
Fingerprint Image Enhancement: Algorithm andPerformance EvaluationLin Hong, Yifei Wan, and Anil JainPattern Recognition and Image Processing LaboratoryDepartment of Computer ScienceMichigan State UniversityEast Lansing, MI 48824fhonglin,wanyifei,jaing@cps.msu.eduAbstractA critical step in automatic �ngerprint matching is to automatically and reliably extractminutiae from the input �ngerprint images. However, the performance of a minutiae ex-traction algorithm relies heavily on the quality of the input �ngerprint images. In order toensure that the performance of an automatic �ngerprint identi�cation/veri�cation systemwill be robust with respect to the quality of input �ngerprint images, it is essential to incor-porate a �ngerprint enhancement algorithm in the minutiae extraction module. We presenta fast �ngerprint enhancement algorithm, which can adaptively improve the clarity of ridgeand furrow structures of input �ngerprint images based on the estimated local ridge orienta-tion and frequency. We have evaluated the performance of the image enhancement algorithmusing the goodness index of the extracted minutiae and the accuracy of an online �ngerprintveri�cation system. Experimental results show that incorporating the enhancement algorithmimproves both the goodness index and the veri�cation accuracy.
1 IntroductionFingerprint identi�cation is one of the most important biometric technologies which hasdrawn a substantial amount of attention recently [12, 14]. A �ngerprint is the pattern ofridges and furrows on the surface of a �ngertip. Each individual has unique �ngerprints.The uniqueness of a �ngerprint is exclusively determined by the local ridge characteristics1
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(b)Figure 1: Examples of minutiae; (a) a minutiae can be characterized by its position and itsorientation, (b) minutiae overlaid on a �ngerprint image.and their relationships [12, 13]. A total of one hundred and �fty di�erent local ridge char-acteristics, called minute details, have been identi�ed [13]. These local ridge characteristicsare not evenly distributed. Most of them depend heavily on the impression conditions andquality of �ngerprints and are rarely observed in �ngerprints. The two most prominent ridgecharacteristics, called minutiae, are (i) ridge ending and (ii) ridge bifurcation. A ridge end-ing is de�ned as the point where a ridge ends abruptly. A ridge bifurcation is de�ned as thepoint where a ridge forks or diverges into branch ridges. A good quality �ngerprint typicallycontains about 40{100 minutiae. Examples of minutiae are shown in Figure 1.Automatic �ngerprint matching depends on the comparison of these local ridge char-acteristics and their relationships to make a personal identi�cation [12]. A critical step in�ngerprint matching is to automatically and reliably extract minutiae from the input �nger-print images, which is a di�cult task. The performance of a minutiae extraction algorithmrelies heavily on the quality of the input �ngerprint images. In an ideal �ngerprint image,ridges and furrows alternate and 
ow in a locally constant direction and minutiae are anoma-2



Figure 2: Fingerprint images of very poor quality.lies of ridges, i:e: ridge endings and ridge bifurcations. In such situations, the ridges can beeasily detected and minutiae can be precisely located from the binary ridges. Figure 1(b)shows an example of good quality live-scan �ngerprint image. However, in practice, dueto variations in impression conditions, ridge con�guration, skin conditions (aberrant forma-tions of epidermal ridges of �ngerprints, postnatal marks, occupational marks), acquisitiondevices, and non-cooperative attitude of subjects, etc: a signi�cant percentage of acquired�ngerprint images (approximately 10% according to our experience) is of poor quality. Theridge structures in poor-quality �ngerprint images are not always well-de�ned and hence theycan not be correctly detected. This leads to following problems: (i) a signi�cant number ofspurious minutiae may be created, (ii) a large percent of genuine minutiae may be ignored,and (iii) large errors in their localization (position and orientation) may be introduced. Ex-amples of �ngerprint images of very poor quality, in which ridge structures are completelycorrupted, are shown in Figure 2. In order to ensure that the performance of the minutiae3



