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Abstract

This dissertation concerns modelling the dynamics of underwater gliders and application

of the model to analysis of glider dynamics, control, navigation, and design. Underwater

gliders are a novel type of autonomous underwater vehicle that glide by controlling their

buoyancy and attitude using internal actuators. We develop a first principles based model

of the dynamics of a general underwater glider, including hydrodynamic forces, buoyancy

and added mass effects, and the nonlinear coupling between glider and moving internal

masses. This model is applicable to a wide range of gliders, as opposed to being vehicle

specific. Development of a model of the dynamics of a general underwater glider is necessary

for systematic model based control and design of this class of vehicles. This work builds

on existing aircraft and underwater vehicle theory and facilitates application of existing

techniques in dynamics and controls to this new type of vehicle.

The glider model is applied to an analysis of the dynamics of underwater gliders, iden-

tifying gliding equilibria and their stability in a longitudinal, vertical-plane model, in a

simplified dynamic model based on Lanchesters phugoid assumptions, and in full three

dimensional gliding.

In addition to modelling a class of vehicles, our model can be tailored to a specific glider

for the purpose of predicting performance, developing improved control and navigation

algorithms, and design analysis. We adapt the glider model to model the Slocum electric

glider. Experimental data from trials at sea using a Slocum glider and reference data are

used to identify the buoyancy trim and hydrodynamic coefficients of the experimental glider.
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The general glider model is applied to study control of gliders using buoyancy control,

internal mass actuators, and external surfaces. A controller and observer for steady glid-

ing and inflections between glides is designed. Control systems on operational gliders are

described and analyzed. Controller induced limit cycles are analyzed.

An analysis of glider design begins with a comparison of underwater gliders and sailplanes

in the air. The glider model is then applied to analysis of glider design and glide speed,

glider and ballast sizing, and alternate glider designs, including flying wings.
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0.1 Definition of Variables

Table 1: Table of Symbols
Name Description

α angle of attack, cos α = v1/
√

v2
1 + v2

3

b vehicle position vector from inertial frame
β sideslip angle

CB center of buoyancy and origin of body frame
CG center of gravity
D drag force
Df added mass cross term

e1, e2, e3 unit vectors along body frame 1, 2, 3 axes
F̄ total force in body coordinates

Fext external force on vehicle in body coordinates
fext external force on vehicle in inertial coordinates
I identity matrix
I total mass/inertia matrix of vehicle/fluid system

i, j, k unit vectors in x, y, z directions
Jf added inertia matrix
Jh inertia of the hull (excludes inertia due m̄, mw)
Js inertia of stationary mass, Js = Jh − mwr̂wr̂w − mbr̂br̂b

J Js + Jf

Ji ith diagonal element of J

L lift force
M sum of body and added mass, M = msI + Mf

Mf added mass matrix
MDL viscous moment
m mass of displaced fluid
m̄ movable point mass
mb variable ballast mass located at CB
mfi ith diagonal element of Mf

mi ith diagonal element of M

mh uniformly distributed hull mass
ms stationary body mass, ms = mh + mw + mb

mv total vehicle mass, mv = ms + m̄
mw point mass for nonuniform hull mass distribution
m0 excess mass, m0 = mv − m

Continued on following page
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Name Description

Ω angular velocity in body coordinates
Ωi ith component of Ω
P total linear momentum in body coordinates
Pb linear momentum of mb in body coordinates
Pp linear momentum of m̄ in body coordinates
Pw linear momentum of mw in body coordinates
p total linear momentum in inertial coordinates
pb linear momentum of mb in inertial coordinates
pp linear momentum of m̄ in inertial coordinates
pw linear momentum of mw in inertial coordinates
Π total angular momentum (body frame)
π total angular momentum (inertial frame)
φ roll angle
ψ yaw/heading angle
R rotation matrix for vehicle orientation

RBW rotation matrix from body frame to wind frame
RWB rotation matrix from wind frame to body frame
Rα rotation matrix about body axis w2 by angle α
Rβ rotation matrix about wind axis w3 by angle β
rb position vector from CB to mb

rp position of movable mass m̄ in body coordinates
rPi ith component of rP

rs position vector from CB to center of mass ms

rw position vector from CB to mw

SF side force (from hydrodynamics)
sm subscript designates simplified internal mass arrangement
θ pitch angle
T̄ total torque in body coordinates

Text total external torque in body coordinates
τext pure external torque in inertial coordinates
T total kinetic energy, T = Ts + Tp + Tf

Tb kinetic energy of ballast mass mb

Tf kinetic energy of fluid
Tp kinetic energy of movable point mass
Ts kinetic energy of stationary body mass ms

Tw kinetic energy of mass mw
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Name Description

u vector of control inputs

ū (u1, u2, u3)
T , control force on sliding point mass, ū = Ṗp

ub (ub1, ub2, ub3)
T , control force on ballast mass, ub = Ṗb

uballast rate controlled variable mass rate, uballast rate = ṁb

u4 same as uballast rate

uw (uw1, uw2, uw3)
T , control force on mass mw, uw = Ṗw

V speed in vertical plane, V =
√

(v2
1 + v2

3)
Vd desired speed in vertical plane
Vr speed of glider relative to fluid, Vr = |vr|
v velocity in body coordinates
vi ith component of v

vc velocity of current (relative to inertial frame)
vr velocity of glider relative to fluid
w vector of accelerations of internal masses (in body frame)
wp vector of accelerations of mass m̄ (in body frame), wp = r̈p

wb vector of accelerations of mass mb (in body frame), wb = r̈b

ww vector of accelerations of mass mw (in body frame), ww = r̈w

x, y, z components of vehicle position vector b

ξ glide path angle, ξ = θ − α
ξd desired glide path angle
z′ perpendicular distance to desired glide path
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Chapter 1

Introduction

Underwater gliders constitute a new class of autonomous underwater vehicles. With wings

and tail, they glide through the ocean, controlling their buoyancy and attitude using inter-

nal actuators. Gliders have many useful applications, notably in oceanographic sensing and

data collection. In this application they are attractive because of their low cost, autonomy,

and capability for long-range, extended-duration deployments. The last five years have seen

the first ocean deployments of underwater gliders, and there is a need for improved under-

standing and modelling of their dynamics to further capitalize on the unique advantages of

underwater gliders. This dissertation details the development of a model of the dynamics of

underwater gliders. The model is then applied to analysis of glider dynamics, glider control

and glider design.

There are two main themes within this work:

1. Modelling the dynamics of underwater gliders and application of the model to anal-

ysis of the dynamics, control and design of underwater gliders. We develop a first-

principles based model of the dynamics of a general underwater glider, including

hydrodynamic forces, buoyancy and added mass effects, and the nonlinear coupling
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between glider and moving internal masses. This model is applicable to a wide range

of gliders, as opposed to being vehicle specific. We apply the model to study of glider

dynamics, control, navigation, and design. Our work builds on existing aircraft and

underwater vehicle theory and facilitates application of existing techniques in dynam-

ics and controls to this new type of vehicle.

Development of a model of the dynamics of a general underwater glider is necessary

for systematic model based control and design of this class of vehicles. In addition

to modelling a class of vehicles, our model can be tailored to a specific glider for

the purpose of predicting performance, developing improved control and navigation

algorithms, and design analysis.

2. Development of both the technical and intuitive understanding of glider dynamics

through analogy with aircraft and sailplanes. In simple terms, what does it mean to

put a sailplane in the water? In exploring the differences and similarities between un-

derwater gliders and sailplanes, we help to apply existing understanding of sailplanes

to underwater gliders. The principal differences between sailplanes and underwater

gliders arise from the fact that sailplanes are much more dense than the air through

which they fly, while gliders are designed to be close to neutrally buoyant and have

the same density as water. The same hydrodynamic laws govern the fluid flow and

forces on both vehicles, but because of the high relative density of water (800 times

greater than air), additional effects including buoyancy and added mass are signifi-

cant in the dynamics of underwater gliders. Our glider dynamic model, and other

simplified models derived from it, are used to illustrate the differences in dynamics

and forces acting on an underwater glider in comparison to a sailplane. We discuss

how these lead to differences in the design and control of the two types of vehicles.
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In this introduction, we describe the attributes of underwater gliders (Section 1.1.1) and

the application of gliders (Section 1.1.2).

Section 1.2 details the motivation for the study of glider dynamics and control. Section

1.3 describes new contributions within this work and outlines the chapters of this disserta-

tion.

1.1 Underwater Gliders

1.1.1 Characteristics and Design

Underwater gliders are a class of Autonomous Underwater Vehicles (AUVs) that glide by

controlling their buoyancy using internal tanks and pumps. Existing gliders have fixed

external wings and tails and control their attitude by moving internal masses and using ex-

ternal control surfaces such as a rudder. Gliders travel from place to place by concatenating

a series of upwards and downwards glides. Characteristic glider motions include upwards

and downwards straight glides in a sawtooth pattern, turning, and gliding in a vertical

spiral.

Gliding flight is buoyancy driven, and does not use thrusters or propellers. Thus, gliders

must change depth to glide. They glide downwards and upwards in the ocean by controlling

their buoyancy to make themselves negatively and positively buoyant. Gliders may also hold

their position by gliding against the current, make themselves neutrally buoyant and drift

with the current, or rest on the bottom.

Through their use of buoyancy propulsion systems and low power designs, gliders are

capable of long-range and high-endurance deployments. With careful design, buoyancy-

driven gliders are quiet and use little power. Housing vehicle actuators within the hull
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shields them from the hostile ocean environment and makes gliders more durable.

Existing oceanographic gliders are designed for long deployments and ranges and very

low power consumption. In comparison to other AUVs they are relatively slow, travelling

at about one half knot (.25 m/s), but have much longer ranges, on the order of hundreds

or thousands of kilometers, and much longer deployment periods, on the order of weeks

or months. As an example of present capabilities, the Atlantic ocean is about 2000 miles

across, and Seaglider has completed missions over 1000 miles and has an expected range

above 1500 miles [14].

The concept of underwater gliders is simple and elegant. Gliders may potentially make

use of currents and internal waves in the ocean for more efficient, faster and longer range

flight. Through careful planning they may make use of horizontal ocean currents to aid their

travel [18]. Like sailplanes gliding on thermal updrafts in the air, they have the potential

to make use of vertical flows in the ocean.

Gliders may also derive their propulsive energy from the ocean itself. One concept in

development at Webb Research Corporation (WRC) is a thermally driven buoyancy engine

that is driven by the differences in temperature across the ocean thermocline [80]. Use

of such an engine would allow the glider to get the energy for propulsion from the ocean,

leading to extremely long ranges and deployment. Such a glider would need battery power

for its electronics and sensors only. In more standard glider designs eighty percent of vehicle

power or more may be used for ballast pumping [32]. If this pumping energy were supplied

by a thermal engine so the battery power used for pumping instead supported the vehicle

electronics, the glider’s range would increase by a factor of five. Vehicle range and endurance

would be limited only by available electrical power for the vehicle hotel load. This could

give gliders ranges above thirty thousand kilometers [32].
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Because of their propulsion and design, gliders are relatively inexpensive in compari-

son to other AUVs, and they are much less expensive than ships. This makes gliders very

attractive for many applications, including oceanography. “ The operational cost of mak-

ing a section [for scientific data collection], including launch, recovery, refurbishment, and

telemetry is as low as $2 per km... Gliders can be operated for a year for the cost of a single

day of research vessel operation. Fabrication cost is equivalent to the cost of 2-4 days of

ship time” [13].

1.1.2 Application in Oceanography

Gliders have application in remote sensing for physical, chemical and biological oceanog-

raphy. Other possible applications include use as communications gateways or navigation

aids and military applications such as tactical oceanography and maritime reconnaissance.

Attractive glider characteristics include autonomous operation, high endurance and range,

and low cost. Gliders are well suited to extended missions such as collecting sensor data

while traversing a chosen path or maintaining position. Gliders can operate autonomously

individually or in a group, and may adaptively adjust their missions according to remote

instruction or according to observed sensor information.

The first application of underwater gliders, and the inspiration for their design, has been

oceanographic data collection. Use of gliders in a distributed fleet is a part of the original

vision for their use in oceanography. The importance of understanding the oceans and their

role in the planet’s ecosystem cannot be overstated. Progress in oceanography depends in

part on the gathering of scientific data from the oceans. Because of the distributed nature

of ocean dynamics, data is needed over a wide temporal and spatial range. Collection of

data at any one point in space and time is of much less scientific use than collection of data
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over large regions. Gliders offer a flexible and elegant platform to meet this need.

Underwater gliders have a variety of advantages over existing methods of ocean sampling.

They are inexpensive, they offer superior scientific sampling, with greater spatial density of

measurements over a longer period of time, and they are much more flexible than existing

platforms. They may also be operated in coordinated groups. Other methods for gathering

data include the use of ships, fixed moorings and drifters. Ships are expensive to operate and

are limited in number and availability. Fixed moorings give data about only one location,

while drifters cannot choose their path through the ocean. By their design and nature,

gliders overcome many of these difficulties.

The characteristic sawtooth motion gliders make is also well suited to oceanographic

sampling. Variations of ocean water properties are generally much stronger in the vertical

than horizontal directions, making vertical sampling important in oceanographic applica-

tions. For this reason, propeller driven AUVs and towed arrays are often flown in a vertical

sawtooth pattern for data collection.

The concept of underwater gliders for oceanographic sensing, described by Henry Stom-

mel in “The Slocum Mission” [68], has motivated the development of three operational

gliders, including the Slocum glider [80], the Spray glider [63] and the Seaglider [14]. Their

development and designs are described further in Section 2.2.

These existing autonomous underwater gliders are designed to collect science data during

extended ocean deployments. Their designs carefully conserve power and glide relatively

slowly. Typical missions include repeatedly surveying an area of the ocean over a long

period or maintaining their position against a current.

During a typical deployment for oceanographic sensing, a glider is deployed from a small

boat and goes through a brief systems-check dive. The glider then travels autonomously to
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its assigned survey area, gliding in a sawtooth pattern. It surfaces periodically to obtain a

GPS fix and communicate using satellite telephony. The glider’s mission can be updated

or changed via satellite at any of these communication points by a controller anywhere on

earth. The glider then continues through its assigned mission, traversing a survey route for

a few weeks and periodically returning data, including water conductivity, temperature and

depth, via satellite. Estimated currents are also reported. Gliders may carry additional

sensors for chemical and optical measurements, such as dissolved oxygen sensors, Chloro-

phyll fluorescence, optical backscatter sensors, and photosynthetic active radiation (PAR)

sensors to measure light available for photosynthesis at depth. At mission’s end, the glider

travels autonomously to its retrieval point. A glider could even be deployed and retrieved

from shore at locations with waters deep enough for gliding.

Oceanographic sampling also calls for the deployment of groups of gliders. In Sum-

mer 2003, as part of the Autonomous Oceanographic Sampling Network II (AOSN II)

experiment, seventeen gliders were deployed in the Monterey Bay, California, over a six-

week period [11]. Twelve Slocum gliders were deployed in varying intervals by Woods

Hole Oceanographic Institution (WHOI), and five Spray gliders from Scripps Institution

of Oceanography (SIO) operated in the bay for the duration of the experiment. AOSN-

II is a multi-institutional collaborative research program sponsored by the Office of Naval

Research (ONR). As part of the experiment, the network of gliders performed adaptive

sampling missions for purposes including updating and evaluating forecast models. This

application made use of the gliders as a re-configurable sensor array and took advantage of

the available data from the sampling network to plan glider trajectories [11].
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Other Applications

Gliders also have application in a variety of military roles, some quite different from the

oceanographic science for which they were invented. They may be employed for remote

sensing missions similar to those described above, such as in tactical oceanography and

reconnaissance, surveillance, etc.

Gliders can operate in both deep ocean and littoral (coastal) environments. Operations

could involve gliders loitering in an area of interest for long periods, transiting undetected

between areas, or waiting on the bottom for long periods before beginning a mission. Be-

cause they do not have thrusters and use internal actuators, gliders are quiet. This is an

attractive feature for military applications because quieter vehicles are more difficult to

detect.

1.2 Motivation for Study

Our study of the dynamics of underwater gliders is motivated by three principal elements.

The first is an interest in the dynamics and technical challenges that arise with this new type

of underwater vehicle incorporating an internal actuation system. Second, the applications

of underwater gliders are scientifically important and will benefit from an improved under-

standing of their dynamics and the resulting improvements in design and control. Third,

underwater gliders are exciting on a popular, nontechnical level because of their autonomy,

actuation, and role in understanding the oceans.

1.2.1 Technical Aspects

“Modelling the dynamics of underwater gliders will allow for improvements in the control

and design of existing and future gliders and corresponding improvements in their utility in
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applications. In order for the advantages in ocean sampling using underwater gliders to be

fully realized, an accurate and reliable glider control system should be developed. Most im-

portantly, the use of feedback control provides robustness to uncertainty and disturbances.

Development of such systems requires modelling of glider dynamics” [42].

Analysis of the dynamics of underwater gliders is challenging and new. Glider dynam-

ics are both elegant and complex. They bring together areas of aerospace and marine

engineering in interesting ways for a new application. The science and understanding of

aircraft, aerodynamics and hydrodynamics is well developed. There is a great deal of ex-

isting research on the design, dynamics and control of aircraft, sailplanes and submarines.

Underwater gliders bring together elements of these including hydrodynamic design and

active control of buoyancy, and add to them the use of moving internal mass actuators.

The use of internal mass actuators is novel. Few aircraft (save hang-gliders) or sub-

marines make use of such a system. In addition to being robust and shielded from the

ocean, internal mass actuators may offer improved performance in some flight regimes, for

example in very slow flight. The use of internal mass actuators introduces new and non-

linear dynamics into the system. There is a need to model their role in the dynamics and

control of gliders in order to best make use of this new technology.

Development of “a model-based feedback control design methodology is intended to

improve upon the currently implemented glider control strategies. A systematic design

methodology that provides control in the full state-space is expected to make it possible

to design glider controllers that require less experimentation and tuning and provide more

robustness to fouling, payload changes and other uncertainties as compared to current tech-

niques. Additionally, with a model-based approach, a dynamic observer can be designed to

estimate states such as glider velocity. These estimated states could then be used to de-
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termine horizontal glider motion instead of the current methods which rely on assumptions

of constant angle of attack. A model-based approach may also prove useful in determining

optimal glider motions” [42].

1.2.2 Applications

The scientific applications of gliders are important. Their use in Autonomous Ocean Sam-

pling Networks has the potential to open a new era in oceanography, giving scientists access

to ocean data on a previously unseen scale. The importance of the ocean to the global

environment is immense. Among other things it plays a great role in global weather and

food production.

Our research effort is also motivated by recent studies on the full possible range of glider

performance, design and applications, see e.g., [32]. Only within the past five years have

the first gliders been deployed on full missions in the ocean. Gliders show great potential

for future application and design improvements, an effort aided by development of a glider

model as described in this dissertation.

The existing gliders, Slocum, Spray and Seaglider, are all designed for extended range

and duration missions, and of necessity are relatively slow moving vehicles designed to

conserve power. Their maximum speeds are on the order of half a knot, relatively slow

compared to other AUVs. Gliders need not be slow, however. The speed and energy use

of a glider is a design choice. Some applications may call for a faster vehicle, and in these

cases it is possible to design gliders capable of speeds on the order of several knots. This is

discussed further in Chapter 7.
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1.2.3 The Excitement of a New Vehicle System

Aside from technical interests, the idea of gliders is captivating and exciting. Gliders cap-

ture the popularity of flight, exploration and science. People also find the autonomous

and extended operation of gliders intriguing, as well as their application in exploring and

understanding the oceans and world environment.

Watching a glider operate in a test tank or the ocean is a unique experience, as the

glider moves through the water seemingly without any moving parts or driving mechanism.

“What makes it go?” is a typical question. People are even more fascinated upon hearing

a simple explanation, that the glider is propelled completely through internal actuators to

control buoyancy and move internal mass.

While aboard ship one day to recover and deploy gliders in the Monterey Bay during

AOSN II, it was possible to see five Slocum gliders in the water, all alternately drifting on

the surface and diving to keep station against the current. Their bright yellow tails could

be seen rising from the water for communication and GPS fixes. As each glider drifted

beyond a set distance from its assigned position, it would slip silently beneath the surface,

reappearing later after gliding to its assigned location. Over the course of AOSN II, the

gliders continued on to perform their appointed sampling missions, periodically surfacing to

communicate their data. That information was analyzed and examined by scientists sitting

in a control room on shore, not far from the beach, but which could have been anywhere on

earth. This and other glider experiments show the prescience of Henry Stommel’s vision in

“The Slocum Mission” [68], described in Section 2.1, and how close gliders may soon come

to fulfilling it.
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1.3 Contributions and Outline of Remaining Chapters

A summary of the contributions in this work and an outline of the remaining chapters

follows.

Chapter 2 presents some background on underwater gliders, a survey of existing glider

designs and their special features, and a literature review.

Chapter 3 develops a general, first-principles based model of the dynamics of an un-

derwater glider. This model is widely applicable as opposed to vehicle specific. It

includes the major design elements of underwater gliders, including buoyancy control,

wings and external control surfaces, and the nonlinear coupling between the glider

and internal mass actuators.

Chapter 4 applies the glider model to analysis of the dynamics of underwater gliders,

identifying gliding equilibria and their stability in a longitudinal, vertical-plane model,

in a simplified dynamic model based on Lanchester’s phugoid assumptions, and in full

three dimensional gliding. Steady glides include straight glides and vertical spiral

glides.

Chapter 5 adapts the glider model to model the Slocum electric glider. Experimental

data from trials at sea using a Slocum glider, reference hydrodynamic data, and

computational fluid dynamics reference data are used to identify the buoyancy trim

and hydrodynamic coefficients of the experimental glider.

Chapter 6 applies the general glider model to study control of gliders using buoyancy

control, internal mass actuators, and external surfaces. A controller and observer

for steady gliding and inflections between glides is designed. Control systems on
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operational gliders are described and analyzed using the glider model. Controller

induced limit cycles, observed during experimental trials at sea, are analyzed using

describing function analysis.

Chapter 7 applies the glider model to analysis of glider design. This begins with a

comparison of underwater gliders and sailplanes in the air, with the aim of developing

an intuitive and technical understanding of glider dynamics by building upon the

existing understanding of sailplanes. The glider model is then applied to analysis of

glider design and glide speed, glider and ballast sizing, and alternate glider designs,

including flying wings.

Chapter 8 includes conclusions and suggestions for future work.
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Chapter 2

A Brief Survey of Underwater Gliders

In this chapter, Section 2.1 briefly reviews the history and development of underwater

gliders. Section 2.2 describes existing glider designs and some design features of interest.

Section 2.3 contains a brief literature review, including previous work on underwater gliders.

2.1 History and Development of Underwater Gliders

The concept for oceanographic underwater gliders grew from the need for oceanographic

sampling and work on oceanographic floats. The need to track currents and bodies of

water in the ocean, and later to provide distributed and economical collection of such

data, was first filled with oceanographic floats. Work on profiling floats played a role in

the development of the Slocum glider concept, which led to work on the three existing

oceanographic gliders: Slocum, Spray and Seaglider. References central to this review

include [10, 13, 82, 21, 32, 63, 67, 68, 69, 76, 78, 79, 80, 81, 38, 75].
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2.1.1 From Floats to Gliders

One of the great difficulties in oceanography is collecting science data in the ocean. Science

data such as temperature, salinity/conductivity and currents are of great importance to

understanding the ocean and its dynamics. Data on conditions as a function of depth

are very important, as the vertical variation of these quantities plays a vital role in ocean

dynamics and is much stronger, i.e. occurs on much shorter length scales, than the horizontal

variation. Because of this, oceanographic studies often require a series of temperature,

salinity, and current profiles by depth in many locations, spaced throughout the region of

study.

Because of the physics of seawater, measurement of these quantities requires sensors on-

site. The ocean absorbs light, radiation, and thermal energy in a relatively short distance.

Acoustic sensing is one of the few technologies available for remote sensing in the ocean. The

difficulty involved in sensing anything in the ocean is one reason that nuclear submarines

are able to avoid detection.

The study of ocean dynamics is in many ways analogous to the study of the atmospheric

dynamics and the weather. In the case of the atmosphere, a great amount of science data

is available from weather stations all over the world, satellites, aircraft, weather balloons

and other sensors. Because of the physical properties of air, it is possible to gather much

information using remote sensing such as radar, visual imaging, and infra-red imaging. Data

acquisition is also aided by the ability to communicate through the atmosphere via radio.

It is also possible for a few satellites to provide coverage over most of the globe.

The problems of ocean sensing are more difficult. In the case of oceanographic sensing,

remote sensing technologies (such as satellite based sensors) can only collect data about the

surface layers of the ocean. Acquiring data at depth requires fixed moorings, floats, drifters,
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or ships dragging equipment and sensors. The work is further hampered by the difficulties

of communicating through the ocean with sensors deployed at depth.

This technical challenge led to the extensive use of surface drifters and submerged floats

in oceanography. “The concept of a neutrally buoyant float to measure subsurface ocean

currents was developed simultaneously and independently in the mid-1950s by Henry Stom-

mel [67] in the USA and by John Swallow [69] in the UK” [21]. Early floats were developed

to track ocean currents and did not carry other science instruments. The Swallow float,

developed by John Swallow in the 1950’s, was a neutrally buoyant float equipped with an

acoustic source. It was deployed to a chosen depth where it circulated with the water and

could be tracked by a following ship.

Following the development of the Swallow float came the SOFAR float, developed by

Doug Webb and Tim Rossby in the 1960’s. The float makes use of the ocean’s “deep sound

channel”, or Sound Fixing and Ranging (SOFAR) Layer, discovered by Maurice Ewing and

J. L. Worzel at Columbia University in 1943. This acoustic feature of the ocean occurs

because of changes in the speed of sound in water with temperature and pressure. Low

frequency sound in this layer of the ocean is trapped and refracted about the depth region

of minimum sound velocity, travelling thousands of kilometers horizontally with little loss

of signal.

The SOFAR float was designed to be neutrally buoyant at a given depth and to carry

a sound source made with a metal pipe about 25 feet long. This transmits sound into the

SOFAR layer at fixed time intervals. These signals were picked up by autonomous receivers

at fixed locations in the ocean, which recorded time of arrival of the signals. After a period

of study (perhaps as long as a year), the sources could be retrieved and the path of the float

determined by comparing the signals’ times of arrival. A later version of the system, the
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RAFOS system (SOFAR spelled backwards), placed the acoustic sources at fixed locations

and placed hydrophones on the floats. The floats would then record times of arrival of the

acoustic signals and then, after a period of operation, come to the surface by dropping a

weight and communicate their data via satellite. Note that these systems predate GPS, and

that their designs incorporated new technologies such as satellite communication as they

became available.

Further developments led to design of the bobber float, so called because it could control

its depth to cycle up and down. These floats control their buoyancy and depth using an

electrically powered pump to move oil between an internal reservoir and an external bladder.

While working in the late 1980’s at Webb Research Corporation (WRC) on this ballast

system, Doug Webb developed the idea of using a thermally powered buoyancy engine [76].

Such an engine would make use of the ocean’s thermocline, differences in temperature with

depth, to power the float’s travel between relatively warm surface water and the colder

depths. This would extend the number of possible dive cycles to thousands, in comparison

with a hundred or so cycles when powered by electric batteries. This engine concept is

described further in [80]. A central idea is that, during ascent from cold depths to the

relatively warm surface, the increase in temperature is used to warm and expand a working

fluid. This expansion is used to charge the buoyancy system for the next ascent from depth.

The possibility of deriving the energy for pumping from the ocean and the resulting

increase in endurance led Webb to extend his idea to the use of the thermal engine in an

underwater glider. Such a vehicle would utilize the up and down vertical profiling motion

of a float to also give control of the vehicle’s horizontal position. This insight led to the

development of the Slocum glider concept, described below.

Floats in the SOFAR and RAFOS systems were limited in their deployment area and
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range by the acoustic systems involved. This was overcome by development of the ALACE

(Autonomous LAgrangian Circulation Explorer) and PALACE (Profiling ALACE) floats,

which communicate by satellite. The ALACE system was developed in the late 1980’s by

Russ E. Davis’s group at Scripps Institute of Oceanography (SIO) and Doug Webb at WRC.

ALACE uses an electric buoyancy pump to control its buoyancy. Upon deployment at sea

it maintains a set depth and drifts with the current for a given period before surfacing to

obtain a GPS fix and communicate via satellite. The PALACE design included conductivity,

temperature and depth sensors (CTD) to take profile data when surfacing. The floats have

battery power for about 100 depth cycles, 150 in the newer APEX designs. A typical

mission might involve drifting for as much as five years at up to 2000 m depth, surfacing

periodically for communications until battery power is expended.

These types of floats have seen extensive use in oceanography, including in the large-scale

experiments such as the World Ocean Circulation Experiment (WOCE) in the 1990’s [21].

To date, thousands of these types of floats have been deployed in oceanography experiments

all over the world. New designs including the APEX float are based on ALACE. They

incorporate new design elements and have higher endurance. In November 2004 more than

1450 active profiling floats transmitted ocean data as part of the Argo global sensor array

[21].

Each innovation in float design has provided significant new scientific data and has

led to significant new scientific results and advances in the understanding of the oceans.

This shows how new technologies can drive the advancement of the oceanographic sciences.

Underwater gliders may lead to further advances in this manner.

Technology and concepts from the ALACE float design appear in several gliders. For

example, ALACE uses the ARGOS satellite system, which appears in some glider designs.
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The Leduc ballast pump design used in ALACE was modified and augmented for use in the

Spray and Seaglider ballast systems.

2.1.2 The Slocum Concept and “The Slocum Mission”

The underwater glider concept and its application to oceanography originated in the 1980’s

with Doug Webb and Henry Stommel in Woods Hole and Falmouth, MA. Both had worked

at WHOI, and Webb had started his own company, Webb Research Corporation, in Fal-

mouth. Stommel was a world-renowned oceanographer. Webb is known for, among many

other things, his innovative work in ocean engineering and instrumentation for oceanogra-

phy, as well as his extensive work on drifters for oceanographic sampling.

Stommel was both a friend and mentor to Webb, the two having worked together dur-

ing their time at WHOI. Stommel was known for developing insightful and uncomplicated

explanations for complex phenomena, including an explanation of the jet stream as a prod-

uct of the Coriolis force [96]. He has been described as “probably the most original and

important physical oceanographer of all time, (he) was in large measure the creator of the

modern field of dynamical oceanography” [96]. Among his extensive body of work is the

development of the modern concept of ocean circulation. It is interesting that both Stommel

and Webb had reputations for developing simple and novel explanations and approaches for

complex phenomena and problems in their fields. The underwater glider can be seen as a

product of this method.

Webb’s ideas for oceanographic gliders grew from work on oceanographic floats and

buoyancy systems. Floats were being designed to move up and down in the water, and were

moving towards autonomous designs. The thermal engine would mean they could perform

thousands of vertical cycles. Electric floats were limited by on-board power storage to a

19



few hundred cycles. Webb reasoned that a glider with wings and tail could make use of

this vertical motion to glide horizontally and control its position as well as depth. The

thermal ballast engine would give the glider tremendous range and endurance, provided

ocean conditions had the required thermal differences. By moving a battery or some other

mass around inside the hull, the glider could control its pitch and roll. By pitching, the

glider could control its glide angle, and by rolling the glider could turn and control its

heading. Gliders could not only move up and down like a float, drifting with the current,

but could also choose their path to travel anywhere in the ocean. This opened up tremendous

possibilities for glider applications.

Beginning in 1988, Webb described to Stommel his idea for the thermally powered

glider, and the two began work on the Slocum glider concept [34, 13]. Stommel proposed

the name Slocum, after the New Englander Joshua Slocum. Slocum was the first man

to circumnavigate the globe alone, a feat he accomplished in his small boat Spray and

chronicled in his book Around the World Alone. “On April 24, 1895, at the age of 51,

he departed Boston in his tiny sloop Spray and sailed around the world single-handed, a

passage of 46,000 miles, returning to Newport, Rhode Island on June 27, 1898. This historic

achievement made him the patron saint of small-boat voyagers, navigators and adventurers

all over the world” [82].

In April 1989 “The Slocum Mission”, a science fiction article by Henry Stommel, ap-

peared in the journal Oceanography [68]. Written from the perspective of an oceanographer

in 2021, working at the world headquarters for the Slocum oceanographic project, the article

envisions a fleet of one thousand thermally powered Slocum gliders continuously collecting

science data throughout the world’s oceans. The gliders would “migrate vertically through

the ocean by changing ballast, and they can be steered horizontally by gliding on wings
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at about a 35 degree angle. They generally broach the surface six times a day to contact

Mission Control via satellite. During brief moments at the surface, they transmit their

accumulated data and receive instructions telling them how to steer through the ocean

while submerged. Their speed is generally about half a knot” [68]. Stommel envisioned

480 “Sentinel Slocums” continuously traversing a series of tracks in the ocean to collect

data and sending it back to headquarters for standard weather analysis. The balance of the

glider fleet would be flexibly assigned to programs of scientific interest directed by academic

investigating scientists.

At the time Stommel wrote the article, these same tracks were being surveyed by ship

as part of the World Ocean Circulation Experiment (WOCE), and were covered only once

every year. Stommel’s article described the same track being covered monthly by the fleet

of sentinel Slocums. The article presents a detailed picture for the oceanographic use of

underwater gliders and gives a picture of their design that is still accurate today. Stommel’s

article also envisioned gliders crossing the Atlantic and an international round-the world

race (in 1996!) by autonomous gliders from the USA, Australia and France. It also pointed

out the important advantages of gliders including low cost, autonomy, range and endurance,

and potential for distributed and coordinated operation.

Working together, Webb and Stommel continued to developed the Slocum idea and

design. In 1990 they were awarded a contract by the Office of Naval Technology to develop

a battery powered prototype. The prototype Slocum design used an electrically powered

buoyancy system with a piston type ballast pump and a moving internal mass for pitch and

roll. The electric glider would be used to develop the glider vehicle technology, while work

on its thermal buoyancy engine was continued in a profiling float, to be integrated into the

glider later in the design process.
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In that same year, 1990, the first autonomous ALACE floats, developed by Russ E.

Davis at SIO and Doug Webb at WRC, entered service in the ARGO float program. The

floats were also deployed extensively in almost every part of the ocean for the World Ocean

Circulation Experiment during the 1990’s. As of 2003, thousands of autonomous floats have

been built and they have been deployed by more than 25 labs in nine countries [21].

In January 1991 WRC performed the first tests of the Slocum electric glider, conducting

29 dives to depths up to 20 m at Wakulla Springs in Florida. In November of that year,

operating from a small boat, they tested the glider at Lake Seneca, New York. At the same

time they tested the thermal buoyancy engine in a float. Testing was conducted at Lake

Seneca because it has sufficient depth and temperature gradient for the thermal engine.

The Slocum Electric Prototype tested at that time had all the main characteristics seen in

today’s underwater gliders, with an electric buoyancy pump, fixed wings and tail, and a

moving internal mass to control pitch and roll.

Henry Stommel passed away on January 17, 1992. Stommel’s life, career and research

are described in [96, 28], and in [74], a volume of personal notes and contributed essays by

friends and colleagues.

2.1.3 Other Glider Concepts

Two separate early projects on underwater gliders are of note. Possibly unrelated to the

development of gliders for oceanography, they appeared in the 1960’s and 1970’s. The first

set of references includes two internal technical reports on “Project Whisper”, a program at

General Dynamics to develop a buoyancy propelled gliding swimmer delivery vehicle for use

by the Navy. Project Whisper’s name may be assumed to refer to the acoustics of gliding.

The second reference is a paper in the ASME Transactions, “Optimum Design and Control
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of Underwater Gliders” [3], which looks at a simplified kinematic model of a glider and

examines choices of glidepath. This work apparently did not lead to further application,

design or construction.

The use of gliding for efficient travel also has biological inspirations. This is a relatively

recent discovery. Many marine mammals, including seals, dolphins and whales, use gliding

to conserve energy during deep dives, allowing them to make longer and deeper dives. At

depth, the bodies and lungs of these mammals compress enough that they become negatively

buoyant. They can then rest while gliding downwards for extended periods, and then swim

to ascend [84, 85].

Sperm whales use an even more sophisticated system to conserve energy. The head

of a sperm whale, comprising one third of the animal’s length, is mostly taken up by a

huge cavity of oil known as spermaceti. Using a specialized system of organs connected

to its blow-hole and running around this reservoir, the whale can heat and cool the oil by

circulating warm blood or cold seawater around it. In this manner the whale is able to

control the volume of the cavity and change its buoyancy [9].

2.1.4 Modern Gliders and Programs

It is an exciting time in the development of underwater gliders. The second half of the

1990’s saw increasing funding and support of the glider concept from the Office of Naval

Research, in part as an element of the AOSN initiative. This led to three programs to design

and develop oceanographic gliders: the Slocum glider at WRC, Seaglider at University of

Washington, and Spray at SIO. Within the last ten years, these groups have developed these

underwater gliders and deployed them in large-scale oceanography projects. These three

glider designs are now approaching the end of their development phase [34, 13]. Gliders
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also show great potential in other applications. Recent studies show exciting possibilities

for glider performance and future designs [32].

The year 2002 saw the first commercial sales of gliders. These electric Slocum gliders

sold by WRC to WHOI are the first to be operated by a group that had not built the glider

themselves. Early operations by the WHOI Glider Lab took place in Buzzards Bay, off

Cape Cod, MA. In January 2003 that lab, directed by David Fratantoni, deployed three

Slocum Electric gliders in operations from a vessel in the Bahamas. Tests of a thermally

driven Slocum glider were conducted by WRC concurrently.

Some dates of interest in the development of oceanographic gliders are:

1989 “The Slocum Mission” appears in Oceanography [68].

1990 Office of Naval Technology (ONT) awards WRC contract for Slocum prototype.

1991 Tests of Slocum prototype and thermal engine, Wakulla Springs FL and Lake Seneca,

NY.

1992 First deployment of the ALBAC glider, a shuttle type glider developed at the Uni-

versity of Tokyo in the lab of Tamaki Ura. The ALBAC design uses a drop weight

to drive the glider in a single dive cycle between deployment and recovery from ship.

It uses a moving internal mass to control pitch and roll [35]. ALBAC is described

further in Section 2.2.

1993 Autonomous Oceanographic Sampling Networks paper appears in Oceanography [10].

1999 Slocum gliders tested at LEO-15 Observatory, NJ. Slocum glider continue to be used

there for ocean sampling through 2005.

1999 Autonomous Ocean Sampling Network (AOSN) I conducted in Monterey Bay, CA.
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Gliders are used to make oceanographic surveys. A prototype Spray operates for 11

days. Three Seagliders were also deployed in the bay. [63, 14]

2000 By this time all three glider programs, Spray, Slocum and Seaglider, have completed

10 day missions.

2001 Spray glider makes 280 km section from San Diego [63, 13].

2002 Seaglider travels 1000+ km off Washington Coast. Another Seaglider is deployed for

month in storms off shelf near Seward Alaska.

2003 January. Deployments of three Slocum Gliders in the Bahamas by WHOI. Trials of

prototype thermal Slocum conducted by WRC on same cruise.

2003 February. SPAWAR and the Canadian Navy conduct tests in the Gulf of Mexico of

three Slocum Electric gliders equipped with acoustic modems.

2003 August - September. AOSN II conducted in Monterey Bay, CA. Gliders are used to

make extensive oceanographic surveys over a six week period. Twelve Slocum and five

Spray gliders are deployed during the experiment, to date the most gliders deployed

for one project.

2004 September - November. A Spray glider travels across the Gulf Stream, beginning

about 100 miles south of Nantucket, MA and arriving near Bermuda about one month

later [54]. The glider travels 600 miles, at a speed of about .5 miles per hour or 12

miles per day. Spray is the first AUV to cross the gulf stream underwater.
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2.1.5 Glider Research at Princeton

At Princeton University, Professor Naomi Leonard’s Dynamical Control Systems Lab con-

ducts research on the dynamics and control of underwater vehicles, underwater gliders,

groups of vehicles, and more general nonlinear systems (and many other topics). The

motivation for this group’s work on gliders comes from a control design and mechanics

perspective. One aim is to exploit the natural dynamics of these, and other complex sys-

tems, for improved control. Work on underwater gliders grew from initial theoretical and

experimental studies of the stability of rigid bodies in water.

The group’s theoretical and experimental work on underwater gliders first considered

wingless gliders including lifting bodies and flying wings, as well as possibilities for control

and operational flexibility due to those geometries (some of which are symmetrical front-to-

back). Experimental work includes the construction of several laboratory-scale underwater

gliders and other vehicles, including ROGUE (described below), a glider which uses multiple

internal ballast tanks in place of an actuated internal mass.

Some of this group’s related research and publications are described further in Section

2.3 and in Chapter 1.

2.2 Existing Underwater Glider Designs

As of 2003, three buoyancy driven autonomous underwater gliders, Slocum, Spray, and

Seaglider, have been developed and deployed by programs in the U.S. Spray, from SIO, and

Seaglider, from UW, are designed for deep-sea use at depths up to 1500 m. Electric Slocum

is designed for shallow or littoral applications at depths to 200 m. Thermal Slocum is

designed for deep-sea use and is under development. All grew from the initial Slocum glider
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concept. As of 2003, multiple gliders of each type have been manufactured and deployed

in large-scale oceanography projects. Work continues to adjust their design and software

to move them towards maximum performance. Their many useful features include low

operational and capital costs, high range and endurance due to minimal power consumption,

durability due to design and protection of actuator mechanisms within the hull, low noise

and vibration, and autonomous operation. They are of increasing oceanographic utility.

New sensors for physical, chemical and biological oceanography have been added since

the gliders’ first deployment or are under development. The gliders carry sensors such

as CTD’s, fluorometers (for optical backscatter and chlorphyll measurements), dissolved

oxygen sensors, PAR sensors, biological and other sensors. Integration of a sensor into the

gliders often involves adjustments of the sensor and packaging to meet the power, space,

and hydrodynamic requirements of the gliders. The gliders surface to obtain GPS position

fixes and communicate via satellite or radio.

The three glider designs are of similar dimensions, have fixed wings and tail, and use

internal mass actuators to control attitude. All use electrically driven buoyancy systems

and internal moving mass actuators (the thermally driven Slocum is under development

and prototype testing). These gliders are all designed for extended autonomous operation

for oceanographic sensing. They have mission durations of weeks or months, have ranges in

the hundreds or thousands of km, and travel relatively slowly - about 0.25 m/s ( .5 knot).

This speed is sufficient for many science applications. Glider range and speed vary with

factors such as glide angle, speed, depth, and sensor load (see Chapter 4). The Seaglider

has an estimated range of 6000 km or 900 cycles to 1000 m depth with a speed of 25 cm/s.

