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Abstract: The introduction of state equation model of the electrical machine based on
direct and quadrature axes variables has paved the way for powerful control theories to
be brought to bear on the problem of control of electric machines. Exact linearization
has been applied to the control of permanent magnet synchronous motor (PMSM). In
this paper, application of approximate linearization is proposed for the control of
PMSM. Since the PMSM model is essentially quadratic, quadratic linearization is
considered for the application. Conditions on the coordinate transformation and state
feedback are derived for the linearization of a four dimensional permanent magnet (PM)
machine model. The proposed linearization technique does not introduce singularities in
the system as in the case of exact linearization. Also, to account for higher order
nonlinearities including unmodelled dynamics, the linear zing transformations are
adaptively tuned. Simulation studies verify the theoretical results presented.
Hardware/software implementation is carried out to verify the effectiveness of the
linearization technique proposed. The linearization technique proposed can also be
applied to other types of electrical motors.

Keywords: Nonlinear systems; Permanent magnet motor; Quadratic Linearization;
State feedback.

1. Introduction

Permanent magnet (PM) machines, particularly at low power range, are widely used in the
industry because of their high efficiency. They have gained popularity in variable frequency
drive applications. The merits of the machine are elimination of field copper loss, higher power
density, low rotor inertia and a robust construction of the rotor [1].

A dynamic model of a PM machine using direct and quadrature axis variables such as in
[1] paves the way for powerful control theories to be brought to bear on the problem of control
of PM machine. Linearization which is a system-theoretic method of control is applied in this
paper.

Zribi and Chiasson [2] proposed exact linearization for position control of PM stepper
motor. Zhu et al [3] have combined exact-linearization with a state observer for rotor position
and speed. In Wu et al [4], a two-input, two-output PMSM model is linear zed using
differential geometric method. Jun Zhang et al [5] discuss decoupling control applied to PMSM
using exact linearization. Bodson and Chiasson [6] have applied exact linearization to the
control of electric motors including PMSM. Typically, exact input-output linearization
involves deriving state feedback in terms of the inverse of a matrix of state variables, which is
assumed to exist. A practical difficulty may arise when the matrix tends to be singular during
the course of machine operation.In the dynamic feedback linearization method, proposed in
[7], a singularity involving the rotor flux is introduced besides additional complexities
involved.

Poincare derived what are known as homological equations for approximate linearization of
autonomous differential systems as given in [8]. Krener [9] extended Poincare’s work to
include control input. Approximate linearization does not suffer from the singularity issue
mentioned above. Since PMSM can be adequately described by a quadratic model during
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normal operation[1], quadratic linearization [10,11] of PMSM is proposed in this paper.

Being an approximation technique, quadratic linearization introduces third and higher order
terms into the system. These together with unmodelled dynamics present in PMSM can be
accounted for by tuning the linear zing transformations similar to the method proposed by
Narendra et al [12]. With this modification, approximate linearization can be made equivalent
to exact linearization without the singularity issue being involved.

The main contribution of the paper is the application of approximate linearization and in
particular, quadratic linearization to PMSM. The original results of the paper which have not
been reported elsewhere are the following:

1. Necessary and sufficient conditions for quadratic linearization of a class of two-input
control affine system have been derived. PMSM model is shown to belong to this class.

2. Stability analysis is carried for the first time in this paper for the class of system considered
both before and after linearization.

3. Verification of proposed theory using hardware implementation is included in the paper for
the first time.

To summarize the rest of the paper, in section II, background material on quadratic
linearization is given. In section III, the main theoretical result on quadratic linearization of
PMSM is stated and proved. In section IV, tuning rules for linear zing transformation are
derived for least square error minimization of the linear zed system output with respect to the
output of a linear canonical system. In section V, simulation studies are carried out using
MATLAB/SIMULINK to verify the theoretical results. In section VI, implementation of
PMSM machine control using the proposed technique is described. In section VII, the paper is
concluded.

