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Abstract

A critical step in automatic fingerprint matching is to automatically and reliably extract
minutiae from the input fingerprint images. However, the performance of a minutiae ex-
traction algorithm relies heavily on the quality of the input fingerprint images. In order to
ensure that the performance of an automatic fingerprint identification/verification system
will be robust with respect to the quality of input fingerprint images, it is essential to incor-
porate a fingerprint enhancement algorithm in the minutiae extraction module. We present
a fast fingerprint enhancement algorithm, which can adaptively improve the clarity of ridge
and furrow structures of input fingerprint images based on the estimated local ridge orienta-
tion and frequency. We have evaluated the performance of the image enhancement algorithm
using the goodness index of the extracted minutiae and the accuracy of an online fingerprint
verification system. Experimental results show that incorporating the enhancement algorithm
improves both the goodness index and the verification accuracy.

1 Introduction

Fingerprint identification is one of the most important biometric technologies which has
drawn a substantial amount of attention recently [12, 14]. A fingerprint is the pattern of
ridges and furrows on the surface of a fingertip. Each individual has unique fingerprints.

The uniqueness of a fingerprint is exclusively determined by the local ridge characteristics
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Figure 1: Examples of minutiae; (a) a minutiae can be characterized by its position and its
orientation, (b) minutiae overlaid on a fingerprint image.

and their relationships [12, 13]. A total of one hundred and fifty different local ridge char-
acteristics, called minute details, have been identified [13]. These local ridge characteristics
are not evenly distributed. Most of them depend heavily on the impression conditions and
quality of fingerprints and are rarely observed in fingerprints. The two most prominent ridge
characteristics, called minutiae, are (i) ridge ending and (ii) ridge bifurcation. A ridge end-
ing is defined as the point where a ridge ends abruptly. A ridge bifurcation is defined as the
point where a ridge forks or diverges into branch ridges. A good quality fingerprint typically
contains about 40-100 minutiae. Examples of minutiae are shown in Figure 1.

Automatic fingerprint matching depends on the comparison of these local ridge char-
acteristics and their relationships to make a personal identification [12]. A critical step in
fingerprint matching is to automatically and reliably extract minutiae from the input finger-
print images, which is a difficult task. The performance of a minutiae extraction algorithm
relies heavily on the quality of the input fingerprint images. In an ideal fingerprint image,

ridges and furrows alternate and flow in a locally constant direction and minutiae are anoma-



Figure 2: Fingerprint images of very poor quality.

lies of ridges, i.e. ridge endings and ridge bifurcations. In such situations, the ridges can be
easily detected and minutiae can be precisely located from the binary ridges. Figure 1(b)
shows an example of good quality live-scan fingerprint image. However, in practice, due
to variations in impression conditions, ridge configuration, skin conditions (aberrant forma-
tions of epidermal ridges of fingerprints, postnatal marks, occupational marks), acquisition
devices, and non-cooperative attitude of subjects, etc. a significant percentage of acquired
fingerprint images (approximately 10% according to our experience) is of poor quality. The
ridge structures in poor-quality fingerprint images are not always well-defined and hence they
can not be correctly detected. This leads to following problems: (i) a significant number of
spurious minutiae may be created, (i7) a large percent of genuine minutiae may be ignored,
and (i7i) large errors in their localization (position and orientation) may be introduced. Ex-
amples of fingerprint images of very poor quality, in which ridge structures are completely

corrupted, are shown in Figure 2. In order to ensure that the performance of the minutiae
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Figure 3: Fingerprint regions; (a) well-defined region; (b) recoverable corrupted region; (c)
unrecoverable corrupted region.

extraction algorithm will be robust with respect to the quality of input digital fingerprint
images, an enhancement algorithm which can improve the clarity of the ridge structures is
necessary.