Spray’s range is estimated as 4000 km when travelling at 35 cm/s.

Spray and Seaglider use ballast systems derived from that used in the ALACE float,
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which uses a Leduc pump to move oil between an internal reservoir and an external bladder.

The Leduc pump is a hydraulic axial pump, and the glider pump designs use boost pumps

and redesigned compression ratios to allow operation of the pump in various attitudes and

to prevent un-priming of the pump due to air bubbles. These pumps are more efficient

at deeper depths. This plays an important role in glider range because most of the glider

energy budget goes to pumping work.

The Spray, Seaglider, and Thermal Slocum designs move internal masses to control both

pitch and roll. They control yaw and heading through roll, which produces a yaw. The

Electric Slocum controls pitch using an internal mass and yaw using a rudder. Its roll is set

by static weight distribution. The design difference for yaw control, use of a rudder instead

of roll, is due to the number and frequency of inflections at shallower operating depths

and the resulting number of rolling motions required to steer. Newer Slocum Thermal

prototypes also make use of a rudder. Steering is discussed in Chapter 4.

Internationally, two glider designs have been developed: ALBAC [35], at University

of Tokyo, and STERNE [45], at Ecole Nationale Superieure D’Ingenieurs (ENSIETA) in

Brest, France. These designs are described below. They share many features with the

three oceanographic gliders, but have different applications and have several unusual design

features. The ALBAC glider is driven by a drop weight instead of a ballast system, and the

STERNE glider is a hybrid design with both ballast control and a thruster.

2.2.1 Features of Existing Glider Designs

In this section we describe the designs of existing gliders. This is intended to show the

present state of the art in underwater gliders and to guide the development of our dynamic

model and its application to glider control and design.
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These designs have several features of interest in the design and dynamics of underwater

gliders, including:

• Ballast systems to control buoyancy.

• A design without a buoyancy system, propelled by a drop weight.

• Moving internal masses to control attitude, using one or two masses.

• Symmetrical designs with fixed wings for gliding both up and down.

• Wings of varying size, location and geometry.

• External surfaces for control, including a rudder.

• Tail surfaces that change angle at inflection from downwards to upwards glides.

• Use of low-drag hull shapes, including use of laminar flow shapes.

• Use of an internal pressure hull with an external hydrodynamic shroud.

• Use of an isopycnal hull (that has the same compressibility as seawater) to reduce

pumping work.

• A hybrid glider design using both buoyancy and a thruster for propulsion.

• Design of a large (1000 kg) glider.

2.2.2 Slocum

There are two types of Slocum Gliders, electrically powered gliders operating to 200 m

depths using a syringe type ballast pump, and thermally powered Slocums operating to

depths of 1500 m. As of 2003, the Thermal Slocum design is still in prototype testing,
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while Electric Slocums are a working vehicle. More than 21 Electric Slocums have been

manufactured and sold to groups including WHOI, SPAWAR, the Canadian Navy, Rutgers

University, and Scientific Fisheries.

The Electric Slocum is 1.8 m long. It glides to depths up to 200 m at speeds around 0.5

m/s. The hull is 1.5 m long and 54 cm in diameter. The tail is 0.3 m long. Slocum uses a

syringe type ballast pump with 500 cc volume capacity, housed immediately behind the nose

of the glider. Pitch is controlled by moving a battery pack, also located in the front section

of the hull. Roll is trimmed statically. Slocum has fixed wings, swept to avoid fouling by

seaweed or the like, with one meter span. The wing sections are flat plates. Slocum has a

vertical tail with a rudder. The tail also houses the antenna for GPS and communication

[80]. The Slocum glider is described further in Chapter 5 and in [78, 79].

2.2.3 Spray

The Spray oceanographic glider, developed at SIO, is two meters long and has a mass of 50

kg. Russ Davis’s research group at Scripps designed and operates the Spray gliders. Note

that Davis played a leading role in the development of the ALACE floats. Spray, named

after Joshua Slocum’s ship, is described in [63], which details the design, construction and

early operation of the glider.

Spray has a range in the thousands of kilometers, depending on speed, sensing, commu-

nications and other energy use. It uses lithium batteries, which have better energy density

and performance than alkaline batteries. [63] gives a table of estimated ranges for Spray -

one example is 4000 km at .35 m/s horizontal speed.

Spray has a cylindrical pressure hull with two wings and a vertical tail. A flooded

fairing forms the rear of the hull and houses the external oil-filled bladder for the ballast
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system. The hydraulic ballast pump is derived from the ALACE pump and uses an improved

design including an added priming pump and a greater compression ratio. These design

improvements make the pump more suitable for use in a glider by allowing it to operate

in different orientations and to avoid losing pump priming due to bubble formation in the

pumped fluid.

The Spray design uses two internal moving masses, one for pitch and one for roll. This is

different than the designs of Slocum and Seaglider, which move a single battery pack. The

roll actuator is a battery pack located in the nose of the vehicle and can rotate 360 degrees.

The pitch actuator is a battery pack moved by a rack and pin actuation system driven by

DC motors. The pitch battery has a range of travel of 10 cm, moving the vehicle center

of gravity (CG) up to 17 mm. For pitch control, Spray uses a proportional control with a

low gain, giving a desired overdamped response in pitch. The vehicle heading control uses

a proportional-integral loop, with a “fading memory” or “leaky” integrator. Glider control

is discussed in Chapter 6.

Spray’s antenna is located inside one of the wings, and the vehicle rolls on its side

to extend this wing above the surface for GPS and Orbcomm communication. The wing

aerodynamic center is located behind the vehicle CG, placing the vehicle center of lift 10

cm behind the CG and CB for stability. Stability of gliding motions is discussed in

Chapter 4.

2.2.4 Seaglider

Seaglider, from The University of Washington Applied Physics Lab, is designed for extended

oceanographic sampling missions. It has a range of roughly 6000 km, or 900 dives to

1000 m depth. It has a mass of 52 kg and its hull is made up of an internal pressure hull
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and an external fairing. The fairing is 1.8 m long with 30 cm maximum diameter and is

free flooding.

Seaglider is designed to dive as deep as 1500 m. Deeper dives increase the Seaglider

pump’s efficiency. The internal pressure hull is unusual in that it is designed to be isopycnal,

i.e., to have the same compressibility as seawater. Density layers in the ocean have a strong

effect on the pumping work required to propel a glider or float. The isopycnal hull reduces

the ballast pumping requirements. By matching the compressibility of seawater, “this

feature extends vehicle range by as much as fifty percent over a conventional stiff hull” [14].

The Seaglider external fairing uses a different design than other gliders. Its shape is

derived from a low drag laminar flow shape used by the Navy in target drones. The shape

is designed to reduce pressure drag by developing a favorable pressure gradient at the rear

of the vehicle.

Seaglider has a fixed wing with a one meter span and vertical tail fins located above

and below the body. The location of Seaglider’s wings near the rear of the vehicle causes

a reversal in the usual sense of coupling between roll and yaw. This is discussed further in

Chapter 4.

Pitch and roll are controlled by moving an internal battery pack. The system moves

the battery pack fore and aft to control pitch and rotates it to roll the glider. Seaglider

uses proportional and proportional-integral-derivative (PID) control loops to maintain pitch

and heading. Currents are estimated using a Kalman filter that includes tides and diurnal

cycles. To conserve power by reducing the vehicle hotel load, on-board systems including

the control system are powered down during steady glides. In this mode the pitch and yaw

controllers are turned on as little as every 500 seconds.
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2.2.5 ALBAC

Deployed and tested in 1992 in Sugura Bay, Japan, The ALBAC glider was developed at

the University of Tokyo in the lab of Tamaki Ura [35]. This design is notable because it is

a shuttle type glider designed to conduct dives from a ship and does not have a buoyancy

control system. ALBAC is driven by a drop weight which it carries on one downward glide

and then releases to ascend back to the surface, conducting a single trip to depth between

deployment and retrieval.

ALBAC has fixed wings and a vertical and horizontal tail. It is 1.4 m long, weighs 45

kg, and can dive to depths of 300 m at speeds of one to two knots (.5 to 1.0 m/s). It has

horizontal tail fins which change angle at inflection from downwards to upwards gliding, a

feature not present in other gliders. The wings and tail are larger in comparison to the body

than on Slocum, Spray or Seaglider. ALBAC moves a battery pack internally to control

pitch and yaw in the same manner as Seaglider. Because it has no ballast pump, ALBAC

carries batteries to power only its instruments and actuators.

ALBAC carries flight sensors including compass, depth, pitch, roll, and a propeller-type

velocity meter. Note that Slocum, Spray and Seaglider do not carry velocity meters, in

order to conserve power and because of the difficulty of accurately sensing velocity at glider

operating speeds.

The paper describing ALBAC also describes an interesting glider phenomenon. “Because

of small misalignment of tail and wings, the vehicle rolls a little even if weight hasn’t been

moved” [35]. This phenomenon of dynamic roll occurs in all gliders and is discussed further

in Chapter 4.

33



2.2.6 STERNE

The STERNE glider is under development at the Ecole Nationale Superieure D’Ingenieurs

(ENSIETA), in Brest, France. It is designed for long endurance missions and surveys close

to the seabed [45]. It is notable for its large size, use of a thruster, and relatively high power

use. STERNE is 4.5 m long, 0.6 m in diameter, and has a mass of about 990 kg. This is

significantly larger than the three oceanographic gliders (ten times by mass). STERNE is

designed to conduct surveys by gliding or by flying level using its thruster, located at the

rear of the vehicle behind the tail. Range is estimated as 120 miles. Its estimated speed is

2.5 knots (1.3 m/s) when gliding and 3.5 knots (1.8 m/s) when flying level with the thruster.

The thruster may also be used to power the glider during inflections in gliding flight.

The STERNE glider has a ballast tank with 40 liter (4000 cc) capacity, proportionally

slightly smaller than in the Slocum electric glider. A large battery pack is actuated to

control pitch. STERNE has two fixed wings. The design makes use of external control

surfaces, including two actuated horizontal tail fins and a vertical tail with rudder.

The use of a propeller makes the STERNE design a hybrid between a glider and a more

conventional AUV. Hybrid designs are discussed further in [32]. When using a thruster,

such a vehicle sacrifices much of the low power, long range and endurance of other glider

designs, but may be better suited to some applications. Surveying, mine detection and

countermeasures are examples of a military application that may involve level controlled

flight. (ENSIETA is administered under the French Ministry for Defense.)

Design of the STERNE glider also involved construction and testing of a 1/3 scale model,

which itself is the size of the existing oceanographic gliders. The model is 1.8 m long, 50

kg, and has a ballast range of +/- 630 grams (positive or negatively buoyant), much larger

than in the oceanographic gliders and more than twice as large as the Slocum Electric’s
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Figure 2.1: Experimental, laboratory-scale underwater glider ROGUE.

ballast tank.

2.2.7 The ROGUE Laboratory Glider

The ROGUE vehicle is an example of a glider design that is smaller and built for a different

purpose than the operational ocean-going gliders. ROGUE (Figure 2.1) is a laboratory-scale

gliding vehicle designed for experiments in glider dynamics and control [23, 25, 24, 42]. The

vehicle consists of a water-tight body, modular wings and tail, internal ballast actuators,

and on-board electronics and batteries. Using its on-board computer and sensors the vehicle

is capable of autonomous or remote operation. Buoyancy and pitch and roll are controlled

by differentially actuating the four internal ballast tanks.

ROGUE’s ellipsoidal body has axes of length 18, 12 and 6 inches. The vehicle body con-

tains the vehicle actuators, power, computer and sensors, and has mounts for the modular

vehicle wings and tail. Different sets of wings and tail can be attached to perform experi-

ments with different vehicle hydrodynamic profiles. We note that the body and wings have

not been designed for optimal gliding performance but rather in consideration of available

facilities and other manufacturing constraints. Experiments are currently planned using the

ROGUE vehicle in our twenty-one-foot diameter laboratory tank and in an olympic sized

pool at Princeton University.

In the configuration shown in Figure 2.2, each wing has span of 28 inches with aspect

ratio 9.3. The wings use symmetric Selig airfoils designed for low Reynolds number flight.
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Figure 2.2: ROGUE with hull open.

The vertical tail is designed to give yaw stability in forward glides and is modular, allowing

tail volume to be changed. The glider body, wings and tail are all machined from UHMW

(ultra-high molecular weight) plastic. In Figure 4.2 the top half of the vehicle is separated

from the bottom so the internal components are visible. The metal box at the center of the

vehicle contains the vehicle on-board computer. Two syringe-type ballast tanks are visible,

one on each side of the computer housing. Visible to the left of each ballast tank is its

driving servo (they appear as black squares). To the right of the computer housing are two

white battery packs.
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2.3 Literature Review

Here we present a brief review of published work on gliders and research in related areas,

grouped by topic.

Aircraft

A significant body of work exists on the design, aerodynamics and control of aircraft. Some

of this work is applicable to analysis of glider hydrodynamics and control. Differences

between aircraft and underwater gliders are discussed in Section 7.1. Thorough texts on

aircraft and their dynamics include [15, 48, 43, 56] (as well as many others). References

on the aerodynamics of aircraft and their component shapes, and much else, are useful

in evaluating the hydrodynamics of gliders. Comprehensive references on aerodynamics

and hydrodynamics include [27, 26, 60, 37, 46]. References on aircraft design include [52].

Evaluation of aircraft aerodynamics is included in [8, 55, 62, 61] . Aircraft control and

dynamics are covered in [57, 58, 44, 7].

Also of relevance to underwater gliders is research on the dynamics of blimps [53] and

other lighter-than-air craft. These share with gliders the properties of buoyancy and ap-

parent or added mass. These effects become significant when a vehicle moves through a

fluid of the same order density as the vehicle. Apparent mass effects are also important in

ultralight aircraft and in aggressive aircraft maneuvers.

Gliders share many characteristics with sailplanes, which are unpowered aircraft de-

signed for extended flight. Sailplanes are designed principally for maximum aerodynamic

gliding performance and very high lift/drag ratios. They use thermally driven updrafts to

gain altitude and extend their flight. Path planning for sailplanes involves choices between

flight inside thermals to gain altitude, flight at minimum vertical sink rate, and higher
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speed flight during transits between thermal updrafts. The goal of such planning is often

maximum time aloft or maximum range, problems similar to those of underwater gliders.

In addition to the aircraft literature, references on sailplanes include [95, 93, 94]. Path

planning for sailplanes is addressed in [33, 31], among others.

Marine Vehicles and AUVs

There is a significant body of work on the hydrodynamics, dynamics and control of ships,

submarines and underwater vehicles. Along with sharing the hydrodynamics literature

mentioned above, dynamics of marine vehicles are covered specifically in [17, 16, 59]. Fossen

[17] covers modelling of dynamics and control for ships and underwater vehicles including

AUV’s. Other references on underwater vehicles include [29, 41].

Newman [46], Lamb [39] and Hopkins [30] address hydrodynamics, including added mass

effects and phenomena specific to marine vehicles.

Internal Mass Control

Vehicle attitude control using actuated internal masses is a novel concept and still the

subject of active research. It has been proposed for applications in control of aerospace

vehicles such as satellites and reentry warheads. Use of reaction wheels to control satellite

attitudes is used in some existing satellites. [51, 70, 83] address use of moving masses in

aerospace vehicles, including missile warheads during atmospheric re-entry. They investigate

use of actuators including internal masses and strap-down mass actuator units. Control in

these applications makes use of the aerodynamics and spinning motion of the vehicle, and

the coupling between the internal mass actuator and the vehicle dynamics.

Leonard and Woolsey address the use of internal mass actuators in underwater vehicles
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[87, 41, 90, 91, 86, 92, 88]. This work includes use of internal moving masses and spinning

rotors for stabilization and control of underwater vehicles.

Underwater Gliders

A number of glider references are already described in Section 2.1.

Papers by Webb and others working on the Slocum vehicle [79, 80] are some of the

earliest on the underwater glider dynamics and optimization. They discuss use of glider

steady state glide equations to choose glide path angle, speed, and ballast loading.

“Autonomous Oceanographic Sampling Networks” [10], by Curtin, Bellingham, Catipovic

and Webb, appeared in Oceanography in 1989. In it they propose use of a network of ships,

moorings, floats, and AUV’s, including gliders, for oceanographic sampling.

An IEEE Journal of Ocean Engineering 2001 special issue on AUVs includes papers

on the design and deployment of Seaglider [14], Spray [63] and Slocum [80]. These include

discussion of hydrodynamic and mechanical design of the gliders, on-board electronics and

sensors, choice of glidepaths, energy use and ranges, and navigation and control. These

papers include analysis of the equilibrium performance of the gliders and results from in-

water tests and deployments. Discussion of the design choices of hydrodynamic hull shapes,

ballast systems, control systems, sensors, and much else provide valuable insight into issues

in underwater glider dynamics and control.

Work on glider dynamics and control by Leonard and Graver [42], incorporated in this

dissertation, also appeared in this JOE special issue. Other papers on this research include

[25, 24, 22]. Related work by Leonard and Bhatta [5] extends this work to control of multiple

gliders.

“Guidance and Control of an Autonomous Underwater Glider” [45] by Moitie and Seube,
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appeared in 2001 and uses a model of a glider in the vertical plane, adapted from an aircraft

gust model, to design glider controllers. The model includes use of ballast control and is

used to look at inflection performance and stability. A controller for angle of attack and

a sliding mode control for following a reference trajectory are presented. The paper also

contains a brief description of the STERNE glider design.

“Optimal Path Planning and High Level Control of an Autonomous Gliding Underwater

Vehicle” [18], an MIT master’s thesis by Anna Galea, describes methods for path planning

for gliders travelling in a known current field. It models a glider, based on the Slocum

design, navigating through a current field, and presents several computational methods for

generating energy efficient paths between waypoints.

“Optimization Criteria and Hierarchy of Mathematical Models of an Underwater Gliding

Vehicle” [72], by Russian author Ulanov A. Vladimirovich, presents a model of the longi-

tudinal dynamics of a vesoplan (underwater glider) with two ballast tanks and an internal

mass actuators. The model is used to develop a control law for glide stabilization.

“Technology and Applications of Autonomous Underwater Vehicles”, published in 2003,

surveys the developments and technologies of AUVs. It contains a chapter on gliders, “Au-

tonomous Buoyancy-driven Underwater Gliders”, written by Russ E. Davis (SIO), Charles

C. Ericksen (UW), and Clayton Jones (WRC), three principals in the existing oceanographic

glider programs.

A recent report for ONR, “Underwater Glider System Study” [32], contains work by all

of the research groups currently working on glider design in the U.S. It presents analysis

of the three existing oceanographic gliders, analysis of the maximum possible performance

envelope of gliding underwater vehicles, parametric design studies, and proposals for future

glider applications including military use. It includes analysis of the hydrodynamics and
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flight of their gliders as well as a flying wing design. The report discussed maximum possible

ranges, sizes and speeds for underwater gliders, the effect of scaling and ballast size, and

more. Future applications of gliders and sensors are discussed. A discussion of alternative

glider geometries such as blended wing bodies and flying wings is included. Also see

Chapter 7.
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Chapter 3

Modelling of Gliders

This chapter develops a model of the dynamics of an underwater glider. The glider has a

body with fixed wings and tail, ballast control, controlled internal moving mass, and external

control surfaces such as a rudder. The dynamic model is developed from first principles

and is intended to include the important elements of glider dynamics without unnecessary

complexity. The main elements in the model are glider configuration and geometry, the

forces of gravity and buoyancy, the effects of added mass and inertia due to motion in a

dense fluid, hydrodynamic forces including lift, drag and moment, and the control of moving

internal masses and ballast. Provisions are included to account for external control surfaces

such as a rudder and ailerons. The model includes the nonlinear coupling between the

moving internal mass and the glider dynamics.

The model presented here expands on the glider model presented by Leonard and Graver,

[42] and [24]. The development here follows along the lines of those papers and adds elements

to model additional internal masses and external control surfaces. This produces a more

detailed glider model and allows the model to be adapted in Chapter 5 to model an existing

glider.

42



As described in the Introduction, applications of the model include analysis of glider

dynamics, control and navigation, design, among others. Development and application of

the model is intended to complement other work on gliders and glider dynamics, including

work on Slocum, Spray and Seaglider. With this in mind, a widely applicable approach

is emphasized, rather than one that is vehicle-specific. The model development takes into

account the design of existing gliders and incorporates elements, including the number and

location of internal masses and ballast tanks, allowing it to be tailored to a specific glider. In

this chapter the model is adapted to match the Slocum glider. Chapter 5 details parameter

identification from flight tests of a Slocum glider. Simplified versions of the model are used

for analysis of glider dynamics, Chapter 4, and control analysis, Chapter 6, as well as in

the analysis of glider design and scaling, Chapter 7.

This chapter is arranged as follows: Section 3.1 introduces the glider kinematics to

track the glider’s orientation, position and motion. The inertial and body-fixed frames of

reference and conversions between them are introduced. The wind frame is introduced to

track the relative velocity of the glider through the water. Provisions are made to account

for currents.

Section 3.2 develops the dynamic model of the glider, including the three dimensional

equations of motion. Section 3.2.1 describes the model of the vehicle body and internal

masses. The model includes three internal masses: a ballast mass with fixed position and

variable controlled mass, a moving mass whose position is controlled and whose mass is

fixed, and a static offset mass whose position and mass are fixed. The dynamic model

includes the coupling between these masses and the glider motion. Section 3.2.2 adds forces

due to buoyancy and gravity.

In Section 3.2.3, the glider equations of motion in three dimensions with a controlled
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internal moving mass and ballast mass are derived from first principles. The control on

the internal moving mass is the force on the mass, and the ballast control is the ballast

pumping rate. Section 3.2.4 introduces a change of states and a control transformation,

making the moving mass control the acceleration of the moving internal mass. This provides

a ‘suspension system’ for the internal masses. It allows the internal masses to be fixed in

place within the glider and improves the stability of glides (discussed in Chapter 4). It

is also more consistent with the implementation of the internal masses in existing gliders.

Section 3.2.5 presents the glider equations after the state and control transformation, where

the control is the point mass acceleration and the ballast rate. This model is simplified

in Section 3.2.6 by restricting the arrangement of the internal masses. The ballast mass is

fixed at the center of the body-fixed frame and the static offset mass is eliminated. This

reduces the complexity of the model terms while preserving the principal elements of the

glider model. This facilitates the study of glider dynamics and control in later chapters and

should be useful in future work. This ‘simplified mass’ arrangement is used in [42] and [24].

Section 3.2.7 introduces model terms for hydrodynamic lift, drag and moment on the

glider. These terms are left in a general form to be specified at the level of detail required for

a specific application. The model may include the effects of hydrodynamic control surfaces.

Some analysis in later chapters uses a coefficient-based, quasi-steady hydrodynamic model

briefly introduced here.
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3.1 Glider Model: Kinematics

3.1.1 Frames of Reference

Inertial Frame

Consider an inertially fixed, non-rotating reference frame xyz. For marine vehicles this

may be taken to be an earth-fixed frame and accelerations may be neglected. Let the x and

y inertial axes lie in the horizontal plane, perpendicular to gravity. The z axis lies in the

direction of the gravity vector and is positive downwards. Let i, j, k be the unit vectors in

the x, y, z directions, respectively, as shown in Figure 3.1. This choice of inertial frame is

consistent with the underwater vehicle literature, as in [17] and others. The inertial frame

may be chosen such that z = 0 coincides with the ocean’s surface, in which case z is depth.

Body-Fixed Frame and Kinematics

Assign a coordinate frame fixed to the glider vehicle body with its origin at the glider center

of buoyancy (CB) and its axes aligned with the principal axes of the glider. Let body axis

1 lie along the long axis of the vehicle (positive in the direction of the glider’s nose), let

body axis 2 lie in the plane of the wings and body axis 3 point in the direction orthogonal

to the wings as shown in Figure 3.1.

The orientation of the glider is given by the rotation matrix R. R maps vectors expressed

with respect to the body frame into inertial frame coordinates. R may be parameterized

using Euler angles or quaternion parameters. See Appendix A or [20, 66, 17]. The XYZ, or

yaw, pitch, roll convention, is the standard Euler angle convention in aircraft and underwater

vehicle dynamics and is utilized here. The rotation from inertial to body reference frame

is parameterized by three angles: yaw ψ, pitch θ and roll φ. Yaw ψ is defined as positive
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Figure 3.1: Frame assignment on underwater glider.

right (clockwise) when viewed from above, pitch θ is positive nose-up, and roll φ is positive

right-wing down. Rotation matrices are given in Appendix A.

The position of the glider, b = (x, y, z)T , is the vector from the origin of the inertial

frame to the origin of the body frame as shown in Figure 3.2. The vehicle moves with

translational velocity v = (v1, v2, v3)
T relative to the inertial frame and angular velocity

Ω = (Ω1, Ω2, Ω3)
T , both expressed in the body frame. (Note that we have diverged from

the notation typical of the submarine literature where v = (u, v, w)T and Ω = (p, q, r)T .

The notation that we use here is taken from texts in classical mechanics such as [20] and is

more convenient for the derivation and analysis.)

Define the operator ˆ so that for a vector x = (x1, x2, x3)
T ,

x̂ =

















0 −x3 x2

x3 0 −x1

−x2 x1 0

















.
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Then, for vector y = (y1, y2, y3)
T ,

x̂y =

















0 −x3 x2

x3 0 −x1

−x2 x1 0

































y1

y2

y3

















= x × y,

i.e., the operator ˆ maps a vector x to the (skew-symmetric) matrix representation of the

vector cross product operator.

In this notation, the kinematics of the glider are given by

Ṙ = RΩ̂ (3.1)

ḃ = Rv. (3.2)

W

v

R

b

1e

2
e

3
e

i
j

k

Figure 3.2: Glider position and orientation variables

3.1.2 Currents

Glider operation may occur in the presence of currents, where the fluid is in motion relative

to the inertial reference frame. Here any variation in currents will be modelled as occurring
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over length scales several orders of magnitude greater than the glider’s length. Therefore,

wind shearing effects may be neglected. This is a common assumption in aircraft and

underwater vehicle literature. For treatment of wind shear effects when this assumption

does not hold, see [15] and [17].

Let vr be the velocity of the glider relative to the fluid, expressed in the body frame. Let

V c = (Vcx, Vcy, Vcz) be the velocity of the fluid relative to the inertial frame as expressed in

the inertial frame. Then

vr = v − RT V c

and

ḃ = Rv = Rvr + Vc

Note that the hydrodynamic forces on the vehicle are a function of vr. Except when

specified otherwise, this dissertation takes currents Vc to be zero, i.e., v = vr. Note that in

much of the analysis this assumption does not change the glider’s dynamics. The difference

between many gliding motions with or without currents is simply the superposition of the

current velocities onto the glider motion without currents. Navigation with respect to the

inertial frame must account for the effect of currents. It should also be noted that in

oceanographic applications the ability of gliders to determine the local current is important

for both navigation and scientific data collection. Sensors capable of doing this include

acoustic doppler current profilers (ADCPs) and doppler velocity logs (DVLs).

3.1.3 Wind Frame

The hydrodynamic forces on an underwater vehicle depend on the velocity and orientation

of the vehicle relative to the fluid through which it moves. The velocity of the glider relative
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to the fluid is vr as specified above. In the absence of currents, i.e. when the fluid is at

rest with respect to the inertial frame of reference, vr is equal to glider velocity v. Assign

a wind reference frame to track the glider orientation with respect to the glider’s relative

velocity through the water, vr.

As is standard in aircraft literature [15, 66, 48], the orientation of the wind frame relative

to the body frame will be described by two aerodynamic angles, the angle of attack α and

the sideslip angle β. The wind reference frame is defined such that one axis is aligned with

vr. The aerodynamic angles are defined as

α = tan−1

(

vr3

vr1

)

and β = tan−1

(

vr2

‖vr‖

)

.

These angles are well-defined for nonzero velocities with use of the four-quadrant arctangent.

Angle of attack α is the angle from the body e1 axis to the vector (vr1, 0, vr3)
T , the

projection of the v vector onto the e1 - e3 plane. The sideslip angle β is defined as the

angle from the projection of vr on the e1 - e3 plane to the vector vr. Angles α and β and

their positive directions are shown in Figure 3.3.

v

v

v

V

a

b

wind axes

2

3

1

Figure 3.3: Wind frame and aerodynamic angles relative to body frame [89].

Define the wind frame to have its origin at the glider center of buoyancy (CB) and its
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orientation defined by the velocity of the glider through the water as follows. Let wind axis

w1 point in the direction of vr, the glider velocity relative to the water. The orientation of

wind axes w2 and w3 are defined by the following sequence of rotations:

1. Begin with the wind frame coincident with the body frame, with wind axes w1, w2,

w3 aligned with body axes e1, e2, e3, respectively.

2. Rotate about wind axis w2 by angle α. Positive α is shown in Figure 3.3. Note that

this is opposite the normal positive direction as given by the right-hand rule. Let

Rα(α) represent this rotation.

3. Rotate about wind axis w3 by angle β. This rotation is written as Rβ(β) and follows

the normal sense of rotation, as shown in the figure.

Note that the wind axis w3 lies in the body e1-e3 plane. Rotation from the body frame

to the wind frame is then given by RBW (α, β) = RβRα.

Rα(α) =

















cos α 0 sinα

0 1 0

− sinα 0 cos α

















, Rβ(β) =

















cos β sinβ 0

− sinβ cos β 0

0 0 1

















. (3.3)

RBW (α, β) = RβRα =

















cos α cos β sinβ sinα cos β

− cos α sinβ cos β − sinα sinβ

− sinα 0 cos α

















(3.4)
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The inverse rotation from wind to body frame is simply the transpose,

RWB(α, β) = (Rα)T (Rβ)T =

















cos α cos β − cos α sinβ − sinα

sinβ cos β 0

sin α cos β − sinα sinβ cos α

















RWB maps vectors expressed with respect to the wind frame into body frame coor-

dinates. Writing the body relative velocities in terms of relative speed Vr = |vr| and

aerodynamic angles α and β gives

vr =

















vr1

vr2

vr3

















=

















Vr cos β cos α

Vr sinβ

Vr cos β sin α

















.

3.2 Glider Model: Dynamics

In this section the glider equations of motion are derived from first principles, using a com-

putation of the total system energy to determine the vehicle momenta and then applying

Newton’s laws. The derivation of the model follows the lines of the glider model derived in

[42] and adds additional elements. Related references by Woolsey and Leonard on under-

water vehicle dynamics with internal mass actuators include [41, 86, 87, 91, 92, 88]. These

include Newtonian and Hamiltonian analysis of the dynamics of underwater vehicles with

moving internal masses or internal rotors, as well as work on stabilization and control of

those vehicles. There is an extensive body of research on underwater vehicle dynamics, in-

cluding [17, 39, 59]. In [42], the ballast system is fixed at the glider CB and the only point

mass offset from the CB is the controlled moving mass. The model presented here has
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additional terms to account for an offset location of the glider ballast system, an additional

fixed mass offset from the CB, and external control surfaces such as a rudder.

The choice of internal masses in the vehicle takes into account the designs of existing

oceanographic gliders. In these gliders the ballast systems are located at the nose or tail of

the vehicle in order to provide a pitching moment from a change of ballast. Their moving

internal masses are located according to the vehicle geometry and space limitations and have

a fixed range of travel. In the case of the Slocum glider, for example, both the ballast system

and the sliding mass are located in the nose of the vehicle, well forward of the glider CB. The

offset static mass is included in the model in order to properly model the static balance and

CG location of the vehicle. Adjusting the parameters corresponding to the static mass make

it possible to match the static balance and inertia of the oceanographic gliders. Simplified

versions of the model are used for analysis and control purposes, considered in Chapters 4

and 6.

3.2.1 Vehicle Model

The glider dynamics model derived here describes a glider with general body and wing

shape. We model the underwater glider as a rigid body, immersed in a fluid, with fixed

wings and tail. The glider has buoyancy control and a controlled internal moving mass.

The body-fixed coordinate frame has its origin at the vehicle CB and its axes aligned with

the principal axes of the vehicle as described in Section 3.1.1.

The total stationary mass of the glider ms, also referred to as body mass, is the sum

of three terms: ms = mh + mw + mb. Hull mass mh is a fixed mass that is uniformly

distributed throughout the body of the glider. Three internal point masses are included in

the model. This allows the model to be tailored to model existing glider designs, such as
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Slocum (see Chapter 5). mw is a fixed point mass that may be offset from the CB. mb is

the variable ballast point mass, which may also be offset from the CB. The moving internal

point mass is m̄. The internal masses and position vectors are illustrated in Figure 3.4.

The total mass of the vehicle is then

mv = mh + mw + mb + m̄ = ms + m̄.

The positions, in the body frame, of point masses mw and mb are given by the vectors

rw and rb from the CB to the respective masses. The vector rp(t) describes the position

of the moving mass m̄ in the body-fixed frame at time t.

The static mass parameters mw and rw may be set to balance the pitching and rolling

moment on the glider from the other point masses and to set the vehicle inertia. Model

parameter identification is discussed in Chapter 5.

The mass of the fluid displaced by the vehicle is denoted m. Define the net buoyancy

to be m0 = mv − m so that the vehicle is negatively (positively) buoyant if m0 is positive

(negative).

m

CB

pr

m
b

mh

mw
wr

variable
ballast  mass

fixed mass

, distributed hull mass

movable mass

br

i

j

k

Figure 3.4: Glider mass definitions.
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Let Jh denote the inertia matrix, with respect to the body frame, for the uniformly

distributed hull mass mh. The inertia matrix for the stationary (body) mass expressed

with respect to body frame coordinates is

Js = Jh − mwr̂wr̂w − mbr̂br̂b.

Modelling Different Ballast Systems

As mentioned above, the choice of internal masses for the model is motivated by the geom-

etry of the Slocum, Seaglider and Spray gliders. In the Slocum design, ballast mass mb and

moving internal mass m̄ are both well forward of the glider CB (as described in Chapter

2). In Seaglider and Spray the ballast systems are located in the tails of the vehicles, aft of

the vehicle CB. In the Slocum glider the ballast system is a syringe-type ballast tank which

takes in water to become negatively buoyant. The placement of the ballast system in the

nose gives a nose-down moment from the ballast when the vehicle is negatively buoyant.

The Spray and Seaglider designs control ballast using an external oil-filled bladder. This

is a balloon connected through a pump to an oil reservoir inside the hull. Pumping oil into

the external bladder displaces water with (less dense) oil and increases buoyancy, while

pumping oil from the external bladder to the in-hull reservoir reduces buoyancy. This also

results in a moment on the vehicle, whose magnitude and direction depend on the location

and volume of the internal and external reservoirs.

Ballast systems of this type may be analyzed using the model presented here. The

volume of the fully inflated external bladder may be treated as a control volume, and

the corresponding mass within that volume modelled as a ballast point mass. When the

external bladder is inflated, the ballast mass is the mass of the inflated bladder and oil.
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When the bladder is deflated, the ballast mass is equal to the mass of water in the control

volume. The internal oil reservoir may be modelled as a separate ballast mass, or the

internal and external ballast reservoirs may be approximated by one point mass located at

an intermediate position. The choice of whether to model this system with one or two ballast

masses will depend on the distance between the two reservoirs, the relative magnitude of

the moments they exert on the glider at different ballast states, and the desired level of

detail in the model.

Controlled Internal Masses

Control is applied to two point masses inside the vehicle: the ballast mass has variable mass

mb but fixed position rb, while moving point mass m̄ has fixed mass but variable position

rp. Control input ṁb specifies the rate of change of the ballast mass and another control

input vector corresponds to the force applied to the movable mass.

The Spray glider design has two moving masses, one mass actuated in the roll direction

and the other in the pitch direction. To model this, a second controlled moving mass may

be added to the model given below. Adding a second moving mass to the derivation below

is a straightforward operation. Additional masses will appear as terms similar to those of

m̄, mb and mw.

3.2.2 Restoring Forces: Buoyancy and Gravity

Underwater gliders are subject to the forces of gravity and buoyancy. In underwater vehicle

terminology these are referred to as restoring forces. The gravitational force on the vehicle,

mvg, acts in the positive (downwards) inertial k direction at the vehicle center of gravity
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(CG). The CG is the mass-weighted centroid of the vehicle. Its position is given by

rCG =

∫

rρ(r)dV
∫

ρ(r)dV
.

Where ρ(r) is density, dV is a volume element and the integration is performed over the

vehicle volume. For the glider masses defined here,

rCG =

∑

i miri
∑

mi
=

mhrh + mwrw + mbrb + m̄rp

mh + mw + mb + m̄
. (3.5)

Note that both internal controlled masses, mb and m̄, appear in this equation. Also, rh,

the position in body coordinates of the centroid of the hull mass, is always zero because

the hull mass is modelled as uniformly distributed. Therefore, the CG of the uniformly

distributed hull mass always coincides with the CB of the glider (which is the origin of the

body frame), so rh = 0.

The buoyant force on the glider is due to displacement of the fluid by the glider volume,

as determined by Archimedes’ Principle. This force results from the net pressure exerted by

the fluid on the vehicle surface. The glider center of buoyancy (CB) is the centroid of the

displaced volume. The net buoyant force acts at the CB and is equal to mg, where m is the

mass of the displaced fluid. The buoyant force acts in the negative (upward) k direction.

The net buoyancy force is m0g = (mv − m)g, so that the vehicle is negatively (positively)

buoyant if m0 is positive (negative). Expressed in the body frame, the gravitational and

buoyant forces are fgravity = mvg(RT k) and fbuoyancy = −mg(RT k). The CG is offset

from the CB by vector rCG and the resulting gravitational torque on the vehicle, written
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in the body frame, is

τgravity = rCG × mvg(RT k) = mvgr̂CG(RT k).

Because the origin of the body-fixed frame is defined as coincident with the vehicle centroid

(and CB), torques due to the buoyancy of the vehicle (which acts at the CB) are zero in

the body frame. From 3.5,

mvrCG = mwrw + mbrb + m̄rp.

and so the net torque is equivalently

τgravity = (m̄r̂p + mwr̂w + mbr̂b)g(RT k).

The restoring torque on the glider provides a righting moment. It will be shown in

later sections that the equilibrium orientation of the neutrally buoyant glider at rest, with

m0 = 0 and vr = 0, has the CG and CB along the same line in the vertical (k) direction,

so that the torque due to gravity is zero. Stability of equilibria will depend on whether the

CG is above the CB (unstable) or below the CG (stable). See also [41].

3.2.3 Glider Equations of Motion

The glider equations of motion are derived here by computing momenta from the total

vehicle-fluid system energy and applying Newton’s laws.

Let p represent the total translational momentum of the vehicle-fluid system and π the

total angular momentum of the system about the inertial coordinate origin, all expressed
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with respect to the inertial frame. Let pp represent the total momentum of the movable

point mass m̄ with respect to the inertial frame. Likewise, pb and pw represent the total

momentum of the ballast mass mb and the offset point mass mw with respect to the inertial

frame. Then Newton’s laws state that

ṗ =
I

∑

i=1

fexti
,

π̇ =
I

∑

i=1

(xi × fexti
) +

J
∑

j=1

τextj
,

ṗp = m̄gk +
K

∑

k=1

fint pointmassk
, (3.6)

ṗb = mbgk +
L

∑

l=1

fint ballastl
,

ṗw = mwgk +
N

∑

n=1

fint wn ,

where k is the unit vector pointing in the direction of gravity, fexti
is an external force

applied to the system and τextj
is a pure external torque. All vectors are expressed with

respect to the inertial frame. The vector xi locates the point of application of the force

fexti
with respect to the inertial coordinate frame. These external forces and torques

include those due to gravity and buoyancy; however, gravity is included explicitly in the

last three equations as it is the only external force acting on these point masses. The force

fint pointmassk
is a force applied from the vehicle body onto the point mass. This will be

used as a control force. The forces fint ballastl
and fint wn are the forces applied from

the vehicle body onto the ballast and offset point masses, mb and mw. These two masses

are fixed in place in the vehicle (see Section 3.2.4). The equations in (3.6) corresponding

to the fixed internal mass mw and ballast mass mb have the same form as the equation

corresponding to m̄. Because mw and mb have fixed positions within the vehicle, the
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internal forces on them are considered to be constraint forces and not controls. These

constraint forces will be determined by the motion of the glider.

Let P be the momentum (with respect to the inertial frame) of the vehicle-fluid system

expressed with respect to the body frame. Let Π be the total angular momentum about

the origin of the body frame, also in body coordinates. Note that these terms include

the momentum of the glider internal masses. Let Pp represent the point mass momentum

expressed in the body frame. Pb and Pw represent the ballast mass and offset point mass

momenta in the body frame:

p = RP ,

π = RΠ + b × p,

pp = RPp, (3.7)

pb = RPb,

pw = RPw.

Differentiating Equations (3.7) with respect to time and using the kinematic expressions

(3.2) and (3.1) gives

ṗ = R(Ṗ + Ω̂P ),

π̇ = R(Π̇ + Ω̂Π) + Rv × p + b × ṗ,

ṗp = R(Ṗp + Ω̂Pp), (3.8)

ṗb = R(Ṗb + Ω̂Pb),

ṗw = R(Ṗw + Ω̂Pw).
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Substituting (3.6) into (3.8) for the rate of change of inertial momenta gives the following

dynamic equations in body coordinates:

Ṗ = P × Ω + RT
I

∑

i=1

fexti
, (3.9)

Π̇ = Π × Ω + P × v (3.10)

+ RT

(

I
∑

i=1

(xi − b) × fexti

)

+ RT
J

∑

j=1

τextj
,

Ṗp = Pp × Ω + m̄g(RT k) + RT
K

∑

k=1

fint pointmassk
, (3.11)

Ṗb = Pb × Ω + mbg(RT k) + RT
L

∑

l=1

fint ballastl
, (3.12)

Ṗw = Pw × Ω + mwg(RT k) + RT
N

∑

n=1

fint wn , (3.13)

where RT ∑K
k=1 fint pointmassk

is the internal force acting on the point mass m̄ in body

coordinates. Let

ū =

















ū1

ū2

ū3

















= Pp × Ω + m̄g(RT k) + RT
K

∑

k=1

fint pointmassk
(3.14)

so that

Ṗp = ū.

Note that ū is not the internal force on the point mass because the centrifugal and gravi-
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tational forces on m̄ have been included in the expression for ū Likewise, let

ub =

















ub1

ub2

ub3

















= Pb × Ω + mbg(RT k) + RT
L

∑

l=1

fint ballastl
(3.15)

and

uw =

















uw1

uw2

uw3

















= Pb × Ω + mwg(RT k) + RT
N

∑

n=1

fint wn (3.16)

so that

Ṗb = ub

and

Ṗw = uw.