2. Background
Consider a single input control affine system of the form [10, 11]

%= Ax+Bu+ FA )+ P00+t F ™) 4+ gP0u+-+ g™ D u+---

(D
where A and B are matrices in the controller normal form
0 1 0 0
00 0 :
A= ;B =
0 0 1 0
00 0 1
()
Ais a nxn matrix and B is a nx1 matrix. x:[xl Xy oo an and U is a scalar input.

£ (M(x), gMD(x) are homogeneous vector polynomials of order M and (m -1) respectively,
m=23,-

In order to cancel the quadratic term of the system, change of coordinate and feedback of
the following form is considered, as given in [10,11]

y= X+¢(2)(X) (3)
u={1+ A0 +a?(x) @
where 4 (x) and «'®(x) are vector and scalar quadratic polynomials respectively and

BV(x)is a scalar linear polynomial. Yy and V are the transformed (new) state and input
respectively.
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Applying the transformations (3) and (4), (1) can be reduced to

y = Ay + Bv+O(y,V &
y=Ay (y,v) (5)

where O( Y, V)(3) represents terms of degree greater than or equal to 3, provided the following
homological equations (6) and (7) as given in [13], are satisfied. O(y, v)®

2)
_ A¢(2)(X)+ BO[(Z)(X)+ f(z)(X)+MAX =0
OX
(6)
2)
BV v+ 22X gy 4 gD (xy = 039y
ox (7N

#Px),a®(x)and BV (x) can be derived by solving (6) and (7).

3. Quadratic Linearization of PMSM
A. Machine Model

The PM machine model given in Bose [1] and Pillay and Krishnan [14] can be derived as
below

x = Ax+Bu+ f @ (x)

x=[x X x X4P:[‘9 or g idIr;U=[U1 UzIr:[uq UJ

1 0 0 0 0 0o
0 1.5 p/‘taf/ 0 L5p(Lg — Lq)'q'(/
J J

0 0 0
o U
0 0

®)

(=]

;B=] 1 0 fPmx=| —Lyparig
0o - /0Lq ya LquiqA
/Ld L I /d

where ug, Uy, iq,ig  represent the quadrature and direct axis voltages and currents respectively

and 6,w, represent rotor position and rotor speed respectively. 1, is the flux induced by the
permanent magnet of the rotor in the stator phases. Ly,L are the direct and quadrature

inductances respectively. R is the stator resistance, p is the number of pole pairs and J is the
system moment of inertia.

Model (8) has to be first reduced to Brunovsky form [15, 16] of (2) before quadratic

linearization of (3) and (4) can be applied. For this, linear transformations as given in (9) due to
Kuo [17] is used.
ac, 0 0 0
0 a
= 1C1 y
0 0 ¢ O

0 0 0 a

(e
(=]

©
{1 0 1 0 -aa, -a 0
u= a u'+ —az/y
0 %4 1
%2 0 0 0 6
where
L5pAqs —Aaf P -R -R 1 1
al = 3 532 = Lq ;a3 = Lq ,a4 E;Cl _E,Cz :E
(10)
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Using the linear transformations (9) and (10), (8) can be reduced to Brunovsky form for
two inputs (11) as below (where x,u, A and B are retained for simplicity of notation).

X=AxX+Bu+ f(z)(x)

)]
where
0100 00 0
A0 01 ();B: 0 o;f@kx): CQQX4;Clzlﬁp(Hj—LqW4;C2:-_Ldp%a4;C :lﬂcf
0000 1 0 CyXyXy Jay Ly Lyay
00 00 0 1 C3Xy X3

a;,a4and C, are as defined in (10).

Remark 1: The quadratic linearization for the case of single input given in section II can be
extended to the case of two inputs in a straight forward way to the model (11). This is
considered next.

