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Abstract. During many crises, access to sensitive emergency-support
information is required to save lives and property. For example, for ef-
fective evacuations first responders need the names and addresses of
non-ambulatory residents. Yet, currently, access to such information may
not be possible because government policy makers and third-party data
providers lack confidence that today’s IT systems will protect their data.
Our approach to the management of emergency information provides
first responders with temporary, transient access to sensitive informa-
tion, and ensures that the information is revoked after the emergency.
The following contributions are presented: a systematic analysis of the
basic forms of trusted communication supported by the architecture; a
comprehensive method for secure, distributed emergency state manage-
ment; a method to allow a userspace application to securely display data;
a multifaceted system analysis of the confinement of emergency informa-
tion and the secure and complete revocation of access to that information
at the closure of an emergency.

Keywords: Information Assurance, Computer Security, Policy Enforce-
ment, Secret Protection (SP), Transient Trust, Emergency Response.

1 Introduction

In a crisis, first-responders can often save lives and limit damage if they have
access to certain sensitive or restricted information. Examples of such emergency
information are: building floor plans, schematics for infrastructure or transit
systems in a city, or medical records of victims. However, government policy
makers and third-party data providers lack confidence in the ability of emergency
IT systems to protect their data relative to confidentiality, sensitivity, privacy,
liability, and other concerns, and are unwilling to release such data, even on a
temporary basis, to civilian first responders[1].
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In this paper, we address the essential confidentiality, integrity, access con-
trol, revocation and data containment capabilities needed in future emergency
response systems. We show how a platform based on commercial off-the-shelf
technology can be used for the secure management of emergency information
and we detail how it can (1) communicate securely with a trusted authority,
first responders, and information providers; (2) manage distributed emergency
state with high integrity and assurance; and (3) enable emergency access to sen-
sitive information while strictly maintaining its confinement as well as revoking
access with high assurance.

In the sections that follow, we show how a handheld Emergency Device, the
E-Device, utilizing the latest generation separation kernel technology [2,3] and
state-of-the-art hardware security concepts [4], can be a trusted foundation for
secure crisis response.

2 Secure Platform Architecture

The secure platform architecture of the E-Device (see Fig. 1) is based on a
commercial general-purpose processor (nominally an x86) enhanced with the
Authority-Mode Secret Protection (SP) architecture features [4], a Trusted Man-
agement Layer (TML) — comprising a least privileged separation kernel [2], and
a security services layer that virtualizes certain separation kernel resources —
and trusted software programs that run in one of the TML-provided partitions.
These hardware/software components, with the addition of a Trusted Software
Module (TSM) application supported by SP, form the Trusted Computing Base
(TCB) for our E-Device.

2.1 Secure Software Stack

The trusted software for the E-Device utilizes Intel x86 privilege levels to protect
the resources in each level from the subjects in less-privileged domains. The two
most privileged layers are collectively referred to as the TML, while the next most
privileged layers house a trusted executive and the Trusted Path Application
(TPA).

The TML provides software-based security enforcement, and is supported by
security features of the underlying Intel x86 and SP hardware. While support for
many different client OSes is not the focus of this research, the TML is designed
to provide to the commodity OS a standard execution environment with respect
to platform hardware features.

The TML manages all system hardware resources (e.g., memory, devices,
processors, etc.). It reserves some resources for its own use, and exports other
resources in the form of processes, memory segments, I/O devices, raw disk vol-
umes, segment volumes, etc. The TML separates all exported resources into dis-
tinct partitions, governs the flow of information between partitions and between
individual exported resources, and protects raw disk volumes by encryption.

The TML creates three types of partitions: Emergency, Trusted and Nor-
mal. A normal partition and an emergency partition each run a commodity
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Fig. 1. Security architecture instantiated for an emergency scenario

(untrusted) OS. The Trusted Partition runs an extremely compact trusted ex-
ecutive. Information flow rules and partition definitions provided to the TML
define a partial ordering of flows between partitions, indicative of a multilevel
security (MLS) policy, and corresponding security labels may be associated with
partitions.

The TML manages interactive user sessions through what is referred to as
partition focus, whereby the user can interact with one partition at a time, via
the system keyboard and screen.

For applications in the trusted partition, the trusted executive provides simple
OS-like support. The trusted executive manages passwords and provides user
authentication services. The TPA is invoked by pressing what is known as the
secure attention key (SAK), such as Ctrl-Alt-Delete. When the TML detects the
SAK, it changes partition focus to the Trusted Partition, which starts the TPA.
The TPA provides a variety of other security services to the user, including:
setting the security sensitivity label for a session, changing a password, and
shutting down the E-Device.