The viscous hydrodynamic forces and torques on the glider, included in
∑I

i=1 fexti
and

∑J
j=1 τextj

, depend on states v and Ω. Therefore Equations (3.9)-(3.13) will not be used

as the glider equations of motion and will instead be written in terms of a new set of states

which include v and Ω. To derive expressions for P , Π, Pp, Pb and Pw, we determine the

total kinetic energy of the glider-fluid system. The kinetic energy Ts of a rigid body with

total mass ms, CG position rs in the body frame (equal to rCG) and inertia matrix Js is

Ts =
1

2









v

Ω









·









msI −msr̂s

msr̂s Js

















v

Ω









,

where I is the 3 × 3 identity matrix.
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Let vp be the absolute velocity of the movable point mass m̄ expressed in body coordi-

nates. Given that the velocity of m̄ relative to the body frame is ṙp, we compute

vp = v + ṙp + Ω × rp . (3.17)

The kinetic energy Tp of the movable point mass is then computed to be

Tp =
1

2
m̄‖vp‖2 =

1

2

















v

Ω

ṙp

















·

















m̄I −m̄r̂p m̄I

m̄r̂p −m̄r̂pr̂p m̄r̂p

m̄I −m̄r̂p m̄I

































v

Ω

ṙp

















.

The kinetic energies of the ballast and offset point masses are computed in the same

manner. The constraints fixing their positions in the body frame will be applied in the

following section. Let vb and vw be the absolute velocity of mb and mw expressed in body

coordinates. Their kinetic energies are then

Tb =
1

2
mb‖vb‖2 =

1

2

















v

Ω

ṙb

















·

















mbI −mbr̂b mbI

mbr̂b −mbr̂br̂b mbr̂b

mbI −mbr̂b mbI

































v

Ω

ṙb

















.

and

Tw =
1

2
mw‖vw‖2

=
1

2

















v

Ω

ṙw

















·

















mwI −mwr̂w mwI

mwr̂w −mwr̂wr̂w mwr̂w

mwI −mwr̂w mwI

































v

Ω

ṙw

















.
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Kirchhoff [39] showed that the kinetic energy of an unbounded volume of ideal fluid due

to the motion of an immersed rigid body takes the form

Tf =
1

2









v

Ω









·









Mf DT
f

Df Jf

















v

Ω









,

where Mf is the added mass matrix, Jf is the added inertia matrix and Df is the added

cross term. These matrices depend upon the external shape of the body and the density of

the fluid. The fluid is assumed to be inviscid, incompressible, irrotational and motionless

at infinity.

Viscous effects such as lift and drag will be included in the model as external forces and

torques.

The total vehicle fluid kinetic energy T = Ts + Tp + Tf + Tb + Tw is computed to be

T =
1

2

































v

Ω

ṙp

ṙb

ṙw

































·I

































v

Ω

ṙp

ṙb

ṙw

































,
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where

I =

































(ms + m̄)I + Mf −m̄r̂p − mbr̂b − mwr̂w + DT
f

m̄r̂p + mbr̂b + mwr̂w + Df Jh − m̄r̂pr̂p − mbr̂br̂b − mwr̂wr̂w + Jf

m̄I −m̄r̂p

mbI −mbr̂b

mwI −mwr̂w

m̄I mbI mwI

m̄r̂p mbr̂b mwr̂w

m̄I 0 0

0 mbI 0

0 0 mwI

































. (3.18)

We can then compute momenta as

P =
∂T

∂v
= (msI + Mf)v + DT

f Ω + m̄(v + Ω × rp + ṙp)

+ mb(v + Ω × rb + ṙb) + mw(v + Ω × rw + ṙw), (3.19)

Π =
∂T

∂Ω
= Dfv + (Jh + Jf)Ω + m̄r̂p(v + Ω × rp + ṙp)

+ mbr̂b(v + Ω × rb + ṙb) + mwr̂w(v + Ω × rw + ṙw), (3.20)

Pp =
∂T

∂ṙp

= m̄(v + Ω × rp + ṙp), (3.21)

Pb =
∂T

∂ṙb

= mb(v + Ω × rb + ṙb), (3.22)

Pw =
∂T

∂ṙw

= mw(v + Ω × rw + ṙw). (3.23)

Consider first the case where the vehicle geometry leads to diagonal added mass and

inertia matrices. This occurs when the vehicle has three planes of symmetry. This could
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correspond to a simple vehicle shape such as an ellipsoid or a more complex glider shape

with wings mounted symmetrically. Then Mf and Jf are diagonal and Df = 0. Let

Mf = diag(mf1, mf2, mf3) and Jf = diag(Jf1, Jf2, Jf3). Define

M = mhI + Mf , (3.24)

J = Jh + Jf (3.25)

where I is the 3 × 3 identity matrix. Then,

































P

Π

Pp

Pb

Pw

































= I

































v

Ω

ṙp

ṙb

ṙw

































, (3.26)

where

I =

































M + (m̄ + mb + mw)I −m̄r̂p − mbr̂b − mwr̂w m̄I mbI mwI

m̄r̂p + mbr̂b + mwr̂w J − m̄r̂pr̂p − mbr̂br̂b − mwr̂wr̂w m̄r̂p mbr̂b mwr̂w

m̄I −m̄r̂p m̄I 0 0

mbI −mbr̂b 0 mbI 0

mwI −mwr̂w 0 0 mwI

































.

Inverting the relationships (3.26) then gives the body velocities in terms of the body mo-
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menta:
































v

Ω

ṙp

ṙb

ṙw

































= I−1

































P

Π

Pp

Pb

Pw

































, (3.27)

I−1 =

































M−1 0 −M−1
−M−1

−M−1

0 J−1 −J−1r̂p −J−1r̂b −J−1r̂w

−M−1 r̂pJ−1 I−1(3, 3) I−1(3, 4) I−1(3, 5)

−M−1 r̂bJ
−1 I−1(4, 3) I−1(4, 4) I−1(4, 5)

−M−1 r̂wJ−1 I−1(5, 3) I−1(5, 4) I−1(5, 5)

































,

where

I−1(3, 3) = M−1 − r̂pJ−1r̂p +
1

m̄
I,

I−1(3, 4) = M−1 − r̂pJ−1r̂b,

I−1(3, 5) = M−1 − r̂pJ−1r̂w,

I−1(4, 3) = M−1 − r̂bJ
−1r̂p,

I−1(4, 4) = M−1 − r̂bJ
−1r̂b +

1

mb
I,

I−1(4, 5) = M−1 − r̂bJ
−1r̂w

I−1(5, 3) = M−1 − r̂wJ−1r̂p

I−1(5, 4) = M−1 − r̂wJ−1r̂b

I−1(5, 5) = M−1 − r̂wJ−1r̂w +
1

mw
I.
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To get the equations of motion in terms of body velocities, we differentiate (3.27) with

respect to time. This introduces terms related to ballast pumping rate ṁb. We assume that

ballast is pumped in such a way that there is negligible associated thrust or moment on the

glider. Therefore these ṁb terms are eliminated from the following equations.

Such ballast rate dependent forces would be equivalent to the thrust from the ejection of

mass from a rocket. This is expected to be a negligible force on existing gliders. In existing

oceanographic gliders, ballast masses are very small in comparison to the mass of the glider.

Ballast pumping rates are very slow and ballast is ejected at a very low relative velocity (i.e.

in the vehicle frame). Pumping occurs only at discrete intervals, during transitions from

upwards to downwards glides, so ṁb is zero during most of the time of glider operation and

does not affect steady glides. In cases where the ballast masses are of a comparable order of

magnitude to the glider mass, or when ballast exit velocities are significant, glider designs

are possible where buoyancy is changed in a symmetric way (e.g., ballast is pumped on and

off board in streams with the appropriate symmetry) so that there is negligible associated

thrust or moment on the glider.

One may also consider some radical glider designs where the ballast mass is of the same

order of magnitude as the vehicle mass, or the ballast is ejected from the glider in a high

speed jet. Also possible are glider operations or control systems that involve constantly

changing ballast at high mass rates and exit velocities. In such cases, the resulting thrusts

and moments should be accounted for by including ṁb terms in the following equations.

Let the ballast control input uballast rate be defined as

uballast rate = ṁb (3.28)
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Differentiating (3.27) then gives

































v̇

Ω̇

r̈p

r̈b

r̈w

































= I−1

































Ṗ

Π̇

Ṗp

Ṗb

Ṗw

































+
d

dt
(I−1)

































P

Π

Pp

Pb

Pw

































(3.29)

where

d

dt
I−1 =

































0 0 0 0 0

0 0 −J−1ˆ̇rp −J−1ˆ̇rb −J−1ˆ̇rw

0 ˆ̇rpJ−1 d
dtI

−1(3, 3) d
dtI

−1(3, 4) d
dtI

−1(3, 5)

0 ˆ̇rbJ
−1 d

dtI
−1(4, 3) d

dtI
−1(4, 4) d

dtI
−1(4, 5)

0 ˆ̇rwJ−1 d
dtI

−1(5, 3) d
dtI

−1(5, 4) d
dtI

−1(5, 5)

































. (3.30)

since d
dtM

−1 = 0, d
dtJ

−1 = 0, and

d

dt
I−1(3, 3) = −ˆ̇rpJ−1r̂p − r̂pJ−1ˆ̇rp,

d

dt
I−1(3, 4) = −ˆ̇rpJ−1r̂b − r̂pJ−1ˆ̇rb,

d

dt
I−1(3, 5) = −ˆ̇rpJ−1r̂w − r̂pJ−1ˆ̇rw,

d

dt
I−1(4, 3) = −ˆ̇rbJ

−1r̂p − r̂bJ
−1ˆ̇rp,

d

dt
I−1(4, 4) = −ˆ̇rbJ

−1r̂b − r̂bJ
−1ˆ̇rb,

d

dt
I−1(4, 5) = −ˆ̇rbJ

−1r̂w − r̂bJ
−1ˆ̇rw

d

dt
I−1(5, 3) = −ˆ̇rwJ−1r̂p − r̂wJ−1ˆ̇rp
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d

dt
I−1(5, 4) = −ˆ̇rwJ−1r̂b − r̂wJ−1ˆ̇rb

d

dt
I−1(5, 5) = −ˆ̇rwJ−1r̂w − r̂wJ−1ˆ̇rw.

These d
dtI

−1(i, j) terms are generally small in existing gliders. ṙw and ṙb are zero. ṙp

is zero at equilibrium glides and is small during transitions between equilibria (due to the

glider’s actuator speeds). The magnitudes of elements of J are generally large compared to

those of elements of rp,rb and rw (see Tables 4.2 and 4.3). These terms may be significant

in very large or small glider designs or in gliders with fast internal mass actuators.

With the substitution into (3.29) of (3.9)-(3.16) for the derivatives Ṗ , Π̇,Ṗp, Ṗb and

Ṗw , (3.30) for d/dt(I−1) and (3.26) for the relationship between momenta and velocity,

the complete equations of motion for the underwater glider moving in three-dimensional

space are
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m̄Pp − v − Ω × rp

1
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1
mw

Pw − v − Ω × rw

ū
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uw

uballast rate
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, (3.31)
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where

T̄ = (JΩ + r̂pPp + r̂bPb + r̂wPw) × Ω + (Mv × v)

+(Ω × rp) × Pp + (Ω × rb) × Pb + (Ω × rw) × Pw + (m̄r̂p + mbr̂b + mwr̂w)gRTk

+ Text − r̂pū − (r̂bub + r̂wuw)

F̄ = (Mv + Pp + Pb + Pw) × Ω + m0gRTk + Fext − ū − (ub + uw).

Here,

Fext = RT
∑

fexti

Text = RT
∑

(xi − b) × fexti
+ RT

∑

τextj
,

where xi is the point in the inertial frame where fexti
acts, represent external forces and

moments including lift, drag, and associated hydrodynamic moments with respect to the

body frame.

ū is a control force on m̄, and ub and uw are the internal forces on masses mb and mw.

They will be constraint forces when those masses are fixed in place.

One could imagine a glider with a moving ballast mass, or one with two moving point

masses such as Spray. In that case the ub and uw could be used as controls. It is also

possible to modify the model to represent a glider with a moving ballast tank and an

arbitrary number of point masses.

3.2.4 Change of States and Controls to Point mass Accelerations

In this section, in order to more accurately model general glider designs and existing glider

designs such as Slocum, we perform control transformation and a change of variables and
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control inputs to change the state vector from z = (R, b,Ω, v, rp, rb, rw, Pp, Pb, Pw, ṁb)
T

to x = (R, b,Ω, v, rp, rb, rw, ṙp, ṙb, ṙw, ṁb)
T . This control transformation changes the

control vector from

u =


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


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

ū
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uw

















=
















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, (3.32)

corresponding to the forces on the internal point masses m̄, mb, and mw, into control vector

w =


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ww
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

, (3.33)

the vector of the accelerations of the internal point masses. The state variables correspond-

ing to the internal masses are changed from the positions and momenta of the masses in the

body frame to the positions and accelerations, in the body frame, of the internal masses.

This was presented in [5] for a glider model confined to the longitudinal plane, with mw = 0

and with mb fixed at the glider CB.

The control transformation and change of states and controls described here produces

a number of benefits in modelling the glider’s dynamics and control. The transformation

effectively provides a suspension system for the glider’s internal masses. This prevents

those masses from moving within the glider in response to vehicle motion. Control of the

acceleration of the internal masses more closely approximates the moving mass systems of

existing gliders. It also allows for the point masses to be fixed in place in the glider frame

by setting the corresponding velocities and accelerations to zero. Doing so allows the static

stability of the glider to be examined. This formulation also allows us to solve for the
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constraint forces on the masses when they are fixed in place. Most importantly, this control

feedback transformation affects the stability of the glider, as will be explained further in

Chapter 6. By preventing the internal masses from moving in the body frame in response

to vehicle motion, the control transformation improves the stability of steady glides and

improves the performance of the glider’s switching between steady glides.

Now consider the transformation from control u, the original set of force inputs, to

control w, the new set of acceleration inputs. Differentiating Equation (3.31) for ṙp, ṙb, ṙw

and substituting from (3.31) gives the accelerations of the point masses in terms of the new

state vector x and controls u . The resulting equations for the point mass accelerations r̈

may be written in the form

r̈ = Z(x) + F (x)u, (3.34)

where Z = (Zp(x), Zb(x), Zw(x))T . In the new state variables x, Z(x) is the drift vector

field and F (x) is the control vector field. Now, let H = F −1 and set u = H(−Z + w),

where w = (wp, wb, ww)T . Substituting this into Equation (3.34) gives r̈ = w.

F is computed, from Equations (3.29) and (3.31), to be

F =


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I−1(3, 3) I−1(3, 4) I−1(3, 5)

I−1(4, 3) I−1(4, 4) I−1(4, 5)

I−1(5, 3) I−1(5, 4) I−1(5, 5)


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M−1 − r̂pJ−1r̂p + 1
m̄I M−1 − r̂pJ−1r̂b M−1 − r̂pJ−1r̂w

M−1 − r̂bJ
−1r̂p M−1 − r̂bJ

−1r̂b + 1
mb

I M−1 − r̂bJ
−1r̂w

M−1 − r̂wJ−1r̂p M−1 − r̂wJ−1r̂b M−1 − r̂wJ−1r̂w + 1
mw

I


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.

(3.35)
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The determinant of F is always greater than zero, so H = F −1 is always defined (given

the properties of the vehicle masses and inertias already described, for example M and J

are positive definite). Z = (Zp, Zb, Zw)T is found by differentiating the equations for ṙ in

(3.31) and making substitutions from (3.31). This gives

Zp = −M−1[(Mv + Pp + Pb + Pw) × Ω + m0gRTk + Fext] − Ω × ṙp

−J−1[(JΩ + r̂pPp + r̂bPb + r̂wPw) × Ω + (Mv × v) + Text

+(Ω × rp) × Pp + (Ω × rb) × Pb + (Ω × rw) × Pw

+(m̄r̂p + mbr̂b + mwr̂w)gRTk] × rp

Zb = −M−1[(Mv + Pp + Pb + Pw) × Ω + m0gRTk + Fext] − Ω × ṙb

−J−1[(JΩ + r̂pPp + r̂bPb + r̂wPw) × Ω + (Mv × v) + Text

+(Ω × rp) × Pp + (Ω × rb) × Pb + (Ω × rw) × Pw

+(m̄r̂p + mbr̂b + mwr̂w)gRTk] × rb

Zw = −M−1[(Mv + Pp + Pb + Pw) × Ω + m0gRTk + Fext] − Ω × ṙw

−J−1[(JΩ + r̂pPp + r̂bPb + r̂wPw) × Ω + (Mv × v) + Text

+(Ω × rp) × Pp + (Ω × rb) × Pb + (Ω × rw) × Pw

+(m̄r̂p + mbr̂b + mwr̂w)gRTk] × rw (3.36)

For the control transformation to make control w the acceleration of the point masses, set
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,

(3.37)
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where Hij is the (i, j)th component of H.

Now implement the change of states along with the control transformation. Recall that,

from (3.21)-(3.23),

Pp = m̄(v + Ω × rp + ṙp),

Pb = mb(v + Ω × rb + ṙb),

Pw = mw(v + Ω × rw + ṙw).

3.2.5 Glider Dynamic Equations With Point Mass Acceleration Control

Writing the glider dynamic equations in terms of state vector x = (R, b,Ω, v, rp, rb, rw, ṙp, ṙb, ṙw, ṁb)
T

and using control vector (3.37) gives
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ṙw

r̈p

r̈b

r̈w

ṁb
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where

T̃ = [JΩ + r̂p(m̄(v + Ω × rp + ṙp))

+r̂b(mb(v + Ω × rb + ṙb)) + r̂w(mw(v + Ω × rw + ṙw))] × Ω

+(Mv × v) + (Ω × rp) × (m̄(v + Ω × rp + ṙp)) + (Ω × rb) × (mb(v + Ω × rb + ṙb))

+(Ω × rw) × (mw(v + Ω × rw + ṙw)) + (m̄r̂p + mbr̂b + mwr̂w)gRTk

+ Text − r̂p[H11(−Z̃p + wp) + H12(−Z̃b + wb) + H13(−Z̃w + ww)]

−r̂b[H21(−Z̃p + wp) + H22(−Z̃b + wb) + H23(−Z̃w + ww)]

−r̂w[H31(−Z̃p + wp) + H32(−Z̃b + wb) + H33(−Z̃w + ww)], (3.39)

F̃ = [Mv + m̄(v + Ω × rp + ṙp) + mb(v + Ω × rb + ṙb) + mw(v + Ω × rw + ṙw)] × Ω

+m0gRTk + Fext

−[H11(−Z̃p + wp) + H12(−Z̃b + wb) + H13(−Z̃w + ww)]

−[H21(−Z̃p + wp) + H22(−Z̃b + wb) + H23(−Z̃w + ww)]

−[H31(−Z̃p + wp) + H32(−Z̃b + wb) + H33(−Z̃w + ww)], (3.40)

where Z̃ is Z with the appropriate states (given below) and,

Fext = RT
∑

fexti

Text = RT
∑

(xi − b) × fexti
+ RT

∑

τextj

Substituting for Pp, Pb and Pw in equations (3.39)-(3.40) above for Z gives Z̃ =

(Z̃p, Z̃b, Z̃w)T in terms of the new state vector:

Z̃p = −M−1[[Mv + m̄(v + Ω × rp + ṙp) + mb(v + Ω × rb + ṙb)
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+mw(v + Ω × rw + ṙw)] × Ω + m0gRTk + Fext] − Ω × ṙp

−J−1[(JΩ + r̂p(m̄(v + Ω × rp + ṙp)) + r̂b(mb(v + Ω × rb + ṙb))

+r̂w(mw(v + Ω × rw + ṙw))) × Ω + (Mv × v) + Text

+(Ω × rp) × (m̄(v + Ω × rp + ṙp)) + (Ω × rb) × (mb(v + Ω × rb + ṙb))

+(Ω × rw) × (mw(v + Ω × rw + ṙw)) + (m̄r̂p + mbr̂b + mwr̂w)gRTk] × rp

Z̃b = −M−1[[Mv + m̄(v + Ω × rp + ṙp) + mb(v + Ω × rb + ṙb)

+mw(v + Ω × rw + ṙw)] × Ω + m0gRTk + Fext] − Ω × ṙb

−J−1[(JΩ + r̂p(m̄(v + Ω × rp + ṙp)) + r̂b(mb(v + Ω × rb + ṙb))

+r̂w(mw(v + Ω × rw + ṙw))) × Ω + (Mv × v) + Text

+(Ω × rp) × (m̄(v + Ω × rp + ṙp)) + (Ω × rb) × (mb(v + Ω × rb + ṙb))

+(Ω × rw) × (mw(v + Ω × rw + ṙw)) + (m̄r̂p + mbr̂b + mwr̂w)gRTk] × rb

Z̃w = −M−1[[Mv + m̄(v + Ω × rp + ṙp) + mb(v + Ω × rb + ṙb)

+mw(v + Ω × rw + ṙw)] × Ω + m0gRTk + Fext] − Ω × ṙw

−J−1[(JΩ + r̂p(m̄(v + Ω × rp + ṙp)) + r̂b(mb(v + Ω × rb + ṙb))

+r̂w(mw(v + Ω × rw + ṙw))) × Ω + (Mv × v) + Text

+(Ω × rp) × (m̄(v + Ω × rp + ṙp)) + (Ω × rb) × (mb(v + Ω × rb + ṙb))

+(Ω × rw) × (mw(v + Ω × rw + ṙw)) + (m̄r̂p + mbr̂b + mwr̂w)gRTk] × rw.

(3.41)
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3.2.6 Glider Dynamic Equations With Acceleration Control

and Simplified Internal Masses

In the case when mb and mw are fixed in place within a glider, the glider dynamic equations

may be reduced by setting ṙb = ṙw = wb = ww = 0. The equations may be further

simplified by setting mw = 0 to eliminate the offset fixed mass, and by fixing the ballast mass

mb at the CB, rb = 0. This produces a simplified glider model, with ballast control, where

the sliding internal mass is the only offset mass. Substituting rb = ṙb = ṙw = wb = ww = 0

and mw = 0 into equation (3.38) gives the glider dynamics for this simplified glider model.

Leonard and Graver, [42], describe the glider model with this mass arrangement where

control vector ū = Ṗp is the force on the moving internal mass m̄. In this section the

control wp is the acceleration of m̄. Control u4 is the ballast pumping rate uballast rate.

Note that in [42], mb is included in the mass matrix M , while here it is separate. The

dynamics of the glider model with an internal sliding mass m̄, mb fixed at the CB, and

mw = 0 are
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



























, (3.42)
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where T̃sm and F̃sm denote the torques and forces in this ‘simplified masses’ model.

They are

T̃sm = [JΩ + r̂p(m̄(v + Ω × rp + ṙp))] × Ω + (Mv × v) + (Ω × rp) × (m̄(v + Ω × rp + ṙp))

+m̄r̂pgRTk + Text − r̂p[H11(−Z̃p + wp) + H12(−Z̃b)]

F̃sm = [(M + mbI)v + m̄(v + Ω × rp + ṙp)] × Ω + m0gRTk + Fext

−[H11(−Z̃p + wp) + H12(−Z̃b)] − [H21(−Z̃p + wp) + H22(−Z̃b)].

Fext and Text are the external force and torques defined as before. Substituting mw = 0

and rb = ṙb = ṙw = wb = ww = 0 into Equation 3.2.5 for Z̃, dropping Z̃w since mw = 0,

gives Z̃sm = (Z̃psm , Z̃bsm )T where

Z̃psm = −M−1[[(M + mbI)v + m̄(v + Ω × rp + ṙp)] × Ω

+m0gRTk + Fext] − Ω × ṙp

−J−1[(JΩ + r̂p(m̄(v + Ω × rp + ṙp))) × Ω + (Mv × v) + Text

+(Ω × rp) × (m̄(v + Ω × rp + ṙp)) + m̄r̂pgRTk] × rp

Z̃bsm = −M−1[[(M + mbI)v + m̄(v + Ω × rp + ṙp)] × Ω

+m0gRTk + Fext] − Ω × ṙp

The constraint forces ū, ub on the internal masses m̄ and mb may be computed by

differentiating ṙ with respect to time, writing the result in the form of (3.34), and setting
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r̈b = 0. This gives








r̈p

0









=









Z̃psm

Z̃bsm









+ Fsm









ū

ub









. (3.43)

Where

Fsm =









M−1 − r̂pJ−1r̂p + 1
m̄I M−1

M−1 M−1 + 1
mb

I









. (3.44)

When the sliding internal mass is also fixed in place, by setting wp = 0, then the constraint

forces ū and ub on the internal masses are









ū

ub









= −F −1

sm









Z̃psm

Z̃bsm









. (3.45)

Physical Description of Model Terms

This section will explain what some of the glider model terms represent physically.

It is helpful to consider the derivation from Equation (3.6) to Equations (3.9)-(3.10).

Certain terms appear because the glider dynamic equations are written in the non-inertial

body frame. These include terms P × Ω and Π × Ω in (3.9)-(3.10). If we disregard the

dynamics of the internal point masses, set external forces and torques to zero, and consider

a glider in free space instead of a fluid, then Equations (3.9) and (3.10) reduce to Euler’s

equations for a free rigid body. (mhI)v×Ω and JsΩ×Ω are torques and forces that appear

when tracking the dynamics of a rigid body in a rotating, non-inertial frame. These terms

commonly appear in vehicle dynamics, where it is standard to write the dynamic equations

in the body-fixed frame [17, 15].

Terms containing Mf and Jf are forces and torques due to the added mass and inertia
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of the vehicle moving through an inviscid fluid. These include Mfv × v and JfΩ × Ω.

These terms appear in Kirchhoff’s equations for a rigid body in an inviscid fluid, [39, 37].

Each set of glider dynamic equations contains terms representing forces on the point

masses and the associated forces and torques on the vehicle. The terms corresponding to the

three internal point masses are similar. These terms appear in groups of three, representing

the same physical mechanisms acting on each of the three point masses. Explanations below

for forces on m̄ also apply to corresponding forces on the other point masses.

Keep in mind Equations (3.21)-(3.22) for the point mass momenta Pp, Pw, and Pb.

These terms appear differently after the state transformation of Section 3.2.4 but represent

the same forces. For example, the force on the point mass in the rotating frame, Pp ×Ω in

Equation (3.31), is m̄(v + Ω × rp + ṙp) × Ω in Equation (3.38). Similar terms appear for

the other internal masses.

Consider terms representing forces that appear in F , F̃ , and F̃sm in Equations (3.31),(3.38),

(3.42).

• (Mv × Ω) is equal to, from the definition of M , (mhIv × Ω + Mfv × Ω). This is

the sum of the inertial force on the vehicle in the rotating frame and the added mass

forces due to the rotation of the body in a fluid.

• Pp × Ω is the inertial force from the internal mass dynamics in the rotating body

frame.

• m0gRTk is the net buoyant force on the vehicle, the sum of the buoyant and grav-

itational forces. Terms representing gravitational and buoyancy forces have been

explained previously.

• ū is the control force on the moving point mass m̄.
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Now consider moments appearing in T , T̃ , and T̃sm

• Mv × v is a moment on the vehicle from added mass effects. Substituting for M

using the definition of M gives (mhIv × v + Mfv × v) = (Mfv × v). This added

mass moment is zero when Mf is a multiple of I (a symmetrical vehicle, for example

a sphere or a cube) or when v coincides with a principal axis of M .

• JΩ×Ω is the moment on the solid body in the rotating body frame plus the moment

due to the added inertias and rotation of the vehicle. Substituting the definition of J

gives two terms, JsΩ×Ω which is the torque in the body frame due to the spinning

of the solid body, and JfΩ×Ω, which is the added mass torque due to the spinning

of the vehicle in a fluid.

• m̄r̂pgRTk is a moment on the vehicle from the weight of the moving mass at position

rp from the center of the body frame.

• r̂pū is a moment on the body from the force on the point mass (other than m̄g). The

glider body and the internal masses are coupled - forces ū exerted on the internal

masses result in (equal and opposite) forces and associated moments on the body.

Gliders are buoyancy driven. Therefore, the net buoyancy force m0g determines the

order of magnitude of the forces acting on the glider. In a steady glide, the lift and drag

forces are of the same order of magnitude as the net buoyancy. The magnitude of the lift is

less than the net buoyancy, and drag is equal to or less than the net buoyancy, depending on

the glide path angle (see Chapter 4). At glide path angles near 45 degrees, the magnitudes

of lift and drag are about half that of m0g.

In a straight, steady glide Ω is zero, so many of the above terms may be small. For

existing oceanographic gliders, Ω is small for most flight operations, so many of these terms
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may be small in comparison to the buoyancy force. In these gliders ṙp generally small due

to the design of the mass actuators (ṙp is zero at equilibrium). The forces acting on a glider

are discussed further in Chapter 5 and Chapter 7.

3.2.7 Glider Model Hydrodynamic Terms: Lift, Drag, Moment

Here we will introduce the form of the hydrodynamic terms in the glider dynamic equations.

Determination of hydrodynamic forces for a specific vehicle is discussed later in Chapter 5.

The external forces and moments on the glider, Fext and Text, include hydrodynamic

forces Fhydro and moments Mhydro due to the glider’s motion through the water. These

hydrodynamic forces and moments arise from both viscous and inviscid effects. Forces and

moments due to added mass and inertia are included separately in the glider model as shown

above. The full unsteady hydrodynamic of a body moving in a fluid are extremely com-

plex. Therefore it is necessary to adopt a model of manageable complexity that sufficiently

represents the hydrodynamic forces on the glider.

Hydrodynamic forces on the glider may be expressed in the wind frame as lift, drag

and sideforce. Hydrodynamic moments are also expressed in the wind frame. This follows

standard aerospace conventions, [15, 66]. Hydrodynamic forces and moments are written

in the wind frame as

Fhydro =

















−D

SF

−L

















, Mhydro =

















MDL1

MDL2

MDL3

















,

where L, D, SF are lift, drag and sideforce and MDLi is the hydrodynamic moment about

the ith wind axis. These are expressed in the body frame as RWBFhydro and RWBMhydro,
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as described in Section 3.1.3.

The hydrodynamic forces on the glider are complicated functions of the vehicle geometry

and vehicle motion through the water. If a glider has external control surfaces such as a

rudder, elevators or ailerons, their positions and settings will influence the hydrodynamic

forces and moments.

Standard aerospace practice involves use of coefficient-based models for the hydrody-

namic forces on a vehicle. Hydrodynamic force coefficients may be determined using a

variety of methods including reference data, CFD modelling, and flight tests. Coefficient

models may include terms depending on vehicle velocity, acceleration, and angular rates.

See [27], [26], [55].

A simple quasi-steady model for the hydrodynamic forces takes the form

Fhydro =

















−D

SF

−L

















=

















−1
2ρV 2

r ACD(α, β, δcs, Re)

1
2ρV 2

r ACSF (α, β, δcs, Re)

−1
2ρV 2

r ACL(α, β, δcs, Re)

















(3.46)

CD, CSF , CL are the coefficients of drag, sideforce and moment. The quantity 1
2ρV 2

r is the

dynamic pressure. A is the characteristic area of the glider by which the coefficients are

defined. α and β are the aerodynamic angles as defined in Section 3.1.3. δcs is the vector

of control surface settings (usually written in degrees from their zero positions) and Re is

the Reynolds number of the flow on the vehicle.

To accurately model the vehicle hydrodynamics, some rotational damping must also be

included in this model. The exact form of the linear and rotational damping on a vehicle is

quite complex. Rotational damping of sub-surface ocean vehicles may be modelled as linear

and quadratic with respect to rotational velocity Ω [17]. The model for the hydrodynamic
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moments on the vehicle then takes the form

Mhydro =

















MDL1

MDL2

MDL3

















=

















1
2ρV 2

r ACM1(α, β, δcs, Re)

1
2ρV 2

r ACM2(α, β, δcs, Re)

1
2ρV 2

r ACM3(α, β, δcs, Re)

















+ KΩ1Ω + ΩKΩ2Ω.

(3.47)

CM1, CM2, CM3 are the coefficients of hydrodynamic moment around the wind 1, 2, 3 axes.

KΩ1 and KΩ2 are the rotational damping matrices for the linear and quadratic damping

terms, respectively. The hydrodynamics of a high speed vehicle are highly coupled, but in

a first approximation KΩ1 and KΩ2 may be modelled as diagonal [17, 59].

Additional damping terms may be added to the glider dynamics model without changing

the overall model formulation (i.e., the necessary hydrodynamic terms may simply be added

in the above model). Additional force and moment damping terms may depend on V or

α, β, α̇, β̇. Such terms appear in aircraft, for example, because changes in the flow over the

wings are transported by the flow to the aircraft’s tail surfaces. Changes in the downwash

over the wing have some transport lag before reaching the tail. The resulting forces and

moments are highly dependent on V and the fluid transport time from the wings to the

tail. In relatively slow-moving (and often tailless) underwater gliders with a small range of

speeds, these terms may be negligible.

Note that in a steady glide, v is constant, so α̇ = β̇ = 0, but Ω = 0 only in a straight

steady glide. Ω 6= 0 in a vertical spiral glide.

This model is a standard one, derived using airfoil theory and potential flow calculations

and then verified using experimental observations, see for example [15, 43]. Methods for

determination of the coefficients are described in Chapter 5. Note that these forces and
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moments are written about the center of the wind frame, which is also the body frame

center, so care must be taken to account for their points of action when computing the

coefficients from various data sources.

The following chapters include analysis of the glider dynamics when confined to the ver-

tical plane. When modelling the glider in the vertical, longitudinal plane, the hydrodynamic

forces and moment are modelled as

D=
1

2
ρCD(α)AV 2 ≈ (KD0

+KDα2)(v2
1 + v2

3) (3.48)

L=
1

2
ρCL(α)AV 2 ≈ (KL0

+KLα)(v2
1 + v2

3) (3.49)

MDL=
1

2
ρCM (α)AV 2 ≈ (KM0

+KMα)(v2
1 + v2

3) + KΩ1

2

Ω2 + KΩ2

2

Ω2
2 (3.50)

where CD, CL and CM are the standard aerodynamic drag, lift and moment coefficients by

A, the maximum glider cross sectional area, and ρ is the fluid density. For the longitudinal

quasi-steady fluid model, CD, CL and CM are functions of α and the K’s are constant

coefficients.
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Chapter 4

Glider Dynamics

In this chapter, the glider model derived in Chapter 3 is applied to an analysis of glider

dynamics. This analysis makes use of several variations of the glider model. Experimental

observations are also discussed. The principal analysis is of the longitudinal dynamics of the

glider model. The longitudinal model is derived from the three dimensional glider model

and is used to determine equilibria and their stability. A simplified model of the glider

vertical plane dynamics is then analyzed. The phugoid mode dynamics of the glider model

are studied by applying simplifying assumptions to the vertical plane model. Other sections

discuss the lateral and three dimensional dynamics of gliders.

In Section 4.1, the longitudinal dynamics of the glider model are analyzed by confining

the model from Chapter 3 to the vertical plane. The vertical plane is an invariant plane of

the dynamic equations. This longitudinal model is used to find steady equilibrium glides

(Section 5.1.3) in the vertical plane and to perform linear analysis of their stability. This

follows work presented earlier in [42, 24, 25]. Analysis of the longitudinal plane model

is directly applicable to modern oceanographic gliders because their deployments include

many glide sections roughly within a vertical plane. Straight, steady glides are the most
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common operational motions of real, oceangoing gliders. The equations of motion in the

plane are determined and the equilibria steady glides are found and subjected to linear

analysis.

The analysis makes use of the glider model both before and after the control transfor-

mation and change of states described in Section 3.2.4. That transformation changes the

manner in which the internal masses are controlled, so that the acceleration of the internal

sliding mass is a control input. This allows the position of the masses to be fixed inside

the hull and results in improved gliding stability, and more accurately models the system in

existing gliders. The longitudinal plane is first analyzed using the untransformed equations.

A summary of results for the transformed equations follows, along with some discussion of

the differences between the two cases. These include some differences in the stability of

steady glides and the transition between different steady glides, especially those inflecting

from upwards to downwards glides or vice-versa.

Section 4.2 examine the phugoid mode of underwater gliders using a simplified model

of the glider longitudinal dynamics. This analysis follows along the lines of the analysis of

the phugoid mode for aircraft conducted by Lanchester in 1908 [40, 73].

Section 4.3 discusses gliding in three dimensions. This includes a brief discussion of the

lateral dynamics of gliders. Steady straight and spiral glides are examined, including some

results from simulations and from in-ocean experiments with full-scale gliders. Other items

of interest include deviations from the vertical plane due to static mis-trim and coupling

between the rudder and roll angles. The latter was found to couple the Slocum electric

glider’s roll and yaw steering dynamics.
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Figure 4.1: Sawtooth Gliding in the Vertical Plane.

4.1 Longitudinal Model

This section analyzes the longitudinal dynamics of underwater gliders, following our work

in [42, 24, 25]. The model of the glider longitudinal dynamics is derived by confining the

model of Chapter 3 to the vertical plane. Simplifications are made to the internal mass

layout from the full glider dynamic model. The resulting vertical plane model is analyzed.

Steady glide equilibria are found and a general linearization about these steady glides is

determined. This model and linearization may be used to examine the stability of steady

glides and has applications in glider design and in design of their control systems.

Existing gliders spend much of their operational time in steady, straight-line glides as

modelled in this section, Figure 4.1. The reasons for this include gliding efficiency, low power

consumption, and the nature of their scientific sampling missions. Of particular interest are

the possible choices of equilibrium steady glides, the stability of those glides as a function

of glider design and internal mass positioning, and transitions between glides, particularly

between straight, steady glides upwards and downwards in the vertical plane.

As part of the analysis here, the glider model is slightly simplified by restricting the ar-

rangement of the internal masses. This follows the simplified mass arrangement introduced

in Section 3.2.6. The offset static point mass mw is eliminated, and the ballast mass mb is

restricted to a position at the glider centroid such that rb = 0. This removes the inertial

effects of the offset mass and the coupling between pitch moment and ballast mass resulting

from a ballast mass offset from the vehicle CB. Useful results are then determined from the
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model with this restricted layout. These results remain useful when these restrictions are

relaxed. The principal difference in the equilibrium equations when these masses are in-

cluded is a change in the pitch balance equation. More complex internal mass arrangements

may be addressed using the full glider vertical plane model.

The restriction to the vertical plane ignores certain dynamics associated with out-of-

plane motion. It may be judged, from simulation and experiment, that the restriction is a

reasonable one. Experiments using the Slocum glider show that the vertical plane steady

glides are qualitatively consistent with the results of the model (see Chapter 5). The vertical

plane is an invariant plane in the dynamic equations. Restriction to the longitudinal plane is

a standard method of analysis in aircraft dynamics. Additionally, the design of some gliders,

Slocum especially, controls the vertical plane dynamics using separate actuators and control

algorithms from those used to control lateral dynamics. In the Slocum electric glider design,

for example, gliding in the vertical plane is controlled using the ballast tank and internal

sliding mass actuator, while steering out of the plane is controlled using the rudder, without

any actuation of the internal masses. In many glides the rudder is used to actively stabilize

gliding motion to a straight glide in the vertical plane. For these reasons, study of the

vertical plane dynamics is both useful and representative of actual glider operation.

4.1.1 Equations of Motion in the Vertical Plane

This section confines the glider equations of motion to the vertical plane. We first restrict

the arrangement of internal masses. Eliminate the offset static mass by setting mw = 0. Fix

the ballast mass at the centroid of the glider body, where rb = 0. The glider with simplified

internal masses is shown in Figure 4.2. These changes eliminate the inertial coupling due to

the offset static point mass mw, and the coupling between the ballast state and the vehicle

89



inertia and pitch moment. In some glider designs, including Slocum, the ballast actuates

both the pitch and the buoyancy of the vehicle. The ballast is positioned to produce both

the desired ballast state and pitch angle for upwards and downwards glides.

The model used for investigation here is chosen to capture the major elements of glider

dynamics without extra complication. In this model, the sliding mass principally actuates

the orientation of the glider and the ballast system actuates the buoyancy. The overall

dynamics of gliding are similar to the case analyzed here, even when offset masses rb and

mw are included. Some small differences have been noted, including the coupling between

ballast and pitch resulting from an offset ballast system. Terms corresponding to these

internal masses appear in the full dynamic model and may easily be added to the analysis

given here. They appear in later sections, for example, when determining the steady glide

equilibria and parameters for the Slocum glider in Chapter 5.

We now specialize the model to the vertical plane, the i-k plane in inertial coordinates

and the e1-e3 plane in body coordinates. Accordingly,

R =

















cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

















, b =

















x

0

z

















, v =

















v1

0

v3

















, Ω =

















0

Ω2

0

















,

rp =

















rP1

0

rP3

















, Pp =

















PP1

0

PP3

















, ū =

















u1

0

u3

















,

where θ is pitch angle.
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Figure 4.2: Glider with simplified internal masses.

The equations of motion (3.38) for the gliding vehicle restricted to the vertical plane

become

ẋ = v1 cos θ + v3 sin θ (4.1)

ż = −v1 sin θ + v3 cos θ (4.2)

θ̇ = Ω2 (4.3)

Ω̇2 =
1

J2
((m3 − m1)v1v3 − (rP1PP1 + rP3PP3)Ω2

−m̄g(rP1 cos θ + rP3 sin θ) + MDL − rP3u1 + rP1u3) (4.4)

v̇1 =
1

m1
(−m3v3Ω2 − PP3Ω2 − m0g sin θ + L sin α − D cos α − u1) (4.5)

v̇3 =
1

m3
(m1v1Ω2 + PP1Ω2 + m0g cos θ − L cos α − D sin α − u3) (4.6)

ṙP1 =
1

m̄
PP1 − v1 − rP3Ω2 (4.7)

ṙP3 =
1

m̄
PP3 − v3 + rP1Ω2 (4.8)

ṖP1 = u1 (4.9)

ṖP3 = u3 (4.10)

ṁb = u4 (4.11)

Here, α is the angle of attack, D is drag, L is lift and MDL is the viscous moment as shown
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Figure 4.3: Lift and drag on glider confined to the vertical plane.

in Figure 4.3.

These forces and moment are modelled as described in Chapter 3. As shown in Fig-

ure 4.3, we denote the glide path angle by ξ where

ξ = θ − α.

We also denote the glider speed by V where

V =
√

(v2
1 + v2

3).

We will typically specify a glide path by desired glide path angle ξd and desired speed Vd.

We define inertial coordinates (x′, z′) such that x′ is the position along the desired path:









x′

z′









=









cos ξd − sin ξd

sin ξd cos ξd

















x

z









. (4.12)

Then, z′ measures the vehicle’s position in the direction perpendicular to the desired path.
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Figure 4.4: Planar gliding controlled to a line.