B. Conditions for Quadratic Linearization
Theorem 1: Consider a four dimensional two input system

x = Ax+Bu+ f D (x)

12)
X:[Xl X3 X3 X4P;U:[U1 Uzr
0100 00 £ (x)
N M LU A
0000 0 1 £2(x)
Then using the transformations [18]
y=x+¢?(x) (13)
u=(ly+ PN +a?(x) (14)

where
y:[)ﬁ Yo Y3 Y4P;

¢‘2)(x):[¢1‘2’(x) #70 #2(0) ¢fﬁ)(x)]r;
p0=lp000) vl vl @@=l P00

system (12) can be quadratic linearized if and only if
2 252
I _gang SN Z(X) =0
OX4 OX3
Proof: See Appendix.
Remark 2: In the state feedback given by (14), the old input (U) is expressed in terms of new
input (V) and state (X) and can be implemented as such without the need for inversion of a

matrix. Thus, the issue of possible singularity as in the case of exact linearization does not arise
in the approach proposed.

Corollary 1:

The PMSM model given by (11) is quadratic linearizable using the transformations (13) and
(14).
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Proof: Since f,*(x) =0, the conditions for Theorem 1 are satisfied. Hence the result.

C. Derivation of Linearization Transformations
In this section, linear zing transformations (13) and (14) are derived in their simplest form
for ease of implementation. Consider the normal form of PMSM model given in (11).

Choosing the arbitrary function ¢1(2)(X) =0 and noting that fl(z)(x) =0, (A.8) yields ¢§2)(x) =0.
¢3(2)(x) is constructed from (A.3), for i =2 as
#200=1200=Cixsx,

15)
¢f‘2)(x) can be chosen for simplicity as ¢f‘2)(x) =0. Hence
0
(2) —_
$ 7 (X) Cixsx,s
0
(16)
a® (%) can be then be derived from (A.4)as
#@(x)= {—szﬂﬂ
—-C3XxoX;
17)
BD(x) can be derived from (A.6) as
Cixqs CiXx
Oy - | “1%a L1X3
o= [0 <o
(18)

Using transformations (13) and (14), where #Px), a@(x)and P (x) are as derived in (16)
— (18), system (11) reduces to

o )
y=Ay+Bv+0O(y,v) (19)

where O(y,v)® represents third and higher order terms.

4. Tuning
A. Tuning Formulae

When the PMSM model is quadratic linear zed, third and higher order terms are introduced
into the system by the process of quadratic linearization even though the system model is not
assumed to possess such higher order nonlinearity originally (refer (8) and (11)). This problem
is approached in two ways. The first approach is theoretical leading to what is called
'generalized quadratic linearization' which seeks to remove the second order nonlinearity in the
model while at the same time cancelling all third and higher order terms introduced. The
generalized quadratic linearization is shown to be applicable to a class of control affine systems
[18,19]. PMSM and induction motors, for example, belong to the class.

The second approach which is empirical and applicable to PMSM model is discussed in this
section. To account for higher order nonlinearities (introduced during quadratic linearization),
and the unmodelled dynamics, tuning of the linear zing transformations against an actual PM
machine on the lines similar to those used by Levin and Narendra[12] is proposed. Figure 1
shows the block diagram for tuning. N; represents state feedback transformation (14) and N,
represents coordinate transformation (13). The coefficients in the linear zing transformations
N;and N, are updated based on the error between the outputs of quadratic linear zed system

and a linear canonical form of the machine model (normal form) [20].V Corresponds to the
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input and y(M) represents the output at the M" iteration. §(M) corresponds to the output of
the linear normal form for the same input.

Referring to Figure 1, it is required to propagate error first to N, and through the PMSM
machine to N;. Since the error cannot be propagated through the actual machine with an
unknown model, the assumed PMSM model (11) is used instead.

