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1. I n t r o d u c t i o n  

Finding a maximum matching in a graph is a classical problem in the study 
of algorithms. In this paper we present new algorithmically relevant combinatorial 
structure of matchings. This structure yields the first proof of correctness of the 
general graph matching algorithm of Mieali and Vazirani [14]; this is currently the 
most efficient known matching algorithm. 

Berge's theorem [2], which says that  matching M in graph G is a maximum 
matching if and only if there are no augmenting paths w.r.t, it, gives an iterative 
schema for finding a maximum matching in G, i.e. successively find augmenting 
paths. Finding augmenting paths is fairly easy in bipartite graphs; however, not 
so in general graphs (see [13] for a detailed history of the problem). The first 
polynomial time algorithm (o(rvI4)) for general graph matching was given by 
Edmonds [4]. In this paper, Edmonds introduced the notion of blossom (an odd 
length alternating cycle), and showed that  by "shrinking" blossoms, one can find 
augmenting path efficiently. In this seminal paper, Edmonds also introduced the 
notion of a polynomial time algorithm. 

Over the years, faster implementations of Edmonds' algorithm were given by 
several authors, including Whitzgall and Zahn [16], Balinski [1], Gabow [6], Lawler 
[12], and Kameda and Munro [10]. In 1972, Hopcroft and Karp [9] proposed finding 
augmenting paths in phases; in each phase a maximal set of disjoint minimum length 
augmenting paths is found. They showed that  only O ( v / ~ )  phases are needed, 
as opposed to O(IV]) iterations in the previously-mentioned schema. They also 
presented an O(IEI)  implementation of a phase in bipartite graphs, thereby giving 
an O(Iv/~llEi) matching algorithm for such graphs, and left the open problem of 
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obtaining an algorithm having the same efficiently for general graphs. Using the idea 
of phases, an o ( Iv I  2.5) algorithm for general graphs was given by Even and Kariv 
[5]. The algorithm of Micali and Vazirani achieves the above-stated O ( ~ ] E I )  
running time on a RAM, using the incremental-tree set union algorithm of Gabow 
and Tarjan [7]. 

The natural schema for finding minimum length alternating paths is an alter- 
nating breadth first search (BFS). As stated in Section 2, this leads to a simple 
algorithm for the bipartite case; however, there are fundamental difficulties in mak- 
ing this schema work for general graphs. In order to point out the key difficulty, 
let us first consider ordinary BFS starting at vertex s in graph G to find the levels 
of all vertices. A vertex v having level i + 1 must have a neighbonr, say u, having 
level i, and while searching out from u, BFS will assign v its correct level. We will 
say that vertex u is the agent that makes BFS find the level of vertex v. So, in 
ordinary BSF, the agent is local, i.e., it is one of the neighbours of the vertex. 

In the case of minimum length alternating paths in general graphs, the situation 
is more complex -- there is a need to define two levels for each vertex v, minlevel(v) 
and maxlevel(v), corresponding to shortest paths of the two parities. The agent 
for minleve] is a neighbour, just as in the case of ordinary BFS. However, not so for 
maxlevel -- it could be the case that none of the neighbours of a vertex of maxlevel 
iq-] is of level i. Fortunately, it is possible to salvage the situation: it is possible to 
identify a different agent -- a special edge on the path (a "bridge" of the "correct 
tenacity"). In the Mical~Vazirani algorithm, this edge triggers off a special search 
procedure called double depth first search (DDFS) that  efficiently finds maxlevels 
of vertices. This agent is not local, and so we need to carefully synchronize events, 
and mark the graph properly in order to execute a phase in linear time. 

For establishing correctness of the algorithm, we need to prove that  every 
maxlevel path has this special edge - -  this is our main structural theorem. To prove 
this theorem, we need to identify the combinatorial structure which the algorithm 
uses as footholds - -  (Theorems 1 to 7). Central to this structure is a definition 
of blossoms from the perspective of minimum length alternating paths. However, 
the structure is very rich, to the extent that considerable preparation is needed 
before blossoms can even be defined. For this reason, we will give an overview of 
the structure in Section 2. 

The algorithm contains two main ideas: the precise manner in which the 
various events are synchronized, and the graph searching procedure of double depth 
first search (DDFS). The correctness of DDFS and the synchronization are also 
established (in Theorem 8 and 9 respectively). 

In the past few years, Gabow and Tarjan [8] and Blum [3] have given general 
graph maximum matching algorithms having the same running time as the Micali 
Vazirani algorithm. It is interesting to observe that  besides cardinality matching, 
for several other matching problems, such as weighted matching, finding a max- 
imum matching in parallel, and approximately computing the number of perfect 
matchings in dense graphs, the known algorithms for. general graphs require addi- 
tional ideas but achieve the same efficiently as for bipartite graphs. Is this just a 
coincide, or is there an underlying reason for this? 
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2. O v e r v i e w  o f  s t r u c t u r a l  r e s u l t s  a n d  t h e  a l g o r i t h m  

Matching algorithms and their proofs of correctness tend to be considerably 
more involved for general graphs than for bipart i te graphs; this is particularly true 
of the algorithm of Micali and Vazirani, and its present proof of correctness. Is this 
complexity unavoidable? We will a t t empt  to convince the reader that  the answer 
to this question is "yes" by first sketching the algorithm for the bipart i te case 
and showing fundamental  difficulties in making this schema work for the case of 
general graphs. Eventually, we will indicate how the rich combinatorial structure of 
minimum length alternating paths and blossoms helps deal with these difficulties, 
and we will also give an overview of the structural  results. 

Let us start  by giving some standard definitions. Let G(V,E) be a graph. A 
set M c_ E is said to be a matching if every vertex of G has at most one edge of 
M incident at it. M is a maximum matching if it is a matching of largest possible 
cardinality in G. The following terms are defined w.r.t, a matching M in G: edges 
in M are said to be matched, and those in E \ M  are unmatched. A vertex is said 
to be matched if it has a matched edge incident on it, and unmatched otherwise; 
sometimes an unmatched vertex is also referred as a free vertex. If (u,v) is a 
matched edge, then we say that  u is the matched neighbour of v. A simple pa th  is 
said to be an alternating path if it consists alternately of matched and unmatched 
edges. An augmenting path is an alternating pa th  that  starts and ends at (distinct) 
unmatched vertices. 

The significance of an augmenting pa th  p is that  it helps obtain a mathing 
of one larger cardinality than N, namely the matching M| where | denotes 
symmetric difference. 

As stated in the introduction, we will resort to finding augmenting paths in 
phases, as proposed by Hopcroft and Karp: Start  with the empty matching. In 
each phase, find a maximal set of disjoint minimum length augmenting paths w.r.t. 
the current matching and augment the matching along these paths. If there are no 
augmenting paths w.r.t, the current matching, halt. 

2.1. T h e  b i p a r t i t e  case  

Let G(U,V,E) be a bipart i te graph, and let M be a matching in it. Define 
the level of a vertex x C U U V to be the length of the shortest alternating pa th  
from an unmatched vertex in U to x. Notice that  vertices in U have even levels 
and those in V have odd levels. Also, among the unmatched vertices in V, the one 
having the smallest level gives the length of a minimum length augmenting pa th  
w . r . t . M .  So, let us consider the problem of finding the levels of all vertices. (It 
turns out this is the core of the problem. As shown below, a small modification to 
the procedure for finding levels helps find minimum length augmenting paths.) The 
natural  schema for this is an alternating breadth first search (BFS): Assign level 0 
to all the unmatched vertices in U, and initialize the search level, i, to 0. Then, 
iterate on i as follows: if i is even, for all unmatched edges incident at vertices 
having level i, consider their other endpoints; if the endpoint does not have a level 
assigned yet, assign it level i + 1. If i is odd, consider the matched edges incident 
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at vertices having level i, and assign their other endpoints level i + 1 (notice that  
these endpoints will not have levels assigned yet.) 

The procedure given above clearly works in O(IEI) time, and a straightforward 
proof by induction on i shows its correctness. We would like to highlight here that  
the algorithm and the proof of correctness are based on the following deceptively- 
straightforward-seeming fact: Let p be an alternating path  that  gives vertex z its 
level. We shall say that  p is a level(x) path. Then, the levels of vertices on p are 
contiguous, i.e., s tart ing with O, the levels increase by 1. Another way to put it is 
that  minimum length alternating paths in biparti te graphs are breadth-first-search 
honest: let y be the free vertex in U at which p starts, and let v be any vertex on 
p. Then the part  o f p  from y to v is a level(v) path. 

Another point worth mentioning, though less important ,  is that  while searching 
from a vertex u E U along unmatched edge (u,v), if level(v) was already set i.e., 
level(v) <level(u), we ignored this edge. It  is easy to see that  this edge is not on a 
level(x) path  for any vertex z. 

Finally, let us show how the algorithm given above can be modified to actually 
find minimum length augmenting paths. Let us say that  u is a predecessor of 
v if (u,v) is the last edge on some level(v) path. The alternating BFS can be 
easily modified to leave at each vertex the list of its predecessors. When the search 
encounters a free vertex f C V, it can use the predecessor information to find a 
minimum length augmenting path,  p, ending at f :  let f be the starting center of 
activity; at each step, pick an arbi trary predecessor of the current center of activity, 
and move to it, until a free vertex in U is encountered. Let p be the pa th  so traced. 
To complete the phase, the algorithm removes p and all edges incident at vertices 
on p from the graph. In addition, it also keeps removing any vertex that  has no 
predecessors left. Then, the next pa th  found will clearly be disjoint from p. In this 
manner,  a maximal set of disjoint minimum length augmenting paths is obtained. 

2.2. Di f f icu l t i es  e n c o u n t e r e d  w i t h  n o n - b i p a r t i t e  g r a p h s  

The first point to be noticed in non-biparti te graphs is that  a free vertex 
f may have alternating paths of both  parities to a vertex v, e.g., see Fig. i. 
Moreover, paths of both  pari ty may be useful; neither one can be ignored. For 
example, in Fig. 1 either of the edges, (w,v) and (w,z) could potentially lead to 
an augmentation. Hence, we must find paths of both  parities to w. This motivates 
the following definitions (we have indicated definitions that  first appeared in [14]): 

Definition [14]. W.r.t.  matching M in graph G(V, E) define: 
evenlevel(v): Length of the shortest even length alternating pa th  from an un- 
matched vertex to v, oc if no such path  exists. 
oddlevel(v): Length of the shortest odd length alternating pa th  from an unmatched 
vertex to v; oc if no such path  exists. 
A pa th  that  gives v its evenlevel (oddlevel) will be called an evenlevel(v) 
(oddlevel(v) ) path. 

The levels of vertices are marked in Fig. 1. Notice that  an unmatched vertex 
with the smallest oddlevel gives the length of the minimum length alternating pa th  
in the graph. Once again, we will first consider the problem of finding the even and 
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odd levels of all vertices - -  this is the core of the problem in the non-bipartite case 
as well. Clearly, the simple alternating BFS will fail on non-bipartite graphs: if the 
search is not allowed to come around edge (u, v) then w does not get its evenlevel, 
and if is, then b gets an incorrect oddlevel. 
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How should we modify the simple alternating BFS? In order to seek an answer, 
let us see the difficulties we need to overcome. In Fig. 2, consider an oddlevel(e) 
path; oddlevel(e) is 11. Notice that  levels are not contiguous on this path! Minimum 
length alternating paths in non-bipartite graphs are not breadth-first-search honest. 
In particular, evenlevel(h) is 8, and yet it occurs as the 10 th vertex on this path. 
This leads to the following basic question: In bipartite graphs, a vertex v of level 
i+1 was adjacent to a vertex u of level i. At the proper search level, u triggered off 
the appropriate mechanism that assigned v its level. In Fig. 2, what should trigger 
off the process that assigns e its oddlevel? i.e., what is the agent. In the case of 
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biparti te graphs, the agent that  assigns a vertex its level is local; it is one of the 
neighbours of the vertex. 

Another point to be noticed in Fig. 2 is that  e occurs on every evenlevel(h) 
path; moreover it always occurs at an even distance on such a path. In order to 
find an oddlevel(e) path,  we had to find an even length pa th  to h that  was longer 
than its evenlevel. This points out another difficulty: it is not sufficient to find 
alternating paths of minimum length to vertices; we may have to find longer and 
longer paths, in order to find the levels of other vertices. As such, this seems to 
require exponential time. 

Finally, consider edge (u, v) in Fig. 12. It  is clearly not useful for giving u its 
oddlevel, and we had remarked that  such edges could be ignored in the bipart i te 
case. However, in Fig. 12, edge (u,v) is critical for obtaining an odd pa th  to w. We 
shall characterize such edges (called anamolies), and show how to deal with them. 