The dynamics of the z′ state are

ż′ = sin ξd(v1 cos θ + v3 sin θ) + cos ξd(−v1 sin θ + v3 cos θ). (4.13)

Glider control and gliding along a desired line with z′ = 0 are discussed in Chapter 6.

In the glider model, the movable point mass can be controlled in all directions (2 degrees

of freedom in the planar case). However, it may sometimes be the case that control over the

CG location is restricted, for example, when a battery may only be shifted in a limited way.

For the planar case, this might translate into a movable point mass with only one degree

of freedom. This is the case in several existing glider designs. To model this we consider

the case in which rP3 is fixed (ṙP3 = 0), i.e., we can only move the point mass m̄ in the e1

direction. Then,

PP3 = m̄(v3 − rP1Ω2). (4.14)

The new equations of motion are Equations (4.1)-(4.11) excluding (4.8) and (4.10). Further,

PP3 is replaced by (4.14) and u3 is replaced by ṖP3 which is computed by differentiating
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(4.14) with respect to time. In particular, Equations (4.4) and (4.6) are replaced with









Ω̇2

v̇3









= Z−1









1
J2

(f1 + rP1m̄Ω2ṙP1)

1
m3

(f2 − m̄Ω2ṙP1)









,

where

f1 = (m3 − m1)v1v3 − m̄g(rP1 cos θ + rP3 sin θ) + MDL − rP3u1

f2 = m1v1Ω2 + PP1Ω2 + m0g cos θ − L cos α − D sinα

Z =









1 +
m̄r2

P1

J2
− m̄rP1

J2

− m̄rP1

m3
1 + m̄

m3









.

4.1.2 Gliding Equilibria

We prescribe a desired straight-line glide path by specifying the desired glide path angle ξd

and the desired speed Vd. We denote with subscript “d” the value of all dynamic variables

at the glide equilibria. To get the conditions for such planar gliding equilibria, we set the

left hand side of Equations (4.13) and (4.3) through (4.11) to zero. This gives equilibria for

the general longitudinal model, and is not limited to the case when rp3 fixed. This gives

0 = sin ξd(v1d
cos θd + v3d

sin θd) + cos ξd(−v1d
sin θd + v3d

cos θd) (4.15)

0 =
1

J2
((mf3 − mf1)v1d

v3d
− m̄g(rP1d

cos θd + rP3d
sin θd) + MDLd

) (4.16)

0 =
1

m1d

(−m0d
g sin θd + Ld sinαd − Dd cos αd) (4.17)

0 =
1

m3d

(m0d
g cos θd − Ld cos αd − Dd sinαd) (4.18)

0 =
1

m̄
PP1d

− v1d
(4.19)

0 =
1

m̄
PP3d

− v3d
(4.20)
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and z′d = Ω2d
= u1d

= u3d
= u4d

= 0. Note that

m1d
= mbd

+ mh + mf1,

m3d
= mbd

+ mh + mf3,

m0d
= mbd

+ mh + m̄ − m,

which are all dependent on the equilibrium value of the variable mass mbd
.

Given ξd, Equations (4.17) and (4.18) may be solved for αd, independent of Vd as

shown below. This is possible because ξd is a function of the glider’s lift/drag ratio at the

equilibrium. Generally the lift/drag polar of a vehicle, which is a function of its geometry,

is unchanged over some range of Reynolds numbers. Therefore we may consider it invariant

with respect to V once a given operational speed envelope has been determined. Given this

lift/drag polar, the lift/drag ratio is a function only of α, not V . We can then compute

θd = ξd + αd, v1d
= Vd cos αd, v3d

= Vd sin αd,

PP1d
= m̄v1d

, PP3d
= m̄v3d

.

mbd
can then be solved again using (4.17) and (4.18). Finally, Equation (4.16) gives a

one-parameter family of solutions for (rP1d
, rP3d

)T .

First, we compute αd from Equations (4.17) and (4.18). Note that these equations

reduce to









0

m0d
g









=









cos θd sin θd

− sin θd cos θd

















cos αd − sinαd

sinαd cos αd

















Dd

Ld








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=









cos ξd sin ξd

− sin ξd cos ξd

















KD0
+ KDα2

d

KL0
+ KLαd









V 2
d , (4.21)

where we have adopted the quasi-steady hydrodynamic model, Equations (3.48)-(3.49) pre-

sented in Section 3.2.7. The first equation of (4.21) is a quadratic equation in αd. Provided

Vd 6= 0 and ξd 6= ±π
2 , we have

α2
d +

KL

KD
tan ξdαd +

1

KD
(KD0

+ KL0
tan ξd) = 0. (4.22)

Equation (4.22) may be solved for a realizable αd provided ξd satisfies

(

KL

KD
tan ξd

)2

− 4

KD
(KD0

+ KL0
tan ξd) ≥ 0. (4.23)

Evaluating condition (4.23) to find admissible values of ξd in the range (−π
2 , π

2 ), we see that

we must choose

ξd ∈



tan−1



2
KD

KL





KL0

KL
+

√

(

KL0

KL

)2

+
KD0

KD







 ,
π

2





or

ξd ∈



−π

2
, tan−1



2
KD

KL





KL0

KL
−

√

(

KL0

KL

)2

+
KD0

KD











 .

These conditions arise because a steady glide is only possible at a glide path angle corre-

sponding to a realizable lift/drag ratio, given a specific glider’s hydrodynamic parameters.

Therefore the maximum lift/drag ratio of the glider determines its minimum (magnitude)

glide path angle. One condition specifies the shallowest glide path angle when gliding

downwards, and the other the smallest glide path angle when gliding upwards.
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Here we choose the αd that is the solution of (4.22) with smaller magnitude. This is

desirable from an aerodynamic standpoint because it gives a lower drag than would the

larger αd solution. This may be understood also as choosing the αd on the better side of

the vehicle lift/drag polar, choosing the lower drag for a given lift/drag ratio. Also note

that the aerodynamic model is expected to be more accurate at smaller angles of attack.

We compute

αd =
1

2

KL

KD
tan ξd ×

(

−1 +

√

1 − 4
KD

K2
L

cot ξd(KD0
cot ξd + KL0

)

)

. (4.24)

If ξd = ±π
2 , then we simply have

αd = −KL0

KL
. (4.25)

For a vehicle which is symmetric about the body e1-e2 plane, KL0
= 0. In this case, for

equilibria corresponding to vertical flight (ξd = ±π
2 ), i.e. straight up or straight down, the

desired angle of attack is zero.

We may determine mbd
from the latter equation in (4.21),

mbd
= (m − mh − m̄) +

1

g

(

− sin ξd(KD0
+ KDα2

d) + cos ξd(KL0
+ KLαd))V 2

d . (4.26)

Finally, we may solve for a one-parameter family of sliding mass locations (rP1d
, rP3d

)T

which satisfy Equation (4.16). The family of solutions is

rPd = r⊥ + γ









− sin θd

cos θd









(4.27)
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where

r⊥ =
1

m̄g

(

(mf3 − mf1)v1d
v3d

+ (KM0
+ KMαd)V

2
d

)









cos θd

sin θd









and where γ is a real number. The vector r⊥ is a particular solution of Equation (4.16).

The term (− sin θ, cos θ)T = (RTk) is the direction of gravity in body coordinates. r⊥ is

orthogonal to the direction of gravity and γ measures the vehicle’s “bottom-heaviness” as

shown in Figure 4.5.

rp

r

i

k

{g

Figure 4.5: Family of possible movable mass locations for a steady glide.

For an experimental vehicle, rP3 may be a more physically relevant choice of free design

parameter than γ. In several existing gliders, for example Slocum, rP3 is fixed. In this case,

rP1d
= −rP3d

tan θd +
1

m̄g cos θd

(

(mf3 − mf1)v1d
v3d

+ (KM0
+ KMαd)V

2
d

)

(4.28)

for a given value of the parameter rP3d
, provided θd 6= ±π

2 . If θd = ±π
2 , there is an

equilibrium of the desired form if and only if the parameter rP3d
satisfies

rP3d
=

1

m̄g sin θd

(

(mf3 − mf1)v1d
v3d

+ (KM0
+ KMαd)V

2
d

)

. (4.29)
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If (4.29) is satisfied, rP1d
is a free parameter, and the choice of rP1d

will affect the glider’s

“bottom heaviness” and the stability of the glide by changing γ. In fact, we should not

choose rP3d
to satisfy condition (4.29) in general because this will require that rP3d

be

small. Since rP3d
contributes to the vehicle’s “bottom-heaviness” at shallower glide path

angles, designing a glider to satisfy condition (4.29) in straight up or down glides will affect

stability of these other equilibria. (For a vehicle symmetric about the body e1-e2 plane,

θd = ±π
2 implies that KM0

= 0 and αd = 0. In this case, condition (4.29) requires that

rP3d
= 0.)

4.1.3 Linearization

We now determine the linearization for the planar glider about a steady glide path.

Let z = (z′, θ, Ω2, v1, v3, rp1
, rp3

, PP1
, PP3

, mb)
T and let u = (u1, u3, u4)

T , where (u1, u3) is

the control force on the internal moving mass as described in Section 3.2.3. Computing

the linearization for the glider equations with pointmass acceleration control (Section 3.2.5)

follows the same procedure. Define

δz = z − zd

δu = u − ud, where ud = 0.

Then the linearized system is

δż = A δz + B δu (4.30)
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where

A =











































































0 −Vd 0 − sinαd cos αd 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 a32 a33 a34 a35 − m̄g cos θd

J2
− m̄g sin θd

J2
0 0 0

0 a42 a43 a44 a45 0 0 0 0 a410

0 a52 a53 a54 a55 0 0 0 0 a510

0 0 −rP3 −1 0 0 0 1
m̄ 0 0

0 0 rP1 0 −1 0 0 0 1
m̄ 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0











































































(4.31)

and

B =











































































0 0 0

0 0 0

− rP3d

J2

rP1d

J2
0

− 1
mbd

+mh+mf1

0 0

0 − 1
mbd

+mh+mf3

0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1











































































. (4.32)
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Here,

αv1
= −v3d

V 2
d

αv3
=

v1d

V 2
d

Dv1
= (KD0

+ KDα2
d)(2v1d

) − 2KDαdv3d

Dv3
= (KD0

+ KDα2
d)(2v3d

) + 2KDαdv1d

Lv1
= (KL0

+ KLαd)(2v1d
) − KLv3d

Lv3
= (KL0

+ KLαd)(2v3d
) + KLv1d

Mv1
= (KM0

+ KMαd)(2v1d
) − KMv3d

Mv3
= (KM0

+ KMαd)(2v3d
) + KMv1d

where we have abbreviated ∂α
∂v1

as αv1
, etc. and

a32 =
m̄g

J2
(rP1d

sin θd − rP3d
cos θd) =

m̄g

J2
(−γd)

a33 = −m̄ (rP1d
v1d

+ rP3d
v3d

)

a34 =
1

J2
((mf3 − mf1)v3d

+ Mv1
|eq)

a35 =
1

J2
((mf3 − mf1)v1d

+ Mv3
|eq)

a42 = −m0d

m1d

g cos θd

a43 = −m3d
+ m̄

m1d

v3d

a44 =
1

m1d

(Lv1
sinαd + L cos αdαv1

− Dv1
cos αd + D sin αdαv1

) |eq

a45 =
1

m1d

(Lv3
sinαd + L cos αdαv3

− Dv3
cos αd + D sin αdαv3

) |eq

a410 = −g sin θd

m1d

+
(m0d

) g sin θd

(m1d
)2

− 1

(m1d
)2

(L sin αd − D cos αd) |eq

a52 = −m0d

m3d

g sin θd
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a53 =
m1d

+ m̄

m3d

v1d

a54 =
1

m3d

(−Lv1
cos αd + L sinαdαv1

− Dv1
sinαd − D cos αdαv1

) |eq

a55 =
1

m3d

(−Lv3
cos αd + L sinαdαv3

− Dv3
sinαd − D cos αdαv3

) |eq

a510 =
g cos θd

m3d

− (m0d
) g cos θd

(m3d
)2

− 1

(m3d
)2

(−L cos αd − D sinαd) |eq.

The notation (·)|eq indicates that the quantity is to be evaluated at the desired equilibrium.

This linearization can be used to check features of a given vehicle design, e.g., to check

stability or controllability of a desired glide path given a choice of vehicle design parameters.

One can also use this linearization to help automate the design procedure. For example,

consider a vehicle that has been fully designed but for a choice of the position of the

movable mass for a given glide path. Application of the Routh criterion to the characteristic

polynomial of the matrix A gives conditions for stability of the glide path. These conditions

can be written in terms of the free variable rP3. rP3 would then be chosen for behavior

with desired stability and rP1 would then be computed according to (4.28).

4.1.4 Equilibrium Glides for ROGUE

Given a set of parameters describing a glider like ROGUE, we may compute steady glides

for that vehicle. Mass and inertia properties of ROGUE were measured directly. Added

mass and inertia properties can be found, for example, in [37]. Lift and drag for the body

were found experimentally as described in [25]. Lift and drag for the wings were taken from

the data in [62]. Lift for the body plus wings was then computed using Schrenk’s method

[61], and drag was computed as the sum of the drag on the wing and the body. The pitch

moment was approximated using reference data, taking into account the tail. The vehicle

model parameters are given as follows: m = 11.22 kg, mh = 8.22 kg, m̄ = 2.0 kg, mf1 =
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2 kg, mf3 = 14 kg, J2 = 0.1 Nm2, KD0
= 18 N(s/m)2, KD = 109 N(s/m)2, KL =

306 N(s/m)2, KM = −36.5 Nm(s/m)2. Masses m, mh and m̄ were measured directly, with

a high degree of accuracy. The other parameters have less precision because they are based

on look-up tables and approximation methods.

Four steady glide paths are calculated, at glide angles (ξ = θ−α) of −30◦, −45◦, 30◦ and

45◦, using the method of Section 4.1.2. We compute the glide path at −30◦ by choosing a

desired glide speed Vd = 0.30 m/s and a desired vertical location of the movable mass given

by rP3d
= 4 cm. This results in an equilibrium variable mass given by mbd

= 1.36 kg. The

glide path at −45◦ is computed for these same values of rP3d
and mbd

. The corresponding

equilibrium speed for this glide is computed as Vd = .37 m/s. Similarly, we computed

the two steady upward glide paths, for the same value of rP3d
and the same buoyant force

magnitude, i.e., the value of |m0d
| is held constant. Recall that m0 is the mass of the vehicle

mv less the mass of the displaced fluid m. The full description of each of the four glide

paths is given in Table 4.1.

Variable Down 30◦ Down 45◦ Up 30◦ Up 45◦

ξd (deg) -30 -45 30 45
θd (deg) -23.7 -41.5 23.7 41.5
αd (deg) 6.3 3.5 -6.3 -3.5
Vd (m/s) 0.30 0.37 0.30 0.37
v1d

(m/s) 0.29 0.36 0.29 0.36
v3d

(m/s) 0.03 0.02 -0.03 -0.02
rP1d

(cm) 0.41 2.20 -0.41 -2.20
rP3d

(cm) 4.0 4.0 4.0 4.0
PP1d

(kg-m/s) 0.60 0.73 0.60 0.73
PP3d

(kg-m/s) 0.07 0.04 -0.07 -0.04
mbd

(kg) 1.36 1.36 0.64 0.64
m0d

(kg) 0.36 0.36 -0.36 -0.36

Table 4.1: Four Steady Glide Paths for ROGUE
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4.1.5 Stability of Equilibrium Glides

Local properties of steady glide paths can be studied using the linearization of Section 4.1.3.

Linear stability of the equilibria was investigated for a number of steady glides, both upwards

and downwards. Model parameters were chosen to represent a typical glider design. Steady

glides and their stability were also examined using parameters for the ROGUE laboratory

glider.

Using the original glider dynamic equations, detailed in Section 3.2.1 and before ap-

plication of the control transformation in Section 3.2.4, gives the linearization presented

in Section 4.1.3. When parameter values for a “typical” oceanographic glider and for the

ROGUE glider were used, the linearized equations were found to have some unstable eigen-

values. This instability arises from the coupling between the vehicle dynamics and the

internal sliding mass. In the model formulation using the force on the internal mass as a

control, the mass is free to move inside the vehicle. This makes it possible for the internal

mass position rp to change from the equilibrium rpd
in response to vehicle motions. This

instability is analogous to the instability problems associated with fuel slosh in space ve-

hicles, [51]. As discussed below and presented in [5], the control transformation of Section

3.2.4 effectively provides a suspension system for the moving internal mass and eliminates

this instability. Note that this instability is a result of the glider model, not an instability

present in real gliders, whose internal masses are held in place by their actuators. The

feedback transformation described here fixes an instability in the glider model (thereby cor-

recting an inaccuracy of the model), not a physical instability present in a real glider with

actuator controlled internal masses.

In the untransformed case, where force on the point mass is a control and the shifting

mass moves freely inside the vehicle, the instability can be easily resolved through use of
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linear state feedback such as an LQR controller, as described in Chapter 6. The LQR

controller stabilizes the steady glide paths, and simulations show it provides adequate dis-

turbance rejection. This control also provides adequate performance when used to switch

between different glides that are both in the upwards or both in the downwards direction,

but performs poorly when switching between upwards and downwards glides or the reverse.

A switch from glide equilibrium A to glide equilibrium B refers to the application of the

LQR controller designed for glide equilibrium B to initial conditions corresponding to glide

equilibrium A.

The instability of the steady glides and the performance problems in switching between

downwards and upwards glides stem from the manner in which the control of the internal

sliding mass is represented in the equations of motion. In Equations (3.31), the control

input u corresponds to the force on the internal moving mass. These equations accurately

describe the physical coupling between the glider and internal mass with the point mass free

to move around inside the vehicle. Even when the control u is zero, the shifting point mass

can move in response to the motion of the vehicle. Adding feedback to control the point

mass position is sufficient to stabilize steady glides but has shortcomings in performance

as just described. However, it is perhaps more effective and more practical to consider

the nonlinear control law and change of states, described in Section 3.2.4, that models the

shifting point mass as constrained to a suspension system inside the vehicle and makes

the control w the acceleration of the point mass. The resulting equations still accurately

model the coupling between the internal mass and the vehicle and more accurately model

the control used in actual gliders. The transformation yields a stable system.

The transformed glider dynamics are given by Equations (3.38). These may be simpli-

fied and confined to the plane as described above. The equilibria steady glides, including
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the position of the internal sliding mass, are unchanged by the control transformation. Lin-

earization of the transformed equations gives a stable system with eigenvalues all in the left

half-plane. This is an improvement over the untransformed equations. The new equations

also exhibit significantly improved performance in switching between steady glides, includ-

ing allowing switching between upwards and downwards glides. From investigation using a

number of simulations, it appears that the controlled system using state feedback and the

new equations has a significantly larger region of attraction than the untransformed system.

Pitch stability in gliders is provided by the arrangement of the internal masses and

the distance between the CG and the CB. This distance is given by γ as noted before.

Many glider designs have no horizontal tail for pitch stability or control. Gliders are often

hydrodynamically designed for stability in order to operate for long periods at steady glides

with controls fixed, that is, with fixed ballast and internal mass positions. Setting the point

mass acceleration w to zero fixes it in place. This is equivalent to stick-fixed or controls-fixed

stability in aircraft.

While these results are determined by simulation, it is expected that they will apply

to a range of glider designs. The simulations used parameters typical for existing gliders.

The results may remain valid given some variation in those parameters. Consider that

existing gliders are all designed for gliding efficiency, low power consumption, and extended

deployments. They are all designed for stable steady gliding with controls fixed. They have

similar body and wing arrangements and their hydrodynamic properties are similar. These

designs, as well as future glider designs with similar mission and geometry, may be expected

to have model parameters within some reasonable range of each other.
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Figure 4.6: Glide path in the vertical plane. From simulation.

4.1.6 Example: Sawtooth Gliding in The Vertical Plane

Figure 4.6 shows the glide path in the vertical plane of an underwater glider simulated using

the glider dynamic model. The glider modelled here is similar in size to existing gliders such

as Slocum. The simulation shows four steady glide segments and three stable inflections

between upwards and downwards glides. Other vertical plane states and V and α are shown

in Figure 4.7. The states converge to their desired equilibrium values, shown in Table 4.3.

Figure 4.8 shows the internal mass states and control inputs for the simulation. The control

inputs are physically reasonable. They appear as spikes on the plot because of the length

of time of simulation and the relative scaling of the plot axes.

At each inflection the internal mass position and the ballast mass are changed to match

the next equilibrium glide. The only control used is feedback control of the internal mass

states. External disturbances are neglected. Upon adjustment of the internal masses the

glider transitions smoothly to the new equilibrium glide.

In this glider rp1 and mb are controlled and rp3 is fixed. The internal actuators and

controls in this simulation are configured to take about ten seconds to move the sliding

mass to its new position and to pump ballast. This does not model any particular vehi-

cle’s actuators. Fully open-loop control of the internal masses was also simulated, without

feedback of the mass position. With this method small errors in numerical integration may
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Figure 4.7: Vertical Plane States.

lead to nonzero errors in position rp or velocity ṙp. Feedback is therefore desirable even in

simulations. Note that existing gliders use servo motors with feedback to control mass and

ballast positions.

Simulations with faster and slower actuation than shown here also gives stable tran-

sitions, although care should be taken with very slow actuators or those which move the

internal mass and ballast at very different speeds. For example, a very fast ballast adjust-

ment with a slow rp adjustment may lead to poor performance in transitions.

The parameters used in the simulation are given in Table 4.2. This glider has a stabi-

lizing hydrodynamic pitch moment, ∂
∂αCMtotal

(α)|eq < 0, ∂
∂α((mf3 − mf1) sin αeq cos αeq +

MDLeq) < 0. A range of pitch moment parameters giving ∂
∂αCMtotal

(α)|eq > 0 are also
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Figure 4.8: Internal mass position, accelerations, and net buoyancy and pumping rate.

stable, given sufficient bottom-heaviness of the glider. Stability can be analyzed using the

linearization presented above and in simulation.

Note that the full three dimensional dynamics of the glider were simulated with initial

conditions in the vertical plane invariant subspace. Given a stable glider configuration and

hydrodynamic parameters, simulations beginning out of the planar subspace converge to

planar motion.
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Body length (m) 1.5 KL0
0

radius (m) 0.11 KL 132.5
displacement m (kg) 50 KD0

2.15
sliding mass m̄ (kg) 9 KD 25
hull mass mh (kg) 40 KM0

0
mf1,2,3 (kg) 5,60,70 KM -100
J1,2,3 (kg · m2 ) 4,12,11 KΩ21

50
KΩ22

50

Table 4.2: Glider Simulation Parameter Values.

Variable Down Up

ξd (deg) -25 25
θd (deg) -23 23
αd (deg) 2 -2
Vd (m/s) 0.30 0.30
v1d

(m/s) 0.3 0.3
v3d

(m/s) 0.02 -0.02
rP1d

(cm) 1.98 -1.98
rP3d

(cm) 5.00 5.00
mbd

(kg) 1.047 .9526
m0d

(kg) 0.047 -0.47

Table 4.3: Simulation Steady Glides.

4.2 The Phugoid Mode for Underwater Gliders

In this section we derive a simplified model of underwater glider flight dynamics in the ver-

tical plane, following Lanchester’s original work on aircraft flight dynamics and the phugoid

mode [40, 73]. The glider phugoid model is derived by confining the three dimensional glider

model to the vertical plane and applying Lanchester’s phugoid assumptions. This yields a

system of four equations, specifying the glider position, orientation and speed. The flight

paths of the phugoid glider model are qualitatively similar to those of aircraft or underwater

gliders. The underwater glider phugoid equations are shown to take two forms, one fully

integrable and one not, depending on the whether the angle of attack is fixed at zero or a

nonzero value. In the integrable case the glider phugoid dynamics and flightpath may be
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scaled to match Lanchester’s solutions using a similarity factor. In the non-integrable case,

the level flight equilibrium becomes a stable (unstable) center when the angle of attack is

fixed at a positive (negative) value.

In 1908, F.W. Lanchester derived a simplified model of the longitudinal dynamics of an

aircraft [40, 73]. He named this model and the resulting trajectories the phugoid motion

of the aircraft (Von Mises [73] humorously notes that this name derives from the Greek for

“to fly” in the sense of fleeing from something, not flying through the air). By applying

three simplifying assumptions to the aircraft equations of motion, Lanchester developed a

simple system which exhibits gliding motions including level flight, wavy flight and flight in

loops. Lanchester’s assumptions include cancelling drag on the vehicle and fixing the angle

of attack. They are described in Section 4.2.1.

In this section we apply Lanchester’s assumptions to the model of the underwater glider

in the vertical plane. Several cases are examined, including gliding motion when added

mass and buoyancy effects are significant due to the density of the fluid. When the glider’s

angle of attack α is fixed at zero, or when the glider’s added masses mf1 and mf3 are

equal, the equations are fully integrable. If added mass and buoyancy are zero, we recover

Lanchester’s equations for the phugoid motion and the system is integrable. When added

mass and buoyancy are significant but the vehicle angle of attack is fixed at zero, the system

is still integrable and has dynamics similar to Lanchester’s system, within a similarity factor.

When the added masses mf1 and mf3 are unequal and the angle of attack is fixed and

nonzero, the system is no longer conservative (and is not hamiltonian and integrable). The

resulting dynamics, phase portrait and vehicle trajectories are examined through simulation.

It is also shown that applying the small angle assumption to the angle of attack makes it

possible to write the equations of motion as the integrable system plus perturbation terms.
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4.2.1 Lanchester’s Assumptions and the Phugoid Equations

We now apply Lanchester’s assumptions to the glider vertical, longitudinal plane equations

of motion and examine several cases, including phugoid motion when α = 0 and α 6= 0,

with and without added mass and buoyancy. The longitudinal dynamics of an underwater

glider are given by Equations (4.1)-(4.11). Lanchester detailed his phugoid assumptions in

[40], where he applied three simplifying assumptions to the aircraft longitudinal equations

of motion:

1. Drag on the aircraft is cancelled out by an equal and opposite thrust. An equivalent

assumption is that drag and thrust are both zero. Note that this is the case for a

vehicle in a two dimensional inviscid flow.

2. The moment of inertia J is very small, or equivalently the pitching moment MDL is

much larger than J . MDL is assumed to be stabilizing towards a constant α, so the

body will equilibrate very quickly to a constant angle of attack α at which MDL is

zero.

3. The angle of attack α is fixed. This is consistent with the previous assumption. Given

this and the relation ξ = θ − α, the difference between the pitch angle and glide path

angle is fixed.

Lanchester examined the case of an aircraft moving in a fluid with no added mass

or buoyancy effects. To derive the phugoid equations for an underwater glider, consider

the case of a glider whose ballast mass mb is fixed and disregard the sliding internal mass.

Lanchester’s assumptions would, in any case, severely limit any action of the sliding mass on

the glider motion. Apply assumptions one through three to Equations (4.1) through (4.6).

Assumptions two and three fix the angle of attack α at a value to be chosen. Consider first
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the case where we fix α = 0. This requires that v3 = v̇3 = 0. Then V̇ = v̇1, and Equation

(4.5) becomes Equation (4.35). Equations (4.1) and (4.2), which track the position of the

glider, may then be written as (4.33) and (4.34). Applying Lanchester’s second and third

assumptions, disregard Equation (4.4). Equation (4.6) may be solved for θ̇ = Ω2, giving

Equation (4.36). The equations of motion are then

ẋ = V cos θ (4.33)

ż = −V sin θ (4.34)

V̇ =
1

m1
(−m0g sin θ) (4.35)

θ̇ =
1

m1V
(L − m0g cos θ) (4.36)

where L = 1
2ρCL(α)ArV 2 (here Ar is the characteristic area of the glider).

Equations (4.33) and (4.34) simply track the position of the glider in the vertical plane.

The energy of the glider is independent of x and z appears only in the potential energy of

the glider. Note that m3 does not appear in the equations of motion for the α = 0 case.

Setting mf1 = 0 and m0 = mv = m1 gives Lanchester’s original phugoid equations.

The system for α = 0, Equations (4.33)-(4.36), has one equilibrium (modulus 2π). It

corresponds to level flight at velocity V = VL and θ = 0 where

VL =

(

2m0g

ρCLAr

) 1

2

. (4.37)

The system of equations has two conserved quantities, E and A. E is the total energy of

the system. A is a function of velocity V and pitch angle θ.

E =
1

2
m1V

2 − m0gz (4.38)
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A =
V

VL
cos θ − 1

3

(

V

VL

)3

. (4.39)

Conservation of energy E gives

V 2 = 2
m0

m1
gz + C

We may choose constant C = 0 to make z = 0 the maximum height of the flight path (recall

that z is positive down). This gives all flight paths with the same energy level E = 0. Note

that the lift force on the glider is perpendicular to the velocity vector at all times and does

no work. There are no other hydrodynamic forces on the glider when α = 0.
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Phugoid α=0 Normalized Flightpaths at Equal Energy. A= −1, 0, 1/3, 2/3 
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Figure 4.9: Phugoid Flight Paths.

Figure 4.9 shows flight paths in the x−z plane for four initial conditions at equal energy

and different values of A. The axes are normalized by similarity factor η = (2m0

m1
g)/(V 2

L ).
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The characteristics of the flight path depend on conserved quantity A. The flight paths

shown were generated by integrating the equations of motion for initial conditions θ(0) = 0

and A = 2
3 , 1

3 , 0 and −1. A = 2
3 corresponds to level flight at the equilibrium and is the

maximum A corresponding to a physical solution of the system. 2
3 > A > 0 corresponds

to wavy flight about the level flight path. Along the A = 0 path, the glider reaches θ = π
2

with V = 0 at z = 0, then rotates to θ = −π
2 and glides downwards with increasing V . The

A = 0 glide paths show a sharp cusp at points where V = 0. A < 0 gives looping flight

paths.

Lanchester’s results on phugoid motion for the aircraft address the fully integrable case

m0 = m1 = mv. The phugoid dynamics with added mass and buoyancy and α = 0 are also

fully integrable and the flight paths are identical to Lanchester’s (with similarity factor η).

The equations are also integrable for nonzero α and equal added masses.

Figure 4.10 shows levels sets of A in the phase plane for the underwater glider phugoid

system, Equations (4.33)-(4.36). Trajectories remain on a level set of A and move clockwise

or towards increasing θ. An equivalent phase portrait was generated by integrating the

equations of motion forward and backwards in time from a set of initial conditions. The

equilibrium is a center and A = 0 is the separatrix between solutions circling the equilibrium

V = VL, θ = 0 and solutions moving with increasing θ through θ = π, whose flight paths

are loops.

The phase portrait of the phugoid system exhibits similarities to the phase plane of a

pendulum. These include equilibria that are centers spaced 2π apart and a separatrix divid-

ing two regions in the phase plane; one region of solutions where θ increases continually and

one region of solutions which oscillate about the equilibria. These systems are characterized

by the exchange of potential and kinetic energy as the glider or pendulum falls and speeds
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Figure 4.10: Phugoid Phase Plane. Level Sets of A.

up or rises and slows.

4.2.2 Phugoid Dynamics for α 6= 0

We now examine the glider phugoid equations when α is fixed at a nonzero value. This

corresponds to fixing tanα = v1

v3
. We use Equation (4.17) to find V̇ and then use the relation

v̇1 tan α = v̇3 and equations (4.17) and (4.18) to solve for θ̇. The resulting equations are

ẋ = V cos(θ − α) (4.40)

ż = −V sin(θ − α) (4.41)

V̇ =
1

m1 cos α

(

−m3V θ̇ sinα − m0g sin θ + L sinα
)

(4.42)
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θ̇ =
−m0g

(

1
m1

tan α sin θ + 1
m3

cos θ
)

+ L

(

1
m1

tan α sinα + 1
m3

cos α
)

V
(

m1

m3
cos α + m3

m1 tan α sinα
) (4.43)

Note that θ̇ appears in equation (4.42) in order to conserve space. Setting α = 0 in the above

equations yields Equations (4.33)-(4.36). If mf1 = mf3, Equations (4.42)-(4.43) become

V̇ =
1

m1
(−m0g sin(θ − α)), (4.44)

θ̇ =
1

m1V
(L − m0g cos(θ − α)), (4.45)

which are identical to the α = 0 case with a simple phase shift by α.

The equilibrium for the α 6= 0 system (4.40)-(4.43) is θ = α, V = VL where VL is the

same as (4.37), for the α = 0 case. This equilibrium corresponds to level flight, where the

glider velocity vector is horizontal and the glider e1 axis is inclined by angle α with respect

to it. V no longer lies along the glider e1 axis as it did in the α = 0 case. In the general

case mf1 6= mf3, E and A, where

E =
1

2
m1v

2
1 +

1

2
m3v

2
3 − m0gz, (4.46)

and A is defined by (4.39), are no longer conserved quantities of the motion, although lift is

still perpendicular to velocity and does no work. This may be interpreted as the constraint

holding the angle of attack constant doing work on the system.

Figure 4.11 shows four flight paths for the phugoid dynamics with fixed α = 5◦, generated

by numerically integrating Equations (4.40) - (4.43). The added masses used are shown in

the figure. The initial conditions are θ = α with the same V and z initial conditions used

for Figure 4.9 for the α = 0 case. The equilibrium level flight path remains straight. Other
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Figure 4.11: Flight Paths for α = 5.

flight paths progress from looping to wavy to level flight.

Figure 4.12 plots solutions on the phase plane from the same initial conditions. Setting

α > 0 makes the level flight equilibrium (α, VL) a stable focus, with solutions spiralling

inwards in the clockwise direction. The flight path from IC 4, which in the α = 0 case

performed loops, now performs one loop and progresses to wavy, then level flight. Set-

ting α < 0 makes the equilibrium an unstable focus, with solutions spiralling away in the

clockwise direction.

Figures 4.13 and 4.14 show A and energy versus time for the same set of initial conditions.

Trajectories move to higher levels of A until reaching the equilibrium value. Note that A

does not increase monotonically. The energies of the trajectories decrease on average as
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they move towards equilibrium glides, but do not decrease monotonically.

The α 6= 0 case may be examined as a perturbation to the conservative (hamiltonian and

integrable) case. This involves applying the small angle assumption to α and grouping the

equations as f + αg, where f represents the integrable equations of motion and g contains

the perturbation terms. Taking (4.42) and (4.43) and setting cos α = 1, sinα = α, and

tan α = α, multiplying and substituting, and discarding terms of order α2 and α3, gives

V̇ =
1

m1
(−m0g sin θ) + α

(

L

m1

) (

1 − m3

m2
1

)

+ α

(

m3

m1
2

)

(m0g cos θ) (4.47)

θ̇ =
1

m1V
(L − m0g cos θ) − α

(

m3

m1
2V

)

(m0g sin θ)) . (4.48)

Setting m1 = m3, these equations simplify to

V̇ =
1

m1
(−m0g sin θ) + α

(

1

m1

) (

L(1 − 1

m1
) + m0g cos θ

)

(4.49)
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θ̇ =
1

m1V
(L − m0g cos θ) − α

(

m0g sin θ

m1V

)

. (4.50)

Note that setting m1 = m3 before applying the small angle approximation simplifies the

phugoid α 6= 0 equations to (4.45).

Related work in [6] presents a singular perturbation theory analysis of the phugoid equa-

tions and the glider equations in the vertical plane, using the phugoid mode conservation

laws to derive a Lyapunov function to prove stability of gliding.

4.2.3 Lateral Dynamics

The lateral dynamics of underwater gliders are of interest for navigation, stability analysis,

and underwater glider design. “Lateral dynamics” is standard aerospace terminology refer-

ring to the vehicle e1-e2 plane and the yaw, sideslip and roll dynamics of the vehicle (Figure

4.15). This section briefly discusses modelling the lateral dynamics of underwater gliders.
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Of particular interest are turning controlled by rolling or rudder, yaw resulting from static

mis-trim of the glider CG, and rudder-roll coupling. These are discussed further as three

dimensional effects in Section 4.3.

In aircraft literature it is standard to examine separately the longitudinal and lateral

dynamics of an airplane [15, 43]. Simplifications are made to the highly coupled full aircraft

dynamic equations. The six dynamic equations governing the linear and angular velocities

of the aircraft are broken into two sets of three equations and analyzed separately, usually

with a linear analysis about the equilibrium. Standard aircraft lateral analysis includes yaw,

sideslip and roll dynamics to analyze control of roll and heading actuated with ailerons and

rudder. Linear analysis of underwater glider dynamics follows a similar approach. The

three dimensional equations can be linearized about the gliding equilibria and assumptions

analogous to those for aircraft applied to decouple the longitudinal and lateral dynamics.

Aircraft lateral models and linear analysis reveal important dynamic phenomena, in-
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cluding the Dutch roll mode, roll damping, and the spiral mode. See, for example, [66].

These depend on the hydrodynamic model used in the analysis, specifically the degree of

coupling included between yaw and roll rates and moments.

The lateral dynamics of underwater gliders differ from those of aircraft. Differences

include the righting moment due to the separation of the underwater glider’s CG and CB.

The propulsive force on an underwater glider is proportionally much smaller than for aircraft

and sailplanes. Equilibrium steady glides of underwater gliders are much steeper than those

of aircraft and sailplanes.

There is no lateral invariant plane in the underwater glider dynamic equations. It

is not possible to choose some inclined plane in which the glider will stay as it glides.

Therefore a lateral nonlinear analysis confined to an invariant plane, as was performed

for the underwater glider vertical plane dynamics, is not possible. Therefore it is difficult
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to model the lateral dynamics of underwater gliders as uncoupled from the longitudinal

dynamics without significant simplifications.

There is similarly no lateral invariant plane for aircraft. For example, the following

changes will move an aircraft out of the lateral, horizontal plane. Changes in speed change

the lift force and lead to vertical accelerations. Changes in speed may also change the pitch

balance of the aircraft. Rolling motion may move the lift vector away from vertical so that

it does not balance the aircraft’s weight, producing a vertical acceleration. Depending on

the design of the aircraft and the detail of the hydrodynamic model, coupling between yaw,

roll, and pitch may cause deviation from the plane.

It is possible to argue that analysis using uncoupled lateral equations is more applicable

to aircraft than to underwater gliders. An aircraft is capable of maintaining a small glide

path angle and small pitch angle, staying somewhat close to the horizontal plane. Un-

derwater gliders generally do not. Powered aircraft can balance drag with thrust to move

horizontally. Sailplanes are capable of close-to-level flight. Underwater gliders must move

vertically to glide, and existing gliders have large glide path and pitch angles compared to

sailplanes and aircraft.

To model and analyze the lateral dynamics of underwater gliders, we considered several

different models, from simplified ‘toy’ models of a glider in the horizontal plane to the

full three dimensional dynamic equations. The dynamics of these lateral ‘toy’ models were

restricted to the lateral plane through an imposed constraint. It is difficult to say how

accurately these restricted models approximate underwater glider lateral dynamics in three

dimensions. They are formulated to exhibit the qualitative phenomena of three dimensional

gliding such as yaw control through rudder and roll and rudder-roll coupling. The details

of their dynamics may be quite different than those of the three dimensional model.
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The yaw dynamics of the Slocum Electric Glider were examined using a lateral model

derived by restricting the full three dimensional underwater glider model, with simplified

internal masses, to the horizontal plane. A first version of this toy model confines the glider

pitch and roll to be zero, so the glider body e1-e2 plane coincides with the inertial x-y

horizontal plane. Yaw is controlled using a rudder. Drag may be counteracted by setting

the drag coefficient to zero or by adding a thrust force with a fixed direction in the body

frame to cancel the drag at some equilibrium speed. If roll is not included, this model has

dynamics in the horizontal plane similar to those of a ship.

In this model, when thrust is fixed in the body frame, stability of a forward steady

motion depends on the placement of the internal moving mass, which influences the glider

CG position. Some positions are unstable and others stable, depending on whether the

CG position along the e1 axis is ahead of or behind the centroid of the body and the yaw

moment on the body. This is probably an artifact of the ‘toy’ model, not applicable to the

full glider dynamics. Such an instability has not been observed during in-ocean experiments

with gliders, nor in simulations with the three dimensional glider model.

An alternate restricted lateral model confines the underwater glider to motion in the

horizontal plane but allows the glider to roll. This allows steering and yaw using the internal

mass to actuate the roll of the glider, and shows the effects of static mis-trim and rudder-

roll coupling in a simple model. While the model exhibits similar qualitative phenomena,

it is difficult to say how relevant these results are to the three dimensional glider dynamics.

These restricted longitudinal models give insight into the lateral dynamics of interest. It is

probably necessary to use the full three dimensional equations to analyze these phenomena

accurately.

Underwater glider yaw and roll dynamics differ from those of aircraft. The principal
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difference is the static stability due to the glider’s CG-CB separation. Aircraft are generally

neutrally stable in a roll. There is no restoring force to move an aircraft at a nonzero roll

angle to the upright position. In an underwater glider, the distance between the CB and

CG, ∆CB − CG, provides a stabilizing (righting) moment in the pitch and roll directions.

Consider one example of how this affects the lateral dynamics. The spiral mode in aircraft

is reduced or eliminated in sufficiently bottom-heavy gliders. In the spiral divergent mode,

an initial roll angle causes the (stick-fixed) aircraft to yaw and roll further into a steady

turn or tightening spiral, possibly resulting in an uncontrollable spin. In gliders with a

large enough ∆CB − CG the static moment stabilizes the roll dynamics. This depends on

the glider static moment, hydrodynamic design, and the degree of hydrodynamic coupling

between yaw and roll. The same mechanism changes the Dutch roll mode and the overall

roll dynamics of the glider. This is discussed further in the next section.

Other differences between gliders and aircraft arise due to the use of controlled internal

masses, the effects of added mass and inertia, and the resulting coupling in the glider

dynamics. See Section 7.1 for further discussion.

4.3 Gliding in Three Dimensions

4.3.1 Steady Glides

Three types of steady glides are of interest:

1. Straight, steady glides with zero sideslip, β = 0.

2. Straight, steady glides with nonzero sideslip, β 6= 0.

3. Spiral, steady, turning glides, both coordinated turns (β = 0) and others.
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These exist in the glider model of Chapter 3 and have also been observed in the operation

of gliders such as Slocum and Seaglider. Existence of these types of equilibria is expected

because the glider dynamics are invariant with respect to translations in x and y and

rotations about the direction of gravity, z. If water density ρ is taken to be uniform with

depth, and surface and bottom effects are disregarded, the equilibria do not vary with depth.

As always, these equilibria and their stability depend on the glider’s hydrodynamics and

internal mass configuration.

Straight Glides

Steady glides in the longitudinal plane have already been discussed. These glides are also

equilibria in the three dimensional equations, as the longitudinal plane is an invariant plane

of the full glider dynamics.