7

N um) simulink x(m) N2
! model

\ y(m)
v(m) updating ¢
law

y(m)

normal
form

Figure 1. Block diagram for tuning of transformation

At any step ‘m’, squared error (E) in Figure 1 can be calculated as
. a2
E=(c'e)?= [(y— N (y- y)]] (20)
wheres=[g; &, & & and e=y-§
To tune N, and N, independently, the transformation matrices can be redefined as
0
@ (x) =
(%) Cixsx
0
21

and

A0 (x) :_|:C1'X4 Cllxﬂ
0 0
(22)

where C; and Clr can be separately tuned. «®(x)is not varied.

It is easily derived that N2 can be tuned using update formula for C; as

Cl(m)=C1(m—l)—p1AC1(m);0<p1 <1 (23)

where m corresponds to the updating step, p; corresponds to the accelerating factor and
Cl :6_E:Ea_Ei:E_3X3X4
oC, oyoc, E
(24)

For updating N, it is as summed that the steady state of the model (11) is reached within the

tuning period and the tuning rule for Cll is derived as
C, (M)=C, (M=-1)= pyAC, (M)30< p, <1 29)

where M corresponds to the updating step, 0, correspond to the accelerating factor and

649



Analysis and Application of Quadratic Linearization to the Control of Permanent

ACI/ _ (V1X4 ;V2X3)[C82 + 83CC1:X3 +&4 J
2%4 2%2
(26)
B. Stability Analysis
In order to check the asymptotic stability of (11), for autonomous system we put u=0,
which results in

>.<: AX+ f(z)(x) 27)

Assuming A is strictly Hurwitz as given in Fang et al [21] and Greenberg [22], there exist,
symmetric and positive — definite matrices P and Q which satisfy

T =
ATP+PA=-2Q 28)
Consider the following candidate Lyapunov function
V(X)= L X Px
? (29)
The time derivative of V (X) is given by
\;(x) = fxTQx+le Pf ‘2)(x)+l( f A x)" Px
2 2 (30)

It can be verified that f @ (x)is locally Lipschitz, thus, there exists a positive constant M such
that

“ fOx)- @ (0)” <M|x]

(31)
Then
V(x)s—||Q—MP||“x2“ 2)
On that account if the condition
Q> MP (33)

is satisfied, X = 0 is an asymptotically stable equilibrium.

This means that (11) is asymptotically stable under certain conditions. In order to check
asymptotic stability of system (19), which results after quadratic linearization, for autonomous
system we put V=0, which results in

y=Ay+0(y)® (34)

Assuming A is strictly Hurwitz as given in Fang et al [21] and Greenberg [22], there exist,
symmetric and positive — definite matrices P and Q which satisfy

T =
ATP+PA=-2Q (35)
Consider the following candidate Lyapunov function
1
V()= y"Py
(36)
The time derivative of V (y) is given by
° 1 1
V() =-y'Qy+=y PO+ (0() Py
2 2 (37)

Assuming that O(y)”) is locally Lipschitz, thus, there exists a positive constant M, such that
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“O()h )@ —O(Y2)(3)“ < Mo|lyi - ¥z

(38%)
forY,, Y, in aneighborhood RO containing the origin.
Then, the time derivative of V (y)is given by
V e 2
Vi <-fo-Mmoply’| (39)
On that account if the condition
Q> M,P (40)

is satisfied, Y =0 is an asymptotically stable equilibrium. Stability analysis of PMSM model
follows as a special case.

5. Simulation Results

Application of coordinate and state feedback to linearized the PMSM model is simulated
using MATLAB/SIMULINK [23]. Effectiveness of the tuning of the transformations is
demonstrated through simulation results. A sample of the experimental data is given in this
section. A larger set of the experimental data in [24] confirm the conclusions obtained.

The objective of simulation is to investigate the open loop steady state gain (@, versus U, )

of the PMSM model under different operating conditions before and after linearization and to
verify if the system behaves like a linear system after linearization. Also, dynamic responses of
the system is are studied for variations in reference speed and load conditions for uniformity of
response as is characteristic of a linear system. Effectiveness of tuning is also investigated in
on similar lines by obtaining dynamic responses of the system for different set points before
and after tuning.