2.2 Trusted Software Protected by SP Hardware

A novel aspect of our architecture is provided by SP’s Trusted Software Module
(TSM). TSMs have two critical characteristics: they are protected from observa-
tion and modification by non-TSM software (including the OS), and they have
exclusive access to SP crypto-transforms and to two processor-resident data
registers.

A TSM is defined to be code that is executable in a special processor mode
called Concealed Execution Mode (CEM) that is entered via the Begin CEM
instruction. Once in CEM, special SP instructions can be executed — SP derive,
Secure Load, Secure Store, and End CEM — and special SP registers can be
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used — Device Root Key (DRK) and Storage Root Hash (SRH). Other CEM-
only instructions are provided to read and write the SRH register. Also, when
in CEM, the processor checks the integrity of each instruction cache line of the
TSM with respect to compiled-in signatures based on the DRK.

The Secure Load and Secure Store instructions cause memory locations to
be tagged as TSM-only while they reside in on-chip caches, and to be auto-
matically encrypted and hashed when they move to off-chip memory to prevent
unauthorized observation or modification. CEM execution is suspended during
an interrupt and is automatically resumed upon return, with data in processor
registers protected from the OS by the hardware.

The protection of TSM code can be viewed as being independent from the
protection of the underlying OS, as follows. The trustworthiness of a program is
generally understood to be limited by the trustworthiness of the programs that
it depends on. The TSM, which runs in the Emergency Partition “on top of” an
untrusted OS, does not make calls to the OS (i.e., and can not, since the OS is
not a TSM) and so a TSM is not “functionally” dependent on the OS, and can
actually be more trustworthy than the OS itself.

SP stores two master secrets in non-volatile registers on-chip, which provide
the roots of trust for the E-Device’s operations. The DRK, which never leaves
the processor, protects the integrity of TSM code and is also used by SP derive
to cryptographically derive new keys for the TSM. The SRH can only be read
or written by the TSM, and provides it with a small amount of on-chip storage,
which can be used to store the output of crypto-hashing operations for protecting
larger persistent data structures such as key chains (a hierarchy of keys) and the
policies regarding use of those keys. This allows the TSM to moderate all access
to the protected data and enforce the corresponding policies on each access.

The Authority can communicate with the E-Device during operation, pro-
viding updates to keys and policies in its persistent secure storage and to send
new encrypted data to the E-Device. When establishing a secure communication
channel, the parties use derived keys. Therefore, the E-Device’s ability to gener-
ate those keys and communicate demonstrates that it still has the correct DRK
value and signed TSM code, and serves as an implicit authentication, since only
the E-Device and the Authority know the DRK.

3 Information Sharing during an Emergency

Our concept for emergency response involves a network of participants (the
Emergency Network), including a coordinating Authority, the expected first
responders, and third party data providers who maintain information that is
expected to be useful during an emergency. The Authority manages the distri-
bution of keys and policies via its own secure computing facility, and coordi-
nates emergency response for a given crisis, including alerting all entities on the
Emergency Network of the emergency and disseminating emergency data to first
responders.
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Fig. 2. Emergency Network Architecture

While E-Devices may be owned by various emergency network participants,
their correct configuration is the responsibility of the authority, and they will be
operated in the field by first responders. Fig. 2 shows the emergency network.

The operation of the Emergency Network is governed by prearranged organi-
zational security policies [5]. These include the lattice-based MLS policy enforced
by the TML and the access policy enforced by the TSM in the application domain.

3.1 Emergency Operation

The Authority maintains a binary global emergency state, i.e., ON or OFF, and
notifies the authorized E-Devices of any state changes. The E-Devices may grant
access to emergency information if the state is ON, and must deny access when
OFF. Secure synchronization of the global state is discussed below.

When an emergency is declared, the Authority sends state-change notifica-
tions to the E-Devices. Once the TML interprets the message, it prompts the
user to access the Emergency Partition, via the TPA.

While the emergency is in effect, the user can access any active partition the
user is cleared to see, including the preconfigured Emergency Partition. Within
the Emergency Partition, finer granularity application-specific access controls on
emergency data may be provided by an application domain Emergency Manage-
ment TSM.

When the emergency is over, the Authority announces a change to the global
emergency state, prompting the TML to start the emergency closure process. It
displays an end-of-emergency message which prompts the user to change focus
to the Trusted partition (to be completed within a configurable period), revokes
access to the Emergency Partition, and restores the Emergency Partition to its
original state.
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4 New Security Mechanisms

This section presents a systematic analysis of the available secure communica-
tion channels and describes mechanisms for completing the trust chain from the
remote Authority to the E-device, and to its Emergency Partition and display,
including: emergency state management, trustworthy display and mechanisms
for revocation of sensitive data.