2.3. O v e r c o m i n g  t h e  d i f f icul t ies  u s ing  t h e  s t r u c t u r e  o f  m i n i m u m  

a l t e r n a t i n g  p a t h s  a n d  b l o s s o m s  

The reason we can get a linear t ime algorithm for finding the levels of vertices, 
despite the difficulties described above, is that  mininmm length paths have a 
rich combinatorial structure that  can be exploited algorithmieally. The central 
combinatorial notion is that  of blossoms defined from the perspective of minimum 
length alternating paths. 

Algorithmically, the key question is to identify the agent that  triggers off the 
process that  assigns a vertex its odd or even level. A first cut to this is to distinguish 
the two levels from a different criterion than parity: 

Definition [14]. Define maxlevel(v) as the larger of evenleveI(v) and oddIevel(v), 
and minlevel(v) as the smaller one. 

The agents for minlevel and maxlevel are different. The agent for minlevel is 
local, similar to the biparti te case, i.e., one of the neighbours of the vertex. 

Observation. Suppose minlevel(v)= i+1 and i+1 is odd. Then there is a neighbour, 
u, of v such that  evenlevel(u) = i and the edge (u,v) is unmatched. Moreover, 
any evenlevel(u) path concatenated with edge (u,v) is an oddlevel(v) path. An 
analogous statement holds if i + 1 is even. 
The second part  of the observation follows from the fact that  v cannot occur on an 
evenlevel(u) path,  since otherwise minlevel(v) would be < 1. 

For describing the agent for maxlevel, we need to introduce the central notion 
of tenacity. 
Definition [14]. W.r.t.  matching M in graph G(V,E) define tenacity(v) = 
evenlevel ( v ) + oddlevel ( v ). 
For edge (u, v), 

evenIevel(u) + evenlevel(v) + 1 if (u,v) is unmatched 
tenacity(u, v) = oddlevel(u) + oddlevel(v) + 1 if (u, v) is matched 

Remark.  I t  is tempting to define tenacity(u) to be the length of a shortest alter- 
nating walk between two (necessarily distinct) unmatched vertices which contains 
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v. However, this is not true. For example, vertices v and b in Fig. 1 will have the 
same tenacity under this definition. 

We also need to distinguish between two types of edges. 

Definition. Vertex u is said to be a predecessor of v if (u, v) is the last edge on some 
minlevel(v) path. An edge (u,v) will be called a prop if either u is a predecessor 
of v, or v is a predecessor of u; it will be called a bridge otherwise. 

The tenacities of vertices are marked in Fig. 2. In Fig. 1, edge (u, v) is a 
bridge of tenacity 9; the rest of the edges are props. In Fig. 2, only (1,m), (j,k) 
and (n, o) are bridges. Their tenacities are 13, 11 and 15 respectively. 

Finally, we can state the agent that  triggers a maxlevel(v) computation - -  it 
is a bridge of tenacity tenacity(v). It triggers off a process called double depth first 
search (ddfs) that finds the "blossom" containing v. How do we know that for each 
vertex v there is such an agent? Let us address this question by giving an intuitive 
descriptio~ of the structural results. 

2.4. T h e  s t r u c t u r a l  r esu l t s  

The central structural fact proven in this paper is that  on any maxlevel(v) 
path, there is a unique bridge of tenacity tenacity(v). For example, in Fig. 2, 
fabdgjkonlhe is a maxlevel(e) path, and (n,o) is the bridge of tenacity 15 on this 
path. In order prove this fact, we will first need to define blossoms and prove 
properties of minimum length Mternating paths w.r.t, the blossoms. 

Consider a vertex v having finite tenacity, and consider the tenacities of all 
vertices on any evenlevel(v) or oddlevel(v) path. On each path, pick the highest 
vertex (i.e., furthest from the free vertex) having tenacity > tenacity(v). We will 
first show that the set picked is a singleton, i.e., there is a unique such vertex. This 
will be called the base of v, and will be denoted as base(v). A base b is always 
outer, i.e., it satisfies evenlevel(b) < oddlevel(b). The bases of various vertices in 
Fig. 2 are: 
j ,k:g 
h,i , l ,m:e 
c,d,e,g,n,o:b 

The significance of base lies in the following fact: A path is an evenlevel(v) 
(oddlevel(v)) path iff if consists of an evenleveI(base(v)) path concatenated with a 
minimum even (odd) length alternating path from base(v) to v; the latter path is 
required to start with an unmatched edge. We shall refer to the latter path as q. 

Suppose b = base(v). Then, any evenlevel(b) path in turn contains base(b), 
and so on. This motivates: 

Definition. Define base 1 (v) = base(v), and base k+l (v) = base(basek(v)). Also, we 
will say that b = base+(v) if b = base~(v) for some positive integer k. In Fig. 2, 
base 2 (l) = b. 

Blossoms are defined with two parameters: Base, b and tenacity, t, with 
tenacity(b) > t. The blossom with these parameters is the set of vertices v such 
that tenacity(v)<_ t and base+(v)= b. It is denoted by Bb, t. Notice that b is not 
part of this blossom. In Fig. 2, 
Bg,ll={j,k} 
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Be,13 ={h,i , l ,m} 

Bb,15 = {c, d, e, g, h,i, j, k, l, m, n, o} 

In Fig. 6, 

Bb,22= {a,c,u,d,w,w I} 

Bb,15= {a,c,u,d,w,wl,v,e} 

Blossoms form a partial  order by containment - -  two blossoms are either 
disjoint, or one is contained in the other. In the latter case, the first blossom 
is said to be nested in the second. In Fig. 2, Bg,ll  C_ Bb,15 and Be,13 C Bb,15 , and 
in Fig. 6, /~b, l l  C_ Bb,15. Notice that  in these figures vertices are drawn at heights 
proportional to their minlevels; this helps reveal the nesting of blossoms. 

The significance of blossoms lies in the following: Let Bbr be the blossom with 
parameters  base(v) and tenacity(v). Then, the pa th  q, except for the first vertex b, 
lies entirely within the blossom Bb, t. If q were part  of a minlevel(v) path, then it 
would go "directly" from base(v) to v, much the same way as the evenlevel(base(v)) 
path. On the other hand, if q were part  of minlevel(v) path,  then it must come 
"around the blossom", i.e., using the bridge of tenacity tenacity(v); furthermore, q 
consists of disjoint shortest paths from b to one endpoint of the bridge, and from the 
other endpoint to v (of course, these paths have to start  and end with appropriate 
pari ty edges). 

In general, path  q may use blossoms nested within Bb. t. However, it cannot do 
so in an arbitrarily complicated manner: it can be shown that  q enters and exits 
from a blossom nested in Bb, t at most once, and either the entrance or the exit 
must be the base of the nested blossom. Furthermore, the part  of q, say q / i n s ide  
the nested blossom is similar to q, i.e., it is a minimum alternating path  from the 
base of the nested blossom to a vertex in the blossom. 

Let us illustrate this in Fig. 2. The oddlevel(e) path  consists of pa th  lab (i.e., 
an evenlevel(b) path),  concatenated with pa th  bdjkonlhe (which is called q above). 
Pa th  q consists of a minimum odd pa th  from b to o, concatenated with bridge (o, n) 
concatenated with the reverse of a minimum path  from e to n. Pa th  q uses the 
nested blossoms of Bb,15; however, it does so in the restricted manner  described 
a b o v e .  

Let us see at a very high level how the structure described above helps overcome 
the difficulties. Consider the problem of finding an oddlevel(e) path  in Fig. 2. At 
the outset, the problem can be broken into two: finding an evenlevel(base(e)) 
path,  and finding the path  called q above. The first problem is clearly a smaller 
version of the original problem. For finding q, we first find disjoint paths from 
the two endpoints of the bridge (n,o) to e and b respectively, skipping over nested 
blossoms. Appropriate paths are found in the nested blossoms recursively, and 
concatenated with these two paths to yield q. On the other hand, if we had to find 
an oddlevel(n) path, which is a minlevel path, then in order to get q, we first skip 
over nested blossoms, finding a direct path  to b; recursive calls will patch this with 
appropriate paths through the nested blossoms. 
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2.5. H i g h  level  d e s c r i p t i o n  o f  a l g o r i t h m  

In this subsection, we will add some more details to the general algorithmic 
schema presented above. As stated in the introduction, the algorithm if Micali 
and Vazirani is built on two main ideas: synchronization and the graph searching 
procedure of DDFS. 

Definition. For a bridge (u, v), 

s pport(u, v) --- I tenacity( ) = tenacity(u, v), and 
there is a path containing (u, 

In:Fig. 2, support(n,o)----Bb35- (Be,13 U B9,11)~ i.e., the set obtained on deleting 
vertices of nested blossoms, which will have lower tenacity, from Bb,15. For now~ it 
will be useful to take this to be the intuitive meaning of support; later we will refine 
the picture to deal with vertices that  lie in the support of more than one bridge. 

The algorithm iterates with parameter i, the search level, starting with i = 
0. :At each search level, first MIN is executed, followed by MAX. The following is 
accomplished: At search level i: 

M I N :  Finds the minlevels of {v E V Iminlevel(v ) = i +  1}. 
Before MAX starts, the following set of bridges would have been found: 

$2i+1 = ((u, v) C E [ (u, v) is a bridge of tenacity 2i + 1}. 

M A X :  Finds the maxlevels of (v E V ltenacity(v ) = 2i + 1} 
These vertices are found as follows: 

For each bridge (u,v) in S2i+], call DDFS to find support(u,v). 

Procedure MIN is straightforward. It essentially executes one step of alternat- 
ing BFS, similar to the bipartite case: from vertices having level i it searches along 
the appropriate parity edges to find i + 1 level vertices. MIN also leaves, at each 
vertex, the list of its predecessors. 

On the other hand, DDFS is a more involved search schema. Suppose it is 
called with bridge (u, v) of tenacity 2i+ 1, and let B be the corresponding blossom. 
DDFS will find the base, b, of this blossom. Consider the process of starting at one 
of the two endpoints of the bridge, and following predecessors; if the predecessor 
is in a nested blossom of B, then skip to the base of this blossom. Then, all 
such paths must go through b; in fact b will be the highest bottleneck for such 
paths. Furthermore, all vertices encountered on such paths, which are not in nested 
blossoms, must be of tenacity 2i + 1, and constitute support(u, v). 

. DDFS needs that  all lower tenacity blossoms, B ~, nested in B ar e appropriately 
ma~'ked, so it can efficiently reach from any vertex in B ~ to the base of B ~. It grows, 
in a coordinated manner, two DFS trees rooted at u and v. These trees follow 
props, skipping over nested blossoms. Whenever the two trees meet, one of them 
tries to find an alternative path. If they don't  succeed, the bottleneck, b, is found. 

If instead of finding a bottleneck, the two DFS's reach distinct free vertices, f l  
and f2, then there is a 2i+1 length augmenting path containing edge (u, v). At this 
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point, disjoint paths are found from u to f l  and from v to f2, skipping over nested 
blossoms; appropriate paths are found in the nested blossoms recursively. Then, as 
in the bipart i te case, this path, together with all vertices and edges that  cannot be 
on a disjoint pa th  are removed, and the process is continued till a maximal set of 
such paths is found. 

The informal description given in this section, together with Section 9 and 10, 
can give the reader a fairly detailed idea of the Mgorithm. However, in order to give 
a formal description of the manner  in which DDFS marks and searches the graph, 
we will need some structural definitions which will be developed in Section 3 to 8. 

The precise manner in which events are synchronized is critical to proving cor- 
rectness of the algorithm, and synchronization is further explained in Section 12. 
Special edges, called anamolies, need to be identified for achieving this synchro- 
nization; this is described in Section 9. 

3. T e n a c i t y  a n d  b r e a d t h - f i r s t - s e a r c h  h o n e s t y  

In Section 2 we gave examples to show that  minimum length paths are not BFS 
honest in non-biparti te graphs. In this section, we will use the notion of tenacity 
to prove that  these paths are BFS honest to some extent, namely, higher tenacity 
vertices on the pa th  that  are an even (odd) distance from f occur at the distance 
that  defines their evenlevel (oddlevel). Theorem 1 deals with a minlevel(v) pa th  
and Theorem 2 with a maxlevel(v) path.  

Lemma 1. Let (u,v) be a matched edge. Then, evenlevel(v)= oddlevel(u)+ 1 and 
evenlevel(u) = oddlevel(v) + 1. Also, tenacity(u)=tenacity(v) =tenacity(u,v).  