Straight line glides with some small sideslip angle are similar to those shown in the

longitudinal model. Consider a glider with stable hydrodynamics and sufficiently bottom-

heavy internal mass distribution. A small static roll offset will cause a turning glide, but

this may be offset with some rudder angle, resulting in a straight glide with nonzero roll

and sideslip angles. The glide path angle is determined by the glider lift/drag ratio at the

steady flight condition. Flight with a nonzero sideslip angle generally decreases the lift/drag

ratio of a glider or aircraft, producing a steeper or slower glide (generally an undesirable

effect). The detail of the hydrodynamic model determines the extent to which this appears

in the three dimensional model dynamics. See [26].

Existing gliders operate predominantly in straight, steady glides as shown in the longitu-

dinal model section and in Chapter 5. Straight glides are desirable for power conservation.

Existing gliders (Slocum, Spray, Seaglider) are designed to be statically stable and to glide
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with minimal control application.

Gliders may stabilize the longitudinal plane statically, with a design including a vertical

tail, wing sweep or dihedral. Gliders can also stabilize straight glides actively, using their

turning actuators. Turns between straight glides may be steady or unsteady motions.

Example: Converging to a Stable, Steady Planar Glide.

The following plots show simulation output for a glider with the same parameters as in

Section 4.1 and with Kβ = 90. Figure 4.16 shows the simulation output of Euler angles and

Figure 4.17 shows the glider velocity and aerodynamic angles. The glider simulated here

has high directional stability, with stabilizing KM and Kβ . This could represent a glider

with wings and tail far aft on the glider, as with Seaglider.
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Figure 4.16: Simulation Euler Angles.

The internal mass and ballast are positioned to give the same xd, a downwards straight

glide, as in Section 4.1, Table 4.3. The glider’s initial condition is offset from xd in

pitch, roll, angular velocity, and velocity: θ0 = 22◦, φ0 = 45◦, Ω0 = (1, 1, 1)T (rad/s),

v0 = (0.2, .10, .11)T (m/s). The states converge to the desired straight glide. Heading is

not controlled. Lowering the hydrodynamic angular damping produces a more oscillatory

convergence.
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Figure 4.17: Simulation Aerodynamic Angles.

4.3.2 Spiral Glides

Figure 4.18: A steady spiral glide.

Gliding equilibria are solutions of the glider three dimensional dynamic equations with

Ω̇ = v̇ = ṙp = r̈p = ṁb = 0. Figure 4.18 shows a steady spiral glide. In a steady spiral,

Ω = RTkω3, where kω3 is the inertial angular velocity and ω3 the glider heading rate.

Substituting these conditions into the simplified internal mass case, (3.42), gives T̃sm = 0

and F̃sm = 0, where T̃sm and F̃sm are the torques and forces in the ‘simplified masses’

model as defined in Section 3.2.6. The glider three dimensional equilibria equations are
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then

0 = JΩ × Ω + Mv × v − rp × [m̄(v + Ω × rp) × Ω] + m̄r̂pgRTk + Text, (4.51)

0 = [(M + mbI)v + m̄(v + Ω × rp)] × Ω + m0gRTk + Fext. (4.52)

where spiral glides have Ω = RTkω3. Setting ω3 = 0 gives straight glides.

Spiral equilibria were found by solving these equations numerically for a given rp and

mb. One method for finding spiral glides is to choose rp and mb using the vertical plane

equilibrium equations, for some desired planar glide. Some mass offset ∆rp2 may then be

introduced and the corresponding 3D equilibria found numerically.

If the glider is configured such that it is hydrodynamically stable and bottom-heavy,

the resulting spiral glide will be stable and simulations will converge to that glide. Stability

may be examined through linearization about the steady glide. Numerical linearization and

nonlinear simulations were used to study a variety of steady spiral and straight glides.

Multiple equilibria are possible for some choices of rp and mb, depending on the glider

hydrodynamics. This also true for degenerate cases such as rp = 0, mb = 0, or for strange

sets of hydrodynamic parameters (that correspond to a bizarre vehicle geometry). Picture,

for example, a glider with some rp, mb > 0, such that it is bottom-heavy and stable

gliding downwards. Another equilibrium may exist for the same rp, mb where the glider is

inverted and the CG is above the CB. This will likely be unstable, depending on the relative

magnitudes of the glider internal mass and hydrodynamic forces.

Gliders designed such that there is one stable equilibria for a given internal mass con-

figuration are desirable in low-power applications like ocean sensing, since minimal control

action is required and the onboard CPU can ‘sleep’ for periods of steady gliding. The ap-
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pearance of multiple equilibria appears to be only a small concern when modelling existing

gliders. For parameters representing a glider like Slocum or Seaglider, one stable equilibria

was found for the rp 6= 0, mb 6= 0 tested. Other equilibria found (in a brief examination)

were unstable. If more unusual designs are considered, some sets of parameters and internal

mass states may have multiple stable glides.

The number and stability of the equilibria is important when considering control and

navigation by switching between stable glides. To switch from glide A to B, it is necessary

for glide A to lie within the region of attraction of glide B, given the switching control

used and any control used to stabilize glide B. For the glider configurations considered

in simulation, with no control other than the movement of the point mass to position B,

the steady glides were found to have significant regions of attraction. Initial conditions at

multiple other steady glides in the upwards and downwards directions and a range of other

initial conditions were found to converge to the single steady glide corresponding to the rp

and mb = 0 chosen. The region of attraction of the stable equilibria may be examined using

nonlinear simulations and following the methods of [36].

When evaluating equilibria, keep in mind that the hydrodynamic model used here is

valid only for attached flow at low angles of attack and sideslip and in some linear and (low)

angular velocity range. This limits the domain of interest when finding equilibria. Model

variation, for example, modelling the hydrodynamic moment as cubic in alpha instead of

linear, may introduce new equilibria.

Stability of a steady glide confined to the vertical plane does not guarantee three dimen-

sional stability of the corresponding straight, steady glide. A glider with hydrodynamics

that give stable 3D motions will generally have stable planar glides (with the proper corre-

sponding mass positions), but it is possible for a glider stable in 2D to have, for example,
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yaw characteristics such that a disturbance out of the vertical or a small ∆rp2 will produce

a steep nose-down dive instead of a steady spiral turn. This was demonstrated in simula-

tions, especially when ∆CB − CG is small. Therefore both pitch and yaw stability should

be considered in glider design and choice of rp. Gliders designed for static (controls-fixed)

stability may use steady turns for efficient gliding.

A Steady Spiral Glide
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Figure 4.19: Steady Spiral Simulation. Glider inflects at maximum depth.

Figures 4.19-4.23 show simulation output for example steady spiral glides downwards

and then upwards. The simulation uses the same glider parameters as in the previous

examples. The internal mass is positioned to give a downwards glide with a 45◦ roll angle.
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rp3 is fixed. rp1 and mb are set for the downwards and upwards glides as in the previous

examples. Note that the resulting pitch angle is steeper here than in the planar case because

the roll and sidelip angles are nonzero and the lateral characteristics of the glider affect the

pitch equilibrium of the glide. The spiral glides shown here are both stable.
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Figure 4.20: Glider path projected onto xz, yz and xy planes.

Figures 4.19 and 4.20 show the path of the glider in space. The glider begins at the

origin of the inertial coordinate system in a steady spiral glide downwards. In this glide

the glider is rolled 45◦ to the right and has a positive heading rate (turns to the right)

when gliding downwards, demonstrating that this glider has a positive roll-yaw coupling

(described in the following sections). After 3000 s the glider moves the internal mass and

ballast to the position corresponding to the upwards glide, as shown in Figure 4.23. This
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changes rp1 and mb, but not rp2 or rp3. When gliding upwards, the same roll angle produces

a negative heading rate and turns to the left.

The position and orientation of the glider versus time are shown in Figure 4.21. Angular

and linear velocities are shown in Figure 4.22. Because the glider pitch and roll angles are

nonzero, no element of Ω is zero. If a glider’s roll angle is zero in a steady spiral, perhaps

in a glider turning using a rudder instead of roll, then ω2 = 0 in the spiral. Here, because

φ = 45◦, ω2 = ω3. This follows from Ω = RTkω3.
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Figure 4.21: Position and orientation. Heading, pitch, roll in Euler angles.

The sliding mass and ballast positions are shown in Figure 4.23. In this simulation the

maximum control inputs are limited. The maximum sliding mass acceleration (in the body

frame) is 1 (mm/s2) and the maximum ballast pumping rate is 1 (g/s2). The pumping is
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Figure 4.22: Angular and linear velocities expressed in the glider body frame.

completed in about 100 s and the inflection to the upwards steady glide takes about 150

seconds.
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Figure 4.23: Internal mass positions and controls.
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4.3.3 Turning

Gliders may turn using steady or unsteady turning glides. Gliders can actuate their heading

and yaw using two methods:

1. Rolling to cause a banked turn. This rotates the lift vector and pitch moment on the

glider so they have a component out of the vertical plane. Seaglider and Spray use

this method to turn. Their internal mass actuators have a degree of freedom in the

roll direction, so the internal point mass can be used to change the glider’s roll angle.

2. Using a rudder or other moving hydrodynamic surfaces. This produces a turning

moment on the glider. The Slocum Electric glider design uses a rudder to turn.

Differential spoilers on a tailless glider or flying wing are another example.

Gliders with roll actuation may glide in banked, coordinated turns with zero sideslip

angle. Gliders whose roll is statically stabilized by their internal mass arrangement will

probably use unbanked turns with some sideslip angle. Gliders using a combination of

hydrodynamic surfaces to actuate roll and yaw may fly in banked turns without internal

actuation.

Design choice of a glider’s yaw control and actuation should take into account the

frequency of inflections in the glider’s operations. If roll is used to control the glider’s

yaw rate, then the roll must be changed in direction each time the glider inflects from an

upwards to a downwards glide. In shallow water operations involving many inflections, this

may be undesirable. In a design using a rudder, the relationship between the rudder angle

and yaw rate is independent of the glide direction (up or down). Therefore use of a rudder

is desirable for some operations, for example in littoral areas. This is the motivation for

the use of a rudder in the Slocum electric glider. Because the Slocum electric is designed
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for shallow gliding and frequent inflections, the rudder is used to control yaw and roll is

statically stabilized, not actuated.
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Figure 4.24: Roll and roll moment, viewed from rear. Shown with e1 aligned with i.

The relationship between roll (Figure 4.24) and yaw (Figure 4.15) at equilibrium depends

on the hydrodynamics of a given glider. The hydrodynamic moment on the glider is a

function of the glider body geometry and wing position and the position of its tail and

control surfaces. A major factor in the pitching moment on the glider is the design of its

wings and their position relative to the glider’s CG. This affects the location of the vehicle’s

hydrodynamic center of pressure (CP) relative to its CG. The CP is the point on the vehicle

at which the hydrodynamic force (i.e., lift and drag) effectively acts. This influences the

moment due to the lift and drag forces. A glider whose CP is forwards of its CG will have a

positive hydrodynamic pitching moment at equilibrium. The moment on the body alone is

generally destabilizing ( ∂
∂αMbody > 0), so for negative pitching moment slope ( ∂

∂αMtotal < 0)

the wing must be far enough aft to overcome this. Consider, for example, a glider with its

CP forward of its CG and ∂
∂αMtotal > 0 moving in a steady, straight glide at a downwards

glide path angle. A small positive roll angle will produce a positive yaw rate. The roll angle
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rotates the lift vector and other hydrodynamic force vectors to the right (in the positive

direction). Because they act at the CP forwards of the CG, the glider yaws right (positive

yaw direction).

Glider pitch dynamics are stabilized principally by their internal mass and buoyancy

torques. Because of the design and slow speeds of the average existing glider, the maximum

control moment from the internal mass is generally much greater than the hydrodynamic

torques. This gives some leeway in the designer’s choice of the glider’s wing position and

the resulting hydrodynamics and center of pressure.

There is significant variation in the pitch moment profiles of existing gliders. In an

aircraft, one typically expects a positive roll/yaw relationship, where a roll to the right

produces a yaw to the right when gliding downwards. Existing oceanographic gliders provide

examples of both positive and negative roll/yaw relations. In the case of the Seaglider, the

wings and the net center of pressure are located aft of the vehicle’s center of gravity. This

results in a roll-yaw coupling opposite that normally found in aircraft. When the Seaglider

is gliding downwards and rolls to the right, the location and direction of the lift vector

produces a yaw to the left.

The glider orientation may be parameterized using heading ψ, pitch θ, and roll φ Euler

angles. The heading rate is

ψ̇ =
sinφ

cos θ
Ω2 +

cos φ

cos θ
Ω3.
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Consider a glider in a straight, steady glide with β = 0, φ = 0,Ω = 0. The heading response

to a small roll angle is

∂

∂φ
ψ̈|eq =

(

1

cos θ

∂

∂φ
Ω̇3

)

|eq

=
1

J3 cos θeq

[

((mf3 − mf1) sinαeq cos αeq + KM0
+ KMαeq)V

2
eq

]

.

The quantity in square brackets is the total hydrodynamic pitching moment on the glider

at equilibrium, including the added mass moment. At this equilibrium this moment is

countered by the internal mass moment.

The hydrodynamic parameters of Slocum and Seaglider have been estimated using ref-

erence methods. CFD analysis of their hydrodynamics appears in [32], including estimates

of their pitch moment. For both Slocum and Seaglider, KM0
= 0 because of their top-

to-bottom symmetry, so the total hydrodynamic moment at α = 0 is zero. For Slocum,

∂
∂αMtotal > 0 at small angles of attack, so

[

((mf3 − mf1) sin αeq cos αeq + KM0
+ KMαeq)V

2
eq

]

>

0 for downwards glides (α > 0). Therefore, Slocum has positive roll-yaw coupling. Seaglider’s

hydrodynamics give it negative roll-yaw coupling. This is also demonstrated by simulations

of the equations of motion and has been observed in experiments at sea with Slocum (Chap-

ter 5) and Seaglider [14].

In a glide with some sideslip angle, such as steady spiral with some roll angle, a glider’s

roll-yaw coupling is determined by the relative magnitudes and directions of the pitch and

yaw moments on the glider. Because of this a variety of positive and negative moment

parameters may give a positive roll-yaw relationship. In existing gliders the yaw moment is

stabilizing (towards β = 0), due to their vertical tail designs. This produces a yaw moment

consistent with a positive roll-yaw coupling. Gliders such as Slocum, with KM > 0, have a
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positive roll-yaw coupling. Seaglider’s wing position at the rear of the glider gives a large

negative KM , producing the glider’s negative roll-yaw coupling.

Because gliders glide both upwards and downwards, they exhibit a slightly more com-

plex relationship between banking and turns than is usually seen in aircraft. Because the

direction of the lift vector, and typically the angle of attack, is reversed between upwards

and downwards glides, the direction of the yaw-roll coupling is reversed. Consider the ex-

ample in Section 4.3.2, which shows a glider with a positive roll/yaw relationship. When it

is gliding downwards, a roll to the right produces a positive yaw rate (it turns to the right).

When it is gliding upwards, it produces negative yaw rate (it turns left) with a roll to the

right.

4.3.4 Static Mis-trim

Some misalignments of a glider’s CG may occur while ballasting a glider before deployment,

or as a result of damage or fouling during operation. Depending on the individual glider

design and actuation, this may result in a static roll angle and a yaw moment on the glider.

In a glider with sufficient degrees of freedom in the actuation of its moving internal mass,

the misalignment may be corrected simply by adjusting rp. In a glider with a restricted

internal mass, for example, one actuated only in the e1 direction, a mis-trim ∆rp2 will result

in a roll.

Existing gliders have few or no moving external surfaces for attitude control. Roll and

pitch may be controlled using internal actuators alone, so it is possible to design a glider

with no external control surfaces. Seaglider, for example, has no moving control surfaces.

Gliders may also use a combination of internal and external actuators. The Slocum electric

glider uses a rudder to actuate yaw and internal masses to control pitch. Roll is set by the
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static trim balance of the vehicle.

Consider a case where a Slocum electric glider is deployed with some static roll mis-

trim, i.e., a nonzero static roll angle resulting from an off-centerline CG position. The sliding

internal mass is not actuated in the roll direction, so the mis-trim cannot be removed while

the glider is deployed. This roll angle produces a yaw moment on the glider by rotating the

lift vector out of the vertical plane. To produce a straight glide, this yaw moment must be

counteracted by the rudder, resulting in a steady glide with nonzero roll angle and nonzero

sideslip angle. These both tend to increase the drag and reduce the lift on the glider, which

is undesirable from a performance standpoint.

This situation also produces an interesting coupling between control of the glider’s yaw,

roll and depth rate. The yaw moment due to the roll mis-trim changes direction between

upwards and downwards glides because the lift vector points up when gliding down, and

down when gliding up. Therefore, the rudder angle necessary to counteract the mis-trim

yaw moment will change between upwards and downwards glides. The magnitude of the

mis-trim yaw moment may also change, depending on the glider geometry, requiring a

corresponding adjustment of the rudder angle.

One can imagine other situations that may arise when using a mixed combination of

internal and external actuators. Another interesting effect occurs in a glider design with

mixed internal and external actuators. The forces generated by internal mass actuators

are independent of glide speed. This is one of the factors that makes them attractive in

a low speed glider. The forces on the external actuators depend on the dynamic pressure,

(1/2)ρV 2. In high speed gliders the relative magnitude of the static and hydrodynamic

forces may require special consideration.

Similar situations, where an asymmetry in the glider is counteracted with an actuator,
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may also occur in gliders with other combinations of actuators. A glider design with internal

mass actuation in the roll direction, such as the Seaglider, Spray and the Slocum Thermal

designs, can adjust the roll trim of the vehicle using an internal actuator. Cases are possible

which would result in these gliders also making straight line glides with nonzero roll and

sideslip angles. Consider, for example, the case where one wing of the glider becomes fouled

with seaweed, or some other case results in a higher drag on one side of the glider. The

resulting yaw moment would need to be counteracted with some roll angle for the glider to

travel in a straight line.

It is also possible for a roll to be generated dynamically in a glider due to some asymme-

try in its external geometry. If, for example, the wings of a glider are slightly misaligned or

twisted relative to one another, they produce a rolling or yawing moment. Some moments

may also be produced by asymmetrically placed instruments, such as a CTD mounting.

The moment may change with different glide directions and must be countered by some

actuator use.

Systems may be incorporated in a glider design to reduce these problems. The mis-trim

problem may be countered by making it easier to trim the vehicle for zero roll. Internal

mass trimming devices may be incorporated into the glider, for example, an internal roll

mass that may be trimmed manually or automatically during an initial deployment or in a

trim tank without removing the vehicle from the water. A small internal mass roll actuator

may be built into the vehicle, not for purposes of active roll control but only to counter

small changes in the CG location over the course of a long deployment, for example, due

to barnacle formation. Use of ailerons and other external surfaces may also be considered,

although these may reduce the durability of the vehicle and increase its complexity.
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An Example from Flight Tests

Experiments were performed with a Slocum glider with some static roll angle to determine

the required rudder angle to counteract the yaw due to roll. Figures 4.25-4.26 show ex-

perimental data from glider tests at sea using a Slocum electric glider. These tests are

described further in Chapter 5. The figures here show data from test Vert 18. In this test,

Slocum WE01 glides with fixed sliding mass position and ballast in between inflections.

Static mis-trim of the glider results in some positive roll angle and yaw moment. There are

other yaw moments on the glider, probably due to lateral asymmetry of the CTD location.

The rudder is fixed at 3.5◦ to counteract this moment.

Figure 4.25 shows the heading, depth, pitch and roll of the glider. The glider has a

positive roll angle throughout the test. When gliding downwards, the glider has a positive

heading rate. It has a negative heading rate when gliding upwards. (This matches turning

behavior predicted using the glider model with hydrodynamic parameters for Slocum esi-

mated using hydrodynamic references). The internal mass is fixed during steady glides and

the glider pitch is stable at the equilibrium steady glides. The internal mass position and

ballast are shown in Figure 4.26.

4.3.5 Rudder-roll coupling

Because of its high tail, the electric Slocum shows some coupling between rudder and roll.

This produces different heading control qualities when gliding upwards than when gliding

downwards. The tail and rudder are located at the rear of the glider and are above the

glider’s CG. Because of its position, deflection of the rudder from its zero position produces

both a yaw and a roll moment on the glider. A (positive) deflection of the rudder produces a

(positive) yaw moment and a (positive) rolling moment. This results in a coupling between
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Figure 4.25: Slocum Glider Test Vert 18. Heading, depth, pitch and roll.

the yaw and roll actuation of the glider. The direction of these moments is the same whether

the glider is gliding up or down, although it is conceivable that the force on the rudder may

change due to some interference from the flow off the glider body and wings.

The direction of the yaw moment due to a roll mis-trim changes between up and down

glides, as described in previous sections. Because of this, the effect of the rudder on the

yaw dynamics of the glider will change between upwards and downwards glides. The high

rudder produces a rolling moment on the glider, which changes the roll angle. Depending

on the roll/yaw relationship of the glider and whether it is gliding upwards or downwards,

this additional roll will produce a yaw moment on the glider acting either against or with

the rudder yaw moment. This effectively decreases or increases the control authority of the
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Figure 4.26: Slocum Glider Test Vert 18. Pitch, ballast, mass position, and depth.

rudder. Depending on the magnitude of this effect, it may be necessary for the glider control

system to take this into account and to use different gains for the rudder for upwards and

downwards glides. We have observed this phenomenon during in-ocean trials of the Slocum

vehicle.

4.4 Chapter Summary

In this chapter glider dynamics, including steady glide equilibria, their stability, and switch-

ing between steady glides, are analyzed using the glider dynamic model of Chapter 3. The

analysis makes use of several versions of the glider model, including a model confined to the

longitudinal plane, a simplified phugoid model, and the full three dimensional glider model.
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First, the glider model is confined to the longitudinal plane the the steady glide equilibria

are found. The steady glide equilibria have some interesting properties. The speed V and

glide path angle ξ of a steady glide may be chosen separately, within the bounds of possible

m0 and rp. A choice of (V, ξ) admits a family of rp sliding mass positions, allowing some

choice of the glider’s bottom-heaviness. Possible mass positions in an operational glider will

depend on its internal mass actuator’s range. If rp3 is fixed, then one mass position will

satisfy a given choice of (V, ξ).

The stability of the gliding equilibria are studied through linearization and through

simulation. It is shown that it is possible to design a statically stable underwater glider,

using the hydrodynamic design and the static forces on the glider and internal masses. This

is consistent with experimental results. Steady glides and transition between steady glides

are demonstrated. In the longitudinal plane, stable switching between straight glides is

demonstrated. In the three dimensional model, stable switching between both straight and

vertical spiral glides is demonstrated.

The phugoid model for an underwater glider is derived by applying Lanchester’s phugoid

assumptions to the glider longitudinal dynamic model. It is shown that, in the conservative

α = 0 case, the underwater glider phugoid case is identical to the Lanchester phugoid within

a similarity factor that depends on the added mass and net buoyancy of the glider. The

α 6= 0 case is shown to be non-conservative, due the constraint forces imposed in this case.

Three-dimensional glider dynamics are studied using the glider model. Straight and

spiral equilibrium glides are identified. Their stability is analyzed using linearization, sim-

ulation, and experiments (also see Chapter 5). It is shown that stable equilibrium glides

are possible given a stable hydrodynamic and static design of the glider. A properly de-

signed and trimmed glider will converge to a stable straight glide in the longitudinal plane
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without use of its actuators. Turning and heading control using rudder and roll is also

examined. It is shown that the direction of a glider’s roll-yaw coupling depends on the

glider’s hydrodynamics and the location of its hydrodynamic center in relation to its center

of gravity.

The effects of static mis-trim on glider heading are also shown. A static mis-trim creates

a steady roll angle and a yaw moment on the glider. To maintain a desired heading this yaw

moment must be counteracted with the glider’s rudder or through roll actuation. Examples

are shown in simulation and from experimental data. Flight test data from oceanographic

gliders are shown with similar qualitative behavior to the glider model. Rudder-roll coupling

and roll mis-trim are both shown in experimental data.

Note that Chapter 7 includes a comparison of the dynamics of gliders and sailplanes.
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Chapter 5

Modelling The Slocum Glider and

Parameter Identification from

Experiments at Sea

This chapter details how the glider model of Chapter 3 may be adapted to model the Slocum

Glider, including its geometry, rudder, ballast pump and internal sliding mass. We identify

the vertical plane model parameters for the Slocum glider in two steps. First, parameters

are determined to match the set of steady glides in new flight test data from the Slocum

Glider. Existing estimates of the glider hydrodynamic parameters are taken into account

and used in determining the glider lift and drag coefficients. Second, we propose a method

for determining the parameters that appear in the dynamic equations but not in the steady

state equations. Parts of this work appeared in [22].

In the process of performing the identification, we also identify the buoyancy trim offset

of the glider used in the flight tests. This buoyancy trim offset was likely the result of an

original mis-trim; the glider was not perfectly trimmed and ballasted before launch. Our
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approach to computing the mis-trim has potentially far-reaching application. For instance,

the method we describe here could be adapted as a means for updating trim measurements

upon deployment or as a remote diagnostic tool. In the latter case, the method would be

used to detect changes in the glider behavior resulting from fouling from seaweed, a slow

leak in the hull or a problem with the ballast system, for example. Problems of these types

have occurred during deployments of existing gliders; it is suspected that a slow leak played

a role in the loss of one glider in 2003. This concept for identifying the buoyancy trim offset

of the glider provides an excellent illustration of the advantages of having a model.

Existing glider designs are described in Chapter 2. Operational ocean going gliders

include the Slocum glider [80], the Spray glider [63] and Seaglider [14]. The Slocum glider is

described further in Section 5.1.1. These operational gliders are similar in size and geometry,

each measuring about two meters long and weighing around fifty kilograms. Each has a

cylindrical hull, two fixed wings and a tail. They are all buoyancy-propelled, fixed-winged

gliders which shift internal ballast to control attitude. All are designed to be statically

stable in a glide. In the electric Slocum, designed for dives from five to 200 meters, roll is

set by the glider’s static CG position and pitch is controlled by moving internal mass. Yaw

and heading are controlled using the rudder mounted on the vertical tail of the glider.

In this chapter we describe model parameter identification for the Slocum using ex-

perimental flight test data from a test cruise in the Bahamas in January 2003 (described

in Section 5.1.2). We adapt the glider model of Chapter 3 to the Slocum electric glider,

modelling the location of the ballast system, the properties of the moving pitch mass, and

the rudder. The resulting equilibrium equations appear in Section 5.1.3. In Section 5.2 we

determine parameter values such that the model will match the data set of equilibria for

the glider. This determines the coefficients for our quasi-steady hydrodynamic model and
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Figure 5.1: A Slocum Glider.

parameters representing the trim and buoyancy of the glider. We discuss ideas for future

work and include some remarks in Section 5.3.

5.1 Slocum Glider Model

5.1.1 Slocum Glider

The Slocum Glider design was briefly described in Chapter 2. We now provide a more

detailed description, especially of the elements important to the vehicle flight testing.

The Slocum glider is manufactured by Webb Research Inc., Falmouth, MA. It is a

buoyancy-driven, autonomous underwater vehicle [76, 80]. The operational envelope of the

glider includes a 200 m depth capability and a projected 30 day endurance, which translates
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into approximately 1000 km operational range with a 0.4 m/s fixed horizontal and 0.2 m/s

vertical speed. The glider has an overall length of 1.5 m and a mass of 50 kg. The buoyancy

engine is an electrically powered piston drive, located in the nose section of the glider. See

Figure 5.1. The drive allows the glider to take in and expel water, thereby changing its

overall buoyancy. The mechanism allows a close to neutrally buoyant trimmed glider to

change its displacement in water by ±250 ccm, which corresponds to approximately ±0.5%

of the total volume displaced. This change in buoyancy generates a vertical force which

is translated through two swept wings into a combined forward and up/downward motion.

Due to the location of the piston drive, also called buoyancy engine, the change in direction

of the buoyant force also creates the main pitching moment for the glider. Besides the

buoyancy engine the glider possesses two more control actuators, a 9.1 kg battery pack,

referred to as the sliding mass, that can be linearly translated along the main axis of the

glider and a rudder attached to the vehicle tail fin structure. The sliding mass is used for

fine tuning the pitch angle.

The glider has two onboard computers, a control computer and a science computer.

Navigation sensors on the glider measure heading, pitch, roll, depth, sliding mass position

and the piston drive position. These readings are recorded and processed by the control

computer. Vehicle position at the surface is determined by a GPS receiver, with the antenna

located on the rear fin. Note that while submerged, the glider velocity and horizontal

position are not sensed because of the difficulty in measuring these states.

While underwater, the glider navigates using a deduced reckoning algorithm. At present,

the pitch angle and depth rate measurements and an assumed angle of attack are used by

the onboard computer to estimate the horizontal speed of the glider. Pitch control, using
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Figure 5.2: Slocum Electric Glider Layout [77].

the sliding mass, and heading control, using the rudder, use proportional feedback loops

with deadbands and variable timing. The control is activated on a variable timing schedule

depending on the heading and pitch error relative to the specified deadband.

The Slocum glider can be programmed to navigate in various ways. For a typical

mission scenario the glider navigates to a set of preprogrammed waypoints specified by the

operator. A mission file with these waypoints, desired glide path angles and speeds, control

gains, deadbands, and other parameters, may be transmitted to the glider before the start

of the mission. The glider is then capable of operating autonomously and navigating with

dead reckoning and closed-loop pitch and heading control. A mission is composed of yos

and segments. A yo is a single down/up cycle, while a segment can be composed of several

yos and starts with a dive from the surface and ends with a surfacing. At all surfacings the

glider tries to acquire its GPS location.

Other available modes of operation include gliding at a given compass heading, fixed
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rudder angle or fixed battery position. A variety of operational modes were used in the work

presented in this chapter, including gliding with fixed actuators and with full feedback and

navigation.

5.1.2 Experiments with Slocum

We conducted glider in-water flight tests during January 2003 near Chub Key, Bahamas,

using Slocum Glider WE01, owned and operated by Woods Hole Oceanographic Institu-

tion (WHOI), Woods Hole, MA. The principal investigator on this research cruise was Dr.

David Fratantoni (WHOI). Operations were conducted from the RV Walton Smith of the

University of Miami. Using glider WE01, we conducted a series of test glides including both

steady and unsteady straight glides and steady and unsteady turning glides. The series of

glides included glides with fixed internal mass and rudder positions and glides under feed-

back control. Glides with more dynamic behavior included controlled glides using waypoint

navigation or fixed compass heading and controlled glides with a variety of feedback gains

and deadbands.

The glider experiments conducted on the cruise were designed in advance for model ver-

ification and parameter identification. The hydrodynamic properties of the Slocum glider

were estimated in advance using theoretical calculations and standard aerodynamic refer-

ence data. In order to collect the necessary data, we performed a set of glides including

(1) steady glides at different pitch angles, and (2) glides that exhibit rich dynamic behav-

ior such as unsteady turning and pitching with large actuator excursions. The design and

schedule of the tests was intended to explore the full range of motions possible within the

confines of the existing glider control system.

Table 5.1 shows the flight tests conducted, all using glider WE01. A typical flight test
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Test z (m) Description

Vert 01 25 Test pitch performance. Adjust controller. Rudder (δR = 0).
Vert 02 50 Pitch test. Adjust pitch gain. Fixed (δR = 0).
Vert 03 50 Pitch with tuned gains. Fixed (δR = 0). Steady glide and turn.
Vert 04 50 Steeper pitch dive. Fixed rp and (δR = 0). Steady glide, turn.
Vert 05 50 Steep pitch dive. Different rp. Steady glide, turn.
06 to 11 0 Omitted because of operational constraints
Vert 12 50 Tuned pitch gains, rp lookup function. Controlled heading.
Vert 14 15 Repeat mission of Vert 04.
Vert 15 50 Controlled heading, pitch with tuned gains and lookup function.
Vert 16 50 Controlled pitch with tuned controller, fixed (δR = 0)
Vert 17 50 Pitch, heading with tuned gains. Steady turning glides.
Vert 18 50 Fixed rp and (δR = 3.5◦). Steady glides.
Vert 19 50 Fixed rp and (δR = 2◦). Steady glides.
Vert 20 50 Shallower pitch. Fixed rp. Controlled heading. Steady glides.
Vert 21 50 Fixed rp and (δR = 4◦). Steady glides.
Vert 22 50 Multi-segment mission. Waypoint following, tuned gains.

Table 5.1: Flight Tests at Sea with Slocum electric WE01. January 2003.

mission consisted of two glides to fifty meters depth, enough depth to reach equilibrium

glides. The glider surfaced at the beginning and end of the mission for a GPS position fix

and data transfer. Both fixed control glides and glides using pitch and heading feedback

were conducted. During fixed control glides, the rudder and sliding pitch mass were held

at pre-determined positions for the duration of each downwards and upwards glide. This

resulted in the glider reaching a steady glide equilibrium corresponding to those control

settings.

Although there are some disturbances and measurement noise in the data, the steady

glides stand out plainly (see Figures 5.3 and 5.4). Automated scripts were used to select

periods of steady gliding in the test data and compute the average values, over those inter-

vals, of the navigational states and their derivatives. Only directly measured sensor data

is used in computing the steady glides. Navigational states estimated by the vehicle dead

reckoning navigation system are not used. As an example, time-averaged state values for
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Figure 5.3: Slocum Data from Flight Test Vert 21.

four steady glides are shown in Table 5.2, as are values for α, V and drag coefficient CD(αeq)

by frontal area computed using methods described in Section 5.2.

There are a number of sources of uncertainty in the flight test data. As noted, the glider

velocity and horizontal position are not measured. The currents in the area of operation are

unknown. Estimates of the currents may be made using the model of the glider dynamics,

but this cannot be used to determine the model parameters. Glider velocity and current are

important because the hydrodynamic forces on the glider depend on the glider’s speed rela-

tive to the water. Other sources of uncertainty in the glider data include the trim condition

of the glider and the CG position. Some static roll offset appears in the data, i.e., the CG

and static trim of the glider induced some static roll. Because of operational considerations

during the cruise it was not possible to correct this trim or to obtain completely accurate
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Figure 5.4: Slocum Data from Flight Test Vert 21.

static mass and trim measurements (in Section 5.2 a novel method is used to identify the

glider buoyancy offset). The wings are made of a thin composite material which may deflect

during flight and change the glider’s hydrodynamic performance. When at the surface to

determine GPS position, the glider is subject to wind and current-driven drifting, and this

leads to some uncertainty in the glider’s surfacing position (GPS position is not used for

parameter estimation).

As mentioned above, the glider used in experiments had a slight static roll due to mis-

trim. Because of this, the glider was slightly out of the longitudinal plane in flight. This

is another possible source of error in the experimental analysis. The static roll produces

a small yaw moment which is offset by a small rudder angle. This probably results in the

glider flying with some sideslip angle. This could result in additional drag on the glider and
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Avg. Value Glide 1 Glide 2 Glide 3 Glide 4

Pitch θ (deg) -22.77 23.74 -25.78 24.03
Depth rate ż (m/s) 0.168 -0.224 0.200 -0.228
Battery pos. (cm) -2.4 -1.8 -2.3 -1.8
Ballast mb (cc) -244.4 237.3 -247.7 237.5
Rudder δR (deg) 2 4 2 5
Roll φ (deg) 3.34 3.23 3.81 3.38
Heading φ (deg) 334 333 333 334

AoA α (deg) 2.7 -2.9 2.3 -2.9
Speed V (m/s) 0.388 0.499 0.425 0.503
Drag Coeff. CD(αeq) 0.27 0.31 0.25 0.31

Table 5.2: Example of Steady Glide Data. Flight Vert22 4 on Slocum Glider WE01.

possibly change the lift and moment on the glider in comparison with fully longitudinal,

zero-sideslip flight (effects of sideslip angle are discussed further in the following section).

These problems could be reduced in future flight tests by correcting the roll trim of the

glider. Other asymmetries in the glider geometry also appear in the data. The glider is

not laterally symmetrical. For example, the CTD located on the left side of the glider is a

significant source of drag, resulting in some yaw moment on the glider. This is supported

by the data from tests Vert 16 through Vert 21 using fixed rudder angles.

5.1.3 Slocum Model Planar Equilibrium Equations

In this section the glider model derived in Chapter 3 is adapted to model the Slocum glider

design. This involves adjusting the parameters corresponding to the internal masses and

the vehicle geometry.

The model parameters are adjusted to match the Slocum body and wing shape. In the

electric Slocum design, control is applied to two masses inside the vehicle, the ballast mass

and the sliding battery pack. We model this with control applied to two masses inside

the vehicle: we control the mass of a point with fixed position in the body, representing
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the ballast tank, and control the position of a mass with varying position within the body,

representing the moving battery pack. The model describes the nonlinear coupling between

the vehicle and the shifting and changing masses. The major forces on a glider are all

incorporated into the model, including buoyancy, the moments and forces due to the internal

moving mass, and quasi-steady hydrodynamic forces. Beginning with the Glider Equations

(3.38), we set terms in the model for the Slocum ballast system location, the sliding mass

range of travel, and the rudder. The aim of the model is to adequately match the dynamic

performance of the glider while maintaining a level of simplicity in the model that allows

for analytical work and design insight.

The internal masses used to model the Slocum design are the variable ballast mass mb,

the movable mass m̄ and a fixed mass mw. These are shown in Figure 5.5 (and in Figure

3.4). In the Slocum design all three of these masses are confined to the glider e1−e3 plane.

The ballast system is located just behind the nose of the glider. The sliding battery pack

mass moves in the fore-aft direction only, so rP3 and rP2 are fixed. The offset mass mw

is located behind the CB of the glider in order to provide the proper trim balance. The

Slocum gliders are normally trimmed such that their pitch is level when the ballast and

sliding mass are at the midpoints of their travel. This requires mw to be aft of the CB. rw3

is determined by the static trim and bottom-heaviness of the glider.

Now consider this model specialized to the longitudinal plane (assumed invariant), as

in Chapter 4, and solve for the equilibrium steady glides in the equations of motion. The

resulting Slocum vertical plane equilibrium equations are

ẋ = v1 cos θ + v3 sin θ (5.1)

ż = −v1 sin θ + v3 cos θ (5.2)
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0 = (mf3 − mf1)v1eqv3eq − m̄g(rP1eq cos θeq + rP3eq sin θeq)

−mbeq
g(rb1 cos θeq + rb3 sin θeq) − mwg(rw1 cos θeq + rw3 sin θeq)

+MDLeq (5.3)

0 = Leq sin αeq − Deq cos αeq − m0eqg sin θeq (5.4)

0 = Leq cos αeq + Deq sinαeq − m0eqg cos θeq (5.5)

where the subscript eq denotes the state at equilibrium steady glide. v1 and v3 are the

components of the glider velocity in the e1 and e3 directions, respectively, as shown in

Figure 3.1. Here, θ is pitch angle, α is the angle of attack, D is drag, L is lift and MDL

is the viscous moment as shown in Figure 4.3. mf3 and mf1 are the added mass terms

corresponding to the e1 and e3 directions, as derived by Kirchhoff [39]. In these equations,

as in [42], we take the added mass cross terms to be zero. We note that equilibrium terms

corresponding to the offset mass mw and the location rb of the ballast mass mb do not

appear in [42].

As presented in Chapter 3 and shown in Figure 5.6, we denote the glide path angle by

ξ where ξ = θ − α. At equilibrium, it may be shown that ξeq = − tan−1
(

Deq

Leq

)

. We also
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denote the glider speed by V where V =
√

(v2
1 + v2

3). Using equation (4.2) and our angle

definition in Figure 5.6, we can write the glider depth rate as

ż = −V sin(ξ) = −V sin(θ − α). (5.6)

The quasi-steady hydrodynamic forces and moment in the vertical plane are modelled as

D=
1

2
ρCD(α)AV 2 ≈ (KD0

+KDα2)(v2
1 + v2

3) (5.7)

L=
1

2
ρCL(α)AV 2 ≈ (KL0

+KLα)(v2
1 + v2

3) (5.8)

MDL=
1

2
ρCM (α)AV 2 ≈ (KM0

+KMα)(v2
1 + v2

3) (5.9)

as described in Section 3.2.7. A method for determination of the coefficients from flight

data is described in Section 5.2.

Determining a model for moment on the vehicle body is challenging. Different sources

of reference data may predict significantly different moments on the vehicle. This results

in part from the sensitivity of the moment to small changes in the vehicle geometry and to

small differences in the flow on the fore and aft of the body. Other coefficient models for

the moment could be used, for example one depending on α3. Some latitude is available
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when choosing the moment model to fit experimental data.

This quasi-steady hydrodynamic model is expected to be accurate for equilibrium steady

glides. It may be less accurate away from equilibrium glides and when the glider experiences

high accelerations or angular rates. The hydrodynamics of the flow about the glider are

much more complex during such motions, requiring a more complex hydrodynamic model.

In the case of our initial analysis and the standard mission use of the Slocum glider, the ma-

jority of the operational time is spent at steady glides. Transitions and inflections between

steady glide equilibria are relatively slow. Because of this, the quasi-steady hydrodynamic

model may prove satisfactory for our analysis. Incorporating a more complex hydrodynamic

model involves adding terms to the lift, drag and moment model. Experimental data and

results of simulations using the glider model suggest that some angular damping should be

included in analysis of dynamic motions. This does not affect the planar equilibria.

Chapter 4 included an analysis of the equilibrium steady glide equations for a generic

glide. One interesting property of the equilibrium steady glide equations is that the glide

path angle is independent of the glide speed. Glide path angle depends only on the equilib-

rium angle of attack. When choosing an equilibrium glide, it is possible to specify the glide

path angle and glide speed V independently. The glide speed can be set by fixing the net

buoyancy of the glider.

Determining the steady glides for a glider such as the Slocum requires finding the set

of model parameters that describe the glider mass and hydrodynamic characteristics. This

is described in Section 5.2. Using one method, the hydrodynamic coefficients of the glider

are estimated using reference data for ships, submarines and standard shapes. With these

estimated coefficients, the equilibrium equations may be used to compute the set of steady

glide conditions for the Slocum glider. Figure 5.7 shows the steady glide angles given the
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estimated lift and drag parameters. Figure 5.8 shows the steady glide speeds given the same

estimated parameters. The estimated hydrodynamic coefficients are cL(α) = 7.55α and

cD(α) = 1.4+0.12α2, by area. The cross sectional area is A = 0.0355m2 and ρ = 1000kg/m3,

giving parameters KD0
= 2.15 kg/m, KD = 24.95 kg/m, KL0

= 0 kg/m, KL = 132.55 kg/m,

used to generate these figures. The maximum net buoyancy is m0 = 250 g.
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Figure 5.7: Equilibrium glides using lift and drag estimated from reference data.