A fingerprint expert is often able to correctly identify the minutiae by using various
visual clues such as local ridge orientation, ridge continuity, ridge tendency, etc., as long
as the ridge and furrow structures are not corrupted completely. It is possible to develop
an enhancement algorithm that exploits these visual clues to improve the clarity of ridge
structures in corrupted fingerprint images. Generally, for a given digital fingerprint image,

the region of interest can be divided into the following three categories (Figure 3):

o Well-defined region, where ridges and furrows are clearly differentiated from one an-

other such that a minutiae extraction algorithm is able to operate reasonably.

e Recoverable corrupted region, where ridges and furrows are corrupted by a small amount
of creases, smudges, etc. But, they are still visible and the neighboring regions provide

sufficient information about the true ridge and furrow structures.



e Unrecoverable corrupted region, where ridges and furrows are corrupted by such a
severe amount of noise and distortion that no ridges and furrows are visible and the
neighboring regions do not provide sufficient information about the true ridge and

furrow structures either.

We refer to the first two categories of regions as recoverable and the last category as unrecov-
erable. The goal of an enhancement algorithm is to improve the clarity of ridge structures of
fingerprint images in recoverable regions and to remove the unrecoverable regions. Since the
objective of a fingerprint enhancement algorithm is to improve the clarity of ridge structures
of input fingerprint images to facilitate the extraction of ridges and minutiae, a fingerprint
enhancement algorithm should not result in any spurious ridge structures. This is very im-
portant because spurious ridge structure may change the individuality of input fingerprints.

Fingerprint enhancement can be conducted on either (i) binary ridge images or (ii) gray-
level images. A binary ridge image is an image where all the ridge pixels are assigned a value
1 and non-ridge pixels are assigned a value 0. The binary image can be obtained by applying
a ridge extraction algorithm on a gray-level fingerprint image [6]. Since ridges and furrows
in a fingerprint image alternate and run parallel to each other in a local neighborhood, a
number of simple heuristics can be used to differentiate the spurious ridge configurations
from the true ridge configurations in a binary ridge image [5]. However, after applying
a ridge extraction algorithm on the original gray-level images, information about the true
ridge structures is often lost depending on the performance of the ridge extraction algorithm.
Therefore, enhancement of binary ridge images has its inherent limitations.

In a gray-level fingerprint image, ridges and furrows in a local neighborhood form a



sinusoidal-shaped plane wave which has a well-defined frequency and orientation. A number
of techniques that take advantage of this information have been proposed to enhance gray-
level fingerprint images [2, 15, 8, 18, 19]. However, they usually assume that the local ridge
orientations can be reliably estimated. In practice, this assumption is not valid for fingerprint
images of poor quality, which greatly restricts the applicability of these techniques. Hong
etal. [4] proposed a decomposition method to estimate the orientation field from a set of
filtered images obtained by applying a bank of Gabor filters on the input fingerprint images.
Although this algorithm can obtain a reliable orientation estimate even for corrupted images,
it is computationally expensive which makes it unsuitable for an on-line verification system.
We will present a fast enhancement algorithm which is able to adaptively enhance the ridge
and furrow structures using both the local ridge orientation and local frequency information.
Instead of using a computational expensive method to precisely estimate the local ridge
orientation, a simple but efficient method is used. In addition, since this algorithm is designed
to be integrated in an online system, a computationally efficient filtering technique is used.

In the following sections we will describe in detail our fast fingerprint enhancement al-
gorithm. Section 2 addresses the main steps of our algorithm. A goal-directed performance
evaluation of the implemented fingerprint enhancement algorithm on fingerprint databases

is described in section 3. Section 4 contains the summary and discussion.

2 Fingerprint Enhancement

A fingerprint image enhancement algorithm receives an input fingerprint image, applies a set

of intermediate steps on the input image, and finally outputs the enhanced image. In order



to introduce our fingerprint image enhancement algorithm, a list of notations and some basic

definitions are given below.

2.1 Notation

A gray-level fingerprint image, Z, is defined as a N x N matrix, where Z(4, j) represents the
intensity of the pixel at the ¢th row and jth column. We assume that all the images are
scanned at a resolution of 500 dots per inch (dpi), which is the resolution recommended by

FBI. The mean and variance of a gray-level fingerprint image, Z, are defined as

M(T) = % > Y 2(i.j) and (1)
VAR(D) = = X 3 (2(0.5) - MD)* )

respectively.

