adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 1
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

© 0 N o g b~ W N P

W oW W W WRNNRNNNNRNNRNNERER R B B B e e
5 W N P O © ® N o O s ®N P O © ©® N © 00 b W N B O

35

1
2
An Introduction to Agile Methods 3
4
5
DAVID COHEN, MIKAEL LINDVALL, AND °
PATRICIA COSTA !
Fraunhofer Center for Experimental Software Engineering °
4321 Hartwick rd, Suite 500 »
College Park, MD 20742 =
USA 12
dcohen@fc-md.umd.edu 13
mlindvall@fc-md.umd.edu 14
pcosta@fc-md.umd.edu 15
16
17
Abstract 18
Agile Methods are creating a buzz in the software development community, — 1°
drawing their fair share of advocates and opponents. While some people con- 20
sider agile methods the best thing that has happened to software development in 21
recent years, other people view them as a backlash to software engineering and 22
compare them to hacking. 23
The aim of this chapter is to introduce the reader to agile methods allowing 24
him/her to judge whether or not agile methods could be useful in modern soft- ¢
ware development. The chapter discusses the history behind agile methods as .
well as the agile manifesto, a statement from the leaders of the agile movement.
It looks at what it means to be agile, discusses the role of management, describes -8
and compares some of the more popular agile methods, provides a guide for
deciding where an agile approach is applicable, and lists common criticisms. It 2
summarizes empirical studies, anecdotal reports, and lessons learned from ap- *°
plying agile methods and concludes with an analysis of various agile methods. sl
The target audiences for this chapter include practitioners, who will be in- 32
terested in the discussion of the different methods and their applications, re- 33
searchers who may want to focus on the empirical studies and lessons learned, 34
and educators looking to teach and learn more about agile methods. 35
36
Lo INrOdUCHION .« . o o o e e e e e e 2%
1A HIStOry ... 338
1.2. The Agile Manifesto 739
1.3. Agileand CMM(I) o 9 40

ADVANCES IN COMPUTERS, VOL. 62 l Copyright © 2004 Elsevier Inc.
ISSN: 0065-2458/DOI 10.1016/S0065-2458(03)62001-2 All rights reserved.

© 00 N o o B~ W N -

AW W W W W W W W WWN N NDNNNDNDNNDN PR PR P B P PR R R
o © 00 N o o B W N P O VW 0 N OO g0 b~ W N PP O VW 00 N O g b~ wWw N - o

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 2
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

2 D. COHEN ET AL.

2. State-of-the-Art 121
2.1. What Does It Meantobe Agile? 12
2.2. A Selection of Agile Methods o 12;
2.3. Characteristics of Selected Agile Methods 25
2.4. Is Your Organization Ready for Agile Methods? 25

3. State-of-the-Practice 2
3.1. eWorkshop on Agile Methods, 2
3.2. LessonsLearned 3%
3.3 CaSESIUIES . . v v ot e e 34
3.4. Other Empirical Studies 42

4. ConcClusions 460
Acknowledgements 401
Appendix A: An Analysis of Agile Methods 4812
A.l. Extreme Programming 49,
A2, SCIUM . . . o 53,,
A.3. LeanDevelopment 555
A.4. Feature Driven Development 5§
A.5. Dynamic Systems Development Methodology 68
REFEIENCES o o o ot et 63’

18
19
20

1. Introduction o

The pace of life is more frantic than ever. Computers get faster every day. Stéft-
ups rise and fall in the blink of an eye. And we stay connected day and night with
our cable modems, cell phones, and Palm Pilots. Just as the world is changing; so
too is the art of software engineering as practitioners attempt to keep in step withfhe
turbulent times, creating processes that not only respond to change but embracéit.

These so-called Agile Methods are creating a buzz in the software developntént
community, drawing their fair share of advocates and opponents. The purpose ofhis
report is to address this interest and provide a comprehensive overview of the &ur-
rent State-of-the-Art, as well as State-of-the-Practice, for Agile Methods. As theré®is
already much written about the motivations and aspirations of Agile Methods (e%.,
[1]), we will emphasize the latteBection ldiscusses the history behind the trends?
as well as the Agile Manifesto, a statement from the leaders of the Agile movem&nt
[12]. Section Zrepresents the State-of-the-Art and examines what it means to be Ag-
ile, discusses the role of management, describes and compares some of the moréyop-
ular methods, provides a guide for deciding where an Agile approach is applicable,
and lists common criticisms of Agile techniqué&ection 3represents State-of-the- 37
Practice and summarizes empirical studies, anecdotal reports, and lessons leaned.
The report concludes with alyppendix Athat includes a detailed analysis of vari-39
ous Agile Methods for the interested reader. 40