4.1 Secure Communication Channels

A secure communications protocol protects against message content disclosure
and modification, as well as traffic analysis and insertion or deletion of packets.

We consider a channel to be a secure channel if it uses a secure protocol, the
protocol is implemented correctly, and the channel endpoints are secure against
both the modification of their behavior and against unauthorized disclosure of
channel and keying information.

The E-Device, while simple, supports several different forms of secure commu-
nications channels, which provide emergency systems designers with flexibility in
constructing new systems. Three basic channels are shown in Fig. 3: the Trusted
Channel (A), the TSM-TSM Channel (D), and the Trusted Path (B).

A Trusted Channel (A) is a secure channel between two TCBs (e.g., a TML
or a trusted system) [6]. A TSM-TSM Channel (D) provides cryptographic as-
surance against message disclosure and modification between application TSMs,
e.g., on different machines. A Trusted Path (B) is a secure channel between a
user and the TML on the E-Device, implemented by the TPA.

A Remote Trusted Path (E) is a secure channel between a remote user (e.g.,
the Authority) and a TML, which is constructed by combining a Trusted Path
with the remote end of a Trusted Channel. An Extended Trusted Channel (F)

Fig. 3. Types of Channels
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is a secure channel created by extending the I/O interface of a Trusted Channel
to the TML interface of a given partition, which allows applications to securely
interact with a remote TCB.

A Trusted Application Display (C), discussed below, enables an application
(i.e., the Emergency Partition TSM) executing in the context of an insecure OS
to securely write to the screen, which is managed by the TML. A Remote Trusted
Display (G) connects a TSM-TSM Channel with a Trusted Application Display
so a remote system, such as that used by the Authority, can display data to the
local user with assurance against message disclosure and modification.

The TML exports to partitions virtual NICs (see Fig. 4), which are logical
devices, each with an IP address, for use by the OS and applications in a specific
partition.

The TML manages the negotiation of session keys and cryptographic algo-
rithms, as well as the cryptographic transformation of data for encrypted chan-
nels via the IPsec “security association” paradigm [7], although the entire IPsec
suite is not required (e.g., crypto-transforms are statically assigned). An Ex-
tended Trusted Channel therefore embodies the mapping of a partition ID to a
remote IP address and a security association. Communication channels, display
channels and logical devices are configured during E-Device initialization with
information such as: each channel’s remote TCB address, and security level; var-
ious keying material; and the mapping of Extended Trusted Channels to specific
partitions. Security levels are also assigned to partitions and physical devices.

An out-of-band distributed “root” secret key that is shared with the TCB at
the other end of a trusted channel is the basis for channel session keys [8]. For
trusted channels between the E-Device and the Authority, the DRK is used as
the root secret. For other trusted channels, such as those with third party data

Fig. 4. Networking Support of the TML
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providers, a shared secret key is stored by a TSM in the TML’s Trusted Channel
Manager instead.

Nonces to support generation of session keys are dynamically exchanged or
periodically distributed. The TSM hashes the nonce with the root secret to
derive a temporary shared secret, with which it can generate a session key using
a standard key exchange protocol, such as TLS. Alternatively, the derived value
itself could be used as a session key. All communications between endpoints
within the emergency network use these channels.

4.2 Emergency State Management

As discussed above, the Authority manages the global emergency state with
emergency state management messages. State management consists of the fol-
lowing steps: (1) message generation; (2) message transmission; and (3) message
processing on the E-Device. Each of these steps needs to be trustworthy to ensure
consistent and correct emergency state management.

In addition to the emergency state, the Authority maintains a counter of the
number of state changes it has issued; also, it maintains a record of the acknowl-
edged state and counter values for each E-Device, along with its DRK. When
the Authority changes the global state, it must securely synchronize with each E-
Device. On the individual E-Device, local emergency state and a state transition
counter are maintained by a state-management (E-State) TSM in the TML.

When the Authority declares an emergency, it increments its counter associ-
ated with the E-Device and generates an emergency state management message
for each E-Device that consists of: (a) a command type indicator (indicating a
state update message); (b) a payload of the new state and counter, encrypted
with an encryption key derived from the DRK; (c) a signature (cryptographic
keyed hash) of the encrypted payload and command, using a signing key derived
from the DRK; and (d) two nonces to derive the encryption and signing keys.

The emergency state management message is sent to the E-Device through a
Remote Trusted Path channel. Only the E-Device to which the emergency state
management message was intended is able to successfully process the message.
The E-State TSM independently 1 verifies the originator of the state manage-
ment message. For emergency state management, two functions, Update State
and Get State are implemented on the E-Device. The Update State function
checks the integrity of the message using the signature, and the counter. It also
generates a response to the Authority by generating a signature over the message
using a signing key derived from the signing nonce and the DRK. The E-State
TSM sends the signature back to the Authority over the trusted channel, but
does not need to send the message payload or nonce, since the Authority already
has the initial update message.