An orientation image, O, is define as a N x N image, where O(i, j) represents the local
ridge orientation at pixel (i, 7). Local ridge orientation is usually specified for a block rather
than at every pixel; an image is divided into a set of w x w non-overlapping blocks and a
single local ridge orientation is defined for each block. Note that in a fingerprint image, there
is no difference between a local ridge orientation of 90° and 270°, since the ridges oriented
at 90? and the ridges oriented at 270° in a local neighborhood can not be differentiated from
each other.

A frequency image, F,is a N x N image, where F (i, j) represents the local ridge frequency,

which is defined as the frequency of the ridge and furrow structures in a local neighborhood
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Figure 4: A flowchart of the proposed fingerprint enhancement algorithm.

along a direction normal to the local ridge orientation. The ridge and furrow structures in a
local neighborhood where minutiae or singular points [9] appear do not form a well-defined
sinusoidal-shaped wave. In such situations, the frequency is defined as the average frequency
of its neighbors. Like orientation image, frequency image is specified block-wise.

The region mask, R, is defined as a N x N image with R (7, j) indicating the category
of the pixel. A pixel could be either (i) a non-ridge-and-furrow (unrecoverable) pixel (with
value 0) or (i7) a ridge-and-furrow (recoverable) pixel (with value 1). Region mask is also

specified block-wise.

2.2 Algorithm

The flowchart of the fingerprint enhancement algorithm is shown in Figure 4. The main

steps of the algorithm include:

1. Normalization: an input fingerprint image is normalized so that it has a pre-specified

mean and variance.



2. Local orientation estimation: the orientation image is estimated from the normalized

input fingerprint image.

3. Local frequency estimation: the frequency image is computed from the normalized

input fingerprint image and the estimated orientation image.

4. Region mask estimation: the region mask is obtained by classifying each block in the

normalized input fingerprint image into a recoverable or a unrecoverable block.

5. Filtering: A bank of Gabor filters which is tuned to local ridge orientation and ridge
frequency is applied to the ridge-and-furrow pixels in the normalized input fingerprint

image to obtain an enhanced fingerprint image.

2.3 Normalization

Let Z(7, j) denote the gray-level value at pixel (i,7), M and VAR denote the estimated mean
and variance of Z, respectively, and G(7, j) denote the normalized gray-level value at pixel

(7,7). The normalized image is defined as follows:

My + /EARCCIME i 7(; ) > M

G(i,j) = (3)

My — \/%W, otherwise,

(4)

where My and VAR, are the desired mean and variance values, respectively. Normalization
is a pixel-wise operation. It does not change the clarity of the ridge and furrow structures.

The main purpose of normalization is to reduce the variations in gray level values along



(a)

Figure 5: The result of normalization; (a) input image; (b) normalized image (M, =
100, VAR, = 100).

ridges and furrows, which facilitates the subsequent processing steps. Figure 5 shows an

example of image normalization.

2.4 Orientation Image

The orientation image represents an intrinsic property of the fingerprint images and defines
invariant coordinates for ridges and furrows in a local neighborhood. By viewing a fingerprint
image as an oriented texture, a number of methods have been proposed to estimate the
orientation field of fingerprint images [11, 16, 10, 1]. We have developed a least mean
square orientation estimation algorithm. Given a normalized image, G, the main steps of

the algorithm are as follows:
1. Divide G into blocks of size w x w (16 x 16).

2. Compute the gradients 0,(i,j) and 0,(i,j) at each pixel, (i,5). Depending on the

10



computational requirement, the gradient operator may vary from the simple Sobel

operator to the more complex Marr-Hildreth operator.

. Estimate the local orientation of each block centered at pixel (i,7) using the following

equations:

i+5  jt+g

Ve(i,j) = 20, (u, v)0y(u, v), (5)
u=i— g v=j—73
(FETIN

Vyli,j) = (8§(u,1))—8§(u,7))), (6)
u=i—gv=j—3

, 1 V(3,7
0.3) = gtan (GEE), 7)

where 6(i,7) is the least square estimate of the local ridge orientation at the block
centered at pixel (4,7). Mathematically, it represents the direction that is orthogonal

to the dominant direction of the Fourier spectrum of the w x w window.