Proof. Any alternating pa th  containing both u and v must contain the matched 
edge (u,v). The first equality follows by observing that  any oddlevel(u) path  
cannot contain v, and therefore concatenating (u,v) to it yields an evenlevel(v) 
path. Adding oddlevel(v) to both  sides of this equality we get tenacity(v)= tena- 
city(u, v). The remaining equalities follows in a similar manner. | 

Notation. If p and q are two paths, poq denotes their concatenation, and IPl denotes 
the length of pa th  p. 

Definition. Let p be alternating pa th  starting at an unmatched vertex f ,  and let u 
and v be two vertices occurring on p (in either order, u before v or v before u). Then 
p[u to v] denotes the part  of p from u to v (both inclusive). Similarly p[u to v), 
p(u to v], p(u to v) denote the part  of p from u to v, including u only, including v 
only~ and excluding both  u and v, respectively. We will say that  u occurs at the 
correct distance on p if: 
(i). if IP[f to u 1 is even, then IP[f to u]l=evenleveI(u ) 
(ii). if IP[X to u]l is odd, then IP[X to u]l--oddlevel(u).  
Similarly, u occurs at minlevel(u) distance on p if IP[f to u]l---minlevel(u),  and u 
occurs at maxlevel(u) distance on p if IP[f to u ] l=maxleve l (u) .  
Vertex u is an even(odd) vertex w.r.~, p if IP[f to u]l is even (odd), and v is higher 
than u on p if Ip[I to v ] l> lp [ f  to u]l. 
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T h e o r e m  1. Let p be a minlevel(v)  path and let u be a vertex on p such that 
tenacity(u) >_ tenacity(v). Then u occurs at minlevel(u) distance on p. 

Proof .  I t  is sufficient to  prove the  t heo rem for ]Pl odd,  because  if IPl is even, consider  
p[f to  v) which is a min]eve] p a t h  to  the  m a t c h e d  ne ighbour  of v. We will  prove 
t h a t  if u does not  occur  at  the  correct  d i s tance  on p then  tenacity(u) < tenaci- 
ty(v). By L e m m a  1, w.l.o.g, we may  assume t h a t  u is even w . r . t . p .  Let  q be an 
evenlevel(u) pa th .  We will use q to show tha t  oddlevel(u) < minlevel(v).  Since 
evenlevel(v) < minlevel(v) also, th is  will  show t h a t  tenaci ty(u)< tenacity(v). The  
s i tua t ion  is i l lu s t r a t ed  in Fig. 3. 

P a t h  q must  in tersec t  p(u to  v], because  o therwise  qop[u to v] is a shor te r  odd  
p a t h  to  v. Let  v ~ be the  ma tched  ne ighbour  of v, and  let  p / =  po(v,v~). Let w 
be the  first ve r t ex  of q on p~(u to  v~l. If w is odd  w.r . t ,  p~, then  w mus t  be odd  
w.r . t ,  q, and  once again  by spl icing pa r t s  of q and  p we can get a shor te r  odd  
p a t h  to v. Therefore ,  w is even w.r . t ,  p ' .  Now, q[f to  w]op'[w to u] is an odd  
length  a l t e rna t i ng  p a t h  from f to  u, giving the  desired inequal i ty  oddlevel(u) < 
Iq] + Ip'[u to < IPl- 

Hence, if tenaci ty(u)> tenacity(v), t hen  u mus t  occur  at  the  correct  d is tance,  
in fact minlevel(u) dis tance  on p. II 

T h e o r e m  2. Let p be a minlevel(v)  path, and  u be a vertex on p such that tena- 
city(u) > tenacity(v). Then, 
(i) i f  tenacity(u) = tenacity(v),  u occurs at the correct distance on p 
(ii) if  tenaci ty(u)> tenacity(v),  u occurs at minlevel(u) distance on p. 

Proof .  By L e m m a  1, w.l.o.g, we m a y  assume t h a t  IPl is even and t h a t  u is even 
w.r . i i  p. (Notice t ha t  unlike in T h e o r e m  1, if u occurs  at  the  correct  d i s tance  
on p, i t  does not  follow t h a t  u occurs  at  minlevel(u) dis tance.  For  this  reason,  
we first consider  the  minlevel(v)  p a t h  in o rder  to  es tab l i sh  a re la t ionship  be tween  
minlevel(u) and  minlevel(v).)  

Let  q be a minlevel(v) pa th .  If  q does not  in tersec t  p[u to  v), t hen  odd- 
levd( ) < Iql + Ip[v to u]l. Clearly, evenlevd(u)  _< IP[f to vii. Therefore tenaci- 
ty(u) <_ tenacity(v). Since we have assumed  t h a t  tenacity(u) > tenacity(v), it  
follows t ha t  tenaci ty(u)=tenaci ty(v)  and  u occurs  at  the  correct  d i s tance  on p. 

Next  suppose  t h a t  q in tersec ts  p[u to  v). Let  u ~ be  the  ma tc he d  ne ighbour  of 
u, and  let  w be the  first ve r t ex  of q on p[u ~ to v). Ver tex  w mus t  be odd  w . r . t . p .  
because  o therwise  there  is a shor t  odd  length  a l t e rna t i ng  p a t h  to  u, showing tena- 
city(u) < tenacity(v). Now, [q[f to  w] [~  [p[f to w]/, because  o therwise  by  spl icing 
q and p we can get  a shor te r  even p a t h  to v. Therefore  ]ql = minlevel(v)  > even- 
level(~t). Since tenacity(u) > tenacity(v),  the  min]evel  of u mus t  be i ts evenlevel.  
I t  r emains  to  show t h a t  u mus t  occur  at  the  correct  d i s tance  on p. The  a rgumen t  
is the  s ame  as in T h e o r e m  1: if not ,  t hen  the  evenlevel(u) p a t h  enables  us to  prove 
t h a t  tenacity(u) < tenacity(v). | 

The  next  l e m m a  follows from the  p roof  of T h e o r e m  2. 

L e m m a  2. Let p be a maxlevel(v)  path and u be a vertex on p such that tenaci- 
ty(u) > tenacity(v). Then minlevel(v)  > minlevel(u).  
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4. T h e  base  o f  a v e r t e x  

In this section we will use the notion of tenacity to define the base of a vertex; 
this will eventually be the base of the blossom in which the vertex lies. 

Definition. Let v be a vertex of finite tenacity, and let p be an evenlevel(v) or an 
oddlevel(v) path. The base of v w.r.t, p, denoted by base(v,p), is the highest 
vertex on p having tenacity greater than that of v (there must be such a vertex 
since tenacity(f) = ~ ) .  

The main result of this section is to show that the base of v is unique, i.e. 
independent of p: Towards this end we will first show that if p and q are even- 
level(v) and oddlevel(v) paths respectively, then base(v,p)= base(v,@. Let q be 
the highest vertex of tenacity > tenacity(v) occurring on both p and q. The proof 
involves showing that all vertices on p(b to v] are of tenacity <tenacity(v). This is 
done by studying the intersections of p and q; for this we will define flowers, and 
show that the intersections of p and q form flowers. 

Definition. Let p be an alternating path starting at f .  An odd length alternating 
path that meets p only at its endpoints, and starts and ends with unmatched edges 
is called a segment w.r.t .p. A set of segments w.r.t, p satisfying certain conditions 
form a flower w.r.t, p, F. The base (tip) of F is the lowest (highest) vertex of p 
which is one of these segments. The flower F will be the union of these segments 
together with p[base(F) to tip(F)]. The vertices on this part of p are said to be 
covered by F. Following is a recursive definition of the conditions which the set of 
segments should satisfy: 
(i) the set consists of a single segment that starts and ends at even vertices w.r . t .p .  
(ii) let F I be a flower and q be a segment one of whose endpoints is covered by F I, 
and the other endpoints is even w. r . t .p .  Then the set of segments of F ~ together 
with q form a flower. 

II  
(iii) let F ~ and F be flowers, and q be a segment whose two endpoints are covered 
by F / and F H respectively. Then the sets of segments of F ~ and F ~t together with 
q form a flower. 
The length of flower F, denoted by ]FI, is defined to be the sum of the lengths 
of the segments of F and Ip[base(F) to tip(F)]l. Fig. ~ shows a flower formed by 
segments ql, q2, q3 and q4. 

The above-stated recursive definition of flower yields the following lemma by 
a straightforward induction. 

Lemma 3. Let p be an alternating path starting at f .  Let v be even (odd) w.r.t. 
path p and let F be a flower w.r.t, p which covers v. If  v~base(F) ,  then there is 
an odd (even) length alternating path in F from base(F) to v of length <_ IF[. 

Definition. Let p be an alternating path starting at f ,  and let q be any other 
alternating path. Then, a part of q that starts and ends with unmatched edges and 
meets p only at its endpoints is called a segment of q w.r . t .p.  A flower w.r.t, p 
formed by segment of q is said to be a flower of q. An alternating path whose first 
and last edges are matched edges on p (the rest of the path may also intersect p), 
is called a section w.r.t .p. 
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L e m m a  4. Let p be an Mternating path starting at f and q be a section w.r.t, p 
which starts and ends at vertices s and s' respectively on p. Then at least one of 
the following must  hold: 
(i). s is even w.r.t, p, or s is covered by a flower o[ q. 
(ii). s I is even w.r.t, p, or J is covered by a flower o fq .  

Proof.  The proof  is by an induct ion on the number  of segments in q. The assertion 
is obvious in case q consists of no segments. We prove the induct ion step below. 

Suppose s and s t are bo th  odd w . r . t . p .  There  are two cases. First ,  suppose 
there is a segment of q tha t  s tarts  at a vertex above s and ends at a vertex below 
s. Let qt be the first such segment,  and let y and yt be its s tar t ing and ending 
vertices. Since s is not  covered by a flower of q[s to  y], by the induct ion hypothesis,  
y is either even w.r.t, p or covered by a flower of q[s to y]. Now, if yl is even w.r.t. 
p, s is covered by a flower of q[s to yr]. So, assume tha t  yr is odd w . r . t . p .  If  
s ~ is covered by a flower of q[J to J ] ,  we are done. Otherwise, by the induct ion 
hypothesis,  y~ is covered by a flower of q[y~ to J ] .  Now using a segment qt, s is 
covered by a flower of q. The  last case is i l lustrated in Fig. 5. 

Next, suppose there is no such segment q~. Let z be the highest vertex of p on 
q. Since z is even w.r.t, p, zv~J.  Now, q[J to s] satisfies the first case, and by the 
proof  given above, s I is covered by a flower of q (since clearly s is not).  I 

For the next lemmas, let v be a vertex of finite tenacity, and let p and q be 
evenlevel(v) and oddlevel(v) paths  respectively. Consider vertices of tenacity > te- 
nacity(v) which occur on both  p and q ( f  is such a vertex),  and let b be the highest 
such vertex. (Recall tha t  such vertices occur at their minlevel distance on bo th  p 
and q.) We will first prove tha t  base(v ,p)=base(v ,q)=b in a simple setting: when 
there are no separators (see definition below). 
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Definition. We will say tha t  matched edge (w,w I) is a separator w.r.t, p and q if it 
occurs on both  p and q, and is a cut  edge for the subgraph formed by the edges and 
vertices in pOq. For example, in Fig. 9(a), ( s ,J) is  a separator  w.r.t, evenlevel(v) 
and oddtevel(v) paths.  

Remark .  The  matched edge incident at b is a separator  w.r.t, p and q. This fact 
follows from Lemma 7; however, we do not need it for proving Theorem 3. 

Lemma 5. I f  there are no separators w.r.t, p and q on p(b to v] (and therefore also 
on q(b to the  b se(v,p)=base(v,q)=b. 

We will first need the t011owing definitions: 

Definition. Let (w, w')  be a matched edge occurr ing on both  p(b to  v] and q(b to v], 
with w'  even w . r . t . p .  If  before traversing (w,w' ) ,  q does not meet  any vertex of 
p higher t han  u/ ,  then (w,w' )  is called a frontier. If  w ~ is odd w.r.t, q, (w,w ~) 
is called a backward frontier. If  (w,w') is not  a separator  w.r.t, p and q, and w / 
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is even w.r.t, q then (w,w') is called a forward frontier. Backward and forward 
frontiers are i l lustrated in Fig. 6 and 7 respectively. 