The TML, via its TSM, uses Get State to retrieve the new state, as discussed
in Section 3.1. To ensure that the update of emergency state is trustworthy, only
1 Decoupling the channel authentication from message authentication allows for flex-

ibility to incorporate ad-hoc and/or peer-to-peer transmission of emergency state
management messages in the future.
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the TML can pass update messages from the trusted channel with the Authority
into the E-State TSM; and only the E-State TSM can invoke Update State and
Get State.

For high-threat deployment environments, enhanced assurance is provided by
a version of SP that includes state management primitives in its ISA. Instead of
implementing them in the E-State TSM software, this version, includes registers
for a state variable and a state transition counter, as well as instructions for the
Update State and Get State functions. With these hardware enhancements, even
the TSM does not have the ability to directly modify the emergency state on
the device.

4.3 Containment of Emergency Data

The organizational security policy enforced by the E-Device requires that emer-
gency information from the data providers only be accessible to authorized users
acting within the emergency partition, and only during a proper emergency de-
clared by the Authority. MAC policy enforcement (by the TML) and DAC policy
enforcement (by the Emergency Management TSM) jointly restrict information
flows on the E-Device before, during and after the emergency.

Emergency data is installed at the Authority’s secure facility or sent to the
E-Device from the Authority and data providers over Trusted Channels, and is
confined in the Emergency Partition. The data may be further encrypted so that
it can only be accessed by the Emergency Management TSM application, which
can enforce more granular access policies within the Emergency partition.

The Authority establishes an Extended Trusted Channel to the Emergency
Partition. The Emergency Partition and the Authority are allocated an “emer-
gency” MLS label that is distinct from that associated with other partitions.
The TML attaches the “emergency” label to data it receives over the channel,
restricting the data to only this partition of the E-Device. Data flows for emer-
gency management are shown in Fig. 5, as follows: (1) the Authority propagates
changes to the global emergency state and receives confirmation from the de-
vice; (2) the Authority sends keys, policies, and revocations to the Emergency
Management TSM, via an Extended Trusted Channel managed by the Trusted
Channel Manager (TCM); (3) the authority sends encrypted emergency data to
the Emergency Partition, via an Extended Trusted Channel; (4) data providers
provide additional data for the authority to send to the E-Device; (5) when
needed, the Emergency Management TSM decrypts the emergency data with
keys and policies in its storage.

Trusted channels between the TML and the Authority are protected using
freshly negotiated channel secrets for each connection, based on the DRK rather
than a stored root key. As a result, only parties with access to the DRK (the
Authority and the E-Device) can authorize an Extended Trusted Channel to the
Emergency Partition.

Aside from these secure channels, the information cannot flow out of the
Emergency Partition, e.g., to any other partition, device or network, ensur-
ing that emergency data cannot be revealed outside of the equivalence class of
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Fig. 5. Data Flow for Emergency Management

components labeled as “Emergency.” Additionally, the Emergency Partition it-
self is only made available to the user by the TML and TPA when an emergency
has been declared, as previously described. This temporal restriction limits the
threat of malicious insiders, and in combination with the partition’s spatial sep-
aration, provides defense in depth for the confinement of emergency information.

The Authority provides its own emergency data to the E-Device, and can
convey data provided by third party data providers. When the latter data is
proxied through the Authority and the third party has no direct communication
with the E-Device, the third party does not need and is not given the privileges
associated with the “Emergency” label.

If a third party is considered trusted, it can be included in the “Emergency”
equivalence class and allowed to establish an Extended Trusted Channel directly
to the Emergency Partition. Since the Third Party does not have access to the E-
Device’s DRK, it and the Emergency Management TSM share an “emergency”
key, which is stored locally in the TSM’s persistent secure storage. Even when
third party data is provided directly, the TSM on the E-Device can still be
configured to only accept policies for that data directly from the Authority.

All emergency data sent over the Extended Trusted Channel is encrypted by
the Authority or data provider prior to transmission using keys only available
(on the E-Device) to the TSM. This enables the TSM to enforce its discretionary
access control policy on use of the data by the responder or any software within
the Emergency Partition, and audit the use of the data, even though it executes
alongside untrusted software in the Emergency Partition.

Within the Emergency Partition, the TSM can release data to untrusted,
feature-rich commercial applications for display. However, there is no assurance
that untrusted applications will accurately display data when asked. Some infor-
mation, e.g., that which is critical and easy to manipulate, may require greater



Securing Emergency Response Data 143

protection. For this, we provide the high-integrity Trusted Application Display
mechanism, which allows an application-TSM to send text-only emergency data
directly to a reserved region of the display via a secure call to the TML that
bypasses the untrusted software in the Emergency Partition.