. Due to the presence of noise, corrupted ridge and furrow structures, minutiae, etc. in
the input image, the estimated local ridge orientation, (7, j), may not always be a
correct estimate. Since local ridge orientation varies slowly in a local neighborhood
where no singular points appear, a low-pass filter can be used to modify the incorrect
local ridge orientation. In order to perform the low-pass filtering, the orientation image

needs to be converted into a continuous vector field, which is defined as follows:

®,(i,5) = cos(20(i,7)), and (8)

®,(i,j) = sin(20(i, 7)), (9)

11



where 6, and J,, are the x and y components of the vector field, respectively. With

the resulting vector field, the low-pass filtering can then be performed as follows:

u}q>/2 wq>/2

(i) = D > W(u,0)®,(i — uw,j — vw) and (10)

U=—we /2 Vv=—wge /2
’LU<1>/2 U)<1>/2

. (i,7) = D > W(u,0)®,(i — uw, j — vw), (11)

U=—wWe /2 V=—wge /2

where W is a 2-dimensional low-pass filter with unit integral and we X we specifies the
size of the filter. Note that the smoothing operation is performed at the block level.

The default size of the filter is 5 x 5.

5. Compute the local ridge orientation at (i, j) using

1 @i )
Od) = 3G )

). (12)

With this algorithm, a fairly smooth orientation field estimate can be obtained. Figure 6

shows an example of the orientation image estimated with our algorithm.

2.5 Ridge Frequency Image

In a local neighborhood where no minutiae and singular points appear, the gray levels along
ridges and furrows can be modeled as a sinusoidal-shaped wave along a direction normal to
the local ridge orientation (see Figure 7). Therefore, local ridge frequency is another intrinsic
property of a fingerprint image. Let G be the normalized image and O be the orientation

image, then the steps involved in local ridge frequency estimation are as follows:

12
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Figure 6: Comparison of orientation fields by the method proposed in [16] and our method;
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Figure 7: Oriented window and x-signature.

13



1. Divide G into blocks of size w x w (16 x 16).

2. For each block centered at pixel (4, j), compute an oriented window of size [ x w (32x 16)

that is defined in the ridge coordinates system (Figure 7).

3. For each block centered at pixel (7, 5), compute the z-signature, X[0], X[1],... X[l — 1],

of the ridges and furrows within the oriented window, where

w—1

X = =3 Gluv), k=010l 1, (13)
W 4=

w o= i+ (d— %) cos O(4, 5) + (k — é) sin O(i, ), (14)

v = j+(d— %) sin O(i, j) + (é — k) cos O(i, j). (15)

If no minutiae and singular points appear in the oriented window, the x-signature
forms a discrete sinusoidal-shape wave, which has the same frequency as that of the
ridges and furrows in the oriented window. Therefore, the frequency of ridges and
furrows can be estimated from the x-signature. Let 7 (i, ) be the average number of
pixels between two consecutive peaks in the x-signature, then the frequency, (3, j),
is computed as: Q(i,j) = 1/T (i, 7). If no consecutive peaks can be detected from the
x-signature, then the frequency is assigned a value of -1 to differentiate it from the

valid frequency values.

4. For a fingerprint image scanned at a fixed resolution, the value of the frequency of
the ridges and furrows in a local neighborhood lies in a certain range. For a 500 dpi
image, this range is [1/3,1/25]. Therefore, if the estimated value of the frequency is
out of this range, then the frequency is assigned a value of -1 to indicate that an valid

14



frequency can not be obtained.

5. The blocks in which minutiae and/or singular points appear and/or ridges and furrows
are corrupted do not form a well-defined sinusoidal-shaped wave. The frequency values
for these blocks need to be interpolated from the frequency of the neighboring blocks

which have a well-defined frequency. The interpolation is performed as follows:

(i) For each block centered at (i, j),

O'i,5) = s~ / wey/? W
u=—wgq/2 v=—wq/2 9

w 2 wq/2 . .
e oy Waw)d(Qi—uw,j —vw)+1)

()i j—vw)) (16)
: : otherwise,

where
(
0, ifz<0
() =
e otherwise,
(.
0, ifx <0
i(z) =
| 1, otherwise,

W, is a discrete Gaussian kernel where mean and variance is 0 and 9, respectively,

and wq = 7 is the size of the kernel.