Proof.  We will prove tha t  every vertex on p(b to  v] has tenacity <_tenacity(v); the 
proof  for vertices on q(b to  v] is similar. For this, it is sufficient to show tha t  for 
vertex u on p(b to v I which is even w.r.t, p, there is an odd length al ternat ing pa th  
from f to u of length < tenacity(v) -[p[f to  v]l. 

I 
! 

V 
I 

V e 

W W p 

u d 

I 

Fig. 6 
b) 



86 V. V. VAZII~ANI 

Let matched edge (w,w ~) on p be the closest frontier to u such tha t  
IP[f to w'][ _> IP[f to  u]l, where w'  is even w . r . t . p .  If  (w,w') is a backward frontier, 
then q[f to  w'] op[w' to u] is the required pa th  (see Fig. 6). Next consider tha t  
(w,w') is a forward frontier. Clearly Iq[f ~o w']l _> IP[f to wql, because otherwise 
by splicing p and q we can get a shor ter  even pa th  to v. 

We will first prove tha t  w is covered by a flower of q[w to v]. Consider the 
last segment of q[w to v] which starts below w (say at z) and ends above w. Now, 
z couldn ' t  be even w.r.t, p because otherwise p[f to z]oq[z to v] is a shorter  odd 
pa th  to v. If  z is covered by a flower of q[w to z], then this flower must  cover w 
also (because otherwise we can again get a shorter  odd pa th  to v using L e m m a  3). 
If  z is not  covered by a flower of q[w to  z], by lemma 4, w must  be covered by a 
flower of q[w to  z]. Let b ~ be the base of this flower, and let r be an even length 
al ternat ing pa th  from b ~ to w in this flower. 

~ ~ 1  V I V 

WP=U 

/ I 

a) b) 
Fig. 7 

Now, if u is above b I, then p[f to  b ~] concatenated  with the odd length alter- 
nat ing pa th  from b p to u th rough  the flower gives the odd pa th  to u. Otherwise, 
q[f to  w] orop[b' to  u] is the required path.  The first case is i l lustrated in Fig. 7 
and the second in Fig. 8. I 

Lemma 6. base(v,p) = base(v, q) = b. 

Proof.  The  no separators case is proved in Lemma 5. Let (s,J) be the lowest 
separator  on p(b to v] and q(b to  v], with s / even w.r.t, p and q. Clearly, IP[f to  s]l = 
Iq[f to s]l , and by the choice of b, tenacity(s) < tenacity(v). Let (w,w') be the 
highest frontier on p(b to s), with w t even w . r . t . p .  By the proof  of L e m m a  5, all 
vertices on p(b to w'] have tenacity ~ tenacity(v). 

For dealing with vertices on p(w ~ to  s), first consider the case tha t  s occurs at 
the correct distance on p (e.g. see Fig. 9(@). Let r be an evenlevel(s) pa th  which 
shares ~he most  number  of vertices with q. If  r has no separators on p(w ~ to s), 
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then  by the proof  of L e m m a  5, all vert ices on this pa r t  of p have tenacity <_ tenaci- 
ty(v). Otherwise,  let (x ,x  ~) be the highest separa tor ,  wi th  x ~ even w . r . t . p .  Once 
again, the proof  of L e m m a  5 takes care of vertices on p(J  to s). For the remaining 
vertices, there  are some cases to be considered. 

The  canonical  case is when fix ~ to s] does not intersect q[f to s). Let u be an 
even ver tex  on p(w' to X']' We will show tha t  the  odd p a t h  p'=q[f to s]or[s to x']o 
p[x' to u] has length ~ tenacity(v) -IP[f to u]l , the reby  bounding  tenacity(u). 

Since s occurs at  the correct dis tance on p, ]r[f to s]l_< tenacity(v)-Ip[f to s]l. 
Also, Ir[f to x']] > IP[f to x']], because otherwise we can splice p and r to get a 
shorter  even p a t h  to v. Therefore,  Ir[x' to s]l_~ tenacity(v)-Ip[f to s ] l - l p [ f  to x']l. 
Subs t i tu t ing  this in IP'I and using IP[f to s]l = Ig[f to s]l gives bound.  

Next  suppose r[x' to s] intersects q[f to s] in ver tex  y first. If  y is even w.r.t,  q 
then  by the same a rgument  as above, q[f to y]or[y  to x'] op[x' to u t is the required 
odd p a t h  to u. Finally, suppose y is odd  w . r . t . q .  Then,  Ir[f to Y]I-> Iq[f to Y]I. 
Now, r[y to s] must  intersect  q[f to y), because otherwise r violates the  condit ion 
t ha t  it shares the  most  number  of vertices wi th  q. Let (z,z ~) be the  lowest ma tched  
edge of q[f to y) t raversed by r[y to s], wi th  z ~ even w . r . t . q .  I f  z '  is even w.r.t .  
r, then  we can get a shor ter  even p a t h  to s by splicing r and q. Otherwise,  
q[f to z'] or[z' to x'] op[x' to u] is the required odd p a t h  to u. 

In case s does not occur at  the correct  dis tance on p (e.g. see Fig. 9(b)), let r 
be an oddlevel(s) path .  Now, r must  intersect  p(s to v] in an even ver tex  first. Let  
this ver tex  be  h, and as before, let (x, x 0 be the  highest separa tor  of r on p(w ~ to s). 
Let  r' =r[x ~ to h]op[h to s]. Using z g in place of r[x ~ to s] in the  above-s ta ted  cases 
yields the required odd p a t h  to u. 

Finally, we r emark  t h a t  these a rguments  apply  to vertices between any two 
consecutive separa tors  on p; the  vertices between the highest separa tor  on p and v 
are dealt  wi th  using the  proof  of L e m m a  5. | 
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Theorem 3. Let v be a vertex of  •nite tenacity. Then its base is unique, i,e., the 
set {blb= base(v,p) for some e'venIeveI(v) or oddlevel(v) path p} is a singleton. 

Proof. Let p and q be any evenlevel(v) and oddlevel(v) paths. By lemma 5, 
base(v,p) =base(v ,q)= b (say). Now, by fixing p and varying q over all oddlevel(v) 
paths and then fixing q and varying p over all evenlevel(v) paths we get required 
result. | 

Definition. For a vertex v of finite tenacity define base(v) to be its unique base. 
Say that  a vertex v is outer if evenlevel(v) < ocldlevel(v), and inner if oddlevel(v) < 
evenlevel(v). 
Remark.  1) For a matched edge (u,v), base(u)=base(v), by Lemma 1. 
2) For a vertex v of finite tenacity, base(v) is an outer vertex. 

Definition, Let v be a vertex of finite tenacity. Define base 1 (v) = base(v). Fur- 
thermore, for k E Z +, if basek(v) is of finite tenacity, then define basek+l(v) = 
base(basek(v)). 

Remark.  Notice that  tenacity(base~+l(v)) > tenacity(basek(v)), and even- 
level (base k+ 1 (V) ) < evenlevel(base k (v) ). 

Corollary 1. Let v be a vertex such that basek+l(v) exists, for k ~ Z +, and let p 
be any evenlevel(v) or oddlevel(v) path. Then every vertex on p(basek+l(v) to v] 
has tenacity <_ tenacity (base ~ (v) ). 

5. T h e  s ign i f i cance  b a s e  

We will use the notion of base to define blossoms in the next section. The 
other significance of base is that  a pa th  is an evenlewl(v)  pa th  iff it consists of an 
evenIevel(base(v)) path  concatenated with a minimum even-alternating pa th  from 
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base(v) to v. Thus the two paths can be found independently. A similar statements 
holds for oddlevel(v) paths. 

Definition. An even-alternating path (odd-alternating path) from u to v, is an 
alternating path of even (odd) length, starting with an unmatched edge. 

Lemma 7. Let u be a vertex occurring on an evenlevel(v) (oddleveI(v)) path p. 
Suppose u is even w.r.t, p and tenacity(u)>tenacity(v) .  Let q be an evenlevel(u) 
path and r be a minimum length even-alternating (odd-alternating) path from u 
to v. Then q and r meet only at u. 

Proof. Suppose not, and let (w,w I) be the lowest matched edge of q traversed by 
r, with w r even w. r . t . q .  If w ~ is even w.r.t, r, than by splicing parts of q and r, 
we can get an even (odd) path to v which is shorter than ]q] + [r[. However, by 
Theorems 1 and 2, p[ > [ql+[r[, leading to a contradiction. Suppose w ~ is odd w.r.t. 
r. Then q[f to w']or[~v' to u] is an odd path to u of length < ]p. We now get that  
tenacity(u) < tenacity(v) (in case p is a minlevel(v) path this is obvious, otherwise 
use Lemma 2). The contradiction proves the lemma. | 

Remark. We have considered only the case that u is even w . r . t . p .  This is so 
because of the manner in which we defined even-alternating and odd-alternating 
paths: they always start with an unmatched edge. The reason for this choice will 
become clear in Theorem 4. 

Notice that in general n may not occur on every evenlevel(v) path, e.g. see 
Fig. 10. 
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Theorem 4. Let v be a vertex of finite tenacity, and let b = base(v). Then, every 
evenlevel(v)(oddlevel(v)) path consists of an evenlevel(b) path concatenated with 
a minimum ]ength even-alternating (odd-alternating) path from b to v. 

Proof. Follows fl'om Lemma 7 and Theorem 3. 

Definition. Let b = base k (v), for k C Z +. Define evenlevel(v, b)(oddlevel(v, b)) to be 
the length of a shortest even-alternating (odd-alternating) path from b to v. The 
smaller of these two is called ~ninlevel(v, b), and the larger is called maxlevel(v, b). 

Corollaries 2 and 3 follow from Theorem 1 to 4. 
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Corollary 2. Let b = base(v), and let p be an evenlevel(v,b) or an oddlevel(v,b) 
path. Let u be even w.r.t, p with tenacity(u) = tenacity(v). Then, p[b to u] is 
an evenlevel(u,b) path. Moreover, if p is a minlevel(v,b) path then p[b to u] is a 
minlevel(u, b) path. 

Corollary 3. Let v be a vertex such that basel(v),base2(v), ... ,base~(v) exist. Let 
Pk be an evenlevel(basek(v)) path, and Pl be an evenlevel(basel(v),basel+l(v)) 
path, for 1 <_ l <_ k -  1. Finally, let Po be an evenleveI(v, basel(v))(odd - 
level(v,basel(v) ) ) path. Then pk opk_l o . . .opl  op0 is an evenlevel(v)(oddlevel(v) ) 
path, and P~-I o... opl op0 is an evenlevel(v, base~(v) )(oddlevel(v, base k (v))) path. 
Conversely, every evenlevel(v)(oddlevel(v)) path and every evenlevel(v, baselC(v) ) 
(oddlevel(v,basek(v) ) ) path is this form. 

6. Blossoms and their significance 

In this section we will define blossoms from the perspective of minimum length 
alternating paths. Theorem 5 gives the central result that  all shortest alternating 
paths from base(v) to v lie in a blossom. 

Definition. Let v be a vertex of finite tenacity, and let t be an odd positive integer 
such that  t >_ tenacity(v). Let k = min{j  �9 Z + I tenacity((baseJ(v)) >>_ t}, and I = 
min{j  e Z + I tenacity(baseJ (v)) > t}. Define base>_~(v) = base k (v), and base>t (v) = 
basJ(v). 
Remark.  Let p be an evenlevel(v) or oddlevel(v) path. Then by Corollary 1, every 
vertex on p(base>_t(v) to v] is of tenacity < t, and every vertex on p(base>t(v) to v] 
is of tenacity < t. 

Definition. Let b be an outer vertex, and t be an odd positive integer such that  t < 
tenacity(b) (b is chosen outer because the base of a vertex is always outer). The 
blossom of tenacity t having base b is the set 

Bb, t = {v �9 V l tenaeity(v ) <_ t and base>t@) -- b}. 

In general the vertices of a blossom may not even be connected by an alter- 
nating path. For example, in Fig. 10, Bb33={a ,e ,d , e , v ,9  }. 

Remark.  1). If  Edmonds '  algorithm is modified to 'shrink' sets of vertices in stages: 
at stage i, shrink all vertices of tenacity 2 i +  1, then 'macronodes '  obtained at the 
end of each stage correspond exactly to the blossoms defined above. 
2). For matched edge (u,v), u and v belong to the same blossoms. 

We will need the following properties of blossoms to prove Theorem 5. 

Lemma 8. Let B1 and B2 be two blossoms. Then either they are disjoint or one is 
contained in the other. 