(a) (b) (c)Figure 3: Fingerprint regions; (a) well-de�ned region; (b) recoverable corrupted region; (c)unrecoverable corrupted region.extraction algorithm will be robust with respect to the quality of input digital �ngerprintimages, an enhancement algorithm which can improve the clarity of the ridge structures isnecessary.A �ngerprint expert is often able to correctly identify the minutiae by using variousvisual clues such as local ridge orientation, ridge continuity, ridge tendency, etc:, as longas the ridge and furrow structures are not corrupted completely. It is possible to developan enhancement algorithm that exploits these visual clues to improve the clarity of ridgestructures in corrupted �ngerprint images. Generally, for a given digital �ngerprint image,the region of interest can be divided into the following three categories (Figure 3):� Well-de�ned region, where ridges and furrows are clearly di�erentiated from one an-other such that a minutiae extraction algorithm is able to operate reasonably.� Recoverable corrupted region, where ridges and furrows are corrupted by a small amountof creases, smudges, etc. But, they are still visible and the neighboring regions providesu�cient information about the true ridge and furrow structures.4



� Unrecoverable corrupted region, where ridges and furrows are corrupted by such asevere amount of noise and distortion that no ridges and furrows are visible and theneighboring regions do not provide su�cient information about the true ridge andfurrow structures either.We refer to the �rst two categories of regions as recoverable and the last category as unrecov-erable. The goal of an enhancement algorithm is to improve the clarity of ridge structures of�ngerprint images in recoverable regions and to remove the unrecoverable regions. Since theobjective of a �ngerprint enhancement algorithm is to improve the clarity of ridge structuresof input �ngerprint images to facilitate the extraction of ridges and minutiae, a �ngerprintenhancement algorithm should not result in any spurious ridge structures. This is very im-portant because spurious ridge structure may change the individuality of input �ngerprints.Fingerprint enhancement can be conducted on either (i) binary ridge images or (ii) gray-level images. A binary ridge image is an image where all the ridge pixels are assigned a value1 and non-ridge pixels are assigned a value 0. The binary image can be obtained by applyinga ridge extraction algorithm on a gray-level �ngerprint image [6]. Since ridges and furrowsin a �ngerprint image alternate and run parallel to each other in a local neighborhood, anumber of simple heuristics can be used to di�erentiate the spurious ridge con�gurationsfrom the true ridge con�gurations in a binary ridge image [5]. However, after applyinga ridge extraction algorithm on the original gray-level images, information about the trueridge structures is often lost depending on the performance of the ridge extraction algorithm.Therefore, enhancement of binary ridge images has its inherent limitations.In a gray-level �ngerprint image, ridges and furrows in a local neighborhood form a5



sinusoidal-shaped plane wave which has a well-de�ned frequency and orientation. A numberof techniques that take advantage of this information have been proposed to enhance gray-level �ngerprint images [2, 15, 8, 18, 19]. However, they usually assume that the local ridgeorientations can be reliably estimated. In practice, this assumption is not valid for �ngerprintimages of poor quality, which greatly restricts the applicability of these techniques. Hongetal: [4] proposed a decomposition method to estimate the orientation �eld from a set of�ltered images obtained by applying a bank of Gabor �lters on the input �ngerprint images.Although this algorithm can obtain a reliable orientation estimate even for corrupted images,it is computationally expensive which makes it unsuitable for an on-line veri�cation system.We will present a fast enhancement algorithm which is able to adaptively enhance the ridgeand furrow structures using both the local ridge orientation and local frequency information.Instead of using a computational expensive method to precisely estimate the local ridgeorientation, a simple but e�cient method is used. In addition, since this algorithm is designedto be integrated in an online system, a computationally e�cient �ltering technique is used.In the following sections we will describe in detail our fast �ngerprint enhancement al-gorithm. Section 2 addresses the main steps of our algorithm. A goal-directed performanceevaluation of the implemented �ngerprint enhancement algorithm on �ngerprint databasesis described in section 3. Section 4 contains the summary and discussion.
2 Fingerprint EnhancementA �ngerprint image enhancement algorithm receives an input �ngerprint image, applies a setof intermediate steps on the input image, and �nally outputs the enhanced image. In order6



