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Abstract

Mobile System-on-Chips (SoC) that incorporate heteroge-
neous coherence domains promise high energy efficiency to
a wide range of mobile applications, yet are difficult to pro-
gram. To exploit the architecture, a desirable, yet missing ca-
pability is to replicate operating system (OS) services over
multiple coherence domains with minimum inter-domain
communication. In designing such an OS, we set three goals:
to ease application development, to simplify OS engineer-
ing, and to preserve the current OS performance. To this
end, we identify a shared-most OS model for multiple co-
herence domains: creating per-domain instances of core OS
services with no shared state, while enabling other extended
OS services to share state across domains. To test the model,
we build K2, a prototype OS on the TI OMAP4 SoC, by
reusing most of the Linux 3.4 source. K2 presents a single
system image to applications with its two kernels running on
top of the two coherence domains of OMAP4. The two ker-
nels have independent instances of core OS services, such as
page allocator and interrupt management, as coordinated by
K2; the two kernels share most extended OS services, such
as device drivers, whose state is kept coherent transparently
by K2. Despite platform constraints and unoptimized code,
K2 improves energy efficiency for light OS workloads by
8x-10x, while incurring less than 6% performance overhead
for a device driver shared between kernels. Our experiences
with K2 show that the shared-most model is promising.

Categories and Subject Descriptors D.4.7 [Operating Sys-
tems]: Organization and Design

General Terms Design, Experimentation, Performance
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1. Introduction

Today’s mobile devices face a wide range of workloads,
from demanding tasks such as interactive applications with
rich graphics to light tasks running in the background such as
cloud synchronization and context awareness. A recognized,
effective approach to achieve high energy efficiency for such
diverse workloads is to exploit hardware heterogeneity, i.e.,
to execute a workload with the hardware component offering
the best performance-power tradeoff.

Today, cutting-edge mobile SoCs have already embraced
hardware heterogeneity. For instance, the ARM big.LITTLE
architecture has cores of different strengths in one cache co-
herence domain, or coherence domain. Cores in the same
coherence domain have the same memory view backed by
hardware-supported cache coherence. The coherence allows
a process to move between big and little cores at the cost
close to context switch. Because hardware coherence for-
bids the little core from being much weaker than the big
ones, many mobile SoCs have gone one step further to in-
clude multiple coherence domains, where hardware coher-
ence only exists within each domain but not among them.
One coherence domain can host high-performance cores for
demanding tasks; another domain can host low-power cores
for light tasks. In this work, we call them strong domain and
weak domain, respectively. We purposefully use strong and
weak in order to distinguish them from heterogeneous cores
in the same domain that are already known as big and little.
The absence of hardware coherence allows cores in the weak
domain to be orders of magnitude weaker and lower-power
than those in the strong domains, providing much better en-
ergy efficiency for light tasks than the big. LITTLE architec-
ture.

In tapping into the energy efficiency benefit of multiple
coherence domains, the biggest challenge is programmabil-
ity. Processors from multiple coherence domains essentially
constitute a distributed system; programming them is known
to be difficult to mass programmers, who must maintain con-
sistency of partitioned program components with messages.



Many have recognized this challenge and proposed a hand-
ful of systems solutions [17, 26], which, however, mainly fo-
cus on user workloads. They usually implement a small set
of OS services from scratch for a weak domain, e.g., sensor
reading, and assume that all other OS services are provided
by a fixed strong domain. The resulting OS services are lim-
ited in functionality, complicate application development be-
cause of a fragmented system image, and incur heavy bur-
dens in OS engineering. More importantly, with this design,
only light tasks without a need for OS services beyond those
crafted for weak domains can benefit from the efficiency of
weak domains.

In this paper, we seek to answer the following question:
is it possible to span an OS across multiple coherence do-
mains? In doing so, we seek to achieve three important
goals. (i) The resulting OS should preserve the established
programming models for mobile applications, as the mod-
els have been used in over a million mobile application by
a similar number of developers, many of whom do not have
sophisticated programming skills. (i7) The resulting OS it-
self shall leverage mature OSes in wide use without rein-
venting many wheels. An overhaul of existing mobile OSes
is increasingly difficult and even undesirable nowadays: they
consist of huge codebases and keep receiving contributions
from many parties including device vendors. (iif) The OS
should deliver the same peak performance for demanding
tasks.

We show that we can span an OS across coherence do-
mains by properly refactoring, but not overhauling, an ex-
isting OS. We identify a shared-most OS model where most
OS services are replicated in all domains under question
with transparent state coherence, while a small, selective
set of services operates independently in each domain. We
call these services shadowed services and independent ser-
vices, respectively. The shared-most model resides midway
of two well-studied extremes, shared-nothing and shared-
everything. While the shared-most model promises both
benefits of simplified OS engineering and performance for
multi-domain mobile SoCs, the other two models, however,
provide only one of the two benefits.

By applying the shared-most model, we build K2, an OS
that runs multiple kernels on a multi-domain SoC. As an
early research prototype, K2 has unoptimized code and is
constrained by the limitations of the test platform. Yet, K2
has met the three goals above, showing that the shared-most
model is promising. (i) K2 presents a coherent, single Linux
image to applications, and therefore preserves the widely
used programming model; it also provides a familiar abstrac-
tion, called NightWatch threads, for distributing user work-
loads over heterogeneous domains. (if) K2 replicates exist-
ing extended OS services, e.g., device drivers, across multi-
ple domains and transparently maintains coherence for them.
As a result, K2 is able to reuse most of the kernel source.
(iii) K2 preserves the current level of OS performance by al-

leviating inter-domain contention: it creates independent in-
stances of core OS services and properly coordinates them; it
avoids multi-domain parallelism within individual processes
through scheduling. Throughout its design, K2 adopts asym-
metric principles that greatly favor the performance of the
strong domain.

In summary, we have made three contributions in this
work:

e First, we identify a shared-most OS model for exploit-
ing the energy efficiency potential of multi-domain mo-
bile SoCs, without complicating programming or hurting
performance.

e Second, in applying the shared-most OS model, we
present a set of guidelines and experiences of refactor-
ing a mature OS, Linux. We classify its OS services as
private, independent, and shadowed, in order to replicate
them across coherence domains.

e Third, we describe K2, the outcome of refactoring and
a working OS prototype for multi-domain mobile SoCs.
With the shared-most model applied, K2 reuses most of
the Linux kernel source and presents a single system
image. The resulting energy efficiency and performance
show that our model is promising.

2. Background

To provide a background, we first discuss the characteristics
of light tasks in mobile systems, and then review the mobile
architectural trend that is moving towards heterogeneity and
incoherence.

2.1 Light tasks in mobile systems

Serving as the personal information hub, today’s mobile de-
vices execute a rich set of ‘background’ tasks, or light tasks,
e.g., sensing user physical activities, monitoring surrounding
environment [27], and keeping users connected with social
networks and the cloud [41]. Light tasks usually have the
following characteristics:

® Not performance demanding: Without an awaiting user,
light tasks do not directly affect the user experience and
thus do not require high processor MIPS.

e Mostly 10-bound: Light tasks perform extensive 10 op-
erations for exchanging information with the external
world. During IO operations, core idle periods are many,
however not long enough for a core to become inactive.