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 3
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 3

It is interesting to note that there is a lack of literature describing projects where
Agile Methods failed to produce good results. There are a number of studies report-
ing poor projects due to a negligent implementation of an Agile method, but none
where practitioners felt they executed properly but the method failed to deliver‘on
its promise. This may be a result of a reluctance to publish papers on unsuccessful
projects, or it may in fact be an indication that, when implemented correctly, Agie

7

Methods work.
8

9

1.1 History 10

Agile Methods are a reaction to traditional ways of developing software and %
knowledge the “need for an alternative to documentation driven, heavyweight soft-
ware development processed?]. In the implementation of traditional methods, ,,
work begins with the elicitation and documentation of a “complete” set of requirg-
ments, followed by architectural and high-level design, development, and inspectign.
Beginning in the mid-1990s, some practitioners found these initial development stgps
frustrating and, perhaps, impossibk]. The industry and technology move too fast,,q
requirements “change at rates that swamp traditional meth8a@k"dnd customers 4
have become increasingly unable to definitively state their needs up front while,sat
the same time, expecting more from their software. As a result, several consultants
have independently developed methods and practices to respond to the inevitable
change they were experiencing. These Agile Methods are actually a collection;of
different techniques (or practices) that share the same values and basic princigjes.
Many are, for example, based on iterative enhancement, a technique that was ipgro-
duced in 19757]. 26 <ref:BT75?7>

In fact, most of the Agile practices are nothing né][It is instead the focus and »7
values behind Agile Methods that differentiate them from more traditional methogs.
Software process improvement is an evolution in which newer processes builcbon
the failures and successes of the ones before them, so to truly understand the Agile
movement, we need to examine the methods that came before it. 31

According to Beck, the Waterfall Modeb] came first, as a way in which to as- 32
sess and build for the users’ needs. It began with a complete analysis of user reqsire-
ments. Through months of intense interaction with users and customers, engingers
would establish a definitive and exhaustive set of features, functional requirements,
and non-functional requirements. This information is well-documented for the next
stage, design, where engineers collaborate with others, such as database andrdata
structure experts, to create the optimal architecture for the system. Next, program-
mers implement the well-documented design, and finally, the complete, perfeetly
designed system is tested and shipded. [40

© 00 N o o B~ W N -

AW W W W W W W W WWN N NDNNNDNDNNDN PR PR P B P PR R R
o © 00 N o o B W N P O VW 0 N OO g0 b~ W N PP O VW 00 N O g b~ wWw N - o

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 4
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

4 D. COHEN ET AL.

This process sounds good in theory, but in practice it did not always work @as
well as advertised. Firstly, users changed their minds. After months, or even years,
of collecting requirements and building mockups and diagrams, users still were ot
sure of what they wanted—all they knew was that what they saw in production was
not quite “it.” Secondly, requirements tend to change mid-development and when
requirements are changed, it is difficult to stop the momentum of the project to ac-
commodate the change. The traditional methods may well start to pose difficulties
when change rates are still relatively lo4] because programmers, architects, and
managers need to meet, and copious amounts of documentation need to be keptup to
date to accommodate even small chandé&t [The Waterfall model was supposed to1o
fix the problem of changing requirements once and for all by freezing requirements
and not allowing any change, but practitioners found that requirements just couldrot
be pinned down in one fell swoop as they had anticipai€H [13

Incremental and iterative techniques focusing on breaking the developmentiey-
cle into pieces evolved from the Waterfall mod&D], taking the process behind 15
Waterfall and repeating it throughout the development lifecycle. Incremental devel-
opment aimed to reduce development time by breaking the project into overlapping
increments. As with the Waterfall model, all requirements are analyzed before devel-
opment begins; however, the requirements are then broken into increments of stend-
alone functionality. Development of each increment may be overlapped, thus saving
time through concurrent “multitasking” across the project. 21

While incremental development looked to offer time savings, evolutionary meta-
ods like iterative development and the Spiral ModeB][aimed to better handle 23
changing requirements and manage risk. These models assess critical factors4n a
structured and planned way at multiple points in the process rather than tryingsto
mitigate them as they appear in the project. 26

Iterative development breaks the project into iterations of variable length, eath
producing a complete deliverable and building on the code and documentation pso-
duced before it. The first iteration starts with the most basic deliverable, and each
subsequent iteration adds the next logical set of features. Each piece is its own watter-
fall process beginning with analysis, followed by design, implementation, and finadly
testing. Iterative development deals well with change, as the only complete requize-
ments necessary are for the current iteration. Although tentative requirements need
to exist for the next iteration, they do not need to be set in stone until the next analy-
sis phase. This approach allows for changing technology or the customer to change
their mind with minimal impact on the project's momentum. 36