to introduce our �ngerprint image enhancement algorithm, a list of notations and some basicde�nitions are given below.2.1 NotationA gray-level �ngerprint image, I, is de�ned as a N �N matrix, where I(i; j) represents theintensity of the pixel at the ith row and jth column. We assume that all the images arescanned at a resolution of 500 dots per inch (dpi), which is the resolution recommended byFBI. The mean and variance of a gray-level �ngerprint image, I, are de�ned asM(I) = 1N2 N�1Xi=0 N�1Xj=0 I(i; j) and (1)V AR(I) = 1N2 N�1Xi=0 N�1Xj=0 (I(i; j)�M(I))2; (2)respectively.An orientation image, O, is de�ne as a N �N image, where O(i; j) represents the localridge orientation at pixel (i; j). Local ridge orientation is usually speci�ed for a block ratherthan at every pixel; an image is divided into a set of w � w non-overlapping blocks and asingle local ridge orientation is de�ned for each block. Note that in a �ngerprint image, thereis no di�erence between a local ridge orientation of 90o and 270o, since the ridges orientedat 90o and the ridges oriented at 270o in a local neighborhood can not be di�erentiated fromeach other.A frequency image, F , is aN�N image, where F(i; j) represents the local ridge frequency,which is de�ned as the frequency of the ridge and furrow structures in a local neighborhood7
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Figure 4: A 
owchart of the proposed �ngerprint enhancement algorithm.along a direction normal to the local ridge orientation. The ridge and furrow structures in alocal neighborhood where minutiae or singular points [9] appear do not form a well-de�nedsinusoidal-shaped wave. In such situations, the frequency is de�ned as the average frequencyof its neighbors. Like orientation image, frequency image is speci�ed block-wise.The region mask, R, is de�ned as a N � N image with R(i; j) indicating the categoryof the pixel. A pixel could be either (i) a non-ridge-and-furrow (unrecoverable) pixel (withvalue 0) or (ii) a ridge-and-furrow (recoverable) pixel (with value 1). Region mask is alsospeci�ed block-wise.2.2 AlgorithmThe 
owchart of the �ngerprint enhancement algorithm is shown in Figure 4. The mainsteps of the algorithm include:1. Normalization: an input �ngerprint image is normalized so that it has a pre-speci�edmean and variance. 8



2. Local orientation estimation: the orientation image is estimated from the normalizedinput �ngerprint image.3. Local frequency estimation: the frequency image is computed from the normalizedinput �ngerprint image and the estimated orientation image.4. Region mask estimation: the region mask is obtained by classifying each block in thenormalized input �ngerprint image into a recoverable or a unrecoverable block.5. Filtering: A bank of Gabor �lters which is tuned to local ridge orientation and ridgefrequency is applied to the ridge-and-furrow pixels in the normalized input �ngerprintimage to obtain an enhanced �ngerprint image.2.3 NormalizationLet I(i; j) denote the gray-level value at pixel (i; j), M and V AR denote the estimated meanand variance of I, respectively, and G(i; j) denote the normalized gray-level value at pixel(i; j). The normalized image is de�ned as follows:G(i; j) = 8>>><>>>: M0 +qV AR0(I(i;j)�M)2V AR ; if I(i; j) > MM0 �qV AR0(I(i;j)�M)2V AR ; otherwise; (3)(4)where M0 and V AR0 are the desired mean and variance values, respectively. Normalizationis a pixel-wise operation. It does not change the clarity of the ridge and furrow structures.The main purpose of normalization is to reduce the variations in gray level values along9



(a) (b)Figure 5: The result of normalization; (a) input image; (b) normalized image (M0 =100; V AR0 = 100).ridges and furrows, which facilitates the subsequent processing steps. Figure 5 shows anexample of image normalization.2.4 Orientation ImageThe orientation image represents an intrinsic property of the �ngerprint images and de�nesinvariant coordinates for ridges and furrows in a local neighborhood. By viewing a �ngerprintimage as an oriented texture, a number of methods have been proposed to estimate theorientation �eld of �ngerprint images [11, 16, 10, 1]. We have developed a least meansquare orientation estimation algorithm. Given a normalized image, G, the main steps ofthe algorithm are as follows:1. Divide G into blocks of size w � w (16� 16).2. Compute the gradients @x(i; j) and @y(i; j) at each pixel, (i; j). Depending on the10