® Requiring both user and OS execution: Light tasks not
only run user code for application logic, but also invoke
diverse OS services such as device drivers [18] and page
allocator.

e Scheduled to execute throughout daily usage: Light tasks
are executed not only when a user is interacting with
the device, but also during user’s think periods between
interactions and when a user pays no attention. Since
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Figure 1. Trend in mobile SoC architectures. Both axes are
logarithmic.

user interaction periods are sparse and usually short, most
executions of light tasks happen when the entire system
is lightly loaded.

e High impact on battery life: The nature of frequent ex-
ecutions has a high impact on battery life. For instance,
a recent study [41] shows that each run of background
email downloading reduces device standby time by 10
minutes.

2.2 Trend in architectures

To meet the compute demand of modern applications, mo-
bile devices are equipped with powerful cores that have giga-
hertz frequency and rich architectural features. These pow-
erful cores, however, offer poor energy efficiency for light
tasks, due to three sources of inefficiency:

e High penalty in entering/exiting active power state. Since
strong cores are inactive for most of the time, periodic
executions of light tasks will inevitably wake them up
from time to time.

® High idle power. In executing IO-bound light tasks, pow-
erful cores will spend a large number of short periods
(of milliseconds) in idle, which are known to consume a
large portion of energy in mobile systems [42].

® Over-provisioned performance. Although a strong core
may increase its energy efficiency by lowering its fre-
quency, shown as ‘DVFES’ in Figure 1, the lowest possible
frequency and active power are limited by its architecture
and fabrication process, which still over-provision perfor-
mance to light tasks with a low performance demand.

Coherent heterogeneous SoC To offer a remedy, today’s
SoCs incorporate heterogeneous cores with different trade-
offs between performance and power, by placing them in a
single or multiple coherence domains.

A handful of heterogeneous SoCs host all heterogeneous
cores with a single coherence domain [15, 24]. As shown
as ‘coherent heterogeneity’ in Figure 1, although the intro-

duced heterogeneity indeed widens dynamic power range,
the global cache coherence becomes the bottleneck for more
aggressive energy efficiency, for a few reasons: i) a unified
hardware coherence mechanism restricts architectural asym-
metry, ii) the coherent interconnect itself consumes signifi-
cant power, and iii) cores co-located in the same coherence
domain are likely to suffer from similar thermal constraints.

Incoherent heterogeneous SoC For aggressive energy ef-
ficiency, several newer SoCs remove chip-level hardware co-
herence. They embrace multiple coherence domains, each
of which can host multiple cores; hardware coherence exists
within a domain but not across domains. Examples include
OMAP4 [36], OMAPS [37], and Samsung Exynos [29]. As
shown in Figure 1, the absence of hardware coherence en-
ables high asymmetry among cores belonging to different
domains. For instance, while the lowest power of different
cores in the same domain can differ by 6x [32], that of dif-
ferent domains can differ by up to 20x. This allows using
weak cores to greatly reduce the three inefficiencies men-
tioned above.

3. The case for replicating OS services

To fully exploit multi-domain SoCs for energy efficiency, the
key is to enable OS to serve a request from the domain that
is able to deliver the needed performance with the lowest
power possible. This requires replicating OS services on all
the candidate domains.

As shown by a recent study of mobile workloads [18],
the same OS services are usually invoked with disparate per-
formance and power expectations. For instance, light tasks
often access 1O regularly, thus sharing the OS services with
demanding tasks such as UI rendering. Neither pinning OS
services on a single domain nor partitioning them among do-
mains [22] will work here: on one hand, light tasks invoking
OS services provided on a strong domain will suffer from
all inefficiencies described in §2.1; on the other, demanding
tasks invoking OS services provided on a weak domain are
likely to fail their performance expectations. Targeting ex-
ploiting incoherent heterogeneity for energy efficiency, most
prior systems are focused on supporting user workloads and
usually adopt ad-hoc solutions for OS services on weak do-
mains [17, 26, 34]. Without systematically replicated OS ser-
vices, light tasks can only implement a limited set of func-
tionalities.

When running replicated OS services over multiple co-
herence domains, the OS state is essentially distributed
among domains. Inter-domain state synchronization must be
done in software explicitly, and is much slower than hard-
ware coherence. This challenges application development,
OS engineering, and system performance, as discussed be-
low.

Applications assume a single system image Mobile appli-
cations expect the OS to present a single system image, in-
cluding a unified OS namespace and a global resource man-



agement. The single system image has served as the sub-
strate of one million mobile applications and has been ac-
cepted by the similar number of application developers.

OS Software assume coherent state  All layers of a main-
stream mobile OS, from top down, assume hardware coher-
ence. Significant changes to core services, e.g., interrupt and
memory management, for coping with incoherent state are
difficult and undesirable: their mechanisms and policies have
been heavily tuned and proved to work over years. Rewrit-
ing extended services, such as device drivers, is costly. For
instance, they constitute 70% of the Linux source code [28],
and are developed by various software and hardware ven-
dors, such as Google and Samsung.

Performance impact The absence of hardware coherence
necessitates explicit inter-domain communication in coordi-
nating OS replicas or keeping their state consistent —a much
slower mechanism than hardware coherence. For example,
flushing a L1 cache line takes tens of cycles, while sending
an IPI usually takes a few thousand cycles. Such commu-
nication overheads will be magnified by inter-domain con-
tention for the same shared state.

4. Design

In this section, we sketch our design. We state the design
goals, describe the architectural assumptions, and then de-
rive the shared-most OS model.

4.1 Design goals

We seek to design an OS that is capable of replicating its
services over multiple coherence domains of a mobile SoC,
in order to exploit hardware heterogeneity for energy effi-
ciency. The OS design should meet the following goals:

1. Facilitate application development by relieving app de-
velopers from dealing with incoherent program state and
fragmented system images.

2. Simplify OS engineering and avoid disruptive changes by
maximizing reuse of legacy OS code.

3. Maintain the current performance level of demanding
tasks.

4.2 Architectural assumptions

We design our system under the assumption of the following
architectural features of a mobile SoC:

e Heterogeneous cores. The SoC has multiple types of
cores that provide disparate performance-power trade-
offs. Cores may have different ISAs. Process migration
is difficult and, if possible, requires sophisticated soft-
ware [11, 33]. Cores have hardware MMUs.