A. Quadratic Linearization
For the Interior PMSM, parameters are taken as follows:

Stator resistance R= 0.15QQ; - axis Inductance Lq = 1.2mH; d-axis Inductance L, =

0.76mH; Flux induced in magnets A = 0.013125 Wb; Moment of Inertia J = 0.0008 kg m*;
Friction factor B =1 N-msec; No. of pole pairs p = 4.

Figure 2 shows the Simulink model of the PMSM which is constructed using speed block,
torque block and control circuit as given in [23].U,and U, are taken as inputs to the motor.

The PM model in figure 2 is especially configured for the IPM where Ld # Lq (blocks

shown in cyan colour are not included).
Figure 3 shows the linearization of PMSM (blocks shown in cyan colour are not included).

L1 and L2 blocks in Figure 3 include the linear transformations (9) and N1 and N2 represent the
nonlinear transformations (14) and (13). Prior to linearization, the open loop steady state gain
of @, versus U, of the PMSM model is investigated and it is observed that the open loop

steady state gain of @, versus U, (keeping U, constant) varies under different operating

conditions giving a standard deviation of over 50% of the average value of the gain. After
linearization, the static gain variation corresponded to a standard deviation of a little over 3%
of the average value of the gain thus verifying improved static linearity.
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Combined closed loop responses of angular speed of the motor after linearization and
before linearization are shown for reference speed of 120 rad/s in Figure 4, assuming zero load
torque. The response after linearization is uniform over the reference input range as expected
of a linear system. Also, the settling time of angular speed is considerably reduced. Figure5
shows the combined closed loop speed responses when the load is varied after and before
linearization for the same reference speed of 120 rad/s. Again, while the response is not
uniform before linearization, the response after linearization is uniform as can be expected of a

linear system. Here kp and ki represent proportional constant and integral constant of the

controller respectively.

0u003 0004 0.005 0.007 0.003

Figure 4. Combined Time response of angular speed in closed loop after and before
linearization when set speed =120 rad/s; k, =50;k; =2

Figure 5. Combined Time Response of angular speed in closed loop after and before
linearization when set speed = 120 rad/s T = 1.5 N-m; k, =50;k; =2

B. Simulation of Tuning
To simulate higher order loss, core loss is included in the Simulink model. The core loss
caused by the permanent magnet (PM) flux and armature reaction flux, is a significant

component of the total loss of a PMSM. The net core loss P

. as given by Ramin

Monajemy[25], for PMSM is computed as follows:
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_ L5307 (Lgig)® . 150 (Ags + Lgig)?
Re R

lc

(41)

where R, represents core loss resistance, A, represents magnet flux linkage, P_represents
core loss and @, denotes rotor electrical speed. The mechanical torque equation including

core losses is given by (42), where T, represents load torque and T represents torque due

core loss.

T, =J d;"r +T) + T

e (42)

(43)

PMSM Simulink model including core loss is given in Figure 2. The blocks representing
core loss is indicated in cyan colour in Figure 2. The loss torque block represents the core loss.
The tuning of the transformation is carried out as per update laws given in Equations (23) and
(25) and is included in Figure 3 (indicated by blocks in cyan colour). The tuning is stopped

after the error E < 0.01.

Prior to tuning, the open loop steady state gain of Y, versus V, of the PMSM model after
linearization including core loss is investigated and it is observed that the open loop steady
state gain of Y, versus V, varies under different operating conditions giving a standard

deviation of over 70% of the average value of the gain. After tuning, the static gain variation
corresponded to a standard deviation of a little over 2% of the average value of the gain thus
verifying the effect of tuning. The combined closed loop response after tuning and before
tuning is shown in Figure 6. The closed loop response before tuning is highly non-uniform
when compared to the uniform response after tuning. The settling time of angular speed is also
reduced considerably after tuning. This verifies that the tuning can effectively cancel the
higher order nonlinearity.