The trusted display mechanism provides an unspoofable means for an appli-
cation domain program to display messages with high integrity such that they
cannot be observed or modified by any untrusted software in the system. This
mechanism is available to the TSM in the Emergency Partition and the TPA
running in the Trusted Partition. Both the TSM and TPA are designed to be
evaluated to ensure their correct behavior, which helps to ensure that the correct
data is input to the trusted display mechanism.

The TML virtualizes the video graphics card such that it appears to each
partition that it has control of the screen. These virtual devices pass input to
the TML’s secure display driver, which divides the physical display into two
regions. One region is restricted for the TML-controlled high-integrity display
(for example, the bottom two lines of text on the screen). The remaining region
of the screen is exported to the partition with focus as normal.

High integrity data to be displayed is encrypted and either comes directly
from the Authority for Remote Trusted Display or is chosen to be released by
the TSM during its operation for Trusted Application Display. To pass the data
securely to the TML, the TSM is divided into two pieces: an application-TSM
in the partition and a kernel-TSM in the TML. The former is responsible for
preparing the data for display and the latter for passing the plaintext data to
the TML securely. SP’s CEM protects the data as it is passed between privilege
levels through the untrusted software in the Emergency Partition.

The application-TSM first decrypts the data using keys in its storage, and
then stores the resulting display text in a memory buffer (at a known location)
using Secure Store instructions. This data is now only accessible in plaintext to
TSM code. An x86 call-gate is used to transition from the application-TSM to the
kernel-TSM without an interrupt. The kernel-TSM uses Secure Load instructions
to read from the CEM-protected memory buffer and regular Store instructions
to write the cleartext data to the TML buffer. It then exits CEM mode and
invokes the TML-provided Trusted Screen Handler, which sends the data to
the TML’s Trusted Screen Driver for display in the restricted display region.
Finally, the kernel-TSM code re-enters CEM and returns to the call gate in the
application-TSM, with a return value indicating the success or failure of the
display operation.

To complete the data lifecycle, access to emergency data must be rescinded
once the emergency is over. Data revocation takes place through complementary
mechanisms, using both mandatory and discretionary access control.

The coarsest granularity of revocation available to the Authority is to declare
the emergency to have ended. As described in Section 4.2, this results in the
closing of the Emergency Partition to users and applications, and restores its
code and data to the pre-emergency state. Stopping application activity and
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overwriting the entire partition effectively removes all data generated or released
inside the partition.

A finer-granularity of revocation is provided by the Emergency Management
TSM itself, as described in [4]. Over and above the TSM-enforced policies re-
stricting access to data based on expiration dates, usage counts, search query
restrictions, etc., at its discretion, the Authority can communicate with the TSM
and direct it to modify policies, keys, and other emergency restrictions to revoke
access to existing data, for example, in preparation for ending the emergency.

Guarantees to the Authority and third parties about revocation and the state
of the E-Device depend on connectivity and availability of the TSM. If the E-
Device is disconnected temporarily from the network, or an application TSM
managing communication with the Authority is subject to a functional denial of
service attack, the Authority will be unable to synchronize the local emergency
state with its own global state. An emergency expiration timer is provided by the
TML, such that if connectivity with the Authority cannot be established within
a defined time, the TML can end the emergency on the E-Device. The use of this
timer may not be appropriate for all responders and is therefore configurable.

Once communication is restored, the E-Device can attest to the Authority that
the requested updates to emergency state, policy, and keys have been made.

5 System Security Analysis

Overall system security can be understood in terms of the threats to which it
will be exposed and how the system is capable of counteracting those threats.

5.1 Threat Model and Assumptions

We assume that the E-Device is initialized securely with TML-, TSM- and SP-
specific keys. We also assume that the third parties and the Authority securely
exchange the required keying material and protect their own keys from exposure.

We assume the standard Dolev-Yao model [9], that arbitrary parties can cap-
ture, modify or insert network traffic. Intentional or malicious network-level de-
nial of service — as opposed to prevention of process functionality at the work-
station — is outside the threat model. The threat model and analysis for SP,
which includes spoofing, splicing and replay of TSM code, intermediate data
in registers and memory, and secure persistent storage, are discussed in [4], in-
cluding the protection of emergency data encrypted with TSM keys. The threat
model for the TML is that applications of the TML, including guest OSs other
than the trusted executive, are not trusted to conform to its policies, and may in
fact be hostile. For example, at runtime, the software executing above the TML
may attempt to access keys used by the TML to establish secure channels — and
application software or the commodity operating systems may attempt to write
emergency data to a location outside the partition or attempt to access high
integrity information through low integrity mechanisms. The trusted executive
is only trusted to manage its applications in a manner that does not introduce



Securing Emergency Response Data 145

covert channels between applications that are at different security levels. The
persistent disk storage is encrypted and signed, and so is protected against, e.g.,
theft of the E-Device.