Proof. Let B1 be a blossom of tenacity t l  and base bl, and B2 be a blossom of 
tenacity t2 and base b2. Let t l  < t2. Suppose v �9 B1 N B2. Then base>~ 1 (v) = bl 
and base>tu (v )= b2, then clearly B1 C_ B2 
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Consider the case bl r  Then,  base>t2(bl)=b2. Let u be any vertex in B1. 
Then  tenacity(u) < tl and baser1 (u) = bl. Therefore, base>t 2 (u) = b2. Therefore, 
u E B2. Hence B1 _C B2. 1 

The  proof  of the following lemma is s traightforward.  

Lemma 9. Let v be a vertex such that base l (v )= bt, base2(v)= b2,... ,base~(v)= 
b k. Let tenacity(v) = t o ,  and tenacity(bi) =ti ,  for 1 < i < k. Let B i be the blossom 
of tenacity t i-1 having base bi for 1 < i < k. Then BICB2 ~ . . .  ~ B  k. 

Proof.  Bi C Bi+l, for i = 1 , . . . , k  - 1 follows from the definition of blossom. 
Furthermore,  since b i is in Bi+ 1 - B i ,  proper  conta inment  follows. 

Lemma 10. Let b = basek(v), for k E Z +. Let p be an evenlevel(b) path, and let 
u C b  be even w.r.t, p. Then (u,v) is not an edge in the graph. 

Proof.  If  (u,v) is an edge, there is an odd pa th  to v of length less then evenlevel(b), 
giving a contradiction.  | 

Theo rem 5. Let v be a vertex of finite tenacity. Let b = base(v), t = tenacity(v), 
and Bb, t be the blossom having base b and tenacity t. Let p be an evenlevel(v,b) 
or an oddlevel(v, b) path. Then any vertex on p(b to v] is in Bb, t. 

Proof .  By L e m m a  1, it is sufficient to prove the theorem for ]p[ even. The proof  is 
by induct ion on evenlevel(v). For the base case, let v be a vertex of finite tenaci ty  
having the smallest evenlevel. Then  clearly ]pJ = 2, and since the matched neighbour 
of v is in Bb,t, the assertion holds. We prove the induct ion step below. 

Suppose p(b to v] contains a vertex not  in Bb, t. Let u be the highest such 
vertex on p; clearly u is even w . r . t . p .  First  consider the case Ip[u to v]l > 2. Let 
v ~ be the matched neighbour of v, and let w be the highest vertex on p(u to  v~). 
Now, w couldn ' t  be of tenaci ty  t because otherwise by Corollary 2, p[b to  w] is an 
evenlevel(w,b) path,  which contradicts  the induct ion hypothesis.  Therefore, te- 
nacity(w) < t. Let b t = base>_t(w), and let q be an evenlevel(w,b ~) path.  If  b ~ = 
b, qo (w, v ')o (v~,v) is shorter  even-al ternat ing pa th  from b to v (using Corollary 3, 
Lemma 9 and the induct ion hypothesis).  Otherwise, tenaeity(b ~) = t and b~E Bb, t. 
Let r be an evenlevel(b~,b) path.  Vertex v cannot  be on r (if it is even w.r.t. 
r, we get a shorter  pa th  from b to v, otherwise this contradicts  Lemma 10) or 
on q(b ~ to w] (because these vertices are of tenacity < t). Now, by the induct ion 
hypothesis,  r o q o (w, v') o (v', v) is a shorter  pa th  from b to v. 

Finally, consider the case Ip[u to vii = 2. Let b ~ = base>t(@, and let q be an 
evenlevel(u, b ~) pa th  and r be an evenlevel(b t) path.  By the induct ion hypothesis,  
q(b ~ to u] is in the blossom having base b ~ and tenaci ty  t, and before v r q. As before, 
v cannot  be on r. Since b is not  basek(u) for k E Z +, evenlevel(b)+ Ip[b to  u]l > 
evenlevel(u) = [rl+lq I. Therefore roqo(u,v ' )o(v ' ,v)  is a shorter  even pa th  to v than  
tha t  obtained by concatenat ing an evenlevel(b) pa th  with p. The contradict ion 
proves the induct ion step. 1 

The following feature of blossoms is being used in the above-stated inductive 
proof.' tha t  p is contained in a blossom, and therefore has a simple interface to the 
rest of the graph, th rough  the base of the blossom. 
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7. T h e  n e s t i n g  of  b l o s s o m s  

The nesting of blossoms is described in Lemma 11. Notice that  in Fig. 2, 
the evenlevel(e,b) path  either enters or exists from blossoms nested in Bb,15 at 
their base (i.e. vertices g and e), and each blossom is used at most once. This is 
established in Theorem 6. As a consequence, the part  of this pa th  in the nested 
blossom is a minimum length alternating path; this is shown in Corollary 4. These 
properties of paths w.r.t, the nested blossom structure reveal the reason for BFS 
dishonesty. 

Lemma 11. Let  Bb, t be a blossom of  tenacity ~ having base b. Let  C = {v I tena- 
ci ty(v)  = t and base>t -- b}. For u ~ C U {b}, let Bu = {v I tenaci ty(v)  < t and 
base>t(v)=u}. Then Bb,t=CU( U Bu). 

ucCU{b} 
Proof. Let v E Bb,t. If tenaci ty(v)  = t, then base(v) = b and v E C. Suppose tenaci-  

ty(v)  < t. Then basek(v) = b, for some positive integer k. If k = 1, v E t35. Otherwise, 
let u = base k-1  (v). Clearly, tenaci ty(u)  <_ t. If tenaci ty(u)  = t, then u E C, and v E 
Bu. If tenaci ty(u)  < t, then v E B b. Containment in the other direction is obvious. | 

Definition. Let B1 and B2 be two blossoms. If B1 is a proper subset of B2 then we 
will say that  B1 is nested in By. If furthermore there is no blossom 133 such that  
B I ~ B 3 ~ B 2  then B1 is properly nested in By. The nesting depth of blossom B is 
defined recursively as follows: if B has no properly nested blossoms then its nesting 
depth is 0. Otherwise, among the blossoms properly nested in B, let B ~ have the 
largest nesting depth, and let/~ be the nesting depth of B r. Then the nesting depth 
of B is /~+1.  

Lemma 12. Let  u E C  as defined in Lemma 11, and v C B u .  Then, 

minIeveI(v ,b)  > evenlevel(u,b) ,  and 

maz leve l (v ,  b) < oddlevel(u, b). 

Proof. The proof follows from Corollary 2, and the fact that  tenaci ty(v)  < tenaci- 
ty(u). I 

Theorem 6. Let  v be a vertex of  tenacity t in bIossom Bb,t, and p be an even- 
level(%b) or an oddlevel(v,b) path.  Then p enters and exits from any blossom 
properly nested in Bb,t, say Bu,  at mos t  once. I f  so, p mus t  either enter or exit 
from the blossom and its base, Bu U {u} at  its base u. 

Proof. By Lemma 1, it is sufficient to prove the theorem for IPl even. The proof is 
by induction on evenlevel(v,b)  for vertices of tenacity t in Bb, t. For the base case, 
let v be such a vertex having smallest evenlevel(v ,b) .  Clearly, any vertex of tena- 
city < t on p must be in the nested blossom B b. Let w be the highest such vertex 
on p. Then by Theorem 4, p(b to w] is in BD, proving the assertion. We prove the 
induction step below. 

Suppose p enters and exits at least one blossom properly nested in Bb,t more 
than  once. Let Bu be the last such blossom on p. The proof of the base case shows 
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that  u ~ b. Let w be the first vertex of p in Bu U {u}, and w ~ be the last. If  either 
w = u or w1= u, then by Theorem 5 we can get a shorter even-alternating path  
from b to v which uses Bu 'properly ' .  Otherwise, let q be an evenlevel(u,b) path; 
by Lemma 12, ]ql < [P[, and therefore by the induction hypothesis q satisfies the 
condition. By Corollary 2 any vertex of tenacity t must be at its correct distance on 
q; moreover since u is outer, this must be its minlevel distance. Therefore, q must 
enter a set B u, U {u'} at u' .  Assume that  p(b to w] and p[w' to v] both  intersect 
q; the remaining cases are simpler. A vertex of tenacity t on qAp[w ! to v] must 
occur at its maxlevel distance on p. Now, if B u, is a blossom such that  u p occurs 
on q then p[w ! to v] must enter Bu, at most once (since Bu is the last 'misused'  
blossom on p), and must exit the set B u, U{u} at u ~. Let x be the first vertex of 
p[w ! to v] which is on q and has tenacity t. By Theorem 5, q[x to u] concatenated 
with an evenlevel(w,u) path  is shorter than p[x to w]. Therefore, if p(b to w] does 
not intersect q[x to u], we can get a shorter even pa th  from b to v. Otherwise, let y 
be the first vertex ofp(b to w] on q[x to u]. First assume tenacity(y)=t. I f y  is odd 
w.r.t, q, then since q[y to u] concatenated with an evenlevel(w',u) path  is shorter 
than p[y to w~], we can get a shorter pa th  to v. Otherwise we can use q[y to x] 
instead of p[y to x]. Next suppose tenacity(y) < t, and y E Bu,. Then, p[x to y] is 
an even length alternating pa th  from x to y. But the shortest such path  is obtained 
by concatenating q[x to u ~] with an evenlevel(y,u ~) path  (this pa th  does not use 
Bu). Again, this gives a shorter pa th  to v. The contradiction proves the induction 
hypothesis. | 

Remark.  If p is a minlevel(v,b) path  then all properly nested blossoms used by p 
are entered through the base. On the other hand suppose p is maxlevel(v,b) path 
and uses nested blossoms B1. . .  Bk in this order. Then, either all of these blossoms 
are entered through the base or all are exited through the base, or ~i, 1 < i < k such 
that  B1. . .  Bi are entered through the base Bi+l. . .  Bk are exited through the base. 

Corollary 4. Suppose p enters (exits) the set Bu U {u} at u and exits (enters) at 
w .  Then pin to w] is an evenlevel(w,u) path and therefore evenlevel(w) = even- 
levd( )+ to w]J. 
Proof. Follows form Theorem 5 and 6, and the minimality of p. 

Remark.  Theorem 6 and Corollary 4 are also true for any blossom nested (not 
necessarily properly) in Bb, t. This can proven by an easy induction on the nesting 
depth of Bb, t. 

We can now explain why minimum length alternating paths are BFS dishonest 
in general graphs. Let p be a maxlevel(v,b) path  that  enters Bu U {u} at vertex 
w ~ u .  By Theorem 4 and 5, every oddlevel(w, b) path  consists of an evenlevel(u, b) 
path  concatenated with an oddlevel(w,u) path; the latter path  is contained in Bu. 
Therefore ]p[b to w]l > oddlevel(w,b). However, this is consistent with Theorems 1 
and 2 since tenacity(w) < tenacity(v). The following corollary complements The- 
orems 1 and 2 for case tenacity(w) < tenacity(v) and gives additional constraints 
that  minimum length alternating paths must satisfy despite their BFS dishonesty. 
It  can be proven by an easy induction on IPl. 

Corollary 5. Let p be an evenlevel(v) or an oddlevel(v) path,  and w be a vertex 
of finite tenacity on p. Then base(w) is also on p; moreover, p[base(w) to w] is an 
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evenlevel(w, base(w)) or an oddlevel(w, base(w)) path, depending on the parity of 
Ip[base(w) to w]l. 

8. E v e r y  max leve l  p a t h  c o n t a i n s  a b r i d g e  

We will prove that every edge on the path from base(v) to v has tenacity < 
tenacity(v). This is followed by the last structural theorem: that a maxlevel(v) 
path contains a unique bridge of tenacity tenacity(v). Theorem 7(b) shows how 
v can be obtained by searching down from the bridge; this fact will eventually be 
used in DDFS. Theorem 7(c) gives a relationship between the even. and oddlevels 
of the endpoints of the bridge and tenacity(v). This is used in Lemma 15 to prove 
that bridges are found 'well in time' to make the synchronization work. 

Lemma 1~. Let p be an evenlevel(v,b) or an oddlevel(v,b) path, where b=base(v). 
Then, all edges on p h~ve tenacity <_ t, where t=tenacity(v) .  

Proof. By induction on the nesting depth of Bb,t, for the base case, suppose Bb, t 
has nesting depth 0. Then every vertex on p(b to v] has tenacity t. So by Lemma 1, 
every matched edge on p has tenacity t. Let (u,u ~) be an unmatched edge on p, with 
u even w.r . t .p .  Since u and u / occur at the correct distance on p, and tenacity(u ~) = 
t, it follows that evenleve l (u~)=t-evenleve l (u) -1 .  This gives tenacity(u,u~)---t. 