0.003 0004 ooos 0,008 o7

Figure 6. Combined Time response of angular speed in closed loop after and before tuning
when set speed = 110 rad/s; kp =50k =2
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C. Hardware Implementation

Hardware implementation is done using a PMSM machine to verify the effectiveness of the
linearization technique proposed. Surface Mounted Permanent Magnet motor is used for the
hardware implementation. The proposed system of Figure 7 was implemented. TMS320F2812
DSP controller operating with a clock speed of 150 MHz was used to carry out the
implementation of Clarke’s and inverse Clarke’s transformations, Park’s and inverse Park's
transformations[26], linear zing transformation, PI controller, and inverter switching for speed
control. A three phase insulated gate bipolar transistor (IGBT) power module was used for the
inverter, which was supplied at a DC link supply voltage of 325 V. An incremental encoder
(@2000 pulses/rev) was used to calculate the rotor speed and to determine the initial position
of rotor position (8).

Figures 8 and 9 show closed loop speed responses before and after linearization under
reference input change for a given load. Figures 10 and 11 show the closed loop speed
responses before linearization when a load is applied and released respectively. Figures 12 and
13 show the corresponding responses after linearization. The responses shown in Figures 8 to
13 indicate speed in rpm and time in seconds.

It is seen from these figures that the dynamic responses of speed for step change in speed
reference is smoother and more uniform for cases after linearization, when compared to the
cases before linearization. Also it is seen that there are spikes in the responses before
linearization. The dynamic responses of speed for load variations are also smoother and more
uniform for the cases after linearization, when compared to the cases before linearization. The
results presented here are necessarily samples of a more comprehensive set of experimental
data obtained. It is verified by experimental results that a uniform dynamic response under a
fixed controller can be obtained for the linear zed system for different load conditions and set
point variations, in contrast to the case before linearization.

o 1 7 Lo o
il AR

T T2 T3 T4 T

REREI

]
]1

4
-3

Al ib <=
BC 2812 CONTROLLER I_
: |_index pulse |
CAPTURE
L= 1 encoper

UNIT

20%%pey INTERFACE

Figure 7. Hardware Implementation Diagram
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Figure 8. Speed control before linearization when load is 3 kg and sets peed is 3000 rpm
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Figure 9. Speed control after linearization when load is 3 kg and set speed is 3000 rpm
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Figure 10. Speed control before linearization when speed is 1500 rpm and 1 kg is applied
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Figure 11. Speed control before linearization when speed is 1500 rp mand 1 kg is released
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Figure 12. Speed control after linearization when speed is 1500 rpm and 1 kg is applied
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Figure 13. Speed control after linearization when speed is 1500 rpm and 1 kg is released

6. Conclusion

Necessary and sufficient conditions for quadratic linearizability of a class of control affine
systems are derived. PMSM model is shown to belong to this class. Linearzing transformations
for PMSM model is derived. The necessary and sufficient conditions derived specifically for
the PMSM model are new. Simulation studies are carried out using MATLAB/SIMULINK to
verify quadratic linearization of PMSM. Also by simulating core loss, as an example of higher
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order nonlinearity, it is shown that the linear zing transformations can be tuned against a
canonical linear form of the machine to cancel the nonlinearity. Finally, a practical
implementation of quadratic linearization on an actual PMSM machine is carried out with the
help of DSP system together with PMSM and associated circuits. Experimental results are
obtained which verify the theoretical results presented.

The approximate linearization technique is proposed to be extended to other types of
electrical machines, such as, induction motor, wound synchronous motor etc. Necessary and
sufficient conditions for quadratic linearization are to be derived for the other machine models
as well. Necessary and sufficient conditions for quadratic linearization of a class of two-input
control affine system which has been derived can be applied to any control affine system with
quadratic nonlinearity, for example, heat exchanger process involving product of mass flow
and temperature or mass transfer process involving product of mass flow and concentration.