computational requirement, the gradient operator may vary from the simple Sobeloperator to the more complex Marr-Hildreth operator.3. Estimate the local orientation of each block centered at pixel (i; j) using the followingequations: Vx(i; j) = i+w2Xu=i�w2 j+w2Xv=j�w2 2@x(u; v)@y(u; v); (5)Vy(i; j) = i+w2Xu=i�w2 j+w2Xv=j�w2 (@2x(u; v)� @2y(u; v)); (6)�(i; j) = 12tan�1(Vy(i; j)Vx(i; j)); (7)where �(i; j) is the least square estimate of the local ridge orientation at the blockcentered at pixel (i; j). Mathematically, it represents the direction that is orthogonalto the dominant direction of the Fourier spectrum of the w � w window.4. Due to the presence of noise, corrupted ridge and furrow structures, minutiae, etc: inthe input image, the estimated local ridge orientation, �(i; j), may not always be acorrect estimate. Since local ridge orientation varies slowly in a local neighborhoodwhere no singular points appear, a low-pass �lter can be used to modify the incorrectlocal ridge orientation. In order to perform the low-pass �ltering, the orientation imageneeds to be converted into a continuous vector �eld, which is de�ned as follows:�x(i; j) = cos(2�(i; j)); and (8)�y(i; j) = sin(2�(i; j)); (9)11



where �x and �y, are the x and y components of the vector �eld, respectively. Withthe resulting vector �eld, the low-pass �ltering can then be performed as follows:�0x(i; j) = w�=2Xu=�w�=2 w�=2Xv=�w�=2W (u; v)�x(i� uw; j � vw) and (10)�0y(i; j) = w�=2Xu=�w�=2 w�=2Xv=�w�=2W (u; v)�y(i� uw; j � vw); (11)where W is a 2-dimensional low-pass �lter with unit integral and w��w� speci�es thesize of the �lter. Note that the smoothing operation is performed at the block level.The default size of the �lter is 5� 5.5. Compute the local ridge orientation at (i; j) usingO(i; j) = 12 tan(�0y(i; j)�0x(i; j)): (12)With this algorithm, a fairly smooth orientation �eld estimate can be obtained. Figure 6shows an example of the orientation image estimated with our algorithm.2.5 Ridge Frequency ImageIn a local neighborhood where no minutiae and singular points appear, the gray levels alongridges and furrows can be modeled as a sinusoidal-shaped wave along a direction normal tothe local ridge orientation (see Figure 7). Therefore, local ridge frequency is another intrinsicproperty of a �ngerprint image. Let G be the normalized image and O be the orientationimage, then the steps involved in local ridge frequency estimation are as follows:12



(a) (b)Figure 6: Comparison of orientation �elds by the method proposed in [16] and our method;w = 16 and w� = 5.
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1. Divide G into blocks of size w � w (16� 16).2. For each block centered at pixel (i; j), compute an oriented window of size l�w (32�16)that is de�ned in the ridge coordinates system (Figure 7).3. For each block centered at pixel (i; j), compute the x-signature, X[0]; X[1]; :::X[l� 1],of the ridges and furrows within the oriented window, whereX[k] = 1w w�1Xd=0 G(u; v); k = 0; 1; :::; l � 1; (13)u = i+ (d� w2 ) cosO(i; j) + (k � l2) sinO(i; j); (14)v = j + (d� w2 ) sinO(i; j) + ( l2 � k) cosO(i; j): (15)If no minutiae and singular points appear in the oriented window, the x-signatureforms a discrete sinusoidal-shape wave, which has the same frequency as that of theridges and furrows in the oriented window. Therefore, the frequency of ridges andfurrows can be estimated from the x-signature. Let T (i; j) be the average number ofpixels between two consecutive peaks in the x-signature, then the frequency, 
(i; j),is computed as: 
(i; j) = 1=T (i; j). If no consecutive peaks can be detected from thex-signature, then the frequency is assigned a value of -1 to di�erentiate it from thevalid frequency values.4. For a �ngerprint image scanned at a �xed resolution, the value of the frequency ofthe ridges and furrows in a local neighborhood lies in a certain range. For a 500 dpiimage, this range is [1=3; 1=25]. Therefore, if the estimated value of the frequency isout of this range, then the frequency is assigned a value of -1 to indicate that an valid14



frequency can not be obtained.5. The blocks in which minutiae and/or singular points appear and/or ridges and furrowsare corrupted do not form a well-de�ned sinusoidal-shaped wave. The frequency valuesfor these blocks need to be interpolated from the frequency of the neighboring blockswhich have a well-de�ned frequency. The interpolation is performed as follows:(i) For each block centered at (i; j),