Multiple coherence domains. All cores on the SoC are
isolated into a few (2-3) coherence domains, for the sake
of high heterogeneity, decoupled power management and
reduced thermal constraints. Within a coherence domain,

Linux, Windows, etc. K2 Barrelfish, fos, etc.
*
Shared-everything  Shared-most Shared-nothing
Coherent Multi-domain Incoherent
multicore Mobile SoC manycore

Figure 2. K2 in the spectrum of OS structures

multiple cores (2-8) function as a traditional multicore.
There is no hardware cache coherence among domains.

e Shared platform resources. Coherence domains are
connected to a chip-level interconnect and thus share
all platform resources, including RAM and IO peripher-
als. Interrupts generated by IO peripherals are physically
wired to all domains.

e Aggressive power management. Cores are taken online
(active) and then offline (inactive) from time to time.
The system energy efficiency is highly dependent on core
power state, i.e., how long cores remain inactive and how
often they are woken up.

4.3 The shared-most OS model

In order to meet the design goals stated in §4.1, we identify
a shared-most OS model: i) to transparently maintain state
coherence for extended services, or shadowed services, ii)
to coordinate separated instances of core services, or inde-
pendent services, and iii) to avoid multi-domain parallelism
within individual process. We view our model as an out-
come of considering both the underlying incoherent archi-
tecture and the programming challenges mentioned in §3.
In the spectrum of OS structures shown in Figure 2, the
shared-most model sits in the middle, with two extremes be-
ing ‘shared-everything’ monolithic OS and ‘shared-nothing’
OS. The two extremes, while suiting their respective tar-
get architectures well, either incur high performance over-
heads or heavy programming burdens for multi-domain mo-
bile SoCs. We next discuss the three aspects of the shared-
most model in detail, explaining how each of them is con-
nected to the design goals.

Transparent shared state for extended services We argue
that the OS should transparently maintain state coherence
for replicas of extended services, including device drivers
and file systems, for the goal of simplified OS engineering.
First, as mentioned in §3, as extended services constitute
the majority of an OS codebase and evolve rapidly, it is
difficult to manually transform them for multiple coherence
domains. Second, extended OS services are less likely to
suffer from inter-domain contention, and are more tolerant
of the performance overheads of software coherence, such
as the inter-domain communication latency.

Independent instances of core services For a core ser-
vice, the OS creates independent, per-domain instances that



share no internal state. As mentioned in §3, core services
such as memory management are invoked frequently and are
performance-critical. In replicating such services over mul-
tiple domains, contention must be carefully avoided for per-
formance.

Creating independent instances of core service raises two
design problems: (i) How and when the OS should coordi-
nate independent instances of the same service: the coordi-
nation is key to maintain a single system image, and has to
be efficient as inter-domain communication can be expen-
sive. (if) How to minimize modifications to the mature im-
plementations of core services, as a way to meet the goal of
simplified OS engineering. The two problems have to be ad-
dressed on a per-service basis. In §6 and §7, we will describe
our solutions for two important core services, physical page
allocator and interrupt management.

Avoid multi-domain parallelism within individual process
Threads belonging to the same process share an extensive
set of OS state, e.g., opened files. Running them simultane-
ously on multiple domains may lead to expensive contention.
Since an application would gain little benefit from such par-
allelism, we argue that such contention should be prevented
by always deferring light task execution if the same process
has more demanding tasks to run. The extra delay introduced
to light tasks is acceptable. First, the delay is unlikely to be
long: in principle, mobile demanding tasks should not satu-
rate strong cores for more than a few hundred milliseconds
for avoiding sluggish GUI. Second, the deferral only applies
to light tasks belonging to the same process.

Multi-domain parallelism, however, should be supported
among processes, for fairness in scheduling and encouraging
applications to use the weak domain. If strong and weak
domains were restricted to run alternately, all light tasks in
the system, which likely belong to different processes, will
block if any normal task is running, according to our model
discussed above. This essentially makes light task execution
dependent on other applications’ behaviors, discouraging
developers from placing code on the weak domain.

5. The K2 OS

In order to test the shared-most model, we build K2, an OS
prototype for multi-domain mobile SoC. In this section, we
give an overview of K2: we describe the hardware platform,
sketch the structure of K2, present our heuristics in refactor-
ing Linux, and discuss how K2 is built from source.

5.1 Hardware platform

We experimentally test our OS model with TI OMAP4,
one of the many emerging multi-domain mobile SoCs [23,
29] that has the best public information. OMAP4 has been
powering popular mobile devices of various form factors,
including Amazon Kindle Fire, Samsung Galaxy S2, and
Google Glass.

Cortex-A9 (strong) Cortex-M3 (weak)

ISA ARM Thumb-2
Freq. 350-1200MHz 100-200MHz
Cache L1 64KB,L2 IMB 32KB
MMU One ARM v7-A  Two connected in series

Table 1. Heterogeneous cores in the two coherence domains
of OMAP4
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Figure 3. The structure of K2

OMAP4 has two coherence domains, each of which hosts
one type of 32-bit ARM core: the performance-oriented
Cortex-A9 and the efficiency-oriented Cortex-M3. Their
specifications are listed in Table 1. The Cortex-M3 on
OMAP4 has a non-standard MMU in which two levels are
connected in series, which affects the design of K2 software
coherence as will be discussed in §6.3. Each domain has
dual cores and a private interrupt controller. Both domains
are connected to the system interconnect, which further con-
nects the shared RAM and all IO peripherals.

To support multiple coherence domains, OMAP4 pro-
vides two facilities. The hardware spinlocks are for inter-
domain synchronization, which are a set of memory-mapped
bits that support atomic test-and-set. The hardware mail-
boxes are for inter-domain communication: cores can pass
32-bit messages across domains with interrupting each other.
We measured the message round-trip time as around 5 ps.

While K2 is geared towards OMAP4 with many platform-
specific optimizations and workarounds, its design is driven
by our OS model and based on the architectural assumptions
in §4.2. We expect the design to be applicable to other multi-
domain SoCs.

5.2 OS structure

Figure 3 depicts the structure of K2. As shown on the top of
the figure, K2 carefully exposes hardware heterogeneity to
application developers, by requiring them to statically par-
tition their applications in coarse grains for heterogeneous
domains. From an application developer’s perspective, they
develop the performance-critical parts of their applications



as normal threads for execution on the strong domain; they
wrap their light tasks in special NightWatch threads which
will be pinned on the weak domain. We will discuss the de-
tails of NightWatch threads in §8.

Under the single system image, K2 runs two kernels on
OMAP4: the full-fledged main kernel in ARM ISA running
on the strong Cortex-A9 cores, and the lean shadow kernel !
in Thumb-2 ISA running on a weak Cortex-M3 core. The
two kernels share the same virtual address space (§6.1),
the same pool of physical memory (§6.2), and cooperate
to handle IO interrupts (§7). As shown in Figure 3, most
OS services, including device drivers and file systems, are
shadowed between both kernels: they are built from the same
source code and K2 transparently keeps their state coherent
at run time. A few ‘hotspot’ core services are independent
in both kernels and K2 coordinates them on the meta level.
Each kernel has its private services.

