems at desired duration and frequency 
:: Choice of Glass or Antimony Electrode for general purpose or hydrofluoric acid applications  
:: Adjustable Hysteresis (Dead Band) prevents rapid contact switching near set point  
:: Non-Volatile Memory retains all stored parameters and calibration data even if power fails  
:: Large Dual Display shows pH (or ORP) with temperature simultaneously - features clear multiple 

icons, set points,  and status messages  
:: Choice of Temperature Sensor Pt100/Pt1000 with 2-wire or 3-wire temperature input selection  
:: Easy Installation and Wiring with detachable plug-in connectors  

Applications 

General: Useful for any batch or on-line type application that requires accurate pH or ORP control.  

Water Purification/Treatment: Use for batch and on-line control of incoming process water, rinse water 
treatment, recirculating system and waste water treatment. 

Industrial: Ideal for chemical processing, food processing. aquarium, pharmaceutical, hydroponics and 
waste control industries.  

Regulatory: Hook to recorder to document data for regulatory compliance. 
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• pH Process Electrode 
 

Model: EC100GTSO-05B 
 

 

Specifications  

Product Specification Description 

pH Range 0 to 14 

Reference Annular Teflon, double junction 

Reference electrolyte Saturated KCl, polymerized gel 

Operating temperature 0 to 80 °C  

Pressure tolerance 6 bars 

Temperature sensor Pt 100 

Potential matching pin Platinum 

Material PPS (Ryton) 

Thread 3/4” NPT 

Cable Integral 5m low-noise semi-conductor screened 

Connector BNC 

Dimensions: Length 
(excludes cable) 

151 mm 

Diameter (external) 26 mm 

Weight 650 g 
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Appendix III: Technical specification of the conductivity meter 
 
 
• Controller 
 

Model : alpha-CON1000 1/4 DIN Conductivity Controller 
 

 

 
 

Product Features 

:: Ten Selectable Conductivity Measurement Ranges in one controller via its IP54 front panel. High-
level accuracy of ±1% of full scale can be obtained with appropriate cells and correct temperature 
coefficient  

:: User-Customization through Advanced Setup Menu offers flexibility in matching the controller's 
functions to suit individual's specific requirement  

:: Choice of Cell Constant (0.01, 0.1, 1.0, 10.0) for accurate control in any solution  
:: Hold Relay for use with float switches/flow switches and other controllers as a failsafe function  
:: Two Level Password Protection prevents un authorized tampering with settings  
:: 0 to 2000 Second Time Delay Adjustment on control and alarm delays  
:: Two Galvanically Isolated Scalebale 0-20/4-20 mA Outputs  
:: Wash Contact Relay controls electrodes cleaning systems at desired duration and frequency  
:: Adjustable Hysteresis (Dead Band) prevents rapid contact switching near set point  
:: Non-Volatile Memory retains all stored parameters and calibration data even if power fails  
:: Line Resistance Compensation against intrinsic cable resistance for longer cable connection  
:: Large Dual Display shows measurement with temperature simultaneously - features clear multiple 

icons, set points, and status messages 
:: Choice of Temperature Sensor Pt100/Pt1000 with 2-wire or 3-wire temperature input selection 
:: Easy Installation and Wiring with detachable plug-in connectors  

Applications 

General: Use for virtually any batch or online applications where rapid, accurate control. Great for 
OEM/system integrator. 

Industrial: Use in applications involving agriculture, chemical processing, boiler and water heaters, wafer-
fab, microprocessor manufacturing, pharmaceuticals, pulp and paper industries, and bleach manufacturing. 

Water Purification/Treatment: Use to treat batches of incoming process water, ultrapure water, boiler 
and feed water control.  

Regulatory: Hook to recorder to document data for regulatory compliance. 
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• Conductivity Process Electrode 
 

Model : EC91346S 
 

 
Specifications 

Product Specification Description 

Conductivity range Up to 500 mS/cm 

Cell constant, k  0.3, 4-Cell 

Temperature sensor Pt 100, 3-wire 

Pressure rating 6 bar 

Material Ryton, SS 316 

Thread 3/4” NPT 

Cable Integrated 7.6m, 8-wire double-shielded, open 

Dimensions: Length 
(excludes cable) 

150.5 mm 

Diameter (external) 22.2 mm 

Weight 650 g 
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Appendix IV: List of I/O of the system and pin assignment for the I/O 
cards 
 

Digital Input Card MM32-Diamond Digital Input 
Card No-

Pin 
Assignment 

Name Description 

Card A-1 LS100 Limit switch for overflow indication – Reactor Tank 

Card A-2 LS110 Limit switch for overflow indication – Discharged 
Tank 

Card B-3 Unused 
Card A-4 P100-Run Indication for pump status for acid stream –RUN  
Card A-5 P100-Trip Indication for pump status for acid stream –STOP 
Card A-6 P110-Run Indication for pump status for alkaline stream –RUN 
Card A-7 P110-Trip Indication for pump status for alkaline stream –STOP 
Card A-8 AG120 Indication for agitator at reactor tank –RUN 
Card B-1 AG120 Indication for agitator at reactor tank –RUN 
Card B-2 Unused 
Card B-3 Unused 
Card B-4 Unused 
Card B-5 Unused 

Card B-6 DCS/XPC 
Indication for selector switch for DCS – Plantscape 
Honeywell System or New Data Acquisition system 
(MATLAB) 

Card B-7 Unused 
Card B-8 Unused 

 
Digital Output Card MM32-Diamond Digital Output 
Pin 

Assignment 
Name Description 

1 P110 Pump activation for acid stream 
2 P100 Pump activation - alkaline stream 

3 AG120 Agitator activation – Reactor Tank 

4 AG130 Agitator activation – Cascaded Tank 

5 AG140 Agitator activation – Discharged Tank 

6 Unused 
7 Unused 
8 Unused 
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Analogue Input Card MM32-Diamond Analogue Input 
Card No-

Pin 
Assignment 

Name Description 

1 CT100 Measured value from conductivity meter – Acid Tank 
2 FT120 Measured value from flowmeter – Acid stream 

3 CT110 Measured value for conductivity meter – Alkaline 
Tank 

4 FT121 Measured value from flowmeter – Alkaline stream 

5 Unused 
6 Unused 
7 AT122 Measured value from pH meter – Reactor Tank 

8 AT130 Measured value from pH meter – Cascaded Tank 

9 1T140 Measured value from pH meter – Dischanged Tank 

10 Unused 
11 Unused 
12 Unused 
13 Unused 
14 Unused 
15 Unused 
16 Unused 

 
Analogue Output Card MM32-Diamond AnalogueOutput 

Pin 
Assignment Name Description 

1 FCV120 Control valve for acid stream 
2 FCV121 Control valve for alkaline stream 

3 ACV130 Control valve for product  

4 Unused 
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Appendix V: Layout of user interface for experimental work 
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