5.2 Parameter Identification

We wish to determine the model parameters matching the Slocum model equilibria Equa-

tions (4.1)-(5.5) to the steady glides from experimental data. These parameters represent

the physical variables corresponding to the glider’s mass, inertia and hydrodynamic char-

acteristics. The parameters that appear in the steady glide equations are the displacement
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m, the masses mh, mw, and m̄, the positions rb and rw of the ballast mass and offset mass,

and the hydrodynamic parameters KD0
, KD, KL0

, KL, KM0
, KM , mf3 and mf1.

Parameters corresponding to mass and inertia may be measured directly. The mass and

buoyancy trim of the glider can be measured by weighing the glider in air and in water. The

position of the glider CG may be determined through direct experimental measurement. The

position of the CB is the centroid of the displaced volume of water, and can be computed

from direct measurements or from the glider geometry. Other mass parameters can be

determined using similar methods. The inertia characteristics of the glider can be measured

several ways; one way is the bifilar pendulum method, which measures the glider’s frequency

of oscillation in a pendulum apparatus. Note that the moment of inertia does not appear

in the equilibrium equations.
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If direct measurement is not possible, for example when a glider is already at sea, it

may be possible to determine some of these parameters through analysis of glider data and

by comparison of several equilibria. For example, in Section 5.2.2 we describe a method to

identify a glider’s buoyancy trim offset from flight test data, and in Section 5.2.3 we use an

analogous method to identify the glider static pitch trim.

A variety of methods were used to determine the model hydrodynamic parameters, in-

cluding reference hydrodynamic data for generic shapes, aircraft, ships and submarines,

computational fluid dynamics (CFD) analysis, wind tunnel data, and flight test data. An

extensive selection of references is available, including [26, 27, 39, 55]. Because the hydro-

dynamic parameters are sensitive to small changes in the vehicle geometry, it is challenging

to determine these parameters so that they accurately match flight data.

We first estimated hydrodynamic parameters for lift, drag and moment for the Slocum

geometry using reference data. This involved calculating the hydrodynamic forces on each

of the glider components using theoretically and experimentally determined reference data.

These parameters were compared to the results of preliminary wind tunnel tests conducted

at Princeton [4]. More accurate wind tunnel tests were also designed using the methods of

[49]. These may be conducted as part of future research. In addition, calculations of glider

hydrodynamic characteristics using CFD analysis appear in [32].

Solving Equation (5.6) for V gives

V =

∣

∣

∣

∣

ż

sin(θ − α)

∣

∣

∣

∣

. (5.10)

Substituting Equation (5.10) and the hydrodynamic coefficients (5.7), (5.8), and (5.9)
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into Equations (5.4) and (5.5) gives us

0 =
1

2
ρCL(αeq)A

(

żeq

sin(θeq − αeq)

)2

sinαeq −
1

2
ρCD(αeq)A

(

żeq

sin(θeq − αeq)

)2

cos αeq

−m0eqg sin θeq (5.11)

0 =
1

2
ρCL(αeq)A

(

żeq

sin(θeq − αeq)

)2

cos αeq +
1

2
ρCD(αeq)A

(

żeq

sin(θeq − αeq)

)2

sinαeq

−m0eqg cos θeq. (5.12)

These equations include measured quantities ż, θ and m0. Angle of attack α is a

function of v1 and v3 and is not sensed. Hydrodynamic coefficients CL(α) and CD(α) have

been estimated but are not known exactly. These estimates, however, do yield forces in the

form (5.7) and (5.8). Substituting (5.7) and (5.8) into (5.11) and (5.12) gives two equations

with four parameters KD0
, KD, KL0

, KL and unknown α.

In the following, we use an existing estimate of the value of lift parameters and then

determine drag parameter values consistent with the flight test data. This is necessary

because of the limited number of states available from the glider sensor suite. Angle of

attack or velocity data would allow us to determine more parameters from experimental

data, as discussed in Section 5.3.

5.2.1 Lift

The Slocum glider body is symmetric from top to bottom and the wings are symmetrical

flat plates. From this, the reference methods show that lift should be zero at angle of

attack α = 0 and should be antisymmetric about α = 0. We compared estimates of the

lift coefficient of the glider from three sources: aerodynamic reference data, CFD analysis

from [32], and preliminary wind tunnel data. These estimates are reasonably close to one
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another. The lift coefficient from [32] was computed using the most advanced methods, so

we use this estimate for CL(α) by frontal area:

CL(α) = 11.76 α + 4.6 α|α| (5.13)

where α is in radians. Note that this is close to, but not exactly, linear in α as modelled in

(5.8).

Equations (5.11) and (5.12) may be rearranged, given glider lift coefficient (5.13) and

the steady-glide-test sensor data described in Section 5.1.2. Solving (5.12) for drag Deq and

substituting into (5.11) gives

0 = Leq sin αeq − m0eqg sin θeq −
(

Leq cos αeq − m0eqg cos θeq

sinαeq

)

(cos αeq),

where Leq =
1

2
ρCL(αeq)A

(

żeq

sin(θeq − αeq)

)2

.

Given the steady glide data from flight tests, determined in Section 5.1.2, this equation may

be solved for the equilibrium angle of attack αeq for each steady glide (using time averaged

steady glide states like those shown in Table 5.2).

5.2.2 Drag

In this section we determine a drag coefficient for the glider given the lift estimate (5.13),

such that steady glides computed with the equilibrium equations are consistent with flight

test data. Because of the limited sensor data available from flight tests, it is not possible

to estimate the glider’s lift and drag coefficients independently from the flight data alone.

Instead, a method is adopted which takes the lift estimate (5.13) to be the best available
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lift estimate and then uses flight test data to determine the drag estimate. We describe

first an analysis using the buoyancy tank ballast mb as the glider net buoyancy m0. This

yields a CD(α) that is inconsistent with our expected drag in both form and magnitude, as

discussed below. We then describe a method used to identify a static buoyancy trim offset

in the test glider. The buoyancy trim offset is then used to compute a CD(α) that is more

consistent with theoretical and other predictions.

Drag estimates calculated using aerodynamic reference methods or preliminary wind

tunnel tests each predict that glider drag coefficient CD(α) will have the form given in

equation (5.7). Because of the glider’s symmetrical design, drag should be symmetrical (an

even function) with respect to angle of attack, with the minimum (profile) drag at zero

angle of attack.

Using Equation (5.11) or (5.12), one can solve for CD(αeq) given data for a steady glide

and the lift and angle of attack from Section 5.2.1. Figure 5.9 shows the drag coefficient

determined using this method for ten of the steady glides in data from tests Vert 18 through

Vert 22. Each point on the plot corresponds to the coefficient of drag calculated for one

steady glide.

Note that glides with positive angle of attack α, which are glides downwards, appear to

have much higher coefficients of drag than the group of glides upwards glides with negative

angles of attack. This result is not consistent with any of the estimates for the glider drag

dependence on α. Our reference calculation of drag predicts a parabolic drag dependence

on angle of attack. The drag shown is also higher than the predicted drag.

One possible explanation for the differences between upwards and downwards glide is

that the glider actually has an asymmetrical drag curve. Some elements of the glider

geometry are asymmetrical from top to bottom, including the CTD sensor located below
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Figure 5.9: CD computed from equilibrium glide data assuming no buoyancy trim offset.

one of the wings and the vertical tail. However, these items are small compared to the

glider body and wings, both of which are symmetrical, so it is not expected that these

small differences would account for such a large difference in the drag. Regardless of this

asymmetry, drag is still expected to be close to minimum at zero angle of attack.

The simplest and the most obvious explanation for the difference between the upwards

and downwards glides is an offset in the glider buoyancy trim. This is consistent with a

difference in depth rate between upwards and downwards glides in the flight test data. This

buoyancy offset can be found using the symmetry of the glider and lift coefficient to compare

upwards and downwards glides at the same magnitude pitch angles. As noted, because of

the symmetrical design of the glider, the lift curve is an odd function with respect to angle

of attack and the drag curve is expected to be an even function (see Figure 5.7).
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Glides conducted at the same magnitude pitch angle upwards and downwards should

have the same magnitude glide path angle ξeq and angle of attack αeq. Given the symmetry

in lift and drag, and our approximation to the longitudinal plane, differences in velocity

between these glides are caused by differences in the driving buoyant force. By comparing

such glides in the flight test data, we estimate the trim offset in the glider buoyancy.

First we substitute m0eq = mbeq
+ 4m0 into equation (5.14). Using the steady glide

data, we estimate the buoyancy trim offset 4m0 by requiring glides with the same |θeq| to

have the same |αeq|. This involves solving for αeq for each of the symmetrical glides as a

function of 4m0 and determining the 4m0 for equal |αeq|. Using the available data, we

estimate the buoyancy trim offset to be 4m0 = −73 grams. This means that, for the water

density and the weight of the glider WE01 during these tests, the glider is 73 grams light

(positively buoyant) when the ballast tank is set at the half full “zero buoyancy” point.

This corresponds to ballast = 0 in the glider data and to mb = 250 in the glider dynamic

model. When this buoyancy trim offset is not accounted for, as shown in Figure 5.9, it

appears that there is more drag going down (i.e., it is harder to go down) and less drag

going up (i.e., easier).

Substituting m0eq = mbeq
+ 4m0 into equations (5.11) or (5.12), CD(αeq) may be

computed for each steady test glide (see Figure 5.10).

A least-square fit of the data, assuming drag of the form (5.7), gives drag parameter

CD(α) = 0.214 + 32.3 α2. (5.14)

where α is in radians. As shown in Figure 5.10, the steady-glide data points are close to a

parabolic function of angle of attack α and are symmetrical about α = 0. These properties
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Figure 5.10: CD computed from equilibrium glide data assuming buoyancy trim offset of
−73 grams.

are consistent with the expectations from our reference calculations for drag.

The magnitude of the drag least-squares fit (5.14) is about 75% greater, at α = 0,

than the drag calculated from references, and as much as 150% greater at α = −3o. This

suggests that the drag estimates from reference data and CFD analysis are too low. This

is not unusual when comparing drag estimates to experimental data.

There are several possible explanations for the difference between the drag found here

and the drag predictions using reference calculations. One explanation is that the drag

model is based on an ideal geometric model and does not include variations in the geometry

(e.g., surface roughness, wing deformation, small protrusions, etc.). The model therefore

provides a drag estimate that is lower than the measured drag. It is also difficult to ac-

curately predict drag on the Slocum’s CTD sensor because of its complex geometry and
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position on the hull. Wind tunnel experiments performed during design of Seaglider [14]

indicate that a toroidal conductivity sensor with “about 2% of the frontal cross sectional

area of the [glider body] accounted for more than 25% of the total drag”. It is unlikely

that variation in the drag on the CTD sensor alone should produce the differences between

the predicted and observed drag profiles for Slocum, but this illustrates the sensitivity of

the drag to small variations in geometry. The Reynolds number range in which the gliders

operate may also play a role in this sensitivity.

Another explanation for the high drag shown in the data is that the steady glides

measured in the flight data deviate from the longitudinal plane. This is highly probable

because of the glider static roll mis-trim and other asymmetries in the glider geometry.

These produce a yawing moment on the glider. Data from flight tests with fixed rudder

angle δR = 0, for example Vert 16, show small heading rates in steady glides (less than

twenty degrees over 100 s). This suggests that these steady glides are at some small sideslip

angle and that the effects of the small roll and sideslip angles and of the glider’s lateral

asymmetries on the glider yaw rate are small. Because the glider has no sideslip and angle

of attack sensors, the order of the sideslip angle must be estimated from other sensor data. It

is possible that this sideslip angle due to the static roll is of the same order of magnitude as

the angle of attack, and may account for the differences between the expected and estimated

drag. The difference may also be explained by a combination of these factors. This is a

continuing subject of analysis.

In other test glides, including Vert 18, 19 and 21, the rudder was fixed at a small angle to

counteract the yaw moment on the glider due to roll and asymmetries. Because of rudder-roll

interaction and asymmetries in the yaw moment on the glider between up and down glides,

a different rudder angle is needed to maintain a constant heading in upwards glides than
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is needed in downwards glides. In tests Vert 20 and Vert 22, rudder control with feedback

gains, determined using the results of previous flight tests, was used to stabilize a fixed

heading glide (Vert 20) and as part of waypoint following navigation (Vert 22). This gave

acceptable heading performance and demonstrated differences in rudder actuation between

upwards and downwards glides.

Differences in the sideslip and roll angles and other asymmetries in the glider and the

resulting out-of-plane motion may also account for the differences in the distribution of

the drag data points shown in Figure 5.10. The cluster of data points at negative angles

of attack is more tightly clustered and covers a smaller range in α than those at positive

α. Other variables including the glider pitch control system determined the α of different

steady glides.

Using the hydrodynamic coefficients determined from the data, the equilibrium equa-

tions may be used to compute a new set of steady glide conditions, analogous to those

computed for Figures 5.7 and 5.8 using the estimated parameters. Figure 5.11 shows the

steady glide angles given the parameters identified from the data. Figure 5.12 shows the

steady glide speeds given the same identified parameters. For a 25o glide angle, the identi-

fied parameters yield a depth rate of 20 cm/s and a horizontal speed of 42 cm/s, as can be

seen from Figure 5.12. This is consistent with estimates from glider operations conducted

by Webb Research Corporation and WHOI.

5.2.3 Pitch Moment

To compute the hydrodynamic moment on the glider during steady flight, we use Equa-

tion (5.3). The moments due to the internal mass, the ballast tank and the offset mass may

be computed from the steady-glide sensor data. The term (mf3 − mf1)v1eqv3eq represents
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Figure 5.11: Equilibrium glides using Lift, Drag fit to glide data

the moment due to the glider’s added mass at equilibrium and MDLeq is the remainder of

the total hydrodynamic moment on the glider. For the steady-state analysis, we will group

these terms together in CMtotal
(α) as

1

2
ρAV 2CMtotal

(α) = (mf3 − mf1)v1eqv3eq + MDLeq . (5.15)

Substituting (5.15) into Equation (5.3) and rearranging gives

1

2
ρAV 2CMtotal

(α) = (m̄g(rP1eq cos θeq + rP3eq sin θeq) + mbeq
g(rb1 cos θeq + rb3 sin θeq)

+mwg(rw1 cos θeq + rw3 sin θeq)) (5.16)

which may be solved for CMtotal
(α) given the steady glide flight data.
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Before a glider is deployed in the ocean, instruments may be installed or moved and

static trim weights may be manually positioned within the hull to adjust the glider’s trim.

This changes the mass and trim of the glider. In the model, the uniformly distributed hull

mass mh and the offset mass mw are used to represent the distribution of fixed components

in the glider. The position of the offset mass may be determined using static measurements

during trimming of the glider before launch, or calculated from flight test data. Before

launch the Slocum gliders are trimmed manually using a static buoyancy tank. The glider

ballast tank is set to half-full and weights are adjusted within the hull to make the glider

neutrally buoyant and level. Using data from the static trim process, we may determine

mw and rw by solving Equation (5.3) with v1 = 0 and v3 = 0. The mass and position of

the ballast and sliding mass are determined from flight test sensor data.
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In some cases, as discussed in Section 5.2.2, it may not be possible to measure the static

trim of the glider. In this case it is possible to determine the mass offset rw1, given rw3 and

a set of data from symmetrical steady glides up and down. Using a method of comparison

analogous to that in Section 5.2.2, we use the symmetry of the glider to compare upwards

and downwards glides at the same pitch angle. To estimate rw1 we use the sensor state

data from these glides and first compute the moment due to internal masses (as a function

of unknown rw1) for each glide. This is set equal to the hydrodynamic moment according

to (5.3) for each glider. We then equate the magnitude of the moment coefficients for an

upward glide and a downward glide corresponding to the same pitch angle magnitude and

solve for rw1. For Glider WE01 as trimmed in these tests, this analysis gives rw1 = −0.093

m.

Once we have determined the internal masses and positions, we may solve for CM (α)

for each glide in our set of steady glides. The result and a least squares fit are shown in

Figure 5.13.

The least-square linear fit of this data, with CMtotal
(α = 0) = 0 because of the symmetry

of the glider, is

CMtotal
(α) = 0.63 α,

where α is in radians.

The hydrodynamic moment on the glider is small compared to the moments due to the

internal masses. The moment due to the ballast and sliding mass together is around 35

N·m in the nose-down direction. The offset mass, located behind the vehicle CB, provides

a countering nose-up moment. At equilibrium, the hydrodynamic moment is the difference
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Figure 5.13: CMtotal
computed from equilibrium glide data.

between these moments, as shown in Equation (5.16). We estimate the hydrodynamic

moment to be of the order 0.1 N·m or less. Because this moment is small in magnitude

compared to the static mass moments, small uncertainties in the positions of the internal

masses result in relatively large uncertainties in the moment coefficient. Note that variation

in CMtotal
(α) could still yield plots lying within the error bounds shown in Figure 5.13. These

include variations in the form of MDLeq , for example, modelling it as cubic in α. The data

may also be fit with a CMtotal
(α) of the form in Equation (5.15), which may be rearranged

to give

CMtotal
(α) =

2

ρA
((mf3 − mf1) cos αeq sinαeq + MDLeq).

This still gives a CMtotal
(α) that is close to linear with respect to α about α = 0.
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Effects due to glider motion out of the longitudinal plane in some flight tests will also

influence the accuracy of the analysis, as noted in Section 5.2.2. In order to determine the

glider coefficient of moment more accurately, other methods such as wind tunnel tests and

CFD analysis may be employed. Flight tests with more complete instrumentation should

also be useful. The relatively small hydrodynamic moment means that, for gliders like

Slocum travelling at low velocities, the pitching effect of the internal mass controls can

easily overcome the vehicle hydrodynamic moment.

5.2.4 Identifying Unsteady Parameters

Once the equilibrium steady glides are matched, a set of parameters in the dynamic equa-

tions remains to be identified. The remaining unknown parameters are those that are not

uniquely identified by matching the equilibrium steady glides, and those parameters that

appear only in the dynamic equations of the vehicle and not at the equilibria. These include

mf1, mf3, Jf2, and any hydrodynamic forces depending on Ω or α̇, for example, damping

terms in moment MDL.

One possible approach for identifying these parameters makes use of the nonlinear pa-

rameter estimation methods described in [65]. This makes use of an iterative numerical

search procedure. The cost function to be minimized is a function of the square of the

difference between the flight test data and the glider model output given the known control

inputs and the measured states. An initial trial point for the search is the unsteady pa-

rameter values estimated using reference data or CFD analysis. The search direction may

be determined by a direct search or gradient search procedure. Criteria for termination of

the search may be based on the change in the cost function, magnitude of the gradient, or

the change in the trial point between iterations. The search should be limited to reason-
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able values of the glider parameters, for example, positive added masses and inertias within

some range of existing estimates. The analysis is work in progress. It is limited by the

experimental data available. It is possible that improved experimental data is required for

this method to accurately identify the model parameters.

One concern when using this method is determining the correct set of parameters, i.e.,

those corresponding to their real physical values, as opposed to a set of parameters that only

match a given set of experimental data. The iterative methods used are not guaranteed to

give a unique solution for the set of parameters. The accuracy of the solution may depend

on the quality and variety of experimental data matched. Flight tests data including the

full range of glider dynamic motions and more comprehensive sensor data are desirable.

The range of possible motions in the flight tests was constrained by the glider control

system, which is designed to stabilize a specific range of steady gliding motions. It is not

possible for this system to provide persistent excitation or any significant variety of control

inputs. In the case of oceanographic gliders this may be a minor concern. If the glider

operation will consist almost entirely of a few specific gliding motions it may be sufficient,

for that application, to identify the model parameters by matching data from those types

of motions.

5.3 Remarks on These Methods

The method, in Section 5.2.2, for determining the static buoyancy trim offset of the glider

could possibly be adapted to trim the glider at the beginning of a deployment and to detect

system changes in the glider during deployment. Possible system faults in the glider that

could occur during a mission include (1) fouling by seaweed, (2) taking on water through

a small leak in the hull, and (3) a problem with the ballast system. These faults could be
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detected and distinguished using the methods described here by comparing upwards and

downwards glides.

Given an accurate set of model parameters, such faults may also be detected using a

variety of other methods. These could make use of the glider model with nominal parameter

values and compare the glider’s performance to its nominal performance. Experience during

flight tests suggests that certain problems, such as decreasing ascent speeds in sequential

dives, indicate a problem with the glider buoyancy that could lead to loss of the vehicle.

Even given the limited sensor suite available during normal deployments, it should be pos-

sible to monitor the vehicle with on-board software to detect such problems. Some faults,

such as fouling by seaweed, could possibly be corrected without retrieval of the vehicle,

for example, by maneuvering the glider to glide backwards or in an unsteady manner that

shakes the seaweed loose. Other problems may require retrieval of the glider. In this case

the glider may be required to stay on the surface and its motion limited to drifting with the

current. Software on the Slocum glider already monitors the battery power and prevents a

dive when low power would jeopardize its safe return to the surface.

Recommendations for Future Flight Tests

The results and analysis of the flight data used in this chapter suggest benefits to making use

of additional sensors and methods for future flight tests. Moorings or fixed sensors located

off the glider but in the flight test area could be used to measure the current conditions at

the operational depths. For the purpose of flight tests, sensors could be temporarily installed

on the glider to measure its velocity, angle of attack, and sideslip angle. Such sensors are

standard in aircraft flight tests but would require adaptation for use on the glider, both

because it is underwater and travels at a low velocity. Angle of attack and sideslip angle
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could be measured using a simple vane system attached to the nose of the vehicle. Velocity

could be measured in a number of ways, depending on the speed of gliding. Because gliders

generally travel at low speeds, a pitot tube is probably unsuitable. A propeller type velocity

meter may work, provided the glider speed is high enough. An acoustic doppler velocimeter

(ADV) could be mounted in the glider science section and used to measure glide speed

and the aerodynamic angles. This would measures the velocity of the water relative to the

glider acoustically. Because of its size and power consumption, this instrument may only

be suitable for flight tests, not for standard deployments, although plans exist to outfit the

Spray gliders with ADVs with a twenty meter range.

During flight testing, position and velocity could both be measured by an acoustic

ranging system with transponders and receivers on the glider and fixed to the ocean floor.

Measuring data with high enough accuracy may require a purpose-built acoustic range,

the use of an existing naval test range or the like. It would also be necessary to measure

the ocean currents along the test range. This could also be done using existing acoustic

doppler current profilers (ADCPs) such as those on fixed moorings in Monterey Bay. Some

acoustic systems are already in the process of being adapted for use on the Slocum glider,

and these could provide a useful estimate of the glider position and velocity during tests.

These sensor systems vary in size and expense, with the use of an existing doppler current

measuring installation being relatively inexpensive. It would not be necessary to add these

flight test sensors permanently to the glider, but rather install them temporarily for the

duration of flight tests. These types of data would allow more accurate measurement of the

glider dynamics and hydrodynamic characteristics.

Some experiments using an acoustic system have been conducted using the Seaglider (see

[14]). These tests involved tracking the horizontal position of the Seaglider using an acoustic
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array and tracking its vertical using the glider’s depth sensor. Currents were measured with

an ship-board ADCP. The Seaglider hydrodynamic parameters were then determined using

a regression over data from hundreds of dives.

Flight tests with an acoustic positioning system on the glider and on fixed moorings, an

ADV mounted on the glider and an ADV mounted on a fixed mooring to measure ocean

currents in the test range should provide good test data.

The operational limitations involved in the ocean flight tests detailed here and the lack

of a comprehensive sensor suite placed severe limitations on our identification efforts. How-

ever, such limitations are to be expected when operating a relatively new vehicle platform

and when operating in the ocean. The nature of the gliders themselves places a limit on

the available instrumentation and power during standard operation. Even with these limi-

tations, significant analysis is possible. The relatively basic sensor improvements described

above would allow for an expanded data set for evaluation. Additional sensor data should

prove especially useful for determining the parameters corresponding to unsteady motions

of the glider, such as the glider added masses. It should be noted that the experimental

results for the drag on the glider were greater than those predicted by reference data and

computational analysis. This suggests that there is an important role for experimental

testing, in combination with other methods, in evaluating glider performance.
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Chapter 6

Glider Controller Design and Analysis

Full use of the capabilities and advantages of underwater gliders in ocean sampling and

other applications requires an accurate and reliable control system. Accurate navigation

is required both for travel and to correlate recorded scientific sampling data to spatial

locations. Control is essential for efficient gliding, so gliders operate with maximum range or

speed. Improvements in glider control should add to their utility in scientific missions. Most

importantly, feedback control systems provide a measure of robustness to disturbances and

uncertainty. This includes changes in a glider’s performance over time, a significant concern

when gliders are to be deployed in extended missions at sea. Therefore, glider control

systems should be of interest both to the technically inclined engineer and to scientists

using gliders in their work.

Our work aims to develop a model-based feedback control design methodology. Sec-

tions of this chapter have been presented in [42, 25, 24, 50, 2]. The intent of our work

is to allow improvement upon currently implemented glider control strategies. A system-

atic design methodology that provides control in the full state-space is expected to make

possible the design of glider controllers that require less experimentation and tuning and
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provide more robustness to fouling, payload changes and other uncertainties as compared

to current techniques. Additionally, using a model-based approach, a dynamic observer can

be designed to estimate states such as glider velocity. These estimated states could then be

used to determine horizontal glider motion instead of the current navigation methods which

rely on assumptions of constant angle of attack. A model-based approach is also useful in

determining optimal glider motions and in glider design (Chapter 7).

Section 6.1 analyzes control of gliding in the vertical, longitudinal plane, including con-

trollability and observability of steady glides in the vertical plane. Control design with an

observer is performed for the dynamics specialized to the vertical plane. Continuous feed-

back laws are developed. When energy is at a premium, we envision a scenario in which one

might occasionally and temporarily turn off the active feedback control routine (including

sensors), e.g., during periods of relative calm or when tight control is less critical. This

type of energy saving method is used in several existing gliders, where the control system

and feedback loops are “turned on” intermittently. Some gliders also use deadbands to re-

duce the power used by control application. Section 6.3.4 presents a method for analyzing

deadband and saturation control features using describing function analysis.

Our glider model captures the essential dynamic features of underwater gliding. Versions

of the model with varying complexity may be used in control analysis. For example, the

detail and number of terms in the hydrodynamic model, and the number of internal masses

may be varied, and these models confined to the longitudinal or lateral planes (Chapter

4). Simplicity allows for development of general control design strategies. These strategies,

along with insights gained from their development, are expected to be relevant to the design

of control laws for the more complex models of operational gliders. Feedback provides

robustness to uncertainty, and this uncertainty may include unmodelled dynamics. Control
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has been investigated using several versions of the model with varying complexity.

Because of power constraints, limited available volume, and the difficulties of underwater

sensing, many operational gliders do not carry the sensors necessary to determine the full

glider dynamic state. In particular, glider x and y position and velocity are costly to measure

directly when submerged. Similarly, aerodynamic angles α and β are not measured.

In cases when some states cannot be directly measured, such as with oceangoing gliders,

the design of an observer offers possible improvements over current glider control methods.

Section 6.1 presents a controller design that uses a linear observer. We design a dynamic

observer to estimate the glider state from a limited set of measurements.

Section 6.2 discusses features of the control systems of existing oceanographic gliders

Slocum, Seaglider and Spray. Features of the Slocum glider control system include propor-

tional feedback for pitch and heading control, use of deduced reckoning to navigate under-

water, variable timing of the controls, and use of a deadband to reduce the energy used for

control. Section 6.2.2 describes control experiments conducted using a Slocum glider during

the operations at sea described in Chapter 5. Control gains, timing, deadband and sliding

mass placement parameters were modified and tuned to improve the glider’s performance.

This improved controller was implemented on the glider during subsequent oceanographic

operations.

Section 6.3 briefly discusses other application of the glider model in controller design,

including on-line parameter identification and controller adaptation, efficient gliding using

intermittent control and deadbands, and inflection control. Section 6.3.4 presents a de-

scribing function analysis of controlled gliding. This includes analysis of the stability of

controlled gliding with nonlinear control elements (deadbands and saturation) and analysis

of the existence and stability of limit cycles in the controlled system.
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Figure 6.1: Planar gliding controlled to a line.

6.1 Controlled Planar Gliding

In this section we evaluate linear controllability and observability of the longitudinal glider

system about steady vertical plane glides. We then design linear controllers and observers

and demonstrate their application in simulations.

In controlled gliding in the vertical plane, a glide path is typically specified by the desired

glide path angle ξd and desired speed Vd. Equation (4.12) defines inertial coordinates (x′, z′)

such that x′ coincides with the desired path and z′ measures the vehicle’s perpendicular

distance to the desired path. We define two gliding objectives:

GO1 The objective is to control only the direction and speed of the vehicle’s glide path.

In this case we need not consider x and z at all.

GO2 The objective is to control gliding along a prescribed line (see Figure 4.4). In this

case we will include z′ (but exclude x′) in our analysis and we aim to make z′ = 0.

The dynamics of the z′ state are given by Equation (4.13), ż′ = sin ξd(v1 cos θ + v3 sin θ) +

cos ξd(−v1 sin θ + v3 cos θ).

In the glider model of Chapter 3 the movable point mass can be controlled in all di-

rections (2 degrees of freedom in the planar case). In some designs control of the CG and
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sliding mass locations may be restricted. For example, a sliding mass (typically a battery)

may be actuated in one direction. This may be modelled in the planar case as a movable

point mass with only one degree of freedom. We consider the case in which rp3 is fixed and

rp1 is controlled. Bounds on rp1 depend on a given glider’s design and actuators.

6.1.1 Controllability

We now examine controllability of steady glide paths for the steady planar glides of Section

4.1. Linear controllability is evaluated for a model of our experimental vehicle ROGUE, de-

scribed in Section 2.2.7. The same procedure is applicable to other glider designs, including

Slocum.

The planar glider model of Section 4.1 is locally (linearly) controllable for the four

glide paths listed in Table 4.1. That is, A and B as given by (4.31) and (4.32), when

evaluated at any of the four equilibria, satisfy the controllability rank condition. Note that

the linearization includes the state z′, meaning that controllability extends to the variable

z′. Accordingly, we can successfully design a linear controller that will locally accomplish

not only glide objective GO1 but also GO2.

It is of interest to check the controllability rank condition in the case that the movable

mass m̄ can only move in one direction (i.e., rP3 is fixed). To do this we have linearized the

equations of motion for the single degree-of-freedom moving mass derived in [42]. Again the

new A and B matrices for this case, when evaluated at any of the above four glide paths,

satisfy the controllability rank condition. Thus, it seems that at least for linear type control

action, not much is lost in restricting the degrees of freedom of the movable mass from two

to one. Several operational gliders have moving masses that translate in the vehicle long

axis and rotate in the roll direction, corresponding to a design with one degree of freedom
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when considering only the vertical plane.

On the other hand, for large motions such as switching from an upward to a downward

glide path, care needs to be taken if restricting the degrees of freedom of the movable mass.

For instance, while motion of the movable mass restricted to the rP1 direction would be

sufficient for sawtooth maneuvers, motion restricted to the rP3 direction would probably

not allow for both upward and downward glide motions. In the typical glider body shape,

with long axis along e1, mass motion restricted to the rP3 direction will have more limited

travel as compared to motion in the rP1 direction. The change in pitch moment due to

an offset ballast mass must also be accounted for, as described for the Slocum glider in

Chapters 3 and 5.

The movable mass m̄ for ROGUE is approximately 1/6 of the vehicle displacement m.

This is a similar proportion of the total glider mass as the movable mass in the gliders

Slocum, Spray and Seaglider. Variations in this mass or its location will not in principle

affect local controllability of a steady glide path.

In practice, there are tradeoffs associated with moving a large mass a short distance

versus moving a small mass a large distance. The power and energy required to move

the sliding mass and the required actuator accuracy should be considered. A large moving

mass requires a shorter travel and a smaller portion of the vehicle volume. Variation in mass

and location also affect the range of feasible glide paths and performance when switching

between them.

The variable mass mbd
in ROGUE at the equilibrium shown above is a larger fraction

of the vehicle displacement than in other gliders. This mass controls glide speed; thus,

designing a smaller variable mass would reduce maximum glide speed (see Chapter 7).
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6.1.2 Observability

Observability of the linearized model about the four glide paths listed in Table 4.1 was

also investigated. If GO1 is our objective, i.e., if we are interested in controlling only

the direction and speed of the vehicle’s glide path, then we need not measure z′. The nine-

dimensional dynamic model (which excludes z′) is completely observable with measurements

limited to movable mass position rp1, rp3 and variable mass mb. In this case, pitch angle θ,

pitch rate Ω2, linear velocity components v1 and v3 and the momentum of the movable mass

Pp1, Pp3 need not be sensed. Observability means that with the measurements of rp1, rp3

and mb, a dynamic observer could be designed to give an estimate of the unmeasured states

θ, Ω2, v1, v3, Pp1 and Pp3. Of course, θ is typically already measured and Ω2 is not so hard

to measure, so the real advantage is in the estimation of v1, v3, Pp1 and Pp3 which are more

difficult to measure. The nine-dimensional dynamic model is also completely observable

with measurements limited to θ, rp1 (or rp3) and mb. Again, this means that using these

three measurement signals, an observer could be designed to estimate the rest of the states.

We note that the use of a dynamic observer to estimate the glider states has the potential

to improve the accuracy of horizontal motion determination over presently implemented

methods which are based on assumptions of constant angle of attack, etc. For example, on

Slocum, the horizontal motion of the glider during the glide is estimated from GPS fixes

taken at the surface, measured pitch angle θ, an assumed angle of attack and vertical speed

computed from depth measurements [76]. On Spray, horizontal flight distance is similarly

calculated based on a constant pitch, heading and angle of attack to which the vehicle is

being controlled [63].

If GO2 is our objective, i.e., if we want to control the glider to a prescribed line in the

plane, then we need a measurement of z′. Recall from (4.12) that z′ depends on both depth
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z, which is easily measured, and horizontal position x, which is not so easily measured.

The measurements rp1, rp3 and mb, together with a measurement of z (or alternatively θ,

rp1, mb and z), do not render x observable. This means that without an initial condition

measurement x(0), the trajectory x(t) cannot be computed, and so z′ is not observable.

That is, using any combination of the other nine states, it is not possible to design a

dynamic observer to estimate the z′ state. However, with an initial measurement of x,

given say from a GPS fix taken when the glider is at the surface, the horizontal motion of

the glider can be dead reckoned using velocity estimates from the observer. This introduces

some error z′−z′ded into the estimate of the z′ state. Using the deduced z′ded in the feedback

control, the glider can perform GO2, gliding along or parallel to the desired glide path with

some offset in the z′ direction due to dead reckoning error.

The dead reckoning approach involves calculating horizontal velocity ẋded, then inte-

grating to obtain a deduced xded. We have that

ẋded = v1est cos θ + v3est sin θ. (6.1)

This can then be used to calculate z′ded. The pitch angle θ and depth z can be measured

directly. Estimates of the velocities, v1est and v3est, are provided by the observer, while ξd

is determined by the desired glide. The equation for the dead reckoned z′ded is then

z′ded = sin ξd(xded) + cos ξd(z). (6.2)

The nine observable states include v1 and v3, so our observer estimates v1est and v3est will

converge to the actual states when we are close enough to the equilibrium glide path for the

linearization to be valid. When there is some error in the observer estimate of the velocities,
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integrating (6.1) to find xded and using (6.2) will result in some error z′ − z′ded 6= 0. This

error depends on the observer state estimate error, which will vary with different state

trajectories and disturbances.

6.1.3 Design of a Controller with Observer

In this section we demonstrate, in simulation, controlled gliding in the vertical plane by

designing and testing a linear controller and observer for the glide path moving 30◦ down-

ward as described in Table 4.1. Since the controller is linear, we expect that it should take

initial conditions nearby to the 30◦ downward glide path. This example uses the glider dy-

namic equations in the vertical plane, (4.1)-(4.11), where the control acts on the momenta

of the point mass m̄. Another example below demonstrates control of the transformed

equations, (3.42), under the control transformation of Section 3.2.4, where the control is

the acceleration of the internal mass.

We demonstrate this result by starting the glider at the 45◦ downward steady glide and

using the linear controller to move it to the 30◦ downward glide solely by feedback.

Controller Design

We address the case where only a limited set of the states are measured, depending on

the sensors on the glider. We design the controller and then, given the limited set of state

measurements, design a dynamic observer to determine the full state of the glider. The

controller is designed for the linearization (4.31), of the vertical plane glider Equations

(4.13) and (4.3)-(4.11), about the 30◦ downward glide using the LQR (linear quadratic

regulator) method. This is a standard linear optimal control design method which produces

a stabilizing control law that minimizes a cost function that is a weighted sum of the squares
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of the states and input variables.

The cost function to be minimized is defined as

J =

∫

∞

0
δxTQδx + δuTRδu dt

where Q and R are state and control penalty matrices. Q and R were chosen to ensure well-

behaved dynamics and to prevent large motions in the movable mass position and variable

mass that would exceed physical limitations. Taking into account real or desirable maximum

state values, the states associated with vehicle and movable mass velocity and variable mass

and pitch angle were weighted most heavily. No significant tuning was performed. The

weight selections are given by

Q = diag(.05, .5, 1, 2, 2, .1, .1, 1, 1, .5),

R = diag(1, 1, 1).

The corresponding control law is u = −Kδx where K is computed using MATLAB as the

solution to the Riccati equation given A, B, Q, R.

Observer Design

In the case that some states are not provided by sensor data, as is likely to be the case with

the horizontal positions and velocities of an autonomous glider, it is possible to construct

a linear optimal observer to estimate the unavailable states. As described in Section 6.1.1,

the nine dimensional dynamic model excluding z′ is completely observable. If z′ is not

directly sensed, it is an unobservable state but can be dead reckoned. The construction of

an optimal linear observer for the nine dimensional system proceeds in a similar manner to
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the construction of the LQR controller.

Our linear system is described by A and B, defined above. The system output is

y = Cx + v, where C is the system output matrix determined by the available sensors

and v is noise. Given a linear time invariant system subject to additive process disturbance

w(t) and measurement noise v(t) which are zero mean, gaussian, white noise processes, an

observer which minimizes variance in the estimate error is derived in a manner similar to

the LQR. The cost function to be minimized is

J0 =

∫

∞

0
[z̃w(t)2 + z̃v(t)

2] dt

where z̃w(t) = e(A−LC)tw0 is the system zero-state response to plant disturbance w(t)

and z̃v(t) = −e(A−LC)tLv0 is the zero-state response to measurement noise v(t). Let

w(t) = w0δ(t) and v(t) = v0δ(t) represent the white-noise processes w(t) and v(t) ,

where the Dirac delta Function δ(t) represents the fact that white noise is uncorrelated in

time. Let W = w0w0
T and V = v0v0

T be the disturbance and noise covariance matrices.

Then choosing observer feedback L = PCTV −1 minimizes the cost function J0, where P

is the solution to the observer matrix Riccati equation given A, C, W, V , [47].

In this observer design the W and V matrices are chosen according to reasonable

estimates of the disturbances and noise. The covariance matrix W is a diagonal matrix

whose elements are the square of the standard deviation of the state disturbances. The

standard deviation is taken to be ten percent of the desired value at the equilibrium glide for

each state. In the cases where a state xi has desired value zero, we determined a maximum

deviation 4xi from equilibrium by simulating several switches between equilibrium glides

under full state feedback control. Ten percent of 4xi is then used as the standard deviation
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for the ith state. The noise covariance matrix V depends on the noise properties of the

sensors used in the vehicle. In this design they are taken to be of the same or smaller order

of magnitude as W :

W = diag(17, 4, 9, 1, 1, 1, 6, 0, 5),

V = diag(1, 1, 1, 1, 1).

When determining the cost function to be minimized, if V is large then computed gain L

will be small, so direct measurements have smaller impact on the state estimate. A large W

implies disturbances dominate the plant dynamics. In that case, computed gain L is large,

resulting in an observer state estimate which depends more heavily on sensor measurements

than the plant model.

6.1.4 Simulation: Controlled Planar Gliding

In Figures 6.2-6.4 we show a MATLAB simulation of the (ROGUE-sized) glider switching

from a 45◦ downward glide to a 30◦ downward glide path. This is accomplished by turning

off the controller for the first glide at t = 5 seconds and turning on the linear controller

for the second glide. In each figure we show results using full state feedback and using an

observer to estimate the state used in the control law.

When calculating the controller gain matrix K and the observer gain matrix L, some

plant parameter error is incorporated into the design. That is, when calculating the gain

matrices using the respective Riccati equations, the parameters which determine the A and

B matrices are varied by up to ten percent. Changing the A and B matrices used as the

system model in the controller and observer design represents imperfect knowledge of the
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glider dynamic coefficients (note that this simulation includes plant parameter variation but

no added measurement noise).

In Figure 6.2 we show the glide path before and after the switch. In Figure 6.3 we show

plots of position, pitch, linear and angular velocity as functions of time and in Figure 6.4

we show the position of the movable mass, the net buoyant force, and the control inputs

as functions of time. Note that this example does not include limits on the control inputs,

for example, a maximum pumping rate. The control gains in the example produce a high

pumping rate as shown. This is not required for stable behavior. Examples in Chapter 4

and below show switching between glides with other feedback controls and gains.

The figures show that the 45◦ downward glide path is in the region of attraction of the

linear controller designed for the 30◦ downward glide path. Furthermore, the transient is

well behaved. Larger switches between glides are possible and are demonstrated in other

examples.
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Figure 6.2: Simulation of glide path from 45◦ downward to 30◦ downward.
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Figure 6.4: Simulation of movable mass, variable mass and control inputs.

6.1.5 Simulation: Controlled Gliding with Inflections

In this section we describe a simulation that demonstrates control of the transformed glider

equation with simplified internal masses (3.42), under the control transformation of Section

3.2.4. The control wp is the acceleration of the internal mass. The glider modelled here is

similar in size to existing gliders such as Slocum. Parameters of the glider simulated are

shown in Table 4.2. These are the same parameters as used in the examples in Chapter 4.

rp1 and mb are controlled and rp3 is fixed.
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Figure 6.5 shows the glide path, vertical plane states and V and α from the simula-

tion. The simulation shows four steady glide segments and three stable inflections between

upwards and downwards glides. Figure 6.6 shows the internal mass states and the corre-

sponding controls. The states converge to their desired equilibrium values, shown in

Table 4.3.
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Figure 6.5: Vertical Plane States.

Stable planar gliding and inflections between glides were demonstrated in Chapter 4. In

these examples feedback is used only to control the internal mass position and buoyancy to

a desired value. Ω and v, for example, are not sensed or used in computing the feedback.