We now prove the induction step. Suppose p enters (exits) the set Bu U {u} in 
u and exits (enters) in w. Then, by Corollary 4, and the induction hypothesis, all 
edges on p[u to w] have tenacity< t. Of the remaining edges on p, the tenacity of 
matched edges is t since they are incident on vertices of tenacity t. Finally consider 
a remaining unmatched edge (z, z~), If both endpoints have tenacity t (or more, 
since b may be an endpoint), then z and z ~ occur at the correct distance on p, and 
the argument of the base case applies. Otherwise suppose tenacity(z) = t and te- 
nacity(z ~) < t. Let b ~ = base>_t(z~); by Theorem 6, b ~ must be on p. Now, using 
Corollary 4 and the fact that b ~ must be at the correct distance on p, it is easy to 
see that tenacity(z,z  ~) =t. This proves the induction step. | 

Theorem 7. Let v be a vertex of ~nite tenacity, say t, and let p be a maxlevel(v) 
path. Then 
(a) There is unique bridge of tenacity t on p. 

Proof. We will first show the existence of such a bridge and then its uniqueness. 
Let b=  base(v), and let set S consist of all vertices on p[b to v] which have tenaci- 
ty > t. By Theorem 2, these vertices occur at the correct distance on p. Partition 
S into two sets: Smin(Smax) consists of vertices of S which occur at their minlevel 
(maxlevel) distance on p. Notice that b E Smin and v E Smax. Let w be the highest 
vertex of p in Stain, and let w ~ be the lowest vertex of p in Sm~x. Notice that all 
vertices of Stain lie on p[b to w] and those of Smax on p[w ~ to v]. 

First suppose (w,w') is a matched edge. Clearly, oddlevel(w) = IP[f to w]l 
and oddlevel(w') = t -  Iq[f to w']l giving tenacity(w,w') = t. Moreover~ since the 
minlevel of both w and w ~ is odd, (w,w/) is not a prop, and is therefore a bridge: 

In the remaining case, w and w ~ are both outer vertices, and all vertices on 
p(w to w% if any, are of tenacity <t. By Theorem 6, these vertices must be either 
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in Bw or B~v,, i.e. blossoms of t enaci ty  < t - 2 having base w and w / respectively. 
Let x be the highest ver tex  of p(w to w/) in Bw; if there  is no such vertex,  let x = 
w. Let  x '  be the  first ver tex  on p(x  to w']. Clearly (x ,x ' )  is unmatched;  we will 
show tha t  (x ,x  ~) is a bridge of tenaci ty  t. 

By  Corol lary 4, even leve l ( x )=  IP[f to x] I, and evenlevel (x  I) = evenlevel (w I) + 
Ip[w' to x']l. Also, evenlevel(w')  = t - l P [ f  to w']l. This  gives t e n a c i t y ( x , x  1) = t. 
Now, x ~ is not predecessor of x; if x = w, the predecessor of x is its ma tched  
neighbour,  and otherwise the predecessor of x is in Bw. Similarly x is not a 
predecessor of x I, and so (x ,x  l) is a bridge. 

We finally prove uniqueness.  Let  (u ,u  ~) be an edge on p[b to w] wi th  u ~ higher 
t han  u. If  t enac i ty (u  ~) = t, u is a predecessor of u ~, and so (u, u ~) is a prop.  Otherwise  
by L e m m a  13, (u ,u  t) is of tenaci ty  < t. The  same applies for an edge (u ,u  ~) on 
p[w! to v] wi th  u higher t han  u I. Also~ by L e m m a  13, edges on p[w to w ~] other  t han  
( x , J ) ,  if any, are of t enac i t y<  t. Final ly  consider edge (u ,u  ~) on p[f  to b], wi th  u ~ 
higher than  u. I f  t enae i ty (u  ~) > t, u is a predecessor of u ~. Otherwise  by Corol lary 5, 
base>_t(u') must  be on I f  to u ' ) ,  and so by L e m m a  13, t e n a c i t y ( u , u ' ) < t .  | 

The  following definition and extensions of T h e o r e m  7(a) give algori thmica!ly 
useful facts; their  proofs follow from the proof  of T h e o r e m  7(a). 

Definition. Let  v be a ver tex  of tenaci ty  t. We will say t ha t  ver tex  u is predt,  of v 
if either: 

(i). u is a predecessor of v and tenaci ty(u)  > t, or 
(ii). there  is a predecessor,  u / of v, such tha t  

t enaci ty (u  I) < t, and 

u = base>~(u'). 

Define pred* - t to be the reflexive, t ransi t ive  closure of the  relat ion predt.  

R e m a r k .  If  v is outer,  then  only the  ma tched  neighbour  of v is predt of v. Thus  
(ii) applies only for inner vertices. In this case, there  is an odd-a l te rna t ing  p a t h  
f rom u to v of length minleve l (v )  - min leve l (u)  whose internal  vertices are all in 
the  b lossom Bu, t -2  (because a minleve l (v )  p a t h  consists of  an evenlevel (u  ~) p a t h  
conca tena ted  with  the  edge (ul ,u)) .  

T h e o r e m  7(b). Let  (x ,x  ~) be the unique bridge of  tenacity t on p. I f  t e n a c i t y ( x ) < t  
then let Yo =base>_t(x), otherwise let Yo = x .  Similarly, i f  t enac i ty (x  ~) < t then zo = 
base>t(xl),  otherwise let zo = x ~. Then there is a set of  distinct vertices Y l , . . .  i Yk, 
z ] , . . . , z  1 such that  
(i). Yi+l is predt  of  yi, for O<i  <k ,  and b is predt of  yk, where b=base(v) .  
(ii). zi+l is predt  of  zi, for 0 < i < l ,  and v is predt of  z 1. 
(c) :  I f  (x ,x ' )  is matched then oddlevel(x)  = oddlevel(x')  = ( t -  1)/2.  I f  (x ,x ' )  is 
unmatched then either evenlevel  ( x ) < ( t - 1 )  / 2 or tenaci ty(  x ) < t, and either even- 
leveI(x')  <_ ( t -  1)/2 or  tenaci ty(  x')  < t. 

The  following l e m m a w i l l  be used in the  proof  of T h e o r e m  9. 

L e m m a  14. Let  v0 be a vertex of  tenacity t, and vl  , . . . , vk be dist inct  vertices such 
that  vi is predt of  v i -1  for 1 < i < k. I f  v ] , . . . , v k - 1  are of tenacity t and tenaci-  
ty(vk)  > t then vk = base(vo). 
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Proof. By the remark following the definition of predt, there is a path  p from vk 
to v0 of length minlevel(vo)-evenlevel(vk) By the definition of predt, p is part  of 
a minlevel(vo) path. Now, since all vertices on p, other than vk, have tenacity <_ t, 
it follows that  base(vo)=vk. | 

Remark.  Let G(V, E) be a graph and M be a matching in it. Construct  a new graph 
GI(V I, E I) as follows: on each unmatched vertex of G add a new matched edge, and 
connect the other endpoints of these edges via unmatched edges to a single new 
unmatched vertex f .  Now, there is an obvious one-to-one correspondence between 
evenlevel(v) and oddlevel(v) path  in G and G',  for v c V: simply remove the first 
tWO edges of a path  in G ~ to obtain the pa th  in G. (Notice that  the first two edges 
are props, since they give minlevels.) So, the evenlevel and oddlevel increases by 2 
and the tenacity by 4 in going from G to G ~. Therefore, Theorems 1 and 2 are true 
for G as well. Henceforth, let m denote the length of a minimum length augmenting 
pa th  in G. For v C V of finite tenacity, let us say that  the bases of v is defined if 
base(v) ~ f in G ~. Notice that  following is an alternative characterization of such 
vertices: on any evenlevel(v) or oddlevel(v) path  in G, there is a vertex of tena- 
city > tenacity(v). (Clearly, if tenacity(v) < m, the base of v is defined.) For such 
vertices, Theorems 3 to 6 hold in G as well because of the above-stated one-to-one 
correspondence. Finally, Theorem 7 holds for all vertices, v, in G because the first 
two edges on any evenlevel(v) or oddlevel(v) path in G'  are props. 

9. P r o c e d u r e  M I N ,  a n d  t h e  ro le  o f  a n a m o l i e s  

Procedure MIN finds minlevels of vertices, and it also determines whether 
an edge is a prop or a bridge. MIN examines an edge (u,v) at most once (MIN 
marks edges that  it examines 'used' so they don' t  get examined again). If (u, v) is 
unmatched (matched), MIN examines this edge while searching from the endpoint 
having smaller evenlevel (oddlevel); ties are broken arbitrarily. Let us assume tha t  
(u,v) is examined from v. If at this stage MIN gives u its minlevel then (u,v) is a 
prop, otherwise it is a bridge. 

If the search level i is even, MIN examines unmatched edges incident at vertices 
having evenlevel i. Suppose evenlevel(v)= i, (u,v) is unmatched and has not yet 
been examined by MIN. The following cases arise (we will assume that  at the 
beginning of the phase, the evenlevels and oddlevels of all vertices are initialized to 
~ ) :  

(i). minlevel(u) = ~ : minlevel(u) is set to i + 1, v is inserted in the set of 
predecessors of u, and (u,v) is marked a prop. 

(ii). minlevel(u)= i + l : v  is inserted in the predecessor list of u, and (u, v) is 
marked a prop. 

(iii). rninlevel(u)< i and evenlevel(u) is finite: (u,v) is marked a bridge and 
is inserted in the set of bridges of tenacity (evenlevel(u) + evenlevel(v) + 1). (See 
Fig. i1.) 

(iv). minlevel(v)<i and evenlevel(u)= c~; v inserted in the set of anamolies 
of u, and (u, v) is marked a bridge. (We will a give a precise definition of anamolies 
below and will explain their significance. See Fig. 12 for an example.) 
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If the search level i is odd, MIN examines matched edges incident at vertices 
having oddlevel i. Suppose oddtevel(v)= i, and matched edge (u,v) has not yet 
been examined by MIN. The following cases arise: 

(i). minlevel(u) = co: minlevel(u) is set to i + 1, v is inserted in the set of 
predecessors of u, and (u,v) is marked a prop. 

(ii). minlevel(u) is finite: in this case, oddlevel(u)=i. Edge (u,v) is marked a 
bridge and is inserted in the set of bridges of tenacity(oddlevel(u)§ 
Definition. The following definition follows from case (iv). We will say that  v is 
a~ anamoly of u if (u,v) is an unmatched edge, u is inner, and oddlevel(u) < 
evenlevel(v) <_ (tenacity(u)- 1)/2. In this case (u, v) is called an anarnoly. 

From the above definition it is clear tha t  an anamoly is a bridge, and that  te- 
nacity(u,v) > tenacity(u). Notice that  MIN is able to determine the tenacity of 
all bridges other than anamolies. In case (iv), tenacity(u,v) cannot be determined 
since evenlevet(u) is not yet found. At search level (tenacity(u)- 1)/2, MAX will 
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find evenlevel(u) and will determine the tenacity of all anamolies of u, including 
(u, v). This is well in t ime for calling DDFS with bridge (u, v) since tenacity(u, v) > 
tenacity(u). 

Notice that  anamolies were not mentioned in the structure developed in The- 
orems 1 to 7. Anamolies are an algorithmic convenience, and the above-stated 
manner of handling them leads to the synchronization mentioned in Section 2. 

10. D o u b l e  d e p t h  f i rs t  s e a r c h  

Procedure MAX uses a new graph searching algorithm: double depth first 
search (DDFS), We will first describe and prove correctness of this algorithm in the 
following simple setting: 

Definition. A directed graph H(S, T) with distinguished vertices a, b E S is said to 
be layered if S is parti t ioned into sets Sn,Sn-1, . . . ,So,  called layers, such that:  

(i). every edge goes from a higher numbered layer to a lower numbered layer (not 
necessarily consecutive), and 

(ii). Vertices in $7~(So) have positive outdegree (indegree), and those in Sn-lU...US1 
have positive indegree as well as outdegree. 

If u E Sk, then level(u)= k. The distinguished vertices a and b can be at any levels. 
Vertex s c S t is said to be a bottleneck if for every vertex u having level <_ l, every 
pa th  from a to u and from b to u contains s, and moreover s is the highest leveled 
such vertex. We will assume that  (u, v) represents the directed edge from u to v. 