(ii) If there exists at least one block with the frequency value of -1, then swap Q and

2 and go to step (i).

6. Inter-ridges distances change slowly in a local neighborhood. A low-pass filter can be

15



used to remove the outliers in f':

’LUI/Q ’LUI/Q

F(i,j)= > > Wiu, )i — uw, j — vw), (17)

u=—wgq/2 v=—wq /2

where W; is a 2-dimensional low-pass filter with unit integral and w; = 7 is the size of

the filter.

2.6 Region Mask

As mentioned early, a pixel (or a block) in an input fingerprint image could be either in
a recoverable region or an unrecoverable region. Classification of pixels into recoverable
and unrecoverable categories can be performed based on the assessment of the shape of the
wave formed by the local ridges and furrows. In our algorithm, three features are used to
characterize the sinusoidal-shaped wave: amplitude (a), frequency (), and variance (7).
Let X[1], X[2],..., X[l] be the x-signature of a block centered at (i,j). The three features

corresponding to pixel (block) (i,7) are computed as follows:

1. o = (average height of the peaks - average depth of the valleys).

2. 8 =1/T(i,j), where T(i,j) is the average number of pixels between two consecutive

peaks.

3.7 = 1 it (X[i] = (7 Ziey XT[i])*.
We selected several typical fingerprint images with both labeled recoverable and unrecov-
erable regions and computed these three features. A total of 2,000 3-dimensional patterns
were obtained. In order to find representative patterns for the two classes, we fed the 2,000

16



patterns to a squared-error clustering algorithm and identified six clusters. Four of these
clusters correspond to recoverable regions and the remaining two correspond to unrecoverable
regions. The six prototypes (corresponding to cluster centers) were used in an one-nearest
neighbor (INN) classifier to classify each w x w block in an input fingerprint image into
a recoverable or an unrecoverable block. If a block centered at (i,j) is recoverable, then
R(i,j) = 1, else R(i,j) = 0. After the image R is obtained, the percentage of recoverable
regions is computed. If the percentage of recoverable regions is smaller than a threshold,
[recoveranie = 40, then the input fingerprint image is rejected. An accepted image is then

passed through the filtering stage.

2.7 Filtering

The configurations of parallel ridges and furrows with well-defined frequency and orienta-
tion in a fingerprint image provide useful information which helps in removing undesired
noise. The sinusoidal-shaped waves of ridges and furrows vary slowly in a local constant
orientation. Therefore, a bandpass filter that is tuned to the corresponding frequency and
orientation can efficiently remove the undesired noise and preserve the true ridge and furrow
structures. Gabor filters have both frequency-selective and orientation-selective properties
and have optimal joint resolution in both spatial and frequency domains [3, 7]. Therefore, it
is appropriate to use Gabor filters as bandpass filters to remove the noise and preserve true

ridge/valley structures.

17



Figure 8: An even-symmetric Gabor filter: (a) the Gabor filter with F' being 1/10 and 0°

orientation; (b) the corresponding MTF.
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The even-symmetric Gabor filter has the general form [7]

(ysin ¢)?

(x cos ¢)?

(18)

] } cos(27 fx cos @),
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1
erpy ——
P12
where ¢ is the orientation of the Gabor filter, f is the frequency of a sinusoidal plane

h(z,y: ¢, f)

)2

[(u—27/[) sin ¢]>
L

wave, and d, and d, are the space constants of the Gaussian envelope along x and y axes,
respectively. The modulation transfer function (MTF) of the Gabor filter can be represented

as
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)

S

Y

SRR

H(u

27/ f) sin ¢]?

19)

(

I}

u—

(

ol 4]

z(sy

276

and d, = 1/2nd,. Figure 8 shows an even-symmetric Gabor filter and its

where 6, = 1/276,

MTF.