0(i; j) = 8>>>><>>>>: 
(i; j); if 
(i; j) 6= �1Pw
=2u=�w
=2Pw
=2v=�w
=2Wg(u;v)�(
(i�uw;j�vw))Pw
=2u=�w
=2Pw
=2v=�w
=2Wg(u;v)�(
(i�uw;j�vw)+1) otherwise; (16)

where �(x) = 8>>><>>>: 0; if x � 0x; otherwise;�(x) = 8>>><>>>: 0; if x � 01; otherwise;Wg is a discrete Gaussian kernel where mean and variance is 0 and 9, respectively,and w
 = 7 is the size of the kernel.(ii) If there exists at least one block with the frequency value of -1, then swap 
 and
0 and go to step (i).6. Inter-ridges distances change slowly in a local neighborhood. A low-pass �lter can be
15



used to remove the outliers in f 0:F (i; j) = wl=2Xu=�w
=2 wl=2Xv=�w
=2Wl(u; v)
0(i� uw; j � vw); (17)where Wl is a 2-dimensional low-pass �lter with unit integral and wl = 7 is the size ofthe �lter.2.6 Region MaskAs mentioned early, a pixel (or a block) in an input �ngerprint image could be either ina recoverable region or an unrecoverable region. Classi�cation of pixels into recoverableand unrecoverable categories can be performed based on the assessment of the shape of thewave formed by the local ridges and furrows. In our algorithm, three features are used tocharacterize the sinusoidal-shaped wave: amplitude (�), frequency (�), and variance (
).Let X[1]; X[2]; :::; X[l] be the x-signature of a block centered at (i; j). The three featurescorresponding to pixel (block) (i; j) are computed as follows:1. � = (average height of the peaks - average depth of the valleys).2. � = 1=T (i; j), where T (i; j) is the average number of pixels between two consecutivepeaks.3. 
 = 1l Pli=1(X[i]� (1l Pli=1X[i]))2.We selected several typical �ngerprint images with both labeled recoverable and unrecov-erable regions and computed these three features. A total of 2,000 3-dimensional patternswere obtained. In order to �nd representative patterns for the two classes, we fed the 2,00016



patterns to a squared-error clustering algorithm and identi�ed six clusters. Four of theseclusters correspond to recoverable regions and the remaining two correspond to unrecoverableregions. The six prototypes (corresponding to cluster centers) were used in an one-nearestneighbor (1NN) classi�er to classify each w � w block in an input �ngerprint image intoa recoverable or an unrecoverable block. If a block centered at (i; j) is recoverable, thenR(i; j) = 1, else R(i; j) = 0. After the image R is obtained, the percentage of recoverableregions is computed. If the percentage of recoverable regions is smaller than a threshold,�recoverable = 40, then the input �ngerprint image is rejected. An accepted image is thenpassed through the �ltering stage.2.7 FilteringThe con�gurations of parallel ridges and furrows with well-de�ned frequency and orienta-tion in a �ngerprint image provide useful information which helps in removing undesirednoise. The sinusoidal-shaped waves of ridges and furrows vary slowly in a local constantorientation. Therefore, a bandpass �lter that is tuned to the corresponding frequency andorientation can e�ciently remove the undesired noise and preserve the true ridge and furrowstructures. Gabor �lters have both frequency-selective and orientation-selective propertiesand have optimal joint resolution in both spatial and frequency domains [3, 7]. Therefore, itis appropriate to use Gabor �lters as bandpass �lters to remove the noise and preserve trueridge/valley structures.
17
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(b)Figure 8: An even-symmetric Gabor �lter: (a) the Gabor �lter with F being 1/10 and 0oorientation; (b) the corresponding MTF.The even-symmetric Gabor �lter has the general form [7]h(x; y : �; f) = exp(�12 "(x cos�)2�2x + (y sin�)2�2y #) cos(2�fx cos�); (18)where � is the orientation of the Gabor �lter, f is the frequency of a sinusoidal planewave, and �x and �y are the space constants of the Gaussian envelope along x and y axes,respectively. The modulation transfer function (MTF) of the Gabor �lter can be representedas H(u; v : �; f) = 2��x�yexp n�12 h [(u�2�=f) sin�]2�2u + (v cos�)2�2v io+2��x�yexp n�12 h [(u�2�=f) sin�]2�2u + (v cos�)2�2v io (19)where �u = 1=2��x and �v = 1=2��y. Figure 8 shows an even-symmetric Gabor �lter and itsMTF.To apply Gabor �lters to an image, three parameters must be speci�ed: (i) the frequency18