Appendix

Proof of Theorem 1

Proof: For the special class of system of the form (12), homological equations (6) and (7) can
be rewritten as

@
“ AP0+ Ba®(x)+ £ (x)+ LX) ax(X) Ax=0 (Al

D)

BAY (x)v +6¢6— Bv = 0; Vv (A2)
X

Substitute for A, Band f®(x) from (12) into (A.1), to get

04 (%) _
4200+ FAx)+ Z lax- Xj =05 =12 (A3)
j=1,2 J

06?®
a?00+ {200+ Y ¢:3X_(X)xj+l:O;i:3,4;k:(i—2) (A4)
j=12

By inspection, (A.2) can be reduced to

(2)
{M o A5
oXj |i=1,2
j=3,4
and
2)
ﬁ%m+Fﬂlﬁ} ~0 (A6)
an .
i,j=3,4

(A.4) and (A.6) containing arbitrary terms a,ﬁz)(x) and B (X) respectively, can be satisfied
for arbitrary ¢”(x);i =3,4.
Also, ¢ (X) being arbitrary, can be chosen such that

(2)
) =34 (A7)
6Xj
Since ¢3(2)(X) is arbitrary, as mentioned above, (A.3) can be satisfied fori = 2. This together

with the substitution of (A.7) into (A.5), results in (A.8) and (A.9) which are equivalent to
homological equations (A.1) and (A.2).
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o> (%)
2 2
~#200+ 120+ Z ng X1 =0 (A8)
j=1,2
(2)
" =34 (A9)
an
o - . oy
To prove necessity, differentiating (A.8), with respect to X,;k =3,4 and denoting x as
k
(2)
o ov; .
@) ] 2
Wiy and EW S Vi ke and using (A.9), one can have
o, (0= 1000+ D ) | xju o (0=0 (A10)
j=1,2
and
g, (0= .00+ ) 50 L Xini = (A.11)
j=1,2
Using (A.7), (A.10) and (A.11) can be written as
#2 0=F200+¢7) 0=0 (A.12)
#ix, (0= (=0
That is
(2) ' (0=0 (A.13)

Further by differentiating (A.12) with respect to X, , one can get
¢(2) - f@ (2)

2,X35%; 1><3,><3 1,%2,%;

Using (A.7), it follows that
f@ =0 (A.14)

1’X3’X3

The necessity of the result thus follows.

To prove sufficiency, it is required to show that assuming (A.13) and (A.14), ¢(2)(X) given by
(A.8) has to satisfy (A.9).

Differentiating (A.8) with respect to X, and rearranging

P 0= 1000+ 3 9 %, 441500 (A1)

Using (A.7), (A.15) becomes
#2000 = 12 00+45) 0 (A.16)

Expanding the linear form f( )(X) as

fl(,?()3 (X) = f1’13X1 + f1’23X2 + fl’33X3 + f1’34X4 (A.17)

and using (A.13) and (A.14), (A.17) reduces to
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f&)s )= f% + fi3% (A.18)

Substituting (A.18) into (A.16) yields
¢§,2>13 )= frixi+ fias%, +¢1(,2X)2 (x) (A.19)

As per (A7), ¢|(2) (X) which can be arbitrary, is to be chosen as a function of X, and X, only.

Choosing the derivative ¢1(2X)2 (x) as

2) _
Dx, =—f3% = fiasX%

yields from (A.19) that
#P (x)=0 (A.20)

2,X3

Differentiating (A.8) with respect to X, and rearranging, one can get

2 2 2 2
¢§’§4(x): fl(,xz(x)+¢l(,x)l,x4 X, +¢1(’X)2’X4 X3 (A21)

According to the assumption (A.7) and using (A.13), it follows from (A.21) that ¢§2;4(x)=0 .

Hence (A.9) is satisfied . Hence the sufficiency condition is proved.
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