5.3 Refactoring Linux

As a key step in applying the shared-most OS model, we
refactor a recent Linux kernel 3.4 into both the main and
shadow kernels of K2. In particular, in bringing up Linux on
the Cortex-M3 of OMAP4, we adopt code from the linux-
panda project [21]. The central job of refactoring is to decide
how should individual Linux OS services be adopted by
K2. We tackle the problem based on their dependence on
processor cores, their functionalities, and the performance
impact, with the following steps:

1. First, services that are specific to one type of core or
that manage domain-local resources are kept private, im-
plemented differently in each kernel, and with different
state. Examples include core power management.

2. In the rest of the services, those performing complicated,
rarely-used global operations will be kept private only in
the main kernel. Examples include platform-level initial-
izations.

3. In the rest of the services, those having high performance
impact are replicated as independent instances in each
kernel, with K2 coordinating the instances.

4. The remaining services, which manage platform re-
sources and have low to moderate performance impact,
are made as shadowed service in both kernels, with K2
automatically keeping their state coherent. In refactoring,
we augment their locks by using the hardware spinlocks
for inter-domain synchronization. This is the largest cat-
egory which includes device drivers, file systems, and
network service.

5.4 Build K2 from source

We implement both kernels of K2 in a unified source tree. To
build K2, we run two passes of compilations, for the main

I“Shadow” reflects the fact that the two kernels are kept coherent in their
extended OS services.

kernel and for the shadow kernel respectively. In compila-
tion, we apply a suite of techniques to bridge the heterogene-
ity gap between cores, with the help of automated scripts.

First, the compilation process makes sure each shared
memory object has identical load addresses in both kernels.
For both kernels, it pads data structures, enforces the same
output order of memory objects in each object file, and en-
forces the same link order of object files. Second, the com-
pilation process treats function pointers, which are prevalent
in the Linux data structures and thus shared among two ker-
nels. According to its ISA [4], when Cortex-M3 attempts
to execute a Cortex-A9 instruction, it falls into an unrecov-
erable core state. To prevent such a situation, the compi-
lation process statically rewrites blx instruction — the long
jump instruction emitted by GCC for implementing function
pointer dereference — with Undef instruction. At run time,
when Cortex-M3 attempts to dereference a function pointer
and thus hits Undef, it triggers an exception that is recov-
erable; K2 handles the exception and dispatches the control
flow to the Cortex-M3 version of the function. blx is sparse
in kernel code, constituting 0.1% of all instructions and 6%
of all jump instructions.

6. Memory management

In the next three sections, we describe the core components
of K2: memory management in §6, interrupt management
in §7, and scheduling in §8. Among them, we will focus on
memory management, which is the core mechanism in pro-
viding state coherence and unified resource management. In
this section, we describe the major building blocks of the K2
memory management: the layout of kernel virtual addresses,
the physical memory management, and the software coher-
ence.

6.1 Unified kernel address space

K2 creates a unified address space for both kernels, while
preserving the key assumption made by the Linux kernel vir-
tual memory. In this section, we briefly recap the background
of the Linux kernel virtual memory, describe the design con-
straints faced by K2, and then present our design.

Linux maps a large portion (sometimes all) of physical
memory into kernel space directly. The mapping is linear
and permanent: any virtual address is mapped to a physical
address that only differs by a constant offset. Such direct-
mapping greatly simplifies kernel virtual memory design:
accessing direct-mapped memory will never trigger a page
fault and conversions between kernel virtual and physical ad-
dresses are fast. As a result, direct-mapped memory usually
hosts all important kernel data structures. 2

In managing virtual memory for multiple kernels, K2 has
to satisfy the following constraints:

2 We are aware of the SPARSEMEM feature for servers, which, however, is
rarely enabled for mobile devices.
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1. Memory objects shared between kernels must have iden-
tical virtual addresses in both kernels. In addition, pri-
vate memory objects should reside in non-overlapping
address ranges to help catch software bugs.

2. For each kernel, the assumption of linear mapping holds
for the entire direct-mapped memory.

3. Contiguous physical memory should be maximized, in
particular for the main kernel which usually needs large
physical memory blocks for multimedia applications.

K2 arranges its kernel address space as shown in Figure 4.
From each kernel’s view, its available physical memory con-
sists of two regions, both direct-mapped. (i) A small local
region hosts executable code (in local ISA) and the memory
objects statically allocated for private or independent OS ser-
vices (e.g., those in bss and data sections). (ii) All the rest
of the physical memory belongs to the global region, which
hosts the memory objects for shared OS services and all free
physical pages for dynamic allocation. The global region is
typically from several hundred MB to one GB.

From the start of physical memory (the left side of Figure
4), K2 populates all local regions: first for the shadow kernel
and then for the main kernel. From the end of the last local
region, the global region spans to the end of physical mem-
ory. By putting the main kernel’s local region right before the
global region, K2 avoids memory holes in the main kernel.
With this memory layout, K2 keeps both kernels’ virtual-to-
physical offsets identical, thus essentially creating a unified
virtual address space.

Temporary mapping In addition to the direct-mapped
memory discussed above, the OS may need to establish tem-
porary mapping and thus make changes to the unified kernel
address space. In supporting so, K2 treats two major types
of temporary mappings differently. First, the OS may need
temporary mappings for accessing IO memory. As creations
and destructions of such mappings are infrequent, K2 adopts
a simple protocol between two kernels for propagating page
table updates from one to the other. Second, on platforms
with abundant memory resources, the amount of physical
pages may exceed that can be directly mapped into kernel
space. Thus, temporary mappings are needed on-demand in
accessing the extra pages (i.e., highmem in Linux’s term). In
the current implementation for the 32-bit ARM, K2 does not
support highmem; as a workaround, it increases the size of
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Figure 5. The physical memory management of K2

kernel virtual space from the default 1GB to 2GB, which is
large enough for directly mapping physical memory avail-
able on today’s mainstream mobile devices. We do not ex-
pect this to be a fundamental limitation, as the emerging
64-bit ARM allows kernel to directly map a much larger
amount of physical memory.

6.2 Physical memory management

Physical memory, as managed by OS page allocator, is one
of the most important resources. The page allocator is fre-
quently invoked, performance-critical, with its state among
the hottest data structures in the OS. In managing physical
memory for multiple coherence domains, K2 should:

1. Require minimum inter-domain communication in mem-
ory allocation and free.

2. Enable both kernels to dynamically share the entire pool
of free pages.

3. Avoid disruptive changes to the existing Linux page allo-
cator, which is already a mature design with sophisticated
mechanisms and policies.

4. Minimize physical memory fragmentation.

An overview of the K2 memory management is shown in
Figure 5. To achieve the first objective above, K2 applies the
shared-most model and creates instances of page allocator in
both the main and the shadow kernel, with separated state.
Allocation requests are always served by the local instance
on the same coherence domain; free requests are redirected
asynchronously to the instance which allocated the pages,
based on a simple address range check implemented as a
thin wrapper over the existing free interface.

We next describe how K2 coordinates multiple page allo-
cator instances to achieve objective 2-4 above, by first dis-
cussing the mechanism (balloon drivers) and then the policy
(the meta-level manager).

Balloon drivers K2 retrofits the idea of balloon driver from
virtual machines [39] for controlling the amount of contigu-
ous physical memory available to individual kernels. To in-
dividual kernels, balloon driver creates the key illusion of
on-demand resizable physical memory.