Those examples could be described as “open loop” with respect to the glider’s position

and velocity. Parameter uncertainty or variation will produce steady state errors from the

desired equilibrium.

This example shows controlled inflection and steady gliding with state feedback and

model parameter uncertainties. A linearization is computed for each steady glide and used

to compute a linear controller for that glide. Switching between glides is performed by

switching on the controller for the desired glide, as described above.

The state is x = (θ, Ω2, v1, v2, rp1, rp2, ṙp1, ṙp2, mb)
T . An LQR controller is computed
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with Q = diag(.5, 1, 2, 2, .1, .1, 1, 1, .5) and R = diag(100, 1000). The steady glides are stable

and the control transform results in stable inflections in the open loop case. Therefore the

weights on the controls may be chosen to reduce the control actuation and unnecessary

energy use. The R used here is for demonstration, but future choices of the control weights

may make use of some analytical method to minimize energy use. In this simulation the

control inputs are limited as in the examples of Chapter 4, although the controls do not

reach their limits during the simulation.
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Figure 6.6: Internal mass position, accelerations, and net buoyancy and pumping rate.

To model the parameter uncertainty, all nonzero elements of the A and B matrices of

the linearization are randomly varied by up to 25% before computing the LQR controller

for each glide.

6.2 Control Systems on Operational Gliders

The principal control task on operational gliders is accurate navigation with minimum en-

ergy use. The control system must make use of the limited actuation and control authority

available while navigating accurately with limited position and velocity sensors. It is nec-
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essary to minimize energy use in order to maximize glider range and endurance.

6.2.1 Existing Glider Pitch and Heading Control Systems

Existing oceanographic gliders use linear controllers for pitch and heading. The separate

control loops use different actuators to change internal mass position for pitch control and

internal mass roll or rudder angle to control heading. The controllers are proportional,

PD or PID loops. The gains are designed and tuned from experience or from some linear

analysis. The model and work presented above provides a systematic method to develop

model-based controllers.

Existing gliders such as Slocum make use of several interesting nonlinear control elements

intended to reduce energy use by the control actuators. These include deadbands, variable

control update timing, and limits on control actuator step size. The glider controllers can

turn off, or “sleep”, for intervals to conserve energy.

Figure 6.7: Typical controller block diagram. Pitch shown as example, [2].

Figure 6.7 shows the block diagram of a typical glider control loop, the pitch control

on the Slocum electric. The steady glide pitch angle is set by the ballast load and sliding

mass. Switching between downwards and upwards glides is performed open loop, i.e., the

ballast is changed and the sliding mass is moved to a new position. The steady glide linear

controller uses proportional feedback and actuates the sliding mass (alone) to adjust the

pitch angle. Pitch is measured directly by an inclinometer.

The controller has several nonlinearities, including a deadband, limits on the actuator
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step size, and variable control update timing. These are intended to reduce energy use by

the control actuators. There are also physical limits on the actuator range. The Slocum

controller uses a deadband that sets the control to zero when the error is below a set

magnitude. Above this threshold the deadband has no effect on the error signal (i.e.,

multiplies it by one). A more conventional deadband arrangement, shown in Figure 6.7,

has zero gain inside the deadband and output K(θerror − δ) above the deadband threshold

δ.

Because the error and control are computed only at set time steps, the Slocum controller

is actually a discrete controller. The variable control update timing may be a function of the

state error history, for example, whether it is within the deadband. Maximum and minimum

update intervals are set as control parameters. If the update interval is much faster than

the glider dynamics, the controller may be approximated as a continuous controller. The

actuator step size limit is the maximum change ∆rp1 of the sliding mass position permitted

per control cycle. For large errors and update intervals this effectively limits the proportional

gain of the controller.

Other glider controllers are similar. Spray performs active control of pitch and roll

every 40 s using measured pitch and heading errors [63]. “The pitch control algorithm is

a straight proportional loop, with low gain to produce an over-damped response toward

the desired pitch angle.” The heading control uses a proportional-integral controller (to

eliminate steady state heading errors).

6.2.2 Slocum Control Experiments at Sea

Our in-ocean tests of the Slocum glider in January 2003, described in Chapter 5, included

experimentation with the tuning of the the glider pitch and heading controllers and inflection
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control parameters. We conducted additional tests, described in [2], with a different Slocum

glider in Spring 2003 during a cruise conducted under principal investigator Joe Rice on

the Canadian Forces Auxiliary Vessel Quest (CFAV Quest) in collaboration with SPAWAR

System Center, San Diego and DRDC Atlantic, Halifax, Canada. The experiments included

varying the controller gains and parameters, the deadband size, control update timing, and

inflection mass placement parameters. Because of operational considerations, the overall

structure of the controller was not changed, although in some tests the nonlinear control

elements were removed. Examples of stable glides and transitions are shown in Chapter 5.

Examples of controlled gliding experiments are shown below and in [2].

Pitch Control

Figure 6.8 shows a test glide using Slocum WE01 under controlled gliding with controller

gains and parameters before experimental modification. This data is from the January 2003

Bahamas Glider Cruise conducted with WHOI, described in Chapter 5. The glider takes

about 100 s to reach the desired pitch angle after the completion of ballast pumping. This

is due in part to the incremental adjustments of the sliding mass position. The change in

the battery position is clipped to a maximum value per cycle by the controller, giving the

‘battpos’ plot a staircase appearance. Other test glides show this to even greater degrees.

The combination of maximum sliding mass adjustment and intermittent control update

timing limits the effective gain of the pitch controller, resulting in a slow response.

There is also significant overshoot in pitch. This is caused in part by a mis-trim in the

glider e1 direction. In this test the pitch and battery position lookup function does not

match the actual trim condition of the glider. The controller’s parameters are configured

for a glider trimmed for zero pitch at neutral buoyancy with the sliding mass at ‘battpos’
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Figure 6.8: Glider WEO1 test run before control modifications. Bahamas, January 2003
(see Chapter 5).

zero. This glider is trimmed for that condition with ‘battpos’ near -0.75 inches. This results

in a pitch error during the open-loop inflection. The control clipping then limits the pitch

controller’s correction of this error. This is repeated at each inflection.

The controller variable update timing and deadband are implemented in this test. The

update timing is varied according to the error performance, with maximum 20 s intervals

and minimum 2 s. Periods of gliding within the deadband appear as flat portions in the

mass position plot.

Subsequent experiments eliminate the control clipping by setting the maximum step size

to a very large value. This results in a dramatic increase in actuator use, a reduced rise

time to the desired pitch angle, and significant oscillations in mass position and pitch angle

200



Figure 6.9: Slocum pitch response with high gain, no sliding mass clipping. Spring 2003,
glider deployment from CFAV Quest, [2].

before settling to a steady pitch angle. Without clipping, the gain of the controller is too

high, producing oscillations. This results in an increased settling time and reduces time

spent in the deadband. Figure 6.9 shows an example of this behavior from a later set of

tests with another Slocum glider, [2]. There are extended periods of oscillation. Note that

around 1250 s into the mission the glider is at equilibrium inside the deadband for a period

and is then disturbed out of the deadband, producing another period of controller induced

oscillation.

Figure 6.10 shows test glide VERT 22, Segment 5, using Slocum WE01 after tuning of the

pitch gains and parameters. The control update timing is fixed at 2 s , the deadband at 3◦.
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Figure 6.10: Slocum WE01 pitch response after controller tuning. Bahamas, January 2003
(see Chapter 5).

The open-loop mass placement parameters are adjusted to match the glider’s trim condition

more accurately using the equilibrium Equations (5.3). The controller lookup function

assumes a linear relationship between pitch and battery position, but (5.3) shows that the

lookup function should take into account the change in the ballast moment between upwards

and downwards glides. For this test a best approximation was made using parameters within

the existing controller.

Figure 6.10 shows improved pitch performance compared to the tests before controller

tuning. The response time has decreased and there is no oscillation about the equilibrium.

Once both actuators are in the equilibrium position, the glider settles to the desired pitch

and remains within the deadband. There is still some overshoot in pitch. This is due in
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part to the glider’s inflection behavior. The ballast is pumped fully to the desired state at

glide B before the sliding mass is moved to the new equilibrium position. Also note that

because of the glider’s mass trim in this series of tests, the sliding mass must move forward

when gliding up and backwards when gliding down. This is contrary to what one might

intuitively expect and opposite to what occurs in the glider model with simplified masses.

The controller tuning here combined iterative gain and parameter adjustments with

analysis using the glider equilibrium equations. This was conducted simultaneously with

preliminary glider parameter estimation from test data. If the glider hydrodynamic param-

eters and trim condition are estimated in advance, the glider model can be used to design

and tune the controller with minimal flight test.

The performance improvements observed during this brief series of tests show that, given

some knowledge of the glider dynamics developed through analysis of the glider model,

even small improvements to the control system and parameters can result in noticeable

performance gains.

Heading Control

While a properly designed and trimmed glider’s pitch and roll are stable with fixed controls,

a glider’s heading (compass angle) is generally neutrally stable. Therefore some control is

necessary to stabilize a desired heading angle and to reject environmental and plant distur-

bances. Heading controllers on existing oceanographic gliders make use of linear controllers

as described above. Our experiments and analysis address the use of intermittent control

updates, deadbands, and heading disturbances and coupling inherent to glider dynamics.

Accurate heading control and navigation is important for glider energy conservation,

because small average errors in heading may become, over long glides, large errors in po-
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sition. The pumping work for gliding to correct this error may be significant compared to

the energy necessary to control heading.

Turning glides are described in Section 4.3. Glider heading dynamics are affected by

roll-yaw coupling, rudder-roll coupling, and static mis-trim. In addition, the geometry of a

real glider may be asymmetrical, such that the moment on the glider is nonzero at sideslip

angle β = 0. This is the case on the Slocum glider, for example, where the position of the

CTD instrument on the port side of the vehicle creates a yaw moment.
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Figure 6.11: Slocum WE01 heading performance, test VERT 22 Segment 5. Bahamas,
January 2003 (see Chapter 5).

Figure 6.11 shows experiment Vert 22, Segment 5. The pitch and vertical plane states

for this test are shown in the previous section. Heading is controlled by a proportional

controller with 2 s to 10 s updates and a 3 degree deadband. There is significant cycling
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or chatter by the rudder. This is due to the controller deadband and intermittent timing.

This produces an average heading error of about 4 degrees, close to the magnitude of the

deadband.

Yaw moments due to the glider geometry and trim affect the glider’s heading rate.

Drag on the CTD creates a negative yaw moment, and the static roll of the glider creates

a positive yaw moment gliding downwards and a negative yaw moment gliding upwards. In

this glider the net yaw moment is negative in both upwards and downwards glides. This

was determined in previous VERT series experiments, where a positive rudder angle (and

yaw moment) was required to offset the net moment from the mass trim and geometry.
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Figure 6.12: Slocum WE01 heading performance, test 55 Segment 36. Bahamas, January
2003 (see Chapter 5).

Figure 6.12 shows data from another test run with WE01, test mission 55, segment 36,
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from the same group of experiments. In both examples, the heading error is predominantly

negative and the rudder angle cycles between zero and positive values. In test Vert 22

(Figure 6.11) the deadband is ∼ 3◦ and the rudder gain is 2. The rudder tends to switch

between zero and ∼ 6◦, the position corresponding to the edge of the deadband. When the

rudder is set to zero, the other moments on the glider create a negative yaw rate. Once

the deadband threshold is reached the rudder is set to ∼ 6◦, bringing the heading error

back into the deadband. Other tests in the Vert series were conducted to determine that

∼ 3.5◦ is the average of the fixed rudder angles to give straight gliding flight in upwards

and downwards glides (a smaller set value is required for straight downwards glides and a

larger value for straight upwards glides). Therefore, neither zero nor ∼ 6◦ rudder will give

a straight glide. Control chattering and limit cycling are discussed further below.

Figure 6.13: Slocum heading in upwards vs. downwards glides, Buzzards Bay 2/23/02. [1].
Data courtesy of David Fratantoni, WHOI.

Data from a different set of glides exhibits differences in heading performance control
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when gliding upwards or downwards. Figure 6.13 shows heading versus time for a series of

shallow glides with a Slocum glider operated by WHOI in Buzzards Bay, February 23-24,

2002. This data is courtesy of David Fratantoni, WHOI. The heading performance shown

is not typical of other tests conducted, including the Slocum tests in January 2003. This

test shows significant rudder-roll coupling and heading errors, more than appear in the Vert

series of tests, perhaps because the glider in this case is insufficiently bottom-heavy. It is

also gliding in shallow water (15 m) with frequent inflections using ballast gearing designed

for deeper and slower inflections, while the Vert tests generally used deeper glides. There is

a significant difference between the heading performance in upwards and downwards glides.

This may occur because of rudder-roll coupling in the Slocum design. Slocum has positive

roll-yaw coupling and a high rudder. Therefore, rudder-roll coupling causes a roll and yaw

moment that acts against the rudder gliding downwards and with the rudder when gliding

upwards. Rudder-roll coupling would be reduced by increasing the bottom-heaviness of the

glider or changing the rudder location.

Figure 6.14 shows heading, roll and rudder plots for the same test. Data corresponding

to glides downwards are on the left, data for glides upwards on the right. The rudder angle

is scaled (divided by six) for comparison with the roll angle. Heading performance is better

when gliding up; the heading data points are clustered more closely to the desired value

and most are within the 5◦ deadband. The rudder angle is zero at most points when gliding

upwards. The heading data points gliding downwards are more scattered, there is more

actuation of the rudder, and the average roll angle is greater. The rudder moves to larger

angles when gliding downwards. This is a product of the poor heading performance. It also

creates a greater rolling moment on the glider, increasing the incidence of roll-yaw coupling.
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Figure 6.14: Heading, roll and rudder (÷ 6) in upwards vs. downwards glides , Buzzards
Bay 2/23/02. [1]. Data courtesy of David Fratantoni, WHOI.

Recommendations for Glider Control Systems

Modification of the controller structure, deadband, and timing would improve gliding per-

formance and reduce control energy use. An initial step may be use of a more conventional,

continuous, deadband function. Combined with changes to the control update timing, this

could eliminate chattering or limit cycling in heading and pitch. An analysis of this sub-

ject using describing functions appears below. Other improvements are possible within the

existing controller structure. For example, the heading control loop uses the same gain for

upwards and downwards glides. In configurations with rudder-roll coupling, use of differ-

ent gains for upwards and downwards glides would improve performance (see Section 4.3).

Straight-flight rudder conditions for a given glider’s static trim should also be determined

for upwards and downwards glides and incorporated into the control system. Use of state

feedback controller or proportional-integral controller would improve heading performance
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and eliminate steady heading error.

6.3 Other Control Applications of the Glider Model

6.3.1 Adaptation and Parameter Identification

Incorporation of adaptive elements into glider control systems may produce significant per-

formance improvements. Oceanographic gliders are deployed for extended periods, during

which they perform similar or identical sawtooth glides and inflections hundreds or thou-

sands of times. Durability and endurance are principle aims of their design. Even a simple

system for identifying changes over time in a glider’s performance, model parameters, and

trim condition could be effective.

Gliders are propelled by relatively small differences in buoyancy (compared to their

mass and volume) and their dynamics are sensitive to small changes in their buoyancy,

static trim, and hydrodynamics. Changes in the glider’s static trim and hydrodynamics

are likely to persist for extended periods. For example, bio-fouling, or growth of marine

organisms on the glider, was observed during Slocum glider deployments of only a few weeks

in the Monterey Bay (during the AOSN II experiments). This is a significant problem for

extended deployments of future glider designs. In other experiments, changes in a glider’s

upwards and downwards glide speed and trim over many dive cycles was determined to be

due to gradual and intermittent intake of water into the glider body through a leak. Plant

changes of these types could easily be accounted for using a simple adaptive controller

system.

A simple adaptive control system could do the following:

• Perform a check-out dive after initial deployment and periodically thereafter, to iden-
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tify the glider static and hydrodynamic trim conditions.

• Periodically or continuously identify and update the glider parameters and the control

positions for a variety of steady glides.

• Adapt to changes in water density. This could use the glider dynamic model and the

CTD sensor (to determine the water density).

• Adjust controller parameters such as control update timing and deadband size. For

example, dive performance and the average properties of environmental disturbances

in past dives may be used to adjust the control update interval.

• Identify gradual changes in performance that may lead to loss of the vehicle (for

example, changes in buoyancy due to a slow leak or bio-fouling).

Many of these adaptive elements involve straightforward application of the glider dynam-

ics model, equilibrium equations and parameter identification methods already described.

More advanced methods are available in the literature on adaptive control and system

identification.

6.3.2 Control of Inflections

Inflections between upwards and downwards glides present a special control task. Dur-

ing these unsteady motions the glider crosses through a region, about the zero pitch and

glide path angles, where steady gliding is not possible. This distinguishes inflections from

transitions between two glides in the same vertical direction, where the glider may slowly

transition through a number of steady glides. Controlled inflections are necessary for accu-

rate navigation and efficient gliding. This requires:

• Maintaining the desired heading,
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• Maintaining forward momentum,

• Avoiding large α or β and separation or stall,

• Minimizing actuator energy use.

A variety of controlled inflections, including open-loop and closed-loop controlled in-

flections, have already been presented in both simulation and in experiment. Existing

oceanographic gliders are designed for static stability in steady glides, and experiments

and simulation have shown that the regions of attraction of these steady glides are large.

Therefore, inflection may be controlled using either open-loop or closed-loop control, or

some combination of the two, for example closed-loop control including some ‘feed-forward’

terms moving the actuators to their new positions.

Our experiments with Slocum gliders and anecdotal reports of inflection performance of

Seaglider and Spray show that the relative timing and speed of the actuators is significant

to a smooth inflection.

Eriksen [14] describes an instance of poor inflection performance during tests of Seaglider.

In a test of the Seaglider, when inflecting to an upwards glide, the sliding battery mass was

moved to its new position much faster than the ballast pumping. This resulted in the

glider pitching up while still moving downwards and negatively buoyant, producing a rise

as the glider’s momentum is dissipated, followed by a period of gliding downwards be-

cause the glider is still negatively buoyant. “This has the effect of driving the glider slowly

backwards, an unstable configuration that causes it to change heading sharply” [14]. The

Seaglider researchers corrected this problem by changing the pitch inflection control. “In

later deployments, the glider pitches up only partially until [buoyancy] becomes neutral

before pitching up to its desired ascent value” [14].
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Some problems in inflection were observed first-hand (visually and with sensors) in our

January 2003 tests of the Slocum glider, for example, large pitch angles, changes in heading,

and periods of stopped motion (for some tests and control gains). One difference in the

Slocum glider is the link between its pitch and net buoyancy due to the location of the

ballast tank.

Adjustments of the glider controller and timing, and implementation of the inflection

controllers described already, are sufficient for inflection control of stable, relatively slow,

oceanographic gliders. Their transitions are relatively gradual and the angles of attack

shown in simulations are fairly small. The static moments on the gliders are larger or of

the same magnitude as the hydrodynamic moments. Their stability during inflections has

already been demonstrated

In more aggressive inflection maneuvers, for example, those in much faster gliders, stati-

cally unstable gliders, or those with radical body shapes, modelling and control of inflection

may require inclusion of additional (and more complicated) terms in the hydrodynamics

model. The unsteady hydrodynamics of the glider may be very complex, especially in a

glider moving at high speeds.

Another measure of inflection performance is the net change in depth required to per-

form an inflection or a sawtooth glide. This depends on the glider actuators and inflec-

tion controllers. Some applications, such as littoral operations, require a small inflection

depth. Fast turnaround depends on maximum pumping speed and high mass actuator

speed. Oceanographic applications could also require gliding within a narrow depth band

or many crossings of a given depth, perhaps at an interface between ocean layers.

Existing gliders can glide and inflect in only a few meters of water. Slocum Electric is

designed for shallow water application; its ballast system may be geared for gliding in as
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little as four meters of water (i.e., operate and perform entire sawtooth glides). Other gliders

are designed for use at deeper depths, so inflection speed and distance is less critical. Their

ballast systems are designed for efficiency and maximum depth, not speed of inflection. For

example, the typical inflection depth change for Spray is four meters [63]. That is, when

gliding downwards at steady glide condition, the Spray glider will continue downwards for

about four meters after it begins its pumping for inflection.

Inflection speed and performance depends on the steady glide path angles and con-

trol inputs, so shallower inflections are possible for both gliders with modification of their

actuators and control schemes.

6.3.3 Intermittent Control and Deadbands

As described, controllers for oceanographic gliders make use of deadbands and intermittent

control updates for the purpose of energy conservation. The effect of these control elements

on overall energy conservation depends on the glider’s dynamics and the environmental

disturbances on the glider. In some cases, frequent controlled use of actuators, moving the

internal masses or rudder, may use less energy than would be required to correct errors in

heading and position after an extended period of open-loop gliding.

Consider two possible extremes. The first is gliding in completely calm water. With

no disturbances and perfect knowledge of the system, the glider can navigate accurately

under only open-loop control. Control actuators are used only for inflections and changes

between steady glides, and little energy is used for control. The opposite extreme is gliding

in an environment under constant and varying environmental disturbances, for example, in

a river or littoral area with significant currents, upwellings, variations in density, etc. In

this case frequent or continuous control is required for accurate navigation. Without this,
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correcting navigation errors accumulated over time may require significant pumping work.

In existing oceanographic gliders, pumping accounts for as much as 75% of the total glider

energy budget. Therefore, errors in position are energetically expensive.

Because a properly designed oceanographic glider is stable in pitch and approximately

neutrally stable in heading, accurate control of heading will likely require more frequent

actuation than control of pitch. Experimental examples include tests in the VERT series

of experiments with Slocum WE01 with fixed actuators. The glider’s pitch is stable, but

there is significant accumulated heading error. Published accounts of experiments with the

Seaglider [14] give another example. During one Seaglider test glide, with control interval

set to five minutes, the heading drifts by forty degrees within this interval, requiring a turn

to correct it.

6.3.4 Controller Induced Limit Cycles: Describing Function Analysis

In this section a describing function analysis is used to determine the existence and stability

of limit cycles (self-sustained oscillations) in the glider’s controlled dynamics.

Nonlinear elements of the control system are approximated, using describing function

N(A, ω) as a linear gain that is a function of input amplitude A and frequency ω. Stability of

the equilibrium and existence and stability of limit cycles in the (approximated) nonlinear

system are determined using a Nyquist-based analysis [64, 71, 19]. This analysis uses

sinusoidal-input describing functions. Limit cycles predicted by this method are solutions

of G(jω) = − 1
N(A,ω) . If this equation has no solution, no limit cycles are predicted.

The describing function method is an approximate method, and it gives only a prediction

of the existence of limit cycles. The amplitude and frequency of predicted limit cycles are

often inaccurate. The results are also dependent on the validity of the filtering hypothesis.
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See [64, 19]. Experiments and simulation of the full nonlinear system may be used in further

analysis, to confirm the existence of limit cycles, and to more accurately determine limit

cycle amplitude and frequency.

The accuracy of the describing function analysis depends on the angle of intersection of

the G(jω) locus with the − 1
N(A,ω) locus. In the case of frequency-independent describing

functions, “if the − 1
N(A locus intersects the G locus almost perpendicularly, then the results

of the describing function are usually good”[64]. The systems analyzed in this section all

have locus intersections that are close to perpendicular.

As shown in the previous experimental examples, it is possible for the deadband and

intermittent control to generate limit cycles and actuator chatter (that would not occur

without these control elements). This is a function of the controller parameters and the

vehicle dynamics. These types of limit cycles are highly undesirable because they lead to

frequent actuator use, produce errors in tracking the desired glide, and are energetically

inefficient. Their existence is directly contrary to the original purpose of the nonlinear

controller elements. Here we neglect the intermittent timing to first examine the effect of

deadbands and saturation on a continuous controller.

Figure 6.15: System with describing function.

Figure 6.7 shows the glider pitch control loop. Figure 6.15 shows the pitch control loop

arranged for the describing function analysis. Linear elements F (s) and H(s) represent

the sliding mass actuator and the glider dynamics linearized about the equilibrium. In

oceanographic gliders the ballast mass is generally fixed during a steady glide, so here the
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glider pitch control dynamics are represented by the transfer function H(s) from input

w1 = r̈p1 to output θ.

Properly designed, a glider is statically stable in pitch (i.e., with fixed internal masses

and controls). If the glider parameters are known exactly, open-loop pitch control may

be used to reach a desired equilibrium. However, in real-world applications some plant

variation and uncertainty are inevitable. Therefore use of feedback is desirable. Feedback

may also be used to improve disturbance rejection.

For the glider parameters used in previous examples, and given in Table 4.2, the transfer

function from input w1 to output θ, with linear pitch damping parameter KΩ1 = 50, is

H(s) =
−0.006006 s4 + 0.0006985 s3 − 4.886 s2 − 1.759 s − 0.04088

s5 + 0.5804 s4 + 0.2795 s3 + 0.1177 s2 + 0.002823 s
. (6.3)

Note that the glider pitch is open-loop stable for linear pitch damping coefficient KΩ1 > 0.

The sliding mass actuator may be represented by a second-order transfer function with

an electrical and a mechanical time constant. A feedback controller for the actuator may

also be included in the system. The sliding mass actuator transfer function, from input to

position rp1, is F (s) = 1
(T1s+1)(T2s+1) . Multiplying F (s) by s2 gives actuator output r̈p1.

Let G(s) = F (s) · s2 · H(s) be the forward loop transfer function.

The dynamics of the sliding mass actuator influence the total system stability. Time

delays in feedback systems generally contribute to instability. Slower actuator dynamics

have a similar effect in this system. To concentrate first on analysis of the nonlinear control

elements and the glider dynamics, model the sliding mass actuator as much faster than the

glider pitch dynamics, with zero steady error. Setting T1 = 0, T2 = 0, makes the actuator

a unity gain. Adopting a slower actuator moves the intersection with the negative real axis
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of the Nyquist plot of G(s) to the left (reducing the system gain margin).
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Figure 6.16: Nyquist Diagram.

Figure 6.16 shows the Nyquist plot of G(s) for KΩ1 = 25 and KΩ1 = 50 and T1 = 0, T2 =

0. For convenience, define ω∗ and G∗ such that ∠G(jω∗) = −180◦ and G∗ = |G(jω∗)| to

specify the point where the Nyquist plot of G(jω) crosses the negative real axis. An example

plot of −1/N(A) for some frequency-independent describing function (here it could be a

deadband) is shown. The direction of increasing A and the maximum value of −1/N(A)

are shown. Let Nmax = max(N(A)). If the Nyquist and describing function plots intersect,

define A∗ as the amplitude at that point, G∗ = −1/N(A∗). For multiple intersections,

define A∗

i in increasing order, A∗

1 < A∗

2 < ....

Stability of the closed-loop system is determined using the Nyquist criterion, Z = N +P ,

and its extension. The open-loop transfer function has no RHP poles (N=0 for KΩ1 > 0).
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Therefore, for forward loop proportional gain K, the intersection of the Nyquist plot with

the negative real axis determines P , the number of encirclements of the − 1
K point. If P > 0

then Z > 0 and the closed-loop system is unstable. Note that the intersection of the Nyquist

plot of G(s) with the real axis moves to the left as linear pitch damping decreases.

For deadbands, saturation, and other frequency-independent describing functions, − 1
N(A)

lies along the negative real axis, so closed-loop system instability and existence of limit cy-

cles occur under the same conditions. Intersections of the Nyquist plot of G(s) and −1
N(A)

predict the existence and stability of limit cycles in the closed-loop system with the non-

linear element (within the limitations of the describing function method and assumptions).

Each intersection corresponds to a limit cycle. “If points near the intersection and along

the increasing-A side of the curve −1/N(A) are not encircled by the curve G(jω), then the

corresponding limit cycle is stable. Otherwise, the limit cycle is unstable”[64].

Nonlinearity f(x) N(A)

Deadband (DB) 0 |x| ≤ δ 0 A ≤ δ

K(x − sgn(x)δ) δ < |x| K[1 − satf( δ
A)] δ < A

Slocum DB 0 |x| ≤ δ 0 A ≤ δ

Kx δ < |x| 4Kδ
πA

√

1 − satf( δ
A

2
) δ < A

+K[1 − satf( δ
A)]

Saturator Kx |x| ≤ δ K A < δ

Kδ · sgn(x) δ < |x| K · satf( δ
A) δ < A

DB + Sat. 0 |x| ≤ δ1 0 A ≤ δ1

K(x − sgn(x)δ) δ1 < |x| < δ2
K

δ2−δ1
[1 − satf( δ

A)] δ1 ≤ A ≤ δ2

Kδ · sgn(x) δ2 < |x| K · satf( δ2
A − δ1

A ) δ2 < A

Table 6.1: Controller and actuator nonlinearities and describing functions.

Table 6.1 shows four controller and actuator nonlinearities and their describing functions
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N(A). sgn(x) is the sign function and satf(x) is the saturation function,

satf(x) =































−1 x < −1

2
π (sin−1 x + x

√
1 − x2) |x| ≤ 1

1 1 < x.

Figure 6.17 show the four nonlinear elements, plots of their describing functions, and

sketches of −1
N(A) on the complex plane. The arrow shows the direction of increasing A. For

the saturator with deadband, −1
N(A) moves from left to right, then reverses. The saturator

with deadband is a reasonable model of a controller with a deadband and a mass actuator

with a maximum force or acceleration. Figure 6.18 shows these describing functions for

comparison.

Control Element Case Eq. Stable? Limit Cycles (A∗, w∗)

Linear K G∗ > −1/K stable none
G∗ < −1/K unstable none

Deadband (DB) and G∗ > −1/K stable none
Slocum DB G∗ < −1/K unstable for A > A∗ one, unstable

Saturator G∗ > −1/K stable none
G∗ < −1/K unstable (0 < A < A∗) one, stable

Saturator + DB G∗ > −1/Nmax stable none
G∗ < −1/Nmax unstable (A∗

1 < A < A∗

2) unstable at (A∗

1, w
∗)

stable at (A∗

2, w
∗)

Table 6.2: Describing function analysis results: stability and limit cycles.

Table 6.2 shows the results of the describing function analysis. For each nonlinearity,

the possible cases, their stability and limit cycles are shown. Note that

• Any instability of steady glides is undesirable.

• For the same K and G∗ < −1/K, the proportional gain controlled system equilibrium

is unstable with respect to any disturbance (A > 0), the Slocum deadband controlled
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Figure 6.17: Nonlinearities, describing functions, and plots on Nyquist plane.

system equilibrium is unstable for some A > δ, and the conventional deadband is

unstable with respect to some larger A.

• For both types of deadbands, A∗ is always greater than deadband size δ. If the

deadband extended to the full pitch range, the control and mass actuator would never

turn on and the (stable) glider pitch dynamics would settle to their equilibrium.

• The deadband nonlinearities alone cannot generate a stable limit cycle.

• In application there is always some disturbance A > 0, so if the system with saturator

is unstable the disturbance amplitude A has little practical meaning.

• The saturator with deadband can have two limit cycles, one unstable and one stable.
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The stable limit cycle occurs at a higher A than the unstable limit cycle. The stable

limit cycle appears due to the saturation nonlinearity.
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Figure 6.18: Comparison of describing functions. Note scaling of saturator/limiter with DB
is different than other describing functions shown.

6.4 Chapter Summary

In this chapter, the glider model is applied to the systematic design and analysis of a

glider control system and the control systems of existing oceanographic gliders. It is shown

that application of the model and an understanding of glider dynamics can improve glider

control, navigation and inflection performance. Improving the glider control system should

result in greater glider speed and range and improved scientific utility.

The analysis begins with control of equilibrium steady glides in the glider longitudinal

plane model. The steady glides identified in Chapter 4 are shown to be linearly controllable

and observable. The steady glides are controllable for two gliding objectives: gliding with a
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given direction and speed, and gliding along a prescribed line. Controllability is maintained

in the case when rp3 of the sliding mass is fixed. If we are interested in controlling only

the direction and speed of the glide, the steady glides are shown to be linearly observable,

given a limited set of sensors (smaller than that available on oceanographic gliders). If the

glider is to be controlled to a prescribed line in the plane, some dead reckoning must be

used to track the glider’s horizontal position. A method for combining this dead reckoning

with a dynamic observer for the other states is presented.

We demonstrate the design of a LQR controller with observer for a steady glide. Con-

trolled planar gliding is demonstrated in simulation. Controlled gliding with inflections is

also demonstrated. Inflections are performed by switching from one glide controller to the

next. This involved controlling the glider to steady glide A, using the controller for glide

A, and then turning off controller A and turning on the controller for glide B. The glider is

then controlled to steady glide B.

This chapter also includes an analysis of control systems on operational gliders. A

typical oceanographic glider controller is described. These use linear controllers for pitch

and heading. They are designed and tuned from experience or from some linear analysis.

The glider model presented here provides a method for systematic analysis and improvement

of these controllers.

We present results from control experiments at sea using Slocum gliders. Test glides

using the existing glider control system under different control gains and parameters demon-

strate the importance of properly control gain tuning and control analysis. Test flights are

shown which demonstrate slow pitch control response and controller induced pitch oscil-

lations. Using the understanding of glider dynamics developed from the glider model,

corrections to the controller timing and gains are made and improved gliding performance
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is demonstrated.

Glider heading control is also analyzed. In at-sea experiments, the glider controller’s

deadband, gain and update timing are shown to produce some control chatter in the rudder

when the glider has some mis-trim. Glider static mis-trim and rudder-roll coupling are

both shown to have an effect on glider heading control. Modification of the glider deadband

function, use of separate heading control gains for upwards and downwards gliding, or

application the state feedback controller derived in this chapter are possible steps to improve

heading performance.

When designing a glider controller, it is important to take the glider dynamics into

account, including the effect of mis-trim, rudder-roll coupling and inflections between up-

ward and downward gliding. The glider model provides a systematic way to do so. Energy

conservation is also major concern in controller design. Use of deadbands, intermittent

control timing, and other control elements may help conserve energy. It is important to

analyze and test these elements so they do not introduce problems that actually increase

energy use. Towards this end, the glider model is applied to a describing function analysis

of these control system nonlinearities. This analysis shows that, under certain conditions

and control gains, the deadband and saturator nonlinearities in the glider control system

may destabilize a steady glide or produce a stable limit cycle. Such limit cycles result in

significant actuator application and energy consumption and should be avoided.
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Chapter 7

Glider Design

This chapter describes application of the glider model to the design of underwater gliders.

The glider model, derived in Chapter 3, is applied to the analysis of existing gliders and to

the study of possible future glider designs, including tradeoffs in glider design and scaling

rules for underwater gliders. The analysis here makes use of the glide equilibria derived in

Chapter 4 and the results of subsequent chapters, including the experimental tests of steady

glides in Chapter 5. Parts of this Chapter appeared in [32], which provides an analysis of

many related topics in glider design.

This chapter is arranged in the following sections:

Section 7.1 compares underwater gliders and sailplanes, with the aim of developing an

intuitive understanding of underwater gliders based on an understanding of aircraft.

Section 7.2 analyzes scaling rules for glider steady glide performance, including glide speed

versus ballast loading, glide angle, and glider volume.

Section 7.3 provides a general overview of glider design requirements and covers preliminary

design of underwater gliders, including sizing, body and wing geometry, and study of
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the trade-offs in using alternate glider designs such as flying wings, blended wing/body

designs, and gliders with moveable wings and external control surfaces.

Section 7.4 discusses conventional oceanographic glider designs and possible alternative

designs, including flying wing configurations. These designs are suited to different

glide path angles and mission requirements. Differences between the two are discussed.

Flying wing designs offer higher maximum lift/drag ratios, but this is advantageous

only at small glide path angles. Existing gliders are designed for steep glide path

angles to give maximum speed for a given ballast size. A flying wing configuration is

suited to shallower glide path angles, which give greater horizontal travel for a given

amount of pumping work and give speeds below the gliders’s maximum. The choice

of a conventional glider design or a flying wing must take into account the specific

requirements of a glider’s mission.

References [80, 63, 14] discuss the design and construction of Slocum, Spray and Seaglider.

These gliders are all designed for ocean sampling and are similar in size. They will serve as

a starting point for an investigation of glider design. Glider design is also discussed in [32]

and in Chapter 2. These describe the designs and applications of existing oceanographic

gliders.

A principal challenge in the design and operation of underwater gliders is power conser-

vation and management. This must be taken into account in every step of glider design and

operation. Because glider missions require extended deployment and long ranges, limited

on-board power reserves must be carefully managed. In the case of electrically powered

gliders, the on-board batteries must provide all energy for both pumping work and elec-

tronic loads, including sensors, computers and communication. Pumping makes up 60 % to

85 % of the total energy budget of existing gliders, depending on the mission use [12].

225



Examining the existing gliders and their missions allows us to determine some general

parameters for glider design. These include size, range, endurance, speed, depth, and

payload.

Consider, in preparation for an examination of glider design, some general characteristics

of underwater gliders.

1. Gliders glide in a sawtooth pattern. They glide upwards and downwards at negative

and positive glide path angles and angles of attack. Existing oceanographic gliders

are designed to be top-to-bottom symmetrical because of this gliding motion.

2. Conventional gliders operate at steep glide path angles (about 35 degrees). These

are steeper than typical glide path angles for sailplanes (under 5 degrees). This

leads to different sizing of the underwater glider body and wings and requires much

lower operational lift/drag ratios in underwater gliders than in sailplanes and aircraft.

Designing an underwater glider for shallow glidepath angles would similarly require

high lift/drag ratios.

3. Gliders control their buoyancy and attitude with internal ballast systems and sliding

masses. This provides their propulsion force and also their pitch and roll stability,

which results principally from the separation between the glider’s centers of gravity

and buoyancy. Gliders may also use external moving surfaces including rudder, flaps

and ailerons.

4. Gliders are power limited. Range and speed are limited by on-board power stores.

This leads to design tradeoffs between range, endurance and speed. Existing oceano-

graphic gliders are designed for long range and endurance and low power use. Efficient

gliding is critical to performance.
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5. Existing gliders have limited speed. Analysis in this chapter shows that it is possible

to design gliders that are significantly faster by increasing the overall size of the glider

or by increasing the ballast size relative to the glider’s size. Designing faster gliders

involves tradeoffs in size and power use, but may be desirable for some applications.

6. Existing gliders are significantly affected by ocean currents. Currents may be of the

same order or greater than glider speeds. Operating speeds are designed to overcome

expected average currents.

7. Dive depth is important to glider power efficiency (due to existing pumps). Glider

maximum depth is limited by structural strength or by ocean bathymetry. The pump

systems in Spray and Seaglider, for example, are more efficient at deeper depths.

7.1 Gliders vs. Sailplanes

It is useful to develop an intuitive understanding of the differences between underwater

gliders and sailplanes. This comparison facilitates application of existing knowledge of

aircraft dynamics and control to underwater gliders.

A principal difference between underwater gliders and sailplanes is that water is much

more dense than air - about 800 times more dense. The density of water is 1000 kg/m3,

while the density of air at sea level is just 1.25 kg/m3. Because of this, buoyancy and added

mass effects are very important in glider dynamics. These effects are generally neglected in

sailplanes, but are significant for lighter-than-air aircraft. The high density of water makes

the use of buoyancy and internal mass control possible in underwater gliders.

Some important differences between underwater gliders and sailplanes include:

1. Gliders control their buoyancy. One can imagine flying in a sailplane equipped with
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a dial that controls the magnitude of gravity or the density of the sailplane, making

it “light as air”.

2. The relative magnitudes of the propulsive forces, as a fraction of the vehicle dry weight,

are much smaller in underwater gliders. On sailplanes, the full weight of the sailplane

provides the propulsive force. On underwater gliders the controlled buoyant force is

relatively small compared to the vehicle dry weight and may be positive or negative.

In this aspect, gliders are similar to lighter-than-air craft (such as blimps). Slocum

Electric, for example, has a maximum net buoyancy of 250 grams and a mass of 50

kg. Because of this the accelerations and terminal velocities of underwater gliders are

smaller (relative to the vehicle weight and size) than in sailplanes.

3. In an underwater glider, the separation between the center of gravity and center

of mass provides stability. This makes control of the glider using moving internal

masses possible. Static torques can make the glider statically stable in pitch and roll,

unlike sailplanes. The stability of a sailplane depends entirely on its aerodynamics.

Sailplanes are controlled using moving aerodynamic flaps, ailerons and rudders, while

their CG is normally fixed. Underwater gliders are similar to hang gliders, where the

CG is moved as the pilot shifts their body.

4. Sailplanes and gliders operate at different glide path angles. Sailplanes are designed

for maximum lift/drag performance and minimum glide path angle. Existing gliders

are designed for steeper glide path angles and lower lift/drag ratios. This is related

to the low speed and relative ballast size of these designs. See Section 7.2.3.

5. Underwater gliders and sailplanes operate in different flight regimes and Reynolds

numbers (transitional or below for gliders, turbulent for most sailplanes) and at dif-
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ferent glide angles. This leads to different hydrodynamic designs and wing sizing (See

Section 7.3).

6. Because they control their buoyancy, gliders can choose their glide path angle and

speed separately. Sailplanes have a fixed weight and buoyancy, so glide path and

speed have a fixed relationship. This results in sailplane “speed to fly” requirements,

since specific airspeeds give minimum sink rate, minimum glide path angle, and so on.

7. Both gliders and sailplanes must carefully manage power and energy. Sailplanes man-

age speed and height (kinetic and potential energy) and gliders manage power. They

may use currents and winds to gain energy from the environment and travel efficiently.

Sailplanes make extensive use of updrafts to gain height. In the ocean, vertical ve-

locities are generally smaller than horizontal currents, so instead of using thermal

updrafts, gliders may plan their paths to make maximum use of ocean currents.

7.2 Glider Design and Steady Glide Speed

Section 4.1.2 describes the determination of the steady glide equilibria for a glider, given

the glider’s hydrodynamic and mass parameters. The design of the glider determines its

geometry and these parameters. Because the parameters in the equilibria equations may

be chosen during the design process, gliders may be designed differently for optimal perfor-

mance at different steady glide conditions. For example, operating glide speed must satisfy

design requirements given expected currents in the area of operation.

Figure 7.1 shows the minimum possible glide path angle corresponding to a glider’s

maximum lift/drag ratio, determined from the glider equilibrium equations (Chapter 4).

This figure may also be read as the glide path angle corresponding to a given operational
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Figure 7.1: Minimum glide path angle vs. maximum lift/drag ratio.

lift/drag ratio. A glider’s maximum lift/drag ratio is determined by its wing and body

design. The choice of steady glide path angle determines the lift/drag ratio required in

steady flight. Glide path angles steeper than ten degrees require operational lift/drag ratios

under five (which would be very low for an aircraft or sailplane). Existing gliding designs

fall within this range of lift/drag ratios and glide path angles. If a very small glide path

angle is desired, a glider with a very high lift/drag ratio must be designed. Figure 7.1

shows that there is a point of diminishing returns if one is designing a glider with a very

high lift/drag ratio in order to attain a very small glide path angle. It will be shown that

for maximum glider speed it is more important to minimize the drag on the vehicle than to

have a high lift/drag ratio.