TCB software at the Authority, third parties and in the E-Device is assumed
to behave correctly and securely. But, application TSMs are subject to inconsis-
tencies in their execution environment, such as denial of access to the processor,
as they execute independently from the trusted software that controls physical
resources.

5.2 Security Capabilities

The architecture presented in this paper combines the secure execution and key
confidentiality provided by SP hardware with information containment assur-
ance provided by the TML. Further, secure boot ensures that the correct TML
configuration is loaded on boot and SP’s code integrity checking (CIC) ensures
syntactic runtime integrity of TML code. This ensures that large classes of soft-
ware attacks that involve code modification are prevented.

The DRK acts as the shared secret between the E-Device and the Authority.
On the E-Device, the confidentiality provided by the SP hardware ensures that
software never has access to the DRK directly, ensuring this shared secret is
always protected with high assurance.

Software is only allowed to use the DRK to derive other keys, which is sufficient
for mutual authentication and secure channel establishment. The SP hardware
along with the TSM ensures that all computation involving keys derived from
the DRK, including intermediate data, never leaves the processor chip in un-
encrypted form. This avoids the possibility of any software outside the TSM
getting access to derived keys. Since this is an invariant of the TSM and SP
hardware, keys used for secure channels are always protected. The TML code
is protected by the CIC mode of the SP processor, ensuring that the access
control polices enforced by the TML cannot be changed by code modification
attacks. The privilege levels provided by hardware ensure that subjects with
lesser privilege than the TML cannot read or write to objects in the TML. This
ensures that the TML always sets up the secure channels between the different
endpoints on the E-Device and the Authority/third parties as configured.

A Trusted Path provides bidirectional security: (1) ensuring that user input
to the TCB is accurately and securely received by the TCB, via a keyboard-to-
TCB data pipeline (where the keyboard is a proxy for the user); and (2) ensuring
that output from the TCB is seen by the user, without ambiguity or compromise,
via the TCB-to-screen data pipeline (where the screen is a proxy for the user).

The Trusted Path is a secure channel, since it is secure and it provides a
direct connection to the TCB endpoint via a secure interface provided by the
TML, with no intervening untrusted components. The Trusted Channel is a
secure channel, since it is assumed to use secure protocols and the endpoints are
secure.

The E-Device has three TSMs: one is an Emergency Partition application,
and the other two are TML modules. Since these TSMs provide system security
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services, they are considered to be part of the TCB and are built to the same
level of assurance as the TML. When they communicate, the TSMs on both
ends of the TSM-TSM Channel have access to DRK-derived keys as well as
CEM-protected memory, so the receiver can validate the integrity of messages
and ensure confidentiality. The TSMs on the E-Device similarly share the same
DRK-derived keys with the Authority, and two TSMs on different devices can
be provided a shared secret by the Authority. We further assume that a TSM-
TSM Channel to the Authority or another E-Device utilizes a Trusted Channel,
adding another layer of protection over the network.

Any data used, transmitted, or displayed by an application-TSM is still subject
to a functional denial of service by the untrusted OS, which may prevent its exe-
cution or tamper with its encrypted data — but the tampering will be detected.

In the Extended Trusted Channel, the TML makes Trusted Channels available
to partitions as logical I/O devices, which provides a secure channel between the
I/O device interface and the trusted component at the other end of the Trusted
Channel. The Extended Trusted Channel can provide plain-text or encrypted
data to a given partition (where the cryptographic functions are provided by
applications in the partition).

In Normal and Emergency Partitions, a commercial OS manages the logical
I/O device, and makes it available to its applications via an abstraction such as
a socket. The security of the Extended Trusted Channel from the perspective of
the OS application then depends on the security of the OS and any encryption
of the data.

The Trusted Application Display is a uni-directional secure channel between
the local application TSM and the user, assuming continuity in execution of the
TSM and protection of TSM message data. Continuity of execution depends
on the TSM’s processing environment, including the ability of the application
domain OS to schedule the TSM and other applications consistently and avoid-
ance of attacks on application-TSM code, data buffers, or communications to the
TML. While these would constitute a functional denial of service attack on the
TSM, they could not compromise the confidentiality or integrity of the display
data. Of course, the confidentiality of displayed data is not protected from out
of band analog mechanisms, e.g., visual observation of the screen.