A balloon driver is a pseudo device driver and each kernel
has its own private instance. Controlled by K2, the driver’s
job is to occupy contiguous physical memory to keep the
memory from the local page allocator. As shown in Figure 5,
to K2, a balloon driver provides two primitives that operate
on physically contiguous blocks of pages, or page blocks:
deflate, i.e., the driver frees a page block to the local page
allocator, which essentially transfers the ownership of the
page block from K2 to the local kernel; inflate, i.e., the
driver allocates a page block from the kernel, by forcing
the kernel to evacuate pages from that page block, which
essentially transfers the ownership of the page block from
the local kernel back to K2. In the early stage of kernel boot,
balloon drivers of both kernel are initialized to occupy the
entire shared region so that K2 owns all physical pages in
that region.

We implement K2 balloon drivers based on Linux’s con-
tiguous memory allocation framework. Balloon drivers re-
quire no change to the Linux page allocator: from each ker-
nel’s perspective, a balloon behaves like a common device
driver that reserves a large contiguous memory region at
boot time and later allocates and frees page blocks within
that region autonomously.

Meta-level manager On top of the balloon drivers, K2 pro-
vides a meta-level manager to decide when to take and give
page blocks from and to kernels. The meta-level manager is
implemented as a set of distributed probes, one in each ker-
nel. Each probe monitors local memory pressure with hooks
inserted into the local kernel page allocator; the probes co-
ordinate through hardware messages, and take actions by in-
voking local balloon drivers. Generally, when memory pres-
sure increases and before the local kernel reacts to the pres-
sure (e.g., activating the Android low-memory killer), the
meta-level manager instructs the balloon driver to free page
blocks to alleviate the pressure; when free pages run low in
the entire system, the meta-level manager instructs a balloon
driver to inflate for reclaiming pages. Like the Linux kernel
swap daemon, the meta-level manager performs operations
in the background when OS is idle in order to minimize per-
formance impact on individual allocations.

Optimizations K2 has applied a few optimizations in phys-
ical memory management, as shown in Figure 5. First, to re-
duce inter-domain communication, the meta-level manager
operates on large-grain page blocks, which are 16MB in
the current implementation. Second, to maximize the size
of physically contiguous area available to the main kernel,
the meta-level manager instructs balloons to deflate from the
two ends of the free portion in the shared region, and in-
flates in the reverse directions. Thus, blocks allocated to the
main kernel grow from right after its private region. Third, to
maximize the chance of successfully reclaiming page blocks
from kernels, K2 commands local page allocators to place
movable pages (e.g., those containing user data) close to the
‘frontier’ of the balloon with best efforts. The efforts are

likely to succeed, as movable pages usually constitute 70%-
80% of total pages based on our experiments with mobile
systems. As a result, when the balloon inflates, those mov-
able pages can be evacuated from the requested page block
to elsewhere.

6.3 Software coherence

As mentioned in §5.2, K2 provides transparent coherence for
shadowed services. This is implemented with software Dis-
tributed Shared Memory (DSM), a classic approach to hide
distributed program state from programmers [16], which
also has been applied to recent incoherent architectures such
as CPU-GPU systems [14] and smartphones [17]. Like most
DSM designs, the K2 DSM maintains the key one-writer in-
variant [16], by automatically translating memory accesses
to inter-domain communication for coherence. While most
software DSMs are designed to back user applications [16,
30], the K2 DSM backs OS services. Thus, we carefully con-
struct fault handlers and coherence communication to avoid
interference or lockup with other OS components.

Basic design  'The K2 DSM implements sequential consis-
tency. Although many DSMs [14, 17] implement relaxed
consistency which relies on applications’ correct locking be-
haviors, K2 neither relaxes the consistency model assumed
by the existing OS, nor makes any assumption of OS lock-
ing behaviors which may be complicated. In implementing
sequential consistency, the K2 DSM performs coherence op-
erations upon each access fault and keeps the order of coher-
ence messages. The K2 DSM adopts a page-based granu-
larity, using 4KB page as the smallest memory unit that is
kept coherent. This is for leveraging MMU to trap accesses
to shared memory, as page is the unit used by the MMU for
enforcing protection.

The K2 DSM has adopted a simple, standard two-state
protocol. For each shared page, every kernel keeps track of
its state, being Valid or Invalid. Kernels communicate
with two types of coherence messages: GetExclusive and
PutExclusive. When a page is Valid, a kernel can perform
read or write of the page. Before performing read or write
of a Invalid page, a kernel must send GetExclusive to the
other kernel who currently owns the page; upon receiving
GetExclusive, the latter kernel flushes and invalidates the
requested page from its local cache, and acknowledges with
a PutExclusive message. After that, the former kernel can
proceed to access the memory.

The K2 DSM detects accesses to shared memory as fol-
lows: when a page transits from Valid to Invalid state, the
DSM modifies the corresponding page table entry to be inef-
fective and handles the resulting page fault triggered by the
subsequent access to the page. The fault handling is trans-
parent to the OS code that made the memory access.

Coherence communication For performance, the coher-
ence communication directly leverages the OMAP4 hard-
ware mailboxes. Each message is 32-bit, the size of a hard-



ware mail, with 20 bits for page frame number, 3 bits for
message type, and the rest for message sequence number.
The mailbox will guarantee that messages are delivered in
order.

We carefully construct coherence communication to
avoid lockup. The communication must be synchronous to
the requester: this is because interrupt handlers, which can-
not sleep, may access shared state and thus initiates commu-
nication. Thus, when a requester kernel sends out a GetEx-
clusive message, it spins waiting until the destination kernel
sends back a PutExclusive message. For the same reason,
handling GetExclusive must avoid sleeping as well, e.g., it
must use atomic memory allocation. More importantly, han-
dling GetExclusive must avoid accessing shared state which
may trigger new page faults, resulting in an infinite request
loop between kernels.

We optimize the communication latency in favor of the
main kernel, by setting their priorities of handling coherence
messages differently. The main kernel handles GetExclusive
in bottom halves, and will further defer the handling if under
high workloads; in contrast, the shadow kernel handles the
request before any other pending interrupt. Through this, K2
reduces the impact of weak cores on system performance.

Optimize memory footprint The K2 DSM incurs a low
overhead in storing protocol information, asking for three
bits per page. Furthermore, although shared memory areas
have to be mapped in 4KB granularity, the K2 DSM allows
non-shared areas to be mapped in larger grains (1 MB or 16
MB) as supported by the ARM hardware, thus reducing the
size of page tables and alleviating TLB pressure. To achieve
this, the K2 DSM turns on software coherence for memory
addresses and replaces the existing large-grain mapping on-
demand, only when an address (or its neighbouring area) has
been accessed by both kernels.

An alternative design While we are aware of a more com-
mon three-state protocol [35] that supports read-only shar-
ing, our choice of the two-state protocol is based on the hard-
ware limitation of the Cortex-M3 MMU on OMAP4.