Section 4.1.2 reveals a number of interesting properties of steady gliding equilibria.

These have some important implications for glider design. First, glide path angle and the

speed of the glide may be chosen independently. This is a consequence of the glider’s pitch

and buoyancy control. A glider’s range of possible steady glide path angles is a function of

its lift/drag profile and the range of its pitch control actuators. The minimum shallowest

glide path angle is fixed by the glider’s maximum lift/drag ratio as shown above. The
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steepest possible glide is straight down (or up), provided the glider actuators can reach that

pitch angle. Maximum glide speed is determined by the balance of the glider’s drag and

maximum net buoyancy.

Section 4.1.2 shows that a given steady glide corresponds to a range of internal sliding

mass positions. The equilibrium mass position balances the hydrodynamic moments on

the vehicle. A range of positions along a vertical line is therefore possible, given the limits

of travel of the internal mass. The vertical position of the sliding mass affects separation

between the glider CB and CG, which affects the glider’s stability. In the existing gliders

the sliding mass is constrained to travel along the glider’s long axis, so one position of the

sliding mass will result in one pitch angle. Alternate designs could add degrees of freedom

to the internal mass actuator. This could allow the glide stability to be changed in flight.

This could be used during transitions between steady glides, for example to reduce the glide

stability for faster inflections and to increase it during steady glides.

7.2.1 Glide Speed vs. Ballast Load and Energy

For a given glider geometry and lift/drag distribution, each glide path angle corresponds to

a given angle of attack. The speed along the glide path is then a function of the drag on

the glider and the buoyant force component along the glide path. We can substitute and

re-arrange the glider equilibrium equations (5.1)-(5.5) and substitute in our quasi-steady

drag model (Section 3.2.7) to solve for the glider total and horizontal speed:

V =

(

m0g sin ξ
1
2ρCD(ξ(α))

) 1

2

(7.1)

Vx =

(

m0g sin ξ
1
2ρCD(ξ(α))

) 1

2

cos ξ. (7.2)
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At an equilibrium steady glide, the lift L and drag D balance the glider’s net buoyant

force m0g. The glide path angle is a function of the glider lift/drag ratio at the steady flight

condition. The glider lift/drag polar and stall angle are determined by its hydrodynamic

design.

Figure 7.2: Conventional glider design speed vs glide path angle.

Figure 7.2 shows the glide speed and horizontal glide speed versus glide path angle for

a glider with 250 g. net buoyancy and hydrodynamic parameters similar to the Slocum

gliders. Downward glide path angles are shown. For a symmetrical glider, i.e. one that is

symmetrical top to bottom, upwards glides would have the same magnitude glide speeds. A

plot of the positive glide path angles would be a mirror of the above plot around the ξ = 0

axis.

Stall or separation effects may be taken into account by setting a maximum allowable α

and minimum ξ. Stall may occur over the glider wings and body at high angles of attack.

232



Large angles of attack correspond to glides with small glide path angles. Stall angle of

attack for the body and wings could be estimated and the corresponding glide path angles

removed from the plot. The glider pitch actuation may also have a limited range, which

could reduce the range of possible glide path angles for steady glides.

Two glide path angles, the shallowest possible glide path angle and the glide path

angle giving maximum horizontal speed, are of special interest because they are extremes

of performance. The shallowest glide path angle gives the greatest horizontal distance for

a given depth change (and amount of pumping work). The glide path angle for greatest

horizontal glide speed is determined by the glider’s drag profile. In Figure 7.2 that angle is

about 35 degrees. The shallowest glide path angle gives a relatively slow glide.

The fastest possible glide path angle is steeper, so more pumping work is required to

travel a given distance. Maximum horizontal speed requires pumping the maximum ballast

load and gliding at a steep glide path angle. Gliding faster will in general require pumping

more ballast, both to reach higher ballast loads and because more sawtooth glides are

required to travel a given distance. This results in more pumping work.

Choice of a steady glide path for glider operation requires tradeoffs between faster travel

and increased pumping work per unit of horizontal travel. Depending on the glider’s mission,

the tradeoffs between speed and energy conservation will give a desired operational glide

path angle. Consider a mission requiring transit between two points with minimum total

power use. As time-based costs (for example, the glider hotel load) increase, the optimal

travel speed increases. If hotel loads and time based costs dominate the cost of travel,

the fastest glide possible is desirable. If pumping work dominates the costs of travel and

travel time is not an important factor, gliding at shallower glide angles with smaller ballast

amounts and lower speeds is desirable.
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7.2.2 Glide Speed vs. Angle

Glider speed is important in many applications. A faster glider may be designed by adjusting

the relative size of the internal ballast systems and using low drag geometries. A glider’s

maximum speed may determine where it is capable of operating and what missions it may

perform. The expected currents in an area of operation could provide a design requirement

for the glider maximum glide speed. A possible design requirement is that the glider should

be able to make progress against the average or the maximum expected currents in the

operational area.

Existing gliders, designed for oceanographic sensing, have speeds up to 0.4 m/s. Their

design speeds were chosen according to expected average ocean currents, and have given rea-

sonably good sampling capabilities. These gliders travel at relatively low speeds, especially

when compared with propeller driven AUVs and ships. In some missions the gliders have

had trouble moving against high currents. Other applications may require faster speeds.

High speed travel could be important for applications in areas with high currents, such as

in littoral areas.

In a steady glide, drag balances the component of the glider’s net buoyancy acting along

the glide path. The glide path angle determines what component of the buoyant force acts

along the glide path. When gliding straight up or down the full buoyant force acts against

the drag. This results in the maximum glide speed but provides no horizontal travel. At

shallower glide paths, a smaller component of the net buoyancy will act against the drag,

but a larger component of the total glider velocity will act in the horizontal direction. This

results in a trade-off between glide angle and glider horizontal speed.

Figure 7.3 shows the function cos ξ(sin ξ)(1/2), a factor of the glider horizontal speed

Equation (7.2), that depends on the glide path angle. This function is at a maximum
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Figure 7.3: Component of Horizontal Glide Speed Equation, cos ξ(sin ξ)(1/2)

around a glide path angle of 35 degrees and is independent of the glider hydrodynamics. If

drag on the glider were independent of ξ, 35 degrees would be the fastest glide path angle.

The overall speed of a glider depends on its lift/drag polar and the total drag on the glider

as a function of ξ, so the fastest glide path angle for a given glider may be slightly different.

A glider design for maximum horizontal speed should minimize drag at a glide angle near

35 degrees.

The equilibrium lift/drag ratio is fixed by the desired glide path angle. Because of the

relationship between speed and glide path angle, a glider designed to maximize speed for

a given ballast load need not have a high lift/drag ratio.A steeper glide path is necessary

for maximum horizontal speed. Therefore, when designing a glider for maximum speed it is

more important to minimize drag than to maximize lift. Design for speed requires a glider

with minimum possible drag and wings just large enough to provide the required lift/drag
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ratio for a given glide path. The fastest glide angle, around thirty-five degrees, requires a

lift/drag ratio of only 1.4. This is significantly lower than the lift/drag ratios of sailplanes,

which are around 20.

The body produces the majority of the drag on the vehicle, while the wings are much

more efficient (lower induced drag) at producing lift. A fast glider design should minimize

drag using a low drag body. Efficient, high aspect ratio wings should be sized to provide

just enough lift for the fastest (near 35 degree) glide path and minimize the drag at that

angle. Increasing the wing area beyond the optimal point increases drag at the desired (low)

lift/drag ratio. Designing a glider for maximum speed (for a given ballast size) produces

a glider design like Slocum, Spray and Seaglider. These have a streamlined body with

relatively small wings and travel (at maximum speed) at glide path angles close to 35

degrees.

7.2.3 Speed vs. Volume and Ballast Fraction

Now consider maximum glider horizontal speed as a function of glider volume, geometry

and ballast tank size. In many applications a glider will spend most of its time in steady

flight upwards or downwards, so equilibrium speed should give a good idea of the glider’s

overall speed.

Using Equation (7.2), we can calculate maximum horizontal glide speeds as a function

of glider volume (V ol) and ballast capacity. Drag on the glider body can be expressed as

a function of volume and shape. D = CDV ol
× V ol

2

3 , where CDV ol
is the coefficient of drag

by volume determined by the glider body shape. Streamlined bodies such as those in the

oceanographic gliders have a CDV ol
around 0.03. The maximum value of (sin ξ)

1

2 cos ξ is

about 0.6 (see Fig 7.3). Using a glide path angle near that maximum and estimating an
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additional twenty percent drag for induced drag, sensors and other additional sources of

drag gives the following relation for maximum horizontal speed:

Vx =

(

m0g
1
2ρ(1.2)(0.03)V ol

2

3

) 1

2

(0.6).

Define ballast fraction nb = (m0)/(ρV ol) as the glider’s maximum net buoyancy divided by

the glider’s total displacement. Slocum Electric, for example, has ballast capacity for 250

grams net buoyancy, positive or negative, and a vehicle displacement of 50 kg. This gives

ballast fraction for the Slocum of 0.005. If the ballast fraction is kept constant as glider

volume is changed, then maximum horizontal speed scales with V ol
1

6 ,

Vx =

(

nbgV ol
1

3

1
2ρ(1.2)(0.03)

) 1

2

(0.6) ∝ V ol
1

6 .

If volume is kept constant and the ballast fraction increased, horizontal speed scales with

n
1

2

b . Figure 7.4 shows glider maximum horizontal velocity versus glider volume for different

ballast fractions.

It is therefore possible to design gliders that are much faster than existing gliders by

using larger ballast fractions. Note that larger ballast fractions require greater pumping

work. A glider need not always operate at maximum net buoyancy. It is possible for a

glider to have a large ballast fraction, giving a high maximum speed, and to pump less than

the full ballast load in order to reduce pumping work when travelling at slower speeds.
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Figure 7.4: Maximum horizontal velocity vs glider size and ballast fraction.

7.3 Preliminary Glider Design

The first steps in designing a glider include determining the mission requirements, sizing the

main components, and choosing an initial vehicle geometry. Mission requirements include

range, endurance, speed and payload. These will determine the glider’s power requirements.

Power is frequently the most significant limiting factor in glider performance, so special

attention to the power budget is required in all design phases. Power is always a critical

factor in AUV design, and is even more so in glider design, given their extended missions.

See [63] and [14].

The principal components of an underwater glider include the hull, wings and tail,

ballast system, computer, control actuators, power supply (batteries) and payload. Given

a set of mission requirements, for example for scientific sensing, the payload may represent

a fixed volume, mass and power cost. The vehicle geometry and ballast system may be
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determined by the desired steady glide performance. Battery size will be determined by the

range and speed requirements and other loads, including the payload. The design process

normally requires many iterations and trade-off studies.

The order in which the mission requirements are prioritized and addressed in the design

process has a significant effect on the resulting design. For example, the first requirement

for a glider may be size and volume. Slocum, Spray and Seagliders have similar sizes and

volumes (in the 50 kg range). Their design specifications required them to be a size that

can be handled from a small boat. Determination of a body volume allows sizing of the

glider wings and ballast tank. These are chosen according to the desired glide path angle and

speed, which in turn are determined by the mission requirements and the expected operating

conditions. A specific design limit on the glider volume is a major design parameter that

limits the internal volume available for batteries, actuators, payload and other internal

components.

In an alternate design process, volume may not be restricted. The design volume may

then be varied in trade-off studies. A given mission, speed, range and payload could be

specified first, with the glider volume determined that will best satisfy these requirements.

Section 7.2.3 indicates that increasing glider size while maintaining the same proportional

ballast size increases glide speed. Larger gliders may also accommodate more batteries,

but increased ballast size will increase pumping work. The tradeoff between volume and

range is a function of glide path, speed, glider volume, and battery size. In general, results

presented here and in [32] suggest that larger gliders, with greater volume available for

ballast and batteries, are capable of higher speeds and longer ranges. These results also

show that the relative sizes of the glider, ballast tank and batteries have a strong influence

on glider performance.
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Larger gliders are likely to be more expensive and to require more equipment for de-

ployment and retrieval, but a longer range may reduce other operating costs. Existing

oceanographic gliders are sized for deployment and retrieval by two people from a small

boat, however in many deployments a significantly larger boat and crew is already used.

Overall operating costs must take into account the expense of these operations. Because

gliders are relatively inexpensive to operate once deployed [13], the cost of frequent deploy-

ment and retrieval from a ship may represent a significant portion of total operating cost.

Larger gliders with longer range, requiring fewer deployments and therefore less ship time,

may have some cost advantages.

Once an initial estimate of the body, wing and ballast size has been determined, design

tradeoff studies can compare smaller variations in these parameters and in the glider ge-

ometry. An initial design may use a glider layout like that of the existing oceanographic

gliders, with some hydrodynamic improvements to the body and wings. The body may be

designed to minimize the drag for a given volume. It is then possible to determine operating

speed and glide path and to size the ballast system in order to satisfy design requirements.

Glide path selection will determine the operational lift/drag ratio required in the design.

This will drive the wing design. See, for example, [52, 26, 27]

7.3.1 Glider Hydrodynamic Design

A glider’s shape determines its hydrodynamic properties, including lift and drag. Body

shape and wing geometry are critical to glider performance. It is always desirable to min-

imize drag while providing an adequate lift/drag ratio for the desired range of glide path

angles.

The drag on a glider may be divided into the profile (non-lifting) drag on the body and
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wings and the induced drag from lift production. Lift is produced most efficiently by the

wings. The desired operational glide path angle determines the necessary lift/drag ratio and

the appropriate sizing of the glider wings relative to the body. The vehicle wetted surface

area and wing reference area are important factors in the glider lift/drag ratio [52]. This

is because the skin friction drag scales with the surface area of the body and wings while

lift production scales with the wing area. Designing an optimal wing planform balances

increasing lift/drag ratio with the increased skin drag of a larger wing surface.

Given a desired glider volume or mission requirements, a suitable hydrodynamic design

must be chosen. The oceanographic gliders were designed with a fixed volume and a mission

of extended range ocean sampling. Slocum, Spray and Seaglider make use of streamlined

bodies of revolution and proportionally small wings. Spray and Slocum have bodies that

are roughly torpedo shaped cylindrical bodies with smoothly tapered nose and tail sections.

In designs where the body will be at a low or zero angle of attack during flight, relatively

simple streamlined bodies of rotation with optimal fineness ratios (length to width) may

give the lowest drag shape for a given volume [26]. Proper design of the glider’s body and

wings can minimize profile drag through use of streamlined shapes and minimize induced

drag through use of efficient wing shapes. These methods are well developed from aircraft

and ocean vehicle design and are readily applicable to design of underwater gliders.

Existing gliders operate in a relatively low Reynolds number regime (order 105 by body

length, 104 by wing chord). This is close to the transition between laminar and turbulent

flow. Each of these flow regimes require specific hydrodynamic designs for the glider wings

and body. See [26]. At low Reynolds numbers skin surface drag increases significantly.

The formation of laminar separation bubbles over the glider’s wing and body may also

contribute significantly to drag and may create a net moment on the vehicle. Transition
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and separation effects are highly dependent on small aspects of the vehicle geometry and

surface features, and are difficult to estimate without experiments and CFD analysis.

Because of these effects, the hydrodynamics of a glider, especially the drag on a glider,

depend strongly on the operating Reynolds number. Because the oceanographic gliders

operate in this Reynolds number range, relatively small changes in glider speed and size

may result in significant changes in the glider’s performance. For example, adopting a

slightly faster glide path angle and larger ballast load may in some cases reduce the glider’s

coefficient of drag.

Specialized body shapes for low Reynolds number flow may be considered. The Seaglider

body is designed for a low Reynolds number flow. In comparison to a simple body of

revolution, specialized bodies of this type may offer lower drag at their design operating

condition. These specialized shapes may also have higher drag (in comparison to a simple

body of revolution) outside of their design operating conditions (Reynolds number and angle

of attack). Reynolds number effects are also of concern in the use of alternate glider designs

such as flying wings (discussed below), because these designs may sensitive to separation

effects, especially in designs with large wingspans and high aspect ratios.

In the turbulent flow regime, wing design should maximize aspect ratio to reduce drag

[52, 43]. In aircraft the wing span is limited by its structural strength and weight. This is

not as significant an issue in gliders because the wing loads are much smaller. Therefore very

high aspect ratios are possible. Wing geometry is, however, limited by Reynolds number

concerns. In underwater gliders at low Reynolds numbers, increasing wing aspect ratio and

reducing wing chord may actually increase the drag on the wing by reducing the Reynolds

regime of flow on the wing into the transitional and low Reynolds number regimes. To

account for these issues, wing design in the transitional region may require computational
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and experimental optimization.

In a conventional glider design, drag on the wings is much smaller than the drag on the

body. Therefore the question of wing design optimization may be less of a concern than

minimization of the body drag. See [32] for a detailed drag breakdown of operational glider

designs. Induced drag is a relatively small fraction of the total drag on the glider. Drag

from the CTD or other external sensors may be significant. [14] states that experiments

show the CTD may have up to 50 % as much drag as the body.

7.4 Conventional and Alternate Glider Designs

Given an initial design using a conventional glider layout, trade-off studies may optimize the

glider hydrodynamics, sizing, speed and other design parameters. Some alternate hydrody-

namic designs may also be considered. Possible modifications include the use of movable

flaps and surfaces on the wings or all-moving wings. Asymmetrical gliding and wing designs

may also be considered. More radical alternate design layouts, such as blended wing/body

and flying wing designs, may also be compared. Three types of designs are of special

interest:

1. The conventional glider design that is top-to-bottom symmetrical like Slocum, Spray

and Seaglider.

2. Conventional designs, with streamlined body and wings, that incorporates moving

wings, flaps, and other reconfigurable surfaces. Various combinations of moving aero-

dynamic surfaces may adjust at each inflection to optimize the glider’s hydrodynamics.

Also possible is a glider optimized for one angle of attack which rolls over 180 degrees

when switching between upwards and downwards glides.
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3. Flying wing designs, which maximizes the glider’s wetted area ratio and lift/drag

ratio. Blended wing-body designs may also be considered.

As shown previously, different glide paths and speeds require different hydrodynamic

performance and lift/drag ratios. The different performance envelopes of these designs

suggest that different designs are suited to different mission requirements. Operational

glide path and speed will probably drive the choice between a conventional glider layout

and a flying wing design.

7.4.1 Symmetrical Designs

Because existing oceanographic gliders are designed to glide up and down at the same

glide path angle and speed, their bodies and wings are top-to-bottom symmetrical. This is

advantageous that gliding performance is the same gliding up or down and no wing actuators

are required. But this design limits their hydrodynamic performance and maximum lift/drag

ratio. Cambered wing sections are asymmetric but provide better lift/drag performance

than symmetrical wing sections.

Designs using moving flaps or wings with adjustable camber or other geometry may give

better lift/drag performance than symmetrical designs. The angle of the wing chord relative

to the body could be controlled by actuator to keep the body and wings at optimal angles

of attack for upwards and downwards glides. The wings angle relative to the body may

be adjusted for an optimal lift/drag ratio while keeping the body at zero angle of attack

to minimize drag. Because such designs would add actuators and complexity to a glider,

durability of additional actuators and moving surfaces must be carefully considered in light

of the extended glider missions.
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7.4.2 Flying Wing vs. Conventional Glider Designs

Flying wings and blended wing-body designs offer improved lift/drag performance for glid-

ers. They should be considered when design requirements call for shallow glide path angles.

In a flying wing, the full volume of the glider is contained within the wing section. By

eliminating the body of the glider it is possible to significantly lower the wetted area ratio

of the glider and improve its maximum lift/drag ratio. This results in improved gliding

performance at shallow glide path angles in comparison to more conventional designs. One

problem in the design of flying wing gliders is the internal arrangement of glider components

and the construction of a pressurized section within the flying wing.

In a conventional oceanographic glider design, the maximum lift/drag ratio is limited

by the constraints of the glider geometry. Drag resulting from flow over the body limits

the gliding performance at low glide path angles and high angles of attack. Symmetrical

glider designs also limit maximum lift/drag performance. Symmetrical wing sections have

lower lift/drag ratios than cambered sections, but are necessary in the symmetrical design

to accommodate both up and down gliding. Because of these differences, conventional glider

designs may be better suited to steeper glide path angles, and alternative designs including

flying wings may perform better at shallow glide path angles.

Figure 7.5 shows an example of maximum lift/drag ratio for a conventional glider with

wings of a variable aspect ratio (AR = 5 to 50). In a conventional glider design the wings

provide the majority of the lift, while the body produces a significant fraction of the drag.

Increasing the wing reference area to increase the glider lift/drag ratio gives diminishing

returns.

To compare a conventional glider design with a flying wing design, we compare vehicles

of the two types with the same useful internal volume. The conventional design, with its
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Figure 7.5: Lift/drag ratio vs wing reference area for conventional glider at fixed angle of
attack.

cylindrical hull, gives a high internal volume for its wetted surface area. The hull shape is

also suited to carrying the internal components. Fitting the payload and components in a

flying wing geometry may be more difficult. This is a key concern in adopting a flying wing

design, especially because the batteries currently used in gliders must be housed within the

pressure hull. Incorporating a pressure hull within a flying wing may be more difficult than

in a conventional design and may limit the available volume for battery housing.

Define the packing factor as the fraction of the total vehicle displaced volume that can be

used to hold internal components such as payload, computers, and batteries. Packing factor

plays an important role in the comparative performance of a flying wing design relative to

a conventional design.

As part of a preliminary tradeoff study, we created a general flying wing design with

a symmetrical Wortmann airfoil, low wing sweep angle and optimum wing taper ratio.

Packing factor was estimated from the flying wing geometry to be about 0.7. This design

was then compared to a conventional glider design with the same useful internal volume.

Comparison showed:
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1. The flying wing design has higher profile (zero lift) drag than the equivalent conven-

tional glider design. This is caused by the larger wetted surface area of the flying wing

design, which results in more skin friction drag. Profile drag on the flying wing may

be 50 to 100 percent higher than the conventional design, depending on wing packing

factor. This means that a conventional glider would be faster at steeper glide path

angles where not much lift is required. The packing factor is a dominant factor in this

tradeoff and determines the larger surface area of the flying wing.

2. The flying wing design has much higher maximum lift/drag ratio than the conventional

design. The flying wing has a maximum lift/drag between 25 and 30, while the

symmetrical conventional design has maximum lift/drag around 5 even with high

aspect ratio wings.

3. The flying wing design has lower drag at higher lift/drag ratios and shallower glide

path angles than the conventional design. This means that a flying wing gliding with

a shallow glide path angle would be faster than a conventional glider with equivalent

ballast capacity gliding at the same glide path angle. This suggests that flying wing

and conventional glider designs are suited to different applications. The conventional

glider designs perform better at steeper glide path angles, which provide higher glide

speeds. Flying wing designs offer improved performance at shallower glide path angles,

which may allow more efficient flight when hotel power loads on the glider are low and

the glider power budget is dominated by pumping work. Note that a conventional

glider design incorporating cambered airfoils and moving flaps and hydrodynamic

surfaces could also offer improved performance.
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Chapter 8

Conclusions and Future Work

The principal aim of this work is the comprehensive development and application of a

first-principles based nonlinear model of the dynamics of an underwater glider. Underwater

gliders have demonstrated enormous potential in oceanographic applications. This potential

can be greatly enhanced by the application of the methods and approaches presented here.

The glider dynamic model developed in this work, and the analysis conducted using the

model, gives significant insight into the physical processes governing the dynamics of gliders.

Motivated by interest in this novel vehicle design and by the many useful applications of

underwater gliders in oceanography, this work aims to answer the questions of how best to

model, control, and design an underwater glider for a given application.

Application of many existing techniques in dynamics and control requires an accurate

model of the glider system. This work provides such a model. The glider dynamic model

presented here is general and not vehicle specific, and has application in glider design,

control, estimation, and optimization. It is applicable to underwater gliders with fixed and

moveable external surfaces which can control their buoyancy and center of gravity (CG). It

includes the major design elements of underwater gliders, including buoyancy control, wings
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and external control surfaces, and the nonlinear coupling between the glider and internal

mass actuators. Because this approach is widely applicable rather than vehicle-specific, this

work complements the efforts on existing oceanographic gliders such as Slocum, Spray and

Seaglider.

This work aims to develop both an intuitive and technical understanding of underwater

gliders, and to allow the application of existing methods of engineering analysis for aircraft

and submarines to underwater gliders. To do so, a glider dynamic model is developed in

Chapter 3 that is complex enough to accurately model the dynamics of an underwater

glider, but not so complex as to obstruct insight.

Chapter 4 applies the model to analysis of the dynamics of underwater gliders. We

investigate stability and hydrodynamics of gliding and the use of internal mass actuators

for control and stabilization, including turning flight and inflection between downwards and

upwards glides. It is shown that stable equilibrium steady glides are possible given the

proper design of a glider and arrangement of its internal masses. Steady straight glides in

the longitudinal plane and steady straight and vertical spiral glides in three dimensions are

identified and shown in simulation. The steady glide equilibria in the longitudinal plane

have some interesting properties. The speed V and glide path angle ξ of a steady glide may

be chosen separately, within the bounds of possible m0 and rp. A choice of velocity and

glide path angle (V, ξ) admits a family of rp sliding mass positions, allowing some choice of

the glider’s bottom-heaviness. Stable switching between steady glides is demonstrated in

simulations in the longitudinal plane and in three dimensions.

We also derive simpler dynamic models from the full model in order to gain insight into

glider dynamics. These include the models of the gliders longitudinal and lateral-directional

dynamics and a study of the phugoid mode for underwater gliders. The phugoid model is
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derived by applying Lanchester’s phugoid assumptions to the glider longitudinal dynamic

model. It is shown that, in the angle of attack α = 0 case, the underwater glider phugoid

model is conservative and is identical to the Lanchester phugoid within a similarity factor

that depends on the added mass and net buoyancy of the glider. The angle of attack α 6= 0

case is shown to be non-conservative, due to the constraint forces imposed in this case.

Mechanisms for gliders’ turning and lateral-directional control are analyzed using the

glider model and in at-sea experiments. Oceanographic gliders use rudders and roll-yaw

coupling to control their heading. It is shown that a glider’s hydrodynamics relative to

the position of its center of gravity determine the coupling between roll and turning. It

is also shown, using the glider model, simulations, and data from at-sea flight tests, that

static mis-trim and rudder-roll coupling have an important effect on the heading control of

oceanographic gliders. These coupling mechanisms have opposite effects on glider yaw when

gliding upwards compared to gliding downwards. We discuss methods for taking these effects

into account in the design of glider actuators and control systems. For example, rudder-roll

coupling in upwards and downwards glides should be considered in the design of a glider’s

vertical tail and in the design of the glider control system.

Methods for tailoring the glider dynamic model to a specific oceanographic glider are

demonstrated in Chapter 5. The model is adapted to the Slocum electric glider, including

its arrangement of internal moving and ballast masses. We develop methods for parameter

identification to determine the model coefficients from measurements of glider geometry and

mass and from flight data. Novel techniques are developed to identify the buoyancy offset

and hydrodynamic coefficients of the glider using experimental data when static mass and

buoyancy measurements taken before launch have significant uncertainty. This work makes

use of experimental data from glider trials at sea. Model parameter identification allows the
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glider dynamic model to for analysis and control design for operational underwater gliders

such as Slocum, Spray and Seaglider. The results of this effort are limited by the quality

and amount of available experimental data. Recommendations are made for future glider

experiments and instrumentation.

In Chapter 6 the glider model is applied to the design and analysis of underwater

glider control systems. Emphasis is placed on control of gliders using buoyancy control,

internal actuators, and external surfaces such as a rudder. Steady glides are shown to

be controllable and observable when the objective is gliding at a given speed and angle.

We demonstrate design of controllers for stabilization of steady glides and demonstrate

controlled switching between steady glides and inflections between downwards and upwards

glides. We demonstrate the design of a state observer. Combined with the dead reckoning

of the glider’s horizontal position, use of an observer should improve glider navigation

over existing methods in use in oceanographic gliders. Improvements to the control and

navigation of underwater gliders should increase their usefulness in scientific applications.

Control features commonly used in existing gliders such as deadbands and intermittent

control are also analyzed. This includes features implemented for the purpose of energy

conservation, a key design feature in long range oceanographic gliders. Describing function

analysis is used to determine the existence and stability of limit cycles due to nonlinearities

in the glider’s control systems, actuators and dynamics. It is shown that deadband and sat-

uration nonlinearities in the glider control system may, under certain conditions, destabilize

stable gliding equilibria or produce controller limit cycling. These undesirable effects may

be avoided by the proper choice of a controller and its gains. Simulations and at-sea flight

test data is also used in the analysis of the controller and limit cycles. Controller-induced

actuator chatter similar to the limit cycles predicted by the describing function analysis
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are shown in experimental data. Experiments with an oceanographic glider show that tun-

ing of the glider controller’s gains is necessary to avoid slow response, controller induced

oscillation, and control chatter.

Recommendations for improvement of glider control systems include: use of different

controller gains for upwards and downwards gliding to account for mis-trim and rudder-roll

coupling, use of a state feedback controller or proportional-integral controller in heading

control, and modification of the deadbands and nonlinear controller elements and gains to

avoid control chatter and limit cycling. Other potential applications of the glider model

to improving glider control systems include control adaptation and detection of faults and

degradations in performance over time. This could be useful given the extended deploy-

ments of oceanographic gliders. Inflection control is also discussed and demonstrated and

is important to accurate navigation and efficient gliding.

In Chapter 7 the glider model is applied to analysis of glider design and scaling rules for

underwater gliders. Differences between underwater gliders and sailplanes are discussed with

the aim of developing an intuitive understanding of glider dynamics and design, building

on existing knowledge of sailplane and aircraft dynamics. Important differences between

underwater gliders and sailplanes include the control of buoyancy, the stabilizing effect of

separation between the underwater glider’s centers of gravity and buoyancy, and the different

relative magnitudes of the propulsive forces on the two types of vehicles. The propulsive

force on existing underwater gliders is a small fraction of the glider’s (dry) weight, while a

sailplane is propelled by its full weight. Because of this, oceanographic underwater gliders

glide at much steeper glide path angles than sailplanes.

The glider model is applied to analysis of glider design and the determination of scaling

rules for steady glides. Properties of the glide equilibria derived in Chapter 4 are analyzed
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with respect to glider design and performance. This includes analysis of the speed of steady

glides versus glide path angle, ballast loading, glider hydrodynamics and glider scaling. It is

shown that a glider’s minimum glide path angle depends on hydrodynamics and maximum

lift/drag ratio. Oceanographic gliders, which operate at steep glide path angles, require

lift/drag ratios of only one to three. This is significantly lower than the lift/drag ratios of

sailplanes, and is reflected in the relatively small wings on oceanographic gliders. A large

glide path angles, it is more important to minimize drag than to maximize lift and lift/drag

ratio.

Design tradeoffs of speed and efficiency, and design scaling laws are discussed. Existing

oceanographic gliders are compared to the possible glider design envelope, and it is shown

using the analysis of glider scaling that larger and faster glider designs are possible. Glide

speed may be increased by increasing a glider’s ballast volume as a fraction of the glider’s

volume, or by holding the ballast fraction constant and increasing the total size of the glider.

Improvements to glider range, scientific usefulness and operating cost may be realized by

increasing the glider’s size.

Alternate glider designs, including flying wings and gliders with reconfigurable external

surfaces, are also discussed. These designs may be better suited to operation at small

glide path angles than are existing gliders. The possible drawbacks of alternative designs

with moving wings and external surfaces include increased vehicle complexity and reduced

durability. The difficulty of incorporating a pressure hull and fitting internal components

within a flying wing must also be overcome. The choice of operational glide path angle

and speed depends on a glider’s mission requirements. Therefore, different designs are

better suited to different missions. Conventional glider designs, like Slocum, are suited to

steeper glide paths which give faster travel for a given ballast size, while designs with higher
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lift/drag ratios, such as flying wings, are shown to be better suited for shallower glide path

angles, reducing pumping work for a given horizontal distance travelled.

Future Work

Recommendations for future work include experimental model validation and the further

application of the glider model to analysis of glider dynamics, controls and design. Recom-

mendations for glider trials at sea with the purpose of gathering a variety of glider dynamic

data are described in Chapter 5. These include trials with a glider specially instrumented

to record position, velocity, and hydrodynamic angles while gliding underwater. Improved

quality and quantity of glide data would allow the glider model to be compared and vali-

dated against experiment. The same experimental data can be used for glider parameter

identification and improvement of glider hydrodynamics and performance.

Further improvements in glider capabilities may be gained from use of the natural dy-

namics of gliders and the ocean. The model may be applied to determine optimal glide

equilibria and trajectories for a given mission. Application of the model to glider control

and navigation should result in improvements to glider efficiency and scientific utility.

It is expected that the model will match steady glide equilibria and gradual transitions

between them well. The model is expected to be less accurate in matching more radical mo-

tions, such as very fast transitions, those with high angular rates, bluff body motions, and

those with separation. This stems from the nature and limitations of the quasi-steady vis-

cous hydrodynamics model and the added mass model. The added mass model is standard

in underwater vehicle dynamics literature and has been the subject of extensive research,

but the determination of the added mass terms for a real experimental vehicle and the

added mass model’s validity for fluid motions where viscous effects are significant are still
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the subject of investigation. The model used in this work is expected to be accurate for the

analysis included here, including studies of stability of steady glides, but may be augmented

in the future by experiments and by the application of more complex hydrodynamic models.

Further modelling work may use computational fluid dynamics to model the hydrodynamic

forces on a glider in a variety of motions and to determine optimal glider geometries.

The analysis presented here suggests that future glider designs may have significantly

greater range, speed, and endurance than existing glider designs. Performance improve-

ments may be achieved through changes in total glider volume and the relative sizes of the

internal ballast systems and batteries. Alternate glider geometries are also of interest. The

discussion of glider design presented here is schematic. It remains to determine an optimal

and algorithmic method for the design of an underwater glider. Design of any aerospace ve-

hicle is subject to numerous tradeoffs and iterations, so the best judgments of the designers

may always make up a great part of the design process. The tools and analysis available to

them, in glider design and in the design of glider control systems, may be greatly improved.

This work is a step towards that goal.

255



Appendix A

A.1 Rotation Matrices and Parameterizations:

Euler Angles and Quaternions

A.1.1 Properties of Rotation Matrices

Transformations between coordinate systems are described mathematically by rotation ma-

trices, written here as R. Rotation matrices represent rigid body rotations and have the

following properties:

1. R is a 3x3 matrix.

2. R is orthogonal. R−1 = RT

3. Determinant(R) = 1

Note that multiplication of rotation matrices is not commutative.

Orientation may be parameterized using a variety of methods. Two standard methods

in aerospace and underwater vehicle dynamics are Euler angles and quaternions. These

systems are described in the following subsections.
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A.1.2 Euler angles

Euler angles describe the orientation of the vehicle reference frame relative to the inertial

frame through a series of three rigid body rotations about specified coordinate axes. The

order of axis rotations is fixed by the choice of an Euler angle convention. Permutations of

the order of the axes of rotation make twelve different Euler angle conventions possible. The

XYZ, or yaw, pitch, roll convention, is the standard convention in aircraft and underwater

vehicle dynamics and is utilized here.

The rotation from inertial to body reference frame is parameterized by three angles:

yaw ψ, pitch θ and roll φ. The XYZ convention defines the rotation from the inertial frame

to the body frame as follows:

1. Begin with a reference frame aligned with the inertial frame XYZ.

2. Rotate about the z axis through yaw angle ψ. Positive rotation is defined by the

right-hand rule, as is standard. This rotation gives new reference frame X’Y’Z. By

X’ and Y’ we denote that those new axes no longer coincide with the inertial x and y

axes, while rotation about the z-axis maintains its direction.

3. From reference frame X’Y’Z, rotate about the Y’ axis by pitch angle θ to give frame

X”Y’Z’.

4. From X”Y’Z’, rotate about the X” axis by roll angle φ. This gives reference frame

X”Y”Z”. This completes the rigid body rotation. The orientation of the body-fixed

frame of reference (e1, e2, e3)T is coincident with frame X”Y”Z”.

Note that defining the inertial frame x-axis to be aligned with compass angle zero will

make ψ equal to the compass heading angle.
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Recall that R maps vectors expressed with respect to the body frame into inertial frame

coordinates. Represent the three Euler angle rotations above by rotation matrices Rψ
T ,

Rθ
T and Rφ

T , respectively, where

Rψ
T =

















cos ψ sinψ 0

− sinψ cos ψ 0

0 0 1

















, Rθ
T =

















cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

















, (A.1)

Rφ
T =

















1 0 0

0 cos φ sinφ

0 − sinφ cos φ

















.

The rotation from inertial to body frame is then

RT = Rφ
T Rθ

T Rψ
T (A.2)

=

















cos ψ cos θ sinψ cos θ − sin θ

− sinψ cos φ + cos ψ sin θ sinφ cos ψ cos φ + sin φ sin θ sinψ cos θ sin φ

sinψ sinφ + cos ψ cos φ sin θ − cos ψ sinφ + sin θ sinψ cos φ cos θ cos φ

















And the rotation from the body frame to inertial frame is

R = RψRθRφ (A.3)

=

















cos ψ cos θ − sinψ cos φ + cos ψ sin θ sinφ sin ψ sinφ + cos ψ cos φ sin θ

sinψ cos θ cos ψ cos φ + sinφ sin θ sin ψ − cos ψ sinφ + sin θ sinψ cos φ

− sin θ cos θ sinφ cos θ cos φ

















.
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Euler Angle Angular Rates

The glider angular velocity Ω, expressed with respect to the body frame, may be written

in terms of the Euler angle rates as

Ω =

















Ω1

Ω2

Ω3

















=

















φ̇

0

0

















+ Rφ
T

















0

θ̇

0

















+ Rφ
T Rθ

T

















0

0

ψ̇

















(A.4)

=

















1 0 − sin θ

0 cos φ cos θ sinφ

0 − sinφ cos θ cos φ

































φ̇

θ̇

ψ̇

















. (A.5)

Inverting the matrix in Equation (A.5) gives

















φ̇

θ̇

ψ̇

















=

















1 sinφ tan θ cos φ tan θ

0 cos φ − sinφ

0 sin φ
cos θ

cos φ
cos θ

















Ω.

This transformation is singular for pitch angles θ = ±90◦, where cos(θ) = 0. This phe-

nomenon is known as gimbal lock and arises because there is no one-to-one map between

all orientations and R3. Therefore all Euler angle conventions have singularities at some

orientations and cannot be used as a global coordinate system to represent orientation. See

[20].

In cases when a vehicle will operate close to the singular conditions described, methods

exist to avoid gimbal lock. These include tracking orientation using two different sets of Eu-

ler angle representations, defined so their singularities do not coincide, or parameterization
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of orientation using quaternions.

A.1.3 Quaternions

Quaternions parameterize orientation using four parameters and one constraint. By this

method it avoids the gimbal lock singularities that occur with Euler angles. As a result,

they may be a better choice for use in simulations and analysis where large angular motions

are expected. They have the drawback of adding redundancy, because each orientation

is described by two sets of quaternions. Quaternions may be introduced through several

mathematical routes. Here we will describe them from a physically intuitive standpoint.

Euler’s theorem of rotation states that “the general displacement of a rigid body with

one point fixed is a rotation about some axis” [20]. In other words, any rigid body rotation

may be parameterized by specifying an axis of rotation and a rotation angle about that axis.

Let c = (c1, c2, c3)
T be the unit vector along the axis of rotation and let δ be the rotation

angle. The corresponding rotation matrix may be written, using the matrix exponential, as

B = eĉδ.

To parameterize the rotation in terms of quaternions, define the quaternion vector as

q =

























q0

q1

q2

q3

























=

























cos δ
2

c1 sin δ
2

c2 sin δ
2

c3 sin δ
2

























=









cos δ
2

c sin δ
2









where q is subject to the constraint

qT q = q0
2 + q1

2 + q2
2 + q3

2 = 1.
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The corresponding rotation matrix may then be written as

R =

















q0
2 + q1

2 − q2
2 − q3

2 2(q1q2 + q0q3) 2(q1q3 + q0q2)

2(q1q2 − q0q3) q0
2 − q1

2 + q2
2 − q3

2 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q0
2 − q1

2 − q2
2 + q3

2

















.

The quaternion parameters may be written in terms of the XYZ Euler angles ψ, θ, φ as

q0 = cos(
φ

2
) cos(

θ

2
) cos(

ψ

2
) + sin(

φ

2
) sin(

θ

2
) sin(

ψ

2
) (A.6)

q1 = sin(
φ

2
) cos(

θ

2
) cos(

ψ

2
) − cos(

φ

2
) sin(

θ

2
) sin(

ψ

2
) (A.7)

q2 = cos(
φ

2
) sin(

θ

2
) cos(

ψ

2
) + sin(

φ

2
) cos(

θ

2
) sin(

ψ

2
) (A.8)

q3 = cos(
φ

2
) cos(

θ

2
) sin(

ψ

2
) − sin(

φ

2
) sin(

θ

2
) cos(

ψ

2
). (A.9)

Formulas for computing the Euler angles, Euler angle rates and the quaternion rates q̇

in terms of Ω and q may be found in [66, 20]. The Euler angles may be found from the

quaternion parameters as follows:

tan φ =
2(q0q1 − q2q3)

(q0
2 − q1

2 − q2
2 + q3

2)
(A.10)

tan θ =
2(q1q3 − q0q2)

2(q0q1 + q2q3) sin φ + (q0
2 − q1

2)q2
2 + q3

2) cos φ
(A.11)

tan ψ =
2(q1q2 + q0q3)

(q0
2 + q1

2 − q2
2 − q3

2)
. (A.12)

The quaternion rates may be written in terms of the body angular velocity Ω =
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(Ω1, Ω2, Ω3)
T and the quaternion parameters as

























q̇0

q̇1

q̇2

q̇3

























=
1

2

























0 −Ω1 −Ω2 −Ω3

Ω1 0 Ω3 −Ω2

Ω2 −Ω3 0 Ω1

Ω3 Ω2 −Ω1 0

















































q0

q1

q2

q3

























.

The vehicle angular velocity may be written in the body frame as a function of the

quaternion rates as

















Ω1

Ω2

Ω3

















= 2

















−q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0









































q̇0

q̇1

q̇2

q̇3

























.

Note the equations for the angular velocity in terms of the Euler angle rates are nonlinear

equations, while angular velocity in terms of the the quaternion parameters are given by a

set of linear differential equations. See [66].
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