Combining a TSM-TSM Channel with the Trusted Application Display chan-
nel results in a Remote Trusted Display channel that is a single-direction chan-
nel whose security depends on the security of the component channels (i.e., the
TSM-TSM Channel and Trusted Application Display channel discussed above).

Emergency state management message generation is a security critical opera-
tion. Only the Authority is able to generate valid messages for a given E-Device as
they are based on the device-specific DRK, known only to the authority and the
E-Device. Since SP hardware ensures software never has access to the DRK and
the authority secures its copy of DRK, arbitrary parties cannot generate a valid
message. Since the emergency state change generates a response that is also cryp-
tographically signed by a DRK-derived key, the authority can be assured that the
emergency state management was correctly processed by the intended E-Device.
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There are several layers of protection that detect and prevent replay attacks
on emergency state management messages: (a) all messages are transmitted over
secure primary channels such that only the subjects with access to the endpoints
of the secure channels can see even the encrypted message; (b) the TSM in
the TML could also overlay a secure mutual-authentication protocol between
the TSM and the Authority to prevent other parts of the TML from accessing
the encrypted emergency state management message; (c) since the message is
encrypted using keys derived from the DRK, only the TSM on the correct E-
Device can decrypt and process the message; (d) the monotonically increasing
counter ensures that a given message is never processed twice.

Once the emergency is declared, and the E-Device successfully changes its
emergency state, the Emergency Partition is enabled and the user is able to
access it. The TML ensures that the Emergency Partition can write only to
channels leading to the Authority and to trusted data providers. Further, no
other partition on the E-Device can read content in the emergency partition
labeled as “Emergency.” The TML ensures only known virtual device abstrac-
tions of trusted pre-configured physical devices are presented to the OS in
the Emergency Partition, thus avoiding the possibility of the user being able
to attach a device with unconstrained information flow properties to the
partition.

When the emergency data is decrypted and displayed within the Emergency
Partition, the untrusted applications or OS may keep parts of the clear text
emergency data in memory and/or write it to disk, but the TML’s Emergency-
partition separation policy ensures that the data remains in the Emergency Par-
tition. While all data in memory is erased or otherwise invalidated on a shutdown
of the E-Device, the data on the disk may still be accessible if the Emergency
Partition is still present. Any offline attacks on emergency data on disk are pre-
vented as the TML protects all data on disk by encryption with keys derived
from the DRK. These encryption keys are derived as needed and are never re-
vealed or stored. These properties ensure emergency data containment during
the emergency. When the declaration of emergency is rescinded, the Emergency
Partition becomes inaccessible to the user and its contents are encrypted and
stored for audit purposes or immediately deleted.

Applications in the Emergency Partition are not expected to display high
integrity content, as both the applications and the OS are not trusted. Instead,
high integrity information is displayed on the reserved portion of the screen, via
the Trusted Application Display, with data that is appropriately encrypted and
hashed. Since the TML manages the physical display, no partitions are given
direct access to the portion of the screen reserved for high integrity display.

6 Validation

We have implemented an E-Device prototype that provides a worked example of
how the coherent integration of complementary hardware and software security
mechanisms can enhance security, and validates elements of our overall approach.
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6.1 Prototype Implementation

The prototype demonstrates the feasibility of TSM technology as well as key
layering and partitioning mechanisms in the TML.

The prototype TML runs on bare hardware on the x86 platform and provides
multiple partitions which the user can switch between using the Secure Attention
Key. The partitions each run a primitive trusted executive, providing I/O to the
user-space application running above it. Authority-mode SP features, which have
been independently prototyped [4], are provided here by a trusted kernel module
which emulates its behavior and security properties.

Our prototype implementation of the integrated architecture demonstrates
the feasibility of: (a) emergency management operations using remote trusted
path; (b) the ability for the Authority and data providers to disseminate keys
and data to the emergency partition; (c) the use of the trusted display mech-
anism provided by the TML to applications to securely display high integrity
data; (d) protection of the code integrity of TSMs and its secure storage by
the SP hardware; (e) prevention of access to TSM secure storage by the un-
trusted OS or untrusted applications; and (f) detection of simulated attacks
on the remote trusted path, key/data usage policies, and confidentiality and
integrity of emergency data using standard cryptographic algorithms. For the
prototype, it is assumed that the TML-managed trusted channels for secure
communication with the Authority and data providers are in place and the key
management messages between the E-Device and the Authority/data providers
are pre-computed.