In general, supporting read-only sharing requires DSM to
use MMU for differentiating memory reads from writes in
order to handle them separately. However, this is expensive
on the OMAP4 Cortex-M3, which relies on the first level
of its two cascading MMUs for read/write permissions. The
first-level MMU has no page table but just a software-loaded
TLB which only contains ten entries for 4KB pages. Ac-
cording to our experiment, using the MMU for read access
detection puts a high pressure on its TLB and leads to severe
thrashing. In contrast, without supporting read-only sharing,
the K2 DSM detects both read and write accesses solely with
the second-level MMU, which has a larger TLB and a hard-
ware page table walker.

7. Interrupt management

Multiple coherence domains share interrupts generated by
IO peripherals. Although any interrupt signal is physically
delivered to all domains, K2 must ensure that it is only
handled by exactly one kernel. If multiple kernels compete
for the same interrupt signal, peripherals may enter incorrect
states or cores may have spurious wakeups. The choice of
kernel in handling interrupts does not affect OS correctness,
thanks to the K2 software coherence; however, it does affect
performance and efficiency.

K2 coordinates its two kernels in handling shared inter-
rupts, by following two simple rules. First, for energy effi-
ciency, K2 does not allow shared interrupts to wake up the
strong domain from an inactive power state, in which case
the shadow kernel should handle the interrupts. Second, for
performance, when the strong domain is awake, K2 lets the
main kernel handle all shared interrupts.

K2 has implemented the rules on the OMAP4 platform,
where coherence domains have private interrupt controllers.
K2 inserts a few hooks into the Linux power management
code to configure interrupt controllers. When the shadow
kernel boots on a weak domain, it masks all shared interrupt
locally. When a strong domain transits to an inactive state,
K2 unmasks all shared interrupts on the weak domain and
masks them on the strong domain; when the strong domain
is woken up from the inactive state, K2 reverses such opera-
tions, by masking shared interrupts on the weak domain and
unmasking them on the strong domain.

8. Nightwatch threads

As mentioned in §5.2, K2 provides an abstraction called
NightWatch thread for application developers to implement
light tasks. NightWatch threads are pinned on a weak do-
main; after being created, a NightWatch thread enters the
shadow kernel runqueue for execution. From a developer’s
view, a NightWatch thread is identical to a normal thread:
for instance, they share a unified process address space and
a single system image. The only exception is that in order
to limit multi-domain parallelism (the third aspect of the
shared-most model in §4.3), K2 enforces that:

A NightWatch thread will only be considered for schedul-
ing when all normal threads of the same process are sus-
pended.

The scheduling strategy, together with the single system
image, distinguishes NightWatch threads from other abstrac-
tions that also encapsulate code for targeting heterogeneous
hardware [17]. It is worth noting that K2 does not change
the mechanism or policy of the Linux scheduler; all normal
threads are scheduled as they are in Linux.

Preempt NightWatch threads K2 preempts the execution
of all NightWatch threads in a process when any normal
thread of the same process is about to execute. After the
main kernel decides to schedule-in a normal thread, it ex-
amines if any NightWatch threads belong to the same pro-



Existing Changed | Original
Implementations SLoC SLoC
Exception handling 1151 395
Page allocator, interrupt, 205 12119
scheduler

New Implementations SLoC
DSM 883
Memory management 468
Bootstrap 1306
OMAP4-specific Cortex-M3 772
Debugging, etc. 1362
Total 4791

Table 2. Source code changes and additions to the Linux
kernel 3.4, which contains around 10 million SLoC. Much
of the OMAP4-specific Cortex-M3 code is adopted from the
linux-panda project [21].

cess. If so, the kernel sends a SuspendNW hardware mes-
sage to the shadow kernel. Interrupted by the SuspendNW
message, the shadow kernel immediately responds with an
AckSuspendNW message and then removes all NightWatch
threads of the same process from the local runqueue by flag-
ging them. On receiving the AckSuspendNW, the main kernel
lands the normal thread on a core for execution.

To reduce latency, the main kernel overlaps the wait for
AckSuspendNW with the context switch to the schedule-in
thread: after sending SuspendNW, the main kernel proceeds
to context switch, and only waits for AckSuspendNW after
the context switch is done, before returning to user space.
Given that a message round trip takes around 5 s and a
context switch usually takes 3-4 us, the extra overhead for
the main kernel is 1-2 ps for every context switch.

Resume NightWatch threads When the main kernel finds
that all normal threads of a process blocked, e.g., waiting
for 10, it sends a ResumeNW message to the shadow kernel.
On receiving the message, the shadow kernel removes flags
from all NightWatch threads of the given process and will
consider them in future scheduling.

9. Evaluation

We evaluate how well K2 meets the design goals we set in
84.1 by reporting our efforts in refactoring Linux and testing
the energy efficiency harvested by K2. We then evaluate
the benefits and overheads of the shared-most model by
benchmarking the physical page allocator and the DMA
device driver.

9.1 Efforts in refactoring

In building K2, we have achieved the goal of reusing ma-
ture OS source at the refactoring cost shown in Table 2. K2
introduces small changes to the Linux source. The biggest
portion of changes is exception handling, where K2 han-
dles page faults for DSM operations and dispatches function
pointers. To core OS components such as the page allocator,

Active Idle
Cortex-M3 (200MHz)* 21.1 3.8
Cortex-A9 (350MHz)* 79.8 252
Cortex-A9 (1200MHz) 672 252

Table 3. Power consumptions of the heterogeneous
OMAP4 cores, in mW. Both cores consumes less than
0.1 mW when inactive. The frequencies with asterisks are
used in the benchmarks for testing energy efficiency.

K2 only adds a small portion of source lines. Device drivers,
such as the one for DMA, can be reused by K2 with few
modifications. K2 introduces a set of new software modules
to implement its core components like DSM and memory
management. It also includes extensive debugging support
to help ourselves understand Linux.

9.2 Energy efficiency benefits

We show that K2 greatly improves energy efficiency for light
tasks, by running a series of OS benchmarks to exercise K2
and the original Linux 3.4. In the benchmarks, we measure
power consumption of coherence domains by sampling cur-
rent on their separate power rails [12]. We measure elapsed
time using hardware performance counters when cores are
active, and using a 32KHz platform timer when idle.

In the benchmarks, K2 is able to use the weak core for
OS execution, while Linux can only use the strong core. As
summarized in Table 3, we configure the platform to favor
the energy efficiency of Linux: we fix the strong core at its
most efficient operating point while the weak core has to
run at its least efficient operating point. This is because the
OMAP4 implementation limits DVFS on the weak core, by
coupling its voltage with that of the system interconnect and
RAM. There is no way to scale down the voltage without
crashing the entire SoC, to the best of our knowledge.

Our benchmarks test energy efficiency of three represen-
tative OS services: device driver, file system, and network
stack. The benchmarks mimic mobile light tasks: in each run
of a benchmark, cores are woken up, execute the workloads
as fast as possible, and then stay idle until becoming inac-
tive. We set the core inactive timeout as 5 sec, as reported in
a recent study of mobile device power [41].