of the sinusoidal plane wave, u0, (ii) the �lter orientation, and (iii) the standard deviationsof the Gaussian envelope, �x and �y. Obviously, the frequency characteristic of the �lter,f , is completely determined by the local ridge frequency and the orientation is determinedby the local ridge orientation. The selection of the values of �x and �y involves a trade-o�.The larger the values, the more robust to noise the �lters are but the more likely the �lterswill create spurious ridges and furrows. On the other hand, the smaller the values, the lesslikely the �lters will create spurious ridges and furrows but then they will be less e�ective inremoving the noise. The values of �x and �y were set to 4.0 and 4.0, respectively based onempirical data. Let G be the normalized �ngerprint images, O be the orientation image, Fbe the frequency image, and R be the recoverable mask, the enhanced image E is obtainedas follows:E(i; j) = 8>>><>>>: 255; if R(i; j) = 0;Pwg=2u=�wg=2Pwg=2v=�wg=2 h(u; v : O(i; j);F(i; j))G(i� u; j � v); otherwise; (20)where wg = 11 speci�es the size of the Gabor �lters.
3 Experimental ResultsThe purpose of a �ngerprint enhancement algorithm is to improve the clarity of ridgesand furrows of input �ngerprint images and make them more suitable for the minutiaeextraction algorithm. The ultimate criterion for evaluating such an enhancement algorithmis the total amount of \quality" improvement when the algorithm is applied to the noisyinput �ngerprint images. Such an improvement can be assessed subjectively by a visual19



inspection of a number of typical enhancement results. However, a precise and consistentcharacterization of the quality improvement is beyond the capability of subjective evaluation.Examples of the enhancement results are shown in Figure 9. From these examples, we can seethat our enhancement algorithm does improve the clarity of the ridge and furrow structuresof input �ngerprint images.A goal-directed performance evaluation assesses the overall improvement in the systemperformance that incorporates the enhancement module as a component. Therefore, it iscapable of providing a more reliable assessment of the performance benchmark and is directlyassociated with the ultimate goal of the system [20]. In the following, we present the resultsof the goal-directed performance evaluation of our enhancement algorithm.3.1 Evaluation Using Goodness IndexWe have used the goodness index (GI) of the extracted minutiae to quantitatively assess theperformance of our �ngerprint enhancement algorithm. Let Md = (f 1d ; f 2d ; :::; fnd ) be the setof n minutiae detected by the minutiae extraction algorithm and Me = (f 1e ; f 2e ; :::; fme ) bethe set of m minutiae identi�ed by human expert in an input �ngerprint image. We de�nethe following terms:� Paired minutiae (p): Minutiae fd and fe are said to be paired if fd is located in atolerance box centered around fe. In this evaluation, the tolerance box size is 8� 8.� Missing minutiae (a): A minutiae that is not detected by the minutiae extractionalgorithm. 20



(a) (b)

(c) (d)
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(e) (f)

(g) (h)Figure 9: Examples of enhancement results; (a), (c), (e), and (g) are the input images; (b),(d), (f) and (h) show enhanced recoverable regions superimposed on the corresponding inputimages.
22



� Spurious minutiae (b): A minutiae that is detected by the minutiae extraction algo-rithm, but which is not in the tolerance box of any minutiae, fe.The goodness index (GI) is de�ned as follows [17]:GI = Pri=1 qi[pi � ai � bi]Pri=1 qiti ; (21)where r is the number of 16 � 16 windows in the input �ngerprint image, pi representsthe number of minutiae paired in the ith window, qi represents the quality factor of theith window (good=4, medium=2, poor=1), ai represents the number of missing minutiaein the ith window, bi represents the number of spurious minutiae in the ith window, and tirepresents the number of true minutiae in the ith window. GI penalizes both the missingminutiae and spurious minutiae. It is a reasonable measure of the quality of the extractedminutiae. The larger the value of GI, the better the minutiae extraction algorithm. Themaximum value of GI equals 1, which means there are no missing and spurious minutiae.Our �ngerprint enhancement algorithm was tested on 50 typical poor �ngerprint imagesobtained from IBM. First, we computed the goodness index of the extracted minutiae withoutapplying the enhancement algorithm and then the goodness index of the extracted minutiaewas computed with the enhancement algorithm applied to the input �ngerprint images be-fore the minutiae extraction was performed. Examples of minutiae extraction with/withoutenhancement are shown in Figure 10. Table 1 shows the GI values of 8 typical �ngerprintimages and the mean and standard deviation of GI values for all the 50 images. The GIvalues after applying the enhancement algorithm are always larger than that without the23