7 Related Work

Previous work in processor-based cryptographic support include: SP [4], sepa-
ration kernels [2], and “least privilege” security architectures [3]. We note that
cryptographic coprocessor mechanisms [10,11] do not provide processor-level pro-
tection for system software and data, and may be more vulnerable to attack by
elements within the platform. Also, while IBM announced an architecture [12]
featuring processor-based encryption for protecting data on chip and in transit to
remote systems, little information is available regarding system trustworthiness,
or the separation of information based on events or mandatory policies.

The Turaya [13,14] and MILS [15,16] architectures are designed to host com-
mercial operating systems and security services as parallel application-domain
entities, with certain interactions between those entities controlled by a micro-
kernel (e.g., L4) and a separation kernel, respectively. The security architecture
presented here differs from these efforts in that it does not rely on application
domain programs for enforcement of the primary underlying security policy, and
it provides an interface for the enforcement of intra-OS least privilege policies
as well as inter-OS sharing policies. Additionally, the Turaya and MILS efforts
do not address the temporal confinement, revocation, and distributed state-
change issues inherent to emergency management of information, and they do not
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provide processor cryptographic transformations or processor protection of crit-
ical keying material.

Trusted Channels provide point-to-point encrypted tunnels between a TML
and a remote TCB that has at least as much assurance of security enforcement
as the TML. Trusted Channels are similar to Virtual Private Networks [17]
although VPNs are usually expected to support arbitrary and changing sets of
network nodes rather than point-to-point connections.

The “trusted path” has been understood as a requirement for secure com-
puter systems since the early 1970s [18], and has been implemented in many
high assurance [19,20] and commercial systems [21,22]. In our work, the Trusted
Path Application implements a traditional user interface for trusted interac-
tion between the user and the TCB (TML). The Remote Trusted Path extends
the user’s ability to communicate, from the local TCB to a remote TCB. Our
work differs from previous remote trusted path results (e.g., [23,6]) in that the
security of the communication is rooted in a processor-resident secret key, for
communication with the Authority.

The Xen “hypervisor” provides support for security policies by way of “do-
mains” that are similar to TML partitions. Security labels can be associated
with a domain, and a security policy can be defined to describe resource isola-
tion or controlled inter-domain information flow [24]. However, Xen was built
specifically to provide hardware-assisted virtualization of operating systems [25]
rather than a more generic operating environment with other services, such as
those provided by the TML.

With the Extended Trusted Channel we replace the Trusted Path’s human
interface to the TCB with a direct programmatic interface, which allows appli-
cations to interact with a remote TCB (via a Trusted Channel). Similarly, for
the Trusted Application Display, the TML exports a programmatic interface for
submitting data to the TCB for display. A TML-resident TSM subsequently de-
crypts the data and then the TML displays it on the screen in a reserved area.
Securing the computer display against subversion has been reflected in early work
on multilevel windowing [26], and subsequent hardware and software-supported
development [27,28]. Our work differs from these developments in providing a
means for an application executing in the context of an insecure operating system
to securely write to the screen.

In its Global Information Grid (GIG), the US Government has recognized
that, in emergencies, the need to access information may be more important than
the need to protect the information, and has developed extensive technical and
policy roadmaps to support that vision [29,30]. Our framework for management
of emergency information advances these concepts by providing a theory and
concrete realization to confine information made available under extraordinary
circumstances and to rescind access after the completion of those circumstances.

OASIS provides the EDXL standard [31] for information exchange during
emergencies, such as payload and message encryption. Our architecture provides
a trusted context for the management of EDXL data.
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8 Conclusions

To address the inability of existing IT systems to support integrated informa-
tion sharing, temporary emergency data access, and secure revocation of that
access, we have developed an architectural solution that integrates hardware-
anchored cryptographic protection with a high assurance software architecture
that provides data separation and security services. We have proposed a secure
hardware-software platform for an E-Device that can provide trustworthy dis-
semination and revocation of access to sensitive data during an emergency.

We described the architectural support for trusted communication channels,
including a remote trusted path between the authority and the E-Device, as well
as trusted display channels in the E-device. We integrated the SP protocols for
DRK-based key-generation into the trusted channel mechanism to protect the
storage of channel keys and ensure the authentication of parties who will gain
access to the Emergency Partition.

We presented a comprehensive design for the management of distributed emer-
gency state, which is critical for effective emergency response. We also described
the Trusted Application Display to allow user-space applications to securely com-
municate with the user via direct x86-style call gates to a kernel-TSM. We also
described the multifaceted containment of emergency data and reliable revoca-
tion of access at the end of the emergency, using a combination of hardware and
software mechanisms and trust chains.

Finally, we have built a prototype that validates key concepts of the architec-
ture, indicating the feasibility of using commodity mobile and wearable platforms
for secure emergency-response data dissemination. In the future, in-depth usabil-
ity and performance testing, as well as formal system security verification, will
further validate this work.
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