The problem is to determine if there is a bottleneck. Also (we will assume that  
a and b are initially marked 'L '  and 'R' respectively): 

(i). if there i s a  bottleneck, say s E St, to find it. Furthermore, to mark 'L' or 
'R '  (corresponding to left and right) all vertices having level > 1 which are reachable 
from a or b. If such a vertex, u, is labeled L(R) then there is a pa th  from a(b) to u 
consisting of L(R) marked vertices. There also two paths, one from a to s and an 
other from b to s consisting of L and R marked vertices respectively. 

(ii). if not, to find vertices c and d c  So, and vertex disjoint paths from a to c 
and b and d. 

DDFS accomplishes this task in linear (i.e. o(Irl)) time. It  simultaneously 
grows two vertex disjoint DFS trees TL and TR rooted at a and b, consisting of 
L and R marked vertices respectively. DDFS maintains two centers of activity, 
CL i andcR which start  at a and b respective. As in the usual DFS, if a center of 
activity moves from u to v, then p(v) =u, i.e. u is made the parent of v. Also, if a 
center of activity is at u and all outgoing edges from u have been examined, then 
the center of activity moves to p(u); this important  step is called backtrackin 9. A 
pidgin Algol description of the procedure appears on the next page; for the sake of 
visual clarity we have used indentation to demarcate statements.  
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begin 
Mark each vertex 'unvisited' and each edge 'unused'; 
C L +-- a; 

e R e - b ;  
barrier e-  b 

Lloop: 

Rloop: 

while n o t [ l e v e l @ L ) = l e v e l @ R ) =  0] do begin 
while [level(eL)>>_ (cR)] do begin 

mark CL 'L '  and 'visited'; 
for each unused edge ( e L , u )  do begin 

mark ( e L , u )  'used'; 
if u = cR then 

cR ~p(cR); 
p(u)  e -  eL; 
e L +-- ~ ;  

goto Rloop; 
else if u is not visited then 

p ( u )  +--- eL ;  

e L +--~;  

end; 
if CL = a then HALT 

else cn ~--P(CL); 
goto Lloop; 

end~ 
while [ leve l (cR)  > level(CL)] do begin 

mark e R ' R '  and 'visited' 
for each unused edge (cR, u) do begin 

mark (cR,u) 'used'; 
if u is not visited then 

p(u)  ~- eR; 
c R ~ - u ;  
goto Rloop; 

end; 
if eR 5r barrier then C R ~--p(cR) 

else barrier ~ c L; 
e R e - e L ;  

eL e - p ( c n ) ;  
goto Lloop; 

end; 
end; 

end; 

�9 .. ~eL and cR meet 

... /bott leneck found 
�9 .. /CL backtracks 

. . .  / c  R backtracks 

... /barrier updated 

/CL backtracks 

We now describe how the two DFS's are coordinated: we will first present 
and prove a quadratic time version of DDFS, and later make it linear time. If CL 
and cR are at different levels then the higher one grows its tree, and otherwise CL 
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grows its tree; the latter choice is arbitrary. The reflexive transitive closure of the 
relation parent is called ancestor. The ancestors of CL(CR) give a directed pa th  
from a to eL (b to oR) consisting of L(R) marked vertices; these vertices will be 
called the left active (right active ) vertices. The most important  step is dealing with 
the situation that  r L and c R meet at a vertex w. In this case, first c R a t tempts  
(another arbi trary choice) to find a new path  from a right active vertex having 
level <_ level@L), by backtracking and finding new outgoing edges from right active 
vertices in the usual DFS manner. (Clearly, the pa th  found will s tart  at the lowest 
possible right active vertex.) If c R succeeds, then w is included in TL (i.e. marked 
'L ' ) ,  and the search proceeds. Otherwise, eL at tempts  to find a pa th  from a left 
active vertex to a vertex having level <_ level(w). If CL succeeds, then w is included 
in TR (i.e. marked 'R ' ) ,  and the search proceeds. If CL also fails, then w is the 
bottleneck, and DDFS halts. In this case, w is not included in T L or T R. In the 
first two cases, p(w) is appropriately set, depending on whether w is included in TL 
or TR. Finally, DDFS halts if CL and cR are both at distinct level 0 vertices. 

It  easy to check that  DDFS maintains the following invariant: any vertex that  
is visited (i.e. in TL U TR) but not active has been backtracked from. (Notice 
that  there may be right active vertices that  have already been backtracked from; 
however, every left active vertex has not been backtracked from.) It follows that  
if DDFS halts at vertex s, then every vertex visited, other than s, is backtracked 
from. Using a straightforward proof by contradiction, one can now show tha t  s 
is indeed the bottleneck, and furthermore, DDFS would have visited every vertex 
reachable from a or b and having level < level(s). The remaining requirements 
follow from the fact that  at any point in the algorithm, there is a pa th  from a to 
CL (b to cR) consisting of L(R) marked vertices. 

The above-stated algorithm follows any outgoing edge at most once. However, 
notice that  c R may backtrack from a vertex several times. (Though CL backtracks 
from a vertex at most once because any left active vertex is not yet backtracked 
from.) This leads to an O(ISI 2) running time. The algorithm is made more efficient 
as follows: initially, a barrier is placed at b. When CL and c R meet at a vertex, 
say w, c R backtracks only up to the barrier. If it fails to find an alternative path,  
it includes w in T R and it moves the barrier to w. The right active vertices now 
include the ancestors of e/~ from eR to the barrier only. The above-stated invariant 
is still maintained; in addition we have that  any active vertex (left or right) is not 
yet backtracked from. This yields the following: 

Theorem 8. DDFS accomplishes the above-stated tasks, (i) and (ii), in O(ITI) time. 
More precisely, i f  it ends with a bottleneck s, then the time taken is O(tT'I)  , where 
T ~ is the set of edges which are on a path from a or b to v. 

11. U s i n g  D D F S  to  f ind  t h e  s u p p o r t  o f  a b r i d g e ,  a n d  p r o c e d u r e  M A X  

We will first show how DDFS can be used to find the support  of a bridge in 
an idealized setting. Let (u,v) be a bridge of tenacity t_< m, where m is the length 
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of a minimum length augmenting path in G. Let 

u if tenacity(u) -- t 
u 0 =  base>_t(u) o.w. 

v if tenacity(v) = t 
v 0 =  base>t(v) o.w. 

This is illustrated in Fig. 11. Let H(S,T)  be the directed graph consisting of 
vertices S =  {w E V iw is pred~ of u0 or v0}, and edges T =  {(w,w') iw,  w' E S, and 
w ~ is predt of w}. Parti t ion vertices in S into layers according to their minleveis, 
thereby obtaining a layered graph H(S, T). 

Proposition 1. Suppose DDFS is run on graph H(S,T)  with distinguished vertices 
uo and vo. Then: 

(i). i f  DDFS terminates with bottleneck s, then the set of vertices visited by 
DDFS, other than s, constituted support (u,v). 

(ii). if  DDFS terminates at two unmatched vertices f and f~ , then there is 
a minimum length augmenting path from f to f l  containing (u,v). In this case 
tenacity(u, v) =m.  

Proof. (i). Suppose w C support(u,v). By Theorem 7(b), w E S. If the base of w 
is defined then let b=base(w), otherwise let b be any unmatched vertex at which a 
minlevel(w) path starts. By Theorem 7(b), b E S, and there are two disjoint paths 
in H(S,T) ,  one from u0 (say) to w and the other from v0 to b. Since minlevel(w) > 
minlevel(b), w is above the bottleneck and will be visited. 

For the other direction, first note that  s must be outer, since inner vertices 
in S have only one incoming edge. Suppose w 7~ s is visited by DDFS; assume 
w.l.o.g, that w is outer and is marked L, and that  u0 and v0 are marked L and R 
respectively. Then there is an L marked path, Pl, from u0 to w and an R marked 
path, P2, from v0 to s in H(S,T) .  

Let x , y E S ,  with x predt of y. I f x  is a predecessor of y then (y,x) is an 
edge in G. Otherwise, by the remark following Theorem 7(a), there is a path 
from x to y of length minlevel(y) -minleveI(x)  in G. Using this fact (and since 
the paths mentioned above will be in distinct blossoms), it is easy to see that 
corresponding to Pt and P2 there are disjoint paths in G: p~ from w to u0 of length 
minlevel(uo) -minleveI(w),  and p~ from s to v0 of length minlevel(vo) - m i n -  
level(s). I~et p~ be an evenlevel(s) path. Now, p~, p~ and (u,v), together with 
an evenlevel(u, uo) path (if u0 7 ~ u), and evenlevel(v,vo) path (if v0 7 ~ v) gives a 
maxlevel(uo) path. This path concatenated with p~ gives an oddlevel(w) path of 
length t -minlevel (w) .  This proves that  tenacity(w)=t and w E support(u, v). 

(ii). There are two disjoint paths, one from u0 to f and the other from v0 to 
f ' ,  in H(S,T).  As in (i), these correspond to disjoint paths in G which yield an 
augmenting path from f to f~. I 

Remark. The bottleneck s found in case (i) will be the base of a blossom iff te- 
nacity(s) > tenacity(u,v). Fig. 13(@ shows an example in which tenacity(s1) = 
tenacity(u1, vl ). 

Let the search level be i. MAX imposes an arbitrary ordering on the bridges 
of tenacity 2 i+1 ,  say gl,g2,.. .  ,gk, and calls DDFS with the bridges in this order. 
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For the purposes of efficiency, the working of DDFS is different in two ways from 
the above-stated idealized setting. We explain the differences below. 

Firstly, a vertex may be in the support  of more than one bridge. For example 
vertex w in Fig. 13(a) is in support  of (Ul, vl) and (u2, v2). Now, w will be visited by 
MAX only once and will be assigned to one bridge: to (Ul, vl) if DDFS is called with 
(Ul,Vl) before (u2,v2), and to (u2,v2) otherwise. Define petal(gi)=support(g1)- 
[.J support(gj). DDFS finds the petals of gl ...gk, rather  than their supports. 

j < i  
Notice that  unlike blossom and support  which are graph-theoretically defined, 
petals are algorithmically defined since they depend on the ordering imposed on the 
bridges. Suppose (u l ,v l )  is processed before (u2,v2) in Fig. i3(a). The first DDFS 
ends with bottleneck sl (notice that  tenacity(s1) = tenaeity(ul, Vl)), and the second 
with s2. Define the base of a petal  to be its bot t leneck.  Thus base(petal(u1, Vl))=  
sl and base(petal(u2,v2)) = s2. Also, if w E petal(u,v), define base(w) to be 
base(petal(u,v)). If the newly found petal  is non-empty as an implementational 
convenience, DDFS creates a new node; all the vertices of the petal  point to the 
node, and the node points to the base. This is illustrated in Fig. 13(b) and 14. 
These figures also show the 'L' and 'R' marks left by DDFS. 

u[ YI u2 Y2 

I I I I 

I / I 
I I I 

I I 

Fig. 13 

Ul Pl g2 122 

I I I 

b) 

The second difference is that  the graph H(S,T) is not constructed explicity; 
DDFS is run on graph G(V,E) itself as follows. Suppose the center of activity 
is at v and u is a predecessor of v. If  u is not in any petal, then the center of 
activity moves to u. Otherwise (in this case tenacity(u) < tenacity(v)), the center 
of activity moves to base*(u). The function base*(u) is defined below: 

f u n c t i o n  base* ( u ) 

if u is not in a petal  then return u 

else return base*(base(u)). 

end; 

One more point needs to be mentioned. Suppose DDFS is called with bridge (u,v). 
If u is in a petal, then the left center of activity starts from base*(u); similarly for v. 
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Having found the vertices of tenacity 2 i §  1, MAX determines their maxlevels. 
For each such vertex v, and for each anamoly u of v, MAX also determines the 
tenacity of bridge (u,v). 

12. P r o o f  o f  c o r r e c t n e s s  o f  M I N  a n d  M A X  

In Theorem 9, we will show why the synchronization works, and we will 
establish several properties of petals and buds in order to prove the correctness 
of MIN and MAX. 

Theorem 9. Let m be the length of a minimum length augmenting path in G. Then 
MIN and M A X  correctly find the minlevel of all vertices having minlevel < m and 
the maxlevel of all vertices having tenacity < m. 

Proof. By induction on i, the search level, we will prove the following stronger 
statement:  

Induction Hypothesis.  Let t = 2i + 1. At the end of search level i: 
1) all vertices v s.t. minlevel(s) < i + 1 get their correct minlevel; the remaining 
vertices have their minlevel set at oo. 



104 V.V. VAZIRANI 

2) all vertices v s.t. tenacity(v) <_ t get their correct maxlevel, and are assigned a 
petal. The petal  of vertices of higher tenacity is still undefined, and their maxlevel 
is set at cx~. 
3) for any vertex v s.t. tenacity(v)<t,  base*(v)=base>t(v). 