DMA driver We choose the DMA driver as a representa-
tive device driver for testing, which is used in almost all bulk
IO transfers, e.g., for flash and WiFi. The driver executes
DMA transfers by operating the OMAP4 DMA engine. As
shown in Figure 6(a), we pick a set of DMA transfer sizes
typical to light tasks. Each run of the benchmark repeat-
edly invokes the DMA driver to execute multiple memory-
to-memory transfers, where each transfer copies BatchSize
bytes and for a total of TotalSize bytes copied. In each trans-
fer, the DMA driver clears the destination memory region,
looks for empty resources, programs the DMA engine and
initiates the transfer. When the transfer is done, the DMA
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Figure 6. OS benchmarks for testing energy efficiency

driver is interrupted to free resources and complete the trans-
fer. We calculate the energy efficiency as the amount of
transferred bytes per Joule.

ext2 file system We choose ext2, a file system widely used
for flash storage, to test the energy efficiency of file system
workloads. We use ramdisk as the underlying block device,
as the SD card driver of K2 is not yet fully functional. This
favors the energy efficiency of Linux: ramdisk is a much
faster block device than real flash storages; using it shortens
idle periods that are more expensive to strong cores. We de-
sign the benchmark to mimic a light task synchronizing con-
tents from the cloud. As shown in Figure 6(b), for each run,
a NightWatch thread operates on eight files sequentially: it
creates a file, writes to it and closes it. We vary the write size
to represent different content types: 1KB (emails), 256KB
(pictures), and 1MB (short videos). We calculate the energy
efficiency as the number of bytes written per Joule.

UDP loopback To test network workloads efficiency, we
design a UDP loopback benchmark to mimic the network-
ing activities when light tasks fetch contents from the cloud.
In the benchmark, a NightWatch thread creates two UDP
sockets; it writes to one and reads from the other one for
a total number of TotalSize bytes at full speed. Once every
BatchSize bytes transferred, the thread destroys both sockets
and recreates new ones. As shown in Figure 6(c), we choose
sizes to represent typical contents as done for the ext2 bench-
mark. We calculate the energy efficiency as the amount of
bytes sent per Joule.

Results analysis In all three benchmarks, K2 shows sig-
nificant advantages of energy efficiency over Linux, by im-
proving the energy efficiency by up to 9x, 8x, and 10x, re-
spectively. Based such results and the mobile device usage
reported in recent literature [41], we estimate that K2 will

Allocation Size = Main Shadow
4KB 1 12
256KB 5 45
1024KB 13 146
Balloon

deflate 10,429 12,813
inflate 11,612 20,408

Table 4. Latencies of physical memory allocations in K2,
in ps. The performance of K2’s main kernel allocator has no
noticeable difference from the Linux page allocator.

extend the reported device standby time by 59%, from 5.9
days to 9.4 days.

Overall, K2 gains the advantages mainly by exploiting the
much lower-power idle periods of the weak core, which exist
within each OS invocation (such as file operations in the
ext2 benchmark) as well as in the inactive timeout periods.
This is shown by the fact that when workloads are more 10-
bound (e.g., the batch size of DMA transfers increases) or
when the total task size of each run is smaller (e.g., in UDP
loopback with fewer total sent bytes), the advantages of K2
are even more significant. In addition, over all benchmarks,
K2 is able to use the weak core to deliver peak performance
that is 20%-70% of the strong core performance at 350MHz,
which can accommodate a wide range of light tasks that have
low to moderate performance expectations.

9.3 Benefits of independent service

In order to evaluate our model of independent core services,
we study the performance of the K2 physical memory man-
agement, with a microbenchmark to exercise the indepen-
dent page allocators as well as the meta-level manager. In
the benchmark, we measure the latency in allocating mem-
ory of different sizes, and in balloon deflating and inflating.

As shown in Table 4, K2 preserves the memory alloca-
tion performance of Linux. In comparing the memory al-
location latency of the K2 main kernel with that of Linux,
we find no noticeable difference: with separate state, the al-
locators of two kernels can operate independently without
communication for most of the time. For each allocation, the
pressure-monitoring probes inserted by the K2 meta-level
manager incur less than twenty instructions, which is neg-
ligible compared to the allocation time. A balloon operation
is more expensive: it intensively updates the page allocator
state and moves pages, introducing around ten milliseconds
latency that may be perceivable to users. This validates our
design of triggering them asynchronously in the background.
With allocation and free operations interleaved in practice
and K2’s large-grain page blocks, we expect that balloon op-
erations are triggered infrequently and thus have their over-
heads amortized over a large number of memory allocations.

To contrast with K2’s independent page allocators, we
attempted but found it infeasible to implement the page
allocator as a shadowed service. The contention between



GetExclusive sender

Operations Main Shadow
Local fault handling 3 17
Protocol Execution 2 13
Inter-domain communication 5 9
Servicing request 24 7
Exit fault, cache miss 18 2
Total 52 48
Table 5. A breakdown of the latency in a DSM page fault,
in ps.
DMA BatchSize
4K 128K 256K IM
Linux 37.8 40.3 40.3 40.5
K2 35.7 39.9 40.5 43.1
(-5.5%) (-1.0%) (+0.5%) (+%6.4)
K2:Main 35.6 28.4 28.6 28.8
K2:Shadow 0.1 11.5 11.9 14.3

Table 6. DMA throughputs of K2 when the DMA driver
is invoked in both kernels concurrently, in MB/Sec. The
throughput differences as compared to the original Linux are
also shown.

coherence domains is very high, incurring four to five DSM
page faults in every allocation, leading to a 200x slowdown.
What is even worse, OS lockups happen frequently and are
difficult to debug.

9.4 Performance of shadowed service

With transparent coherence provided by the DSM, K2’s
shadowed OS services are able to achieve performance very
close to Linux. We show the latency of a single DSM page
fault and its breakdown in Table 5. Although further opti-
mizations are possible (e.g., local fault handling and pro-
tocol execution contribute more than 30% of the latency),
the DSM provides acceptable performance to most extended
OS services where sharing usually happens at a time scale
of milliseconds or seconds.

We examine the performance of shadowed services by
running a DMA driver benchmark on the main and the
shadow kernel concurrently. In each run of the benchmark,
both kernels repeatedly invoke the DMA driver to execute
transfers at full speed with a given batch size. The run is
repeated for multiple times with different batch sizes. As
a comparison, we also run the same benchmark using the
original Linux kernel that uses the strong domain only. The
DMA throughputs of the Linux and the K2 kernels, together
with their differences, are summarized in Table 6.