To apply Gabor filters to an image, three parameters must be specified: (i) the frequency

18



of the sinusoidal plane wave, ug, (ii) the filter orientation, and (ii7) the standard deviations
of the Gaussian envelope, 6, and d,. Obviously, the frequency characteristic of the filter,
f, is completely determined by the local ridge frequency and the orientation is determined
by the local ridge orientation. The selection of the values of J, and 4, involves a trade-off.
The larger the values, the more robust to noise the filters are but the more likely the filters
will create spurious ridges and furrows. On the other hand, the smaller the values, the less
likely the filters will create spurious ridges and furrows but then they will be less effective in
removing the noise. The values of J, and J, were set to 4.0 and 4.0, respectively based on
empirical data. Let G be the normalized fingerprint images, O be the orientation image, F

be the frequency image, and R be the recoverable mask, the enhanced image £ is obtained

as follows:
N 955, it R(i, §) = 0,
E(i,j) = (20)
Zzi/fwg/g vai/fwgﬂ h(u,v:O(i,7), F(i,7))G(i —u,j —v), otherwise,

where w, = 11 specifies the size of the Gabor filters.

3 Experimental Results

The purpose of a fingerprint enhancement algorithm is to improve the clarity of ridges
and furrows of input fingerprint images and make them more suitable for the minutiae
extraction algorithm. The ultimate criterion for evaluating such an enhancement algorithm
is the total amount of “quality” improvement when the algorithm is applied to the noisy

input fingerprint images. Such an improvement can be assessed subjectively by a visual

19



inspection of a number of typical enhancement results. However, a precise and consistent
characterization of the quality improvement is beyond the capability of subjective evaluation.
Examples of the enhancement results are shown in Figure 9. From these examples, we can see
that our enhancement algorithm does improve the clarity of the ridge and furrow structures
of input fingerprint images.

A goal-directed performance evaluation assesses the overall improvement in the system
performance that incorporates the enhancement module as a component. Therefore, it is
capable of providing a more reliable assessment of the performance benchmark and is directly
associated with the ultimate goal of the system [20]. In the following, we present the results

of the goal-directed performance evaluation of our enhancement algorithm.

3.1 Evaluation Using Goodness Index

We have used the goodness index (GI) of the extracted minutiae to quantitatively assess the
performance of our fingerprint enhancement algorithm. Let My = (f}, f2, ..., f) be the set
of n minutiae detected by the minutiae extraction algorithm and M, = (f!, f2,..., f™) be

the set of m minutiae identified by human expert in an input fingerprint image. We define

the following terms:

e Paired minutiae (p): Minutiae f; and f, are said to be paired if f; is located in a

tolerance box centered around f.. In this evaluation, the tolerance box size is 8 x 8.

e Missing minutiae (a): A minutiae that is not detected by the minutiae extraction

algorithm.

20
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are the input images; (b),

(d), (f) and (h) show enhanced recoverable regions superimposed on the corresponding input

images.

)

)

and (

3

Figure 9: Examples of enhancement results; (a), (c),
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e Spurious minutiae (b): A minutiae that is detected by the minutiae extraction algo-

rithm, but which is not in the tolerance box of any minutiae, f..

The goodness index (GI) is defined as follows [17]:

>io1 Gilpi — ai — b
g:l qit;

GI = , (21)

where r is the number of 16 x 16 windows in the input fingerprint image, p; represents
the number of minutiae paired in the ith window, ¢; represents the quality factor of the
ith window (good=4, medium=2, poor=1), a; represents the number of missing minutiae
in the ith window, b; represents the number of spurious minutiae in the ith window, and t;
represents the number of true minutiae in the ith window. GI penalizes both the missing
minutiae and spurious minutiae. It is a reasonable measure of the quality of the extracted
minutiae. The larger the value of GI, the better the minutiae extraction algorithm. The
maximum value of GI equals 1, which means there are no missing and spurious minutiae.
Our fingerprint enhancement algorithm was tested on 50 typical poor fingerprint images
obtained from IBM. First, we computed the goodness index of the extracted minutiae without
applying the enhancement algorithm and then the goodness index of the extracted minutiae
was computed with the enhancement algorithm applied to the input fingerprint images be-
fore the minutiae extraction was performed. Examples of minutiae extraction with/without
enhancement are shown in Figure 10. Table 1 shows the GI values of 8 typical fingerprint
images and the mean and standard deviation of GI values for all the 50 images. The GI

values after applying the enhancement algorithm are always larger than that without the

23



Figure 10: Examples of minutiae extraction with/without enhancement; (a) and (c¢) show
the extracted minutiae without applying the enhancement algorithm; (b) and (d) show the
extracted minutiae with the enhancement algorithm applied before the minutiae extraction.