The hypothesis is clearly true for search level 0. Assmning its t ru th  for search 
levels< i, we prove it true for search level i. 
(1.) At the beginning of search level i the following holds: if i is even (odd), 
every vertex u having an evenlevel (oddlevel) of i would have gotten it. (If rain- 
level(u) = i, this follows from (1). If maxlevel(u) = i, then tenacity(u) < 2i - 1, 
and the assertion follows from (2)). Suppose min leve l ( v )= i+  1, and let (u,v) be 
the last edge on a minlevel(v) path. By the above-stated fact, MIN will find v 
while searching from u. In this manner,  MIN finds all the predecessors of v, and is 
correctly able to distinguish props from bridges. 
(2.) This involves proving the following three statements: (i). All bridges of tenacity 
2i + 1 are found at the end of execution of MIN during search level i. 
(ii). When called with bridge (u,v), DDFS finds support(u,v). 
(iii). For every vertex v, every maxlevel(v) path  contains a bridge having tenaci- 
ty = tenacity(v). 
Statement (iii) is proven in Theorem 7. Since MIN correctly distinguishes between 
props and bridges, to prove the first s tatement,  we only need to show that  the 
tenacity of bridges is determined 'well in time';  this is done below in Lemma 15 for 
bridges having non-empty support.  

Let g l ,g2- . .gk  be an arbi trary ordering imposed by MAX on the bridges of 
tenacity t = 2 i +  1. By induction on j ,  we will prove that  when DDFS is called on 
gj it finds petal(gj), thereby proving the second statement.  

The induction basis follows from Proposition 1 and induction hypothesis (3), 
because DDFS is essentially being run on the associated graph H(S,T) .  We prove 
the induction step below. 

Consider the situation when DDFS is called with bridge gj. We make the 
following observations: Suppose vertex v is in petal, and suppose u, a predeces- 
sor of v, is not a petal. Then clearly u = base*(v). Secondly, if vertex v is in 
a petal and tenacity(v) = t, then bud*(v) is pred~ of v. From the first observa- 
tion it follows that  if DDFS arrives at v, it is sufficient to continue search from 
bud*(v) only. From the second observation it follows that  DDFS visits all ver- 
tices in support (g j ) -  Ul<jpetal(gl).But by the induction hypothesis~ this set is 

support ( gj ) - Ul <j supp~ ) = petal ( gj ). 
(3 0 Let v be a vertex of tenacity t, and b = bud*(v) at the end of search level i. 
Clearly, b is pred~ of v. Since b is not in the support  of any bridge of tenacity t, 
tenacity(b) > t. Now, by Lemma 14, base(v) = b. Next suppose tenacity(v) < t. 
Let b' be bud* (v) at the end of search level i -  1. By induction hypothesis (3), b ~ = 
base>t(v ). If tenacity(b') >t ,  b ~ will be bud*iv ) at the end of search level i also. If  
tenaeity(b 0 = t, b = bud*(b I) will be base*(v) at the end of search level i. By the 
above-stated argument,  b = base>~(v). | 

Remark.  Let b be an outer vertex of tenacity > t, and let Bb, t be the blossom having 
base b and tenacity t. Then, hypothesis (3) implies that  at the end of search level 
i, the set {vEVIbud*(v)=b}=Bb,  t. 
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Lemma 15. Let (u,v) be a bridge of tenacity 2i + 1 having non-empty support. 
Assuming the induction hypothesis of Theorem 9, the algorithm will determine the 
tenacity of (u,v) by the end of execution of MIN during search level i. 

Proof. Suppose (u,v) is matched. By Theorem 7(e), oddlevel(u)= oddlevel(v)=i. 
Therefore, during the execution of MIN during search level i, (u, v) will be examined 
and its tenacity will be ascertained. 

Next suppose (u, v) is unmatched. W.l.o.g assume evenlevel(u) <_ evenlevel(v). 
Since tenacity(u,v)= 2 i + 1 ,  evenlevel(u)< i. Edge (u,v) will be examined from 
u at search level evenlevel(u). If evenlevel(v) is determined at this stage, tenaci- 
ty(u,v) is ascertained. Otherwise, evenlevel(v) must be > i. If  so, by Theorem 7(c), 
tenacity(v) < 2 i + 1 .  This implies evenlevel(v)oddlevel(v), i.e. v is inner. Since u 
is not a predecessor of v, evenlevel(u) + 1 > oddlevel(v). So, while searching from 
u at search level evenlevel(u). MIN will make u an anamoly of v. Now, at search 
level (tenacity(v)- 1)/2, i.e. before search level i, evenlevel(v) will be given, and 
tenacity(u,v) will be ascertained. | 

Remark.  A matched bridge (u, v) has non-empty support,  since its support  contains 
u and v. One can extend Lemma 15 to unmatched bridges having empty  support  
using the following easily proven assertions (assume (u,v) is an unmatched edge): 
a). if u is not a predecessor of v and v is inner, then tenacity(v)<tenacity(u,v). 
b). if v is outer, then evenlevel(v) < (tenacity(u,v) - 1)/2. 

w 23 w' 

z u 21 ' 

\ / 
I I I \vp  

I I 

"-4 
I 

Fig. 15 

Figure 15 illustrates the importance of this synchronization. Notice that  tena- 
city(z, z ~) = 25 is ascertained at search level 10 while processing bridge (u, y/). So, 
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why not call DDFS with (z, z I) at search level 10? If this is done, then the vertices 
visited may not be in support(z,z~), and so DDFS will not be able to ascertain 
their tenacity. For example, v will be visited, even though v E support(w,w ~) and 
has tenacity 23. 

13. Finding minimum length augmenting paths 

If the current matching, M, is not maximum then at search level ( m -  1)/2 
DDFS will eventually be called with a bridge that is on a minimum length aug- 
menting path, and will end up at two unmatched vertices; m denotes the length of 
a minimum length augmenting path w . r . t . M .  At this point procedure FINDPATH 
is invoked to find such a path between the two vertices. On the other hand, if the 
current phase executes for ( I V I -  1)/2 search levels without finding an augmenting 
path, matching M is maximum, and the algorithm halts. 

DDFS marks petals appropriately so that FINDPATH may find a path through 
the petals efficiently. Suppose DDFS is called with bridge (u,v). Let u0 = bud*(u) 
and v0 = bud*@), and assume that the left and right centers of activity start at u0 
and v0 respectively. After the new petal P is formed, the following are set (assuming 
P is non-empty): L-peak(P)=u and R - p e a k ( P ) = v .  As shown in Figs. 13(b) and 
13 the new petal-node points to L-peak and R-peak. 

Furthermore, if u0 ~ u, DDFS sets exit - bud(u, v) = uo. Similarly, if V0 
v, ex i t -bud(v ,u)  = vo. Suppose DDFS visits vertex x, y is a predecessor of 
x, y is already in a petal, and Y0 = bud*(y). Then, DDFS visits Y0, and sets 
e x i t -  bud(y,x) -- Yo. In this case, Y0 is pred~ of x, where t = tenacity(u,v) = 
tenacity(x). This is illustrated in Fig. 14. 

Let us say that u is bud+(v) if u=bud*(v) at some point during the execution 
of the current phase. FINDPATH is called with two vertices, say x and y, as 
parameters, where y is bud+(x). It returns an even-alternating path from y to x 
of length evenlevel(x) -evenlevel(y). Assume x is in petal P, is marked R and 
has tenacity T. FINDPATH is a recursive procedure; it first finds the 'shell' of the 
required path. 

First suppose x is an outer vertex. FINDPATH simply follows predecessors 
till it gets to bud(x): suppose it is at vertex z c P and w is a predecessor of z. 
If w C P,  FINDPATH adds w to the shell. If w ~ P, it finds exi t -bud(w,z) ,  say 
w I, and adds w and w / to the shell. It then continues search from w ~. If bud(x) r 
y, FINDPATH continues the above process; notice that bud(x) is outer and y is 
bud + (bud(x)). Finally, FINDPATH fills in the 'gaps' in the shell (such as (w, w')) by 
recursively calling FINDPATH (e.g. on parameters w, w~). When all the reeursive 
calls are complete, the path from y to x has been found. For example, the call 
FINDPATH(o,q) in Fig. 16 results in the shell m n o q. The recursive call to fill 
the gap is FINDPATH(o,q).  

If x is an inner vertex, the process is more involved since the path from y to 
x will use the bridge of P. FINDPATH first finds the left and right peaks of p, say 
u and v. Suppose exi t -bud(u ,v)= uo and exi t -bud(v ,u)= vo. FINDPATH now 
grows a DFS tree rooted at v0 and consisting only of the R marked vertices of P 
till it finds x. This yields a shell from x to v0. It then grows another DFS tree 
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rooted at u0 and consisting only of the L marked vertices of P till it finds bud(x). 
These shells are filled in through recursive calls. Also paths are found from u0 to 
u and v0 to v. These concatenated with (u,v) give an even-alternating path  from 
bud(x) to x. The pa th  from y to bud(z) is found as stated above. For example, 
the call F INDPATH(j ,  f l )  in Fig. 16 results in the two shells f e d c b and g h i j ;  
these have no gaps. These are concatenated with the path  b a f l  from b to f l -  

Suppose DDFS is called with bridge (u,v) at search level ( m - 1 ) / 2 ,  and 
ends at unmatched vertices x and y. Suppose u0 = bud*(u) and v0 = 
bud*(v). Then, an augmenting pa th  from x to y is found by the following: 
FINDPATH(u0,x)  o FINDPATH(u,  u0). In Fig. 16, the augmenting pa th  is ob- 
rained by FINDPATH(u,  f l ) o  (FINDPATH(v,  f2) -1 .  This results in the recursive 
cans FINDPATH(N, f~), FINDPATH(m, q) and FINDPATH(s, ~). 

After a pa th  p is found, MAX invokes procedure T O P O L O G I C A L  ERASE. 
This procedure erases p and all vertices which cannot be in a minimum length 
augmenting pa th  disjoint form p as follows: T O P O L O G I C A L  ERASE first erases 
all vertices of p and all edges incident at these vertices. Then, it successively 
removes any remaining vertices which have no predecessors left. After this, MAX 
continues processing the remaining bridges of tenacity m to find augmenting paths 
in the remaining graph. In this manner it finds a maximal set of disjoint minimum 
length augmenting paths. 
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14. R u n n i n g  t i m e  of  t h e  a l g o r i t h m  

Finally, we analyse the time taken by algorithm to execute one phase. Since 
MIN examines each edge only once, it takes O(IEI). A vertex belongs to at most 
one petal, and DDFS examines its predecessor edges once during the formation 
of this petal. However, DDFS also has to compute bud* of vertices. This can 
be accomplished in O(IE I oc (IEI, IVI)) t ime using the set union algorithm of [15]; 
here c< is the inverse Ackerman function. By resorting to the RAM model of 
computat ion (in which operations on O(logn) bit numbers are assumed to take unit 
time), Gabow and Tarjan [7] have given an incremental tree set union algorithm 
which gives a linear implementation of bud* on the RAM model. We leave the open 
problem of obtaining a linear implementation of bud* in the pointer machine model 
of computat ion (see [11] for a precise definition). One avenue for accomplishing 
this is to prove the claim in [14] that  because of the special structure of blossoms, 
if bud* is implemented using only pa th  compression, its cost can be charged to the 
edges and is linear. 

Let us analyse the t ime taken by FINDPATH in a phase. Suppose vertex v 
which is in petal  P is on a minimum length augmenting pa th  p. Let b=  base>m(v ), 
where rn is the length of p. Clearly. b is also on p. Let Bb,m be the blossom having 
base b and' tenacity rn. Clearly P C_ Bb,rn. Now, a minimum length alternating pa th  
from any unmatched vertex to a vertex in Bb,rn must use b. Therefore, the vertices 
in Bb, m - p  cannot be on a minimum length augmenting pa th  disjoint from p, and 
will be deleted by T O P O L O G I C A L  ERASE. Therefore, F INDPATH does at most 
two DFS's in petal  P.  

Let (u,v) be a prop, with u predecessor of v. Define petal(u,v) to be petal(u), 
and define the size of a petal  to be the number of edges in it. By the above- 
stated remarks, the work done by DDFS in a petal  is linear in its size. Therefore, 
the total  t ime taken by FINDPATH in a phase is O(IEI). It  is easy to see that  
T O P O L O G I C A L  ERASE also takes linear time. This proves that  the running of 
the algorithm on the RAM model is O(~-[~IEI) .  
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