As shown in the results, in backing the DMA shadowed
service with software coherence, K2 incurs low overhead,
reducing the throughput by up to 5.5%. Since K2 runs two
kernels from two domains simultaneously, the throughput

reduction seen by the main kernel is contributed by two
factors: software coherence overhead incurred by K2 and
the DMA engine bandwidth allocated to the shadow kernel.
With small batch sizes such as 4KB, the benchmark is CPU-
bound: the contention for shared kernel state is relatively
high and the DMA engine is not fully utilized. Due to the
asymmetry in processor performance and in K2’s design,
the coherence overhead is low — a 50 us DSM page fault
happens around every 10 transfers, or 1200 ps. As batch size
increases, the benchmark is becoming more 10-bound; the
shadow kernel starts to get better chances in competing for
the bandwidth of DMA engine. In this situation, as the rate
of accessing shared state decreases, the coherence overhead
is even lower — one DSM page fault in every 18 ms. Thus, the
DMA engine serving two domains has a higher utilization,
leading to a small increase in throughput (by up to 6%) as
compared to the Linux case.

10. Related Work

K2 is related to a few areas in systems research. Hardware
heterogeneity is a recognized way to improve energy effi-
ciency. Driven by the pursuit of heterogeneity, mobile ar-
chitectures with multiple coherence domains that can oper-
ate independently are popular in both industry [23, 36] and
academia [1, 17, 26, 34]. However, existing system support
has focused on user policies [26] and programming models
as in our prior work Reflex [17]; none offers OS support as
K2 does. The lack of OS support will defeat the goal of en-
ergy efficiency: as shown by a recent study of smartphone
workloads [18], demanding and non-demanding tasks share
an extensive set of OS services, which must be executed on
each coherence domain. In particular, our prior work Re-
flex [17] features a DSM that transparently maintains state
consistency for applications. The user-level DSM of Reflex
is complementary to the OS-level DSM of K2; unlike in Re-
flex, the K2 DSM targets generic OS workloads, and thus
has performance as one of the major goals, e.g., by leverag-
ing hardware MMUs.

Programming on top of multiple kernels can be made a
lot easier with a single system image. Many systems pro-
vide single system images by forwarding service requests
among kernels. For example, the V distributed system [10]
distributes microkernels over workstations and forwards re-
quests to OS servers via network. Multicelluar OSes such
as Hive [9] and Cellular IRIX [31] provide single system
images over multiple cells by running independent kernels
which cooperate using explicit communication, e.g., RPC.
Since kernels are independent, an IO request must be served
in the only cell where the 1O device is located. Disco [8],
which runs different unmodified OSes on a single machine,
does coordination at user-level with standard network proto-
cols, thus providing a partial single system image. fos [40],
Helios [22], and NIX [5] dedicate a set of cores or hardware
accelerators to specific OS services, and send them the cor-



responding services requests with explicit messages. Unlike
all of them, K2 must realize a single system image by repli-
cating OS services, in order to execute the same OS services
on each domain for energy efficiency.

To improve resource utilization, unified resource manage-
ment is relevant when multiple kernels share the same re-
source pool. Statically partitioning resources is wasteful and
thus undesirable. Many research OSes [6, 40] redesign their
local resource managers to cooperate at fine grains, which
is effective yet difficult to apply to mature mobile OSes.
Similarly, Libra [2] enables a general-purpose OS and mul-
tiple specialized library OSes to share physical memory dy-
namically; it also employs redesigned memory managers in
the specialized OSes. Virtual machines [39] enable resource
sharing among multiple OSes while minimizing modifica-
tions to them. For memory management, K2 retrofits the
balloon driver idea from virtual machines, and additionally
moves physically contiguous regions around individual ker-
nels, without assuming virtualization hardware.

Reducing sharing in OS has been extensively studied for
shared memory machines, mostly for scalability. Many ar-
gue for structural overhauls. Hurricane [38] organizes OS in
a hierarchical way to improve scalability. Barrelfish [6] takes
an extreme design point to make all OS state non-shared
by default. fos [40] argues to replicate given OS services
to a subset of processors and coordinate them with mes-
sages. New programming abstractions have been proposed,
too. Tornado [13] and K42 [3] argue for object-oriented OS
designs, enabling each OS service to have its internal mech-
anism to distribute over SMP. Inspired by them, K2 treats
OS services differently in how to replicate them over co-
herence domains; unlike them, K2 targets reusing legacy OS
code rather than a clean-slate implementation. For manycore
machines, Corey [7] enables applications to control sharing
within processes. Inspired by it, K2 employs NightWatch
thread as a hint of performance expectation.

In reusing mature OSes for new architectures, virtualiza-
tion and refactoring are two major approaches. While K2
borrows idea from virtual machines for memory manage-
ment, the latter usually sets out to enforce isolation among
OS instances, rather than providing a single system image
over them. Refactoring, as done in DrawBridge [25] and
Unikernels [19] recently, restructures OS while keeping indi-
vidual OS components. Their approaches are inspiring, but
solve a different problem — rearranging OS services verti-
cally across layers. In comparison, for K2 we refactor Linux
by replicating OS services horizontally across coherence do-
mains.

11. Concluding Remarks

Discussion K2 is designed for a typical mobile SoC which
consists of a few heterogeneous domains. As compute re-
sources keep increasing, we next discuss how K2 should be
adapted for the following architecture trends.

First, individual domains will accommodate more cache-
coherent cores. Since individual kernels of K2 already have
the Linux SMP support, K2 can (almost) transparently scale
with these additional cores.

Second, one system may embrace more, but not many,
types of heterogeneous domains, as determined by the cur-
rent spectrum of mobile workloads. For N domains (N
being moderate), K2 can be extended without structural
changes: the DSM (§6.3) will track page ownership among
N domains as in [17]; the unified kernel address space (§6.1)
will host the additional V-2 local virtual regions; the global
physical region will still be managed by balloon drivers
(§6.2), yet the relative locations of /N local physical regions
depend on the intended use of the added domains. Overall,
the asymmetric aspects of K2 (e.g., page allocation favoring
strong domains) will remain.

Another possibility is that a system incorporates many
coherence domains of the same type, as seen on some
scalability-oriented systems including the 48-domain Intel
SCC [20]. Our shared-most model (§4.3) will be useful,
while new OS implementations should be engineered for
scalability. However, we do not expect to see so many do-
mains on a mobile device in the foreseeable future.

In developing K2, we find that the following architectural
features will greatly benefit system performance and effi-
ciency, yet are still missing in today’s multi-domain SoCs:
direct channels for inter-domain communication that bypass
the system interconnect, efficient MMUs for weak domains
with permission support, and finer-grained power domains.

Conclusion Multi-domain SoCs promise high energy ef-
ficiency to a wide range of mobile applications, yet are
difficult to program. To address this challenge, we iden-
tify a shared-most OS model for the architecture, and argue
for transparently maintaining state coherence for extended
OS services while creating per-domain, shared-nothing in-
stances of core OS services. By applying the model, we build
K2, a prototype OS on the TT OMAP4 SoC. K2 presents a
single system image and reuses most of the Linux kernel
source. Although still in an early stage under development,
K2 improves energy efficiency for light OS workloads by up
to 10x and provides almost the same performance as Linux,
showing that the shared-most model is promising. The
source of K2 is available from http://www.k20s.org.
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