24



Image # Goodness Index (GI)
Without Enhancement ‘ With Enhancement
1 0.46 0.55
2 0.38 0.52
3 0.29 0.42
4 0.26 0.39
5 0.21 0.35
6 0.12 0.31
7 0.11 0.26
8 0.10 0.29
mean 0.24 0.39
std 0.05 0.04

Table 1: The GI values of 8 typical fingerprint images and the mean and standard deviation
of 50 IBM fingerprint images.

enhancement algorithm. Thus, we can conclude that our fingerprint enhancement algorithm
does improve the quality of the fingerprint images, which, in turn, improves the accuracy

and reliability of the extracted minutiae.

3.2 Evaluation Using Verification Performance

The performance of the enhancement algorithm was also assessed on the first volume of the
MSU fingerprint database (700 live-scan images; 10 per individual) using the verification
accuracy of an online fingerprint verification system [6]. We demonstrated that incorporat-
ing the enhancement algorithm in the fingerprint verification system improves the system
performance. In the first test, the fingerprint enhancement algorithm was not applied. Each
fingerprint image in the data set was directly matched against the other fingerprint images
in the database. In the second test, the fingerprint enhancement algorithm was applied to
each fingerprint image in the data set. Then, the verification was conducted on the en-

hanced fingerprint images. The receiver operating curves (ROC) resulting from these two
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Figure 11: Receiver Operating Curves (ROC); the ROC shows the improvement in verifica-
tion performance using the enhancement algorithm.

Normalization | Orientation | Frequency | Region Mask | Filtering Total
(seconds) (seconds) | (seconds) (seconds) (seconds) | (seconds)
| 0.11 | 014 [ 009 | 007 [ 208 [ 249 |

Table 2: The wall time of the enhancement algorithm on a Pentium 200MHz PC

tests are shown in Figure 11.

From these experimental results, we can observe that the

performance of the fingerprint verification system is significantly improved when our fin-

gerprint enhancement algorithm is applied to the input fingerprint images. In particular,

the enhancement algorithm substantially reduced the false reject rate while maintaining the

same false acceptance rate.

In order to incorporate the enhancement algorithm into an online fingerprint verifica-

tion/identification system, the whole enhancement process should take only a few seconds.

Table 2 shows the wall time for different stages of the enhancement algorithm and the total

time.
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4 Summary and Conclusions

We have developed a fast fingerprint enhancement algorithm which can adaptively improve
the clarity of ridge and furrow structures based on the local ridge orientation and ridge
frequency estimated from the inputed images. The performance of the algorithm was eval-
uated using the goodness index of the extracted minutiae and the performance of an online
fingerprint verification system which incorporates our fingerprint enhancement algorithm in
its minutiae extraction module. Experimental results show that our enhancement algorithm
is capable of improving both the goodness index and the verification performance. The al-
gorithm also identifies the unrecoverable corrupted regions in the fingerprint and removes
them from further processing. This is a very important property because such unrecover-
able regions do appear in some of the corrupted fingerprint images and they are extremely
harmful to minutiae extraction. These properties suggest that our enhancement algorithm
should be integrated into an online fingerprint verification/identification system.

The global ridge and furrow configuration of fingerprint images presents a certain degree
of regularity. A global model of the ridges and furrows that can be constructed from partial
“valid” regions can be used to correct the errors in the estimated orientation images, which,
in turn, will help the enhancement. Currently, we are investigating such a model-based
enhancement algorithm.

The configurations of ridges and furrows within a local neighborhood vary with the
quality of input fingerprint images, so a well-defined sinusoidal-shaped waves of ridges and
furrows may not always be observed. Global features are needed for a more precise region

mask classification.
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