(a) (b)

(c) (d)Figure 10: Examples of minutiae extraction with/without enhancement; (a) and (c) showthe extracted minutiae without applying the enhancement algorithm; (b) and (d) show theextracted minutiae with the enhancement algorithm applied before the minutiae extraction.
24



Goodness Index (GI)Image # Without Enhancement With Enhancement1 0.46 0.552 0.38 0.523 0.29 0.424 0.26 0.395 0.21 0.356 0.12 0.317 0.11 0.268 0.10 0.29mean 0.24 0.39std 0.05 0.04Table 1: The GI values of 8 typical �ngerprint images and the mean and standard deviationof 50 IBM �ngerprint images.enhancement algorithm. Thus, we can conclude that our �ngerprint enhancement algorithmdoes improve the quality of the �ngerprint images, which, in turn, improves the accuracyand reliability of the extracted minutiae.3.2 Evaluation Using Veri�cation PerformanceThe performance of the enhancement algorithm was also assessed on the �rst volume of theMSU �ngerprint database (700 live-scan images; 10 per individual) using the veri�cationaccuracy of an online �ngerprint veri�cation system [6]. We demonstrated that incorporat-ing the enhancement algorithm in the �ngerprint veri�cation system improves the systemperformance. In the �rst test, the �ngerprint enhancement algorithm was not applied. Each�ngerprint image in the data set was directly matched against the other �ngerprint imagesin the database. In the second test, the �ngerprint enhancement algorithm was applied toeach �ngerprint image in the data set. Then, the veri�cation was conducted on the en-hanced �ngerprint images. The receiver operating curves (ROC) resulting from these two25
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Figure 11: Receiver Operating Curves (ROC); the ROC shows the improvement in veri�ca-tion performance using the enhancement algorithm.Normalization Orientation Frequency Region Mask Filtering Total(seconds) (seconds) (seconds) (seconds) (seconds) (seconds)0.11 0.14 0.09 0.07 2.08 2.49Table 2: The wall time of the enhancement algorithm on a Pentium 200MHz PCtests are shown in Figure 11. From these experimental results, we can observe that theperformance of the �ngerprint veri�cation system is signi�cantly improved when our �n-gerprint enhancement algorithm is applied to the input �ngerprint images. In particular,the enhancement algorithm substantially reduced the false reject rate while maintaining thesame false acceptance rate.In order to incorporate the enhancement algorithm into an online �ngerprint veri�ca-tion/identi�cation system, the whole enhancement process should take only a few seconds.Table 2 shows the wall time for di�erent stages of the enhancement algorithm and the totaltime.
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4 Summary and ConclusionsWe have developed a fast �ngerprint enhancement algorithm which can adaptively improvethe clarity of ridge and furrow structures based on the local ridge orientation and ridgefrequency estimated from the inputed images. The performance of the algorithm was eval-uated using the goodness index of the extracted minutiae and the performance of an online�ngerprint veri�cation system which incorporates our �ngerprint enhancement algorithm inits minutiae extraction module. Experimental results show that our enhancement algorithmis capable of improving both the goodness index and the veri�cation performance. The al-gorithm also identi�es the unrecoverable corrupted regions in the �ngerprint and removesthem from further processing. This is a very important property because such unrecover-able regions do appear in some of the corrupted �ngerprint images and they are extremelyharmful to minutiae extraction. These properties suggest that our enhancement algorithmshould be integrated into an online �ngerprint veri�cation/identi�cation system.The global ridge and furrow con�guration of �ngerprint images presents a certain degreeof regularity. A global model of the ridges and furrows that can be constructed from partial\valid" regions can be used to correct the errors in the estimated orientation images, which,in turn, will help the enhancement. Currently, we are investigating such a model-basedenhancement algorithm.The con�gurations of ridges and furrows within a local neighborhood vary with thequality of input �ngerprint images, so a well-de�ned sinusoidal-shaped waves of ridges andfurrows may not always be observed. Global features are needed for a more precise regionmask classi�cation. 27
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