Similarly, the Spiral Model avoids detailing and defining the entire system upfrosit.
Unlike iterative development, however, where the system is built piece by piece p#i-
oritized by functionality, Spiral prioritizes requirements by risk. Spiral and iteratiwe
development offered a great leap in agility over the Waterfall process, but some prac-

© 0 N o g b~ W N P

AW W oW oW oW W oW W WWwNRNNDNDRNNDRNRNNDRNERR R B 2 B R
S © ® N o 0 & ® N P O © ® N 0 0 & ®WN P O © © N O 0 b W N B O

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 5
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 5

titioners believed that they still did not respond to change as nimbly as necessany in
the evolving business world. Lengthy planning and analysis phases, as well as asus-
tained emphasis on extensive documentation, kept projects using iterative technigues
from being truly Agile, in comparison with today’s methods. 4
Another important model to take into account in these discussions is the Capabflity
Maturity Model (CMM)! [44], “a five-level model that describes good engineering
and management practices and prescribes improvement priorities for software orga-
nizations” 42]. The model defines 18 key process areas and 52 goals for an organiza-
tion to become a level 5 organization. Most software organizations’ maturity levePis
‘Chaotic’ (CMM level one) and only a few are ‘Optimized’ (CMM level five). CMM 1°
focuses mainly on large projects and large organizations, but can be tailored téfit
small as well as large projects due to the fact that it is formulated in a very genéfal
way that fits diverse organizations’ needs. The goals of CMM are to achieve procéss
consistency, predictability, and reliability4(]). 14
Ken Schwaber was one practitioner looking to better understand the CMM-based
traditional development methods. He approached the scientists at the DuPont Ch&mi-
cal's Advanced Research Facility posing the question: “Why do the defined procesées
advocated by CMM not measurably deliver82]. After analyzing the development *2
processes, they returned to Schwaber with some surprising conclusions. Althodgh
CMM focuses on turning software development into repeatable, defined, and ffe-
dictable processes, the scientists found that many of them were, in fact, Iargely%n—

predictable and unrepeatable becat=g: [s

e Applicable first principles are not present. 24
e The process is only beginning to be understood. %
e The process is complex. zj
e The process is changing and unpredictable. 28

Schwaber, who would go on to develop Scrum, realized that to be truly Agile*a
process needs to accept change rather than stress predictalflitPfactitioners
came to realize that methods that would respond to change as quickly as it atose
were necessanppl, and that in a dynamic environment, “creativity, not volummous2
written rules, is the only way to manage complex software development problems
[19].

Practitioners like Mary Poppendieck and Bob Charaitso began to look to other
engineering disciplines for process inspiration, turning to one of the more mnovate

35

1We use the terms CMM and SW-CMM interchangeably to denote the Software CMM from the Sgﬁ-
ware Engineering Institute (SEI). 39
2Bob Charette’s “Lean Development” method will be discussed later. 40

© 00 N o o B~ W N -

AW W W W W W W W WWN N NDNNNDNDNNDN PR PR P B P PR R R
o © 00 N o o B W N P O VW 0 N OO g0 b~ W N PP O VW 00 N O g b~ wWw N - o

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 6
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

6 D. COHEN ET AL.

industry trends at the time, Lean Manufacturing. Started after World War |l by Toy-
oda Sakichi, its counter-intuitive practices did not gain popularity in the United States
until the early 1980s. While manufacturing plants in the United States ran production
machines at 100% and kept giant inventories of both products and supplies, Toyoda
kept only enough supplies on hand to run the plant for one day, and only produged
enough products to fill current orders. Toyoda also tightly integrated Dr. W. Edwards
Deming'’s Total Quality Management philosophy with his process. Deming believed
that people inherently want to do a good job, and that managers needed to a#low
workers on the floor to make decisions and solve problems, build trust with suppli-
ers, and support a “culture of continuous improvement of both process and produwts”
[46]. Deming taught that quality was a management issue and while Japanese man-
ufacturers were creating better and cheaper products, United States manufacturers

were blaming quality issues on their workforeks]. 13
Poppendieck lists the 10 basic practices which make Lean Manufacturing so sec-
cessful, and their application to software developmé&6i 15

(1) Eliminate waste—eliminate or optimize consumables such as diagrams gnd
models that do not add value to the final deliverable. 8

(2) Minimize inventory—minimize intermediate artifacts such as requiremenltgs
and design documents.

(3) Maximize flow—use iterative development to reduce development time

(4) Pull from demand—support flexible requirements. ”

(5) Empower workers—generalize intermediate documents, “tell developgrs
what needs to be done, not how to do it.”

(6) Meet customer requirements—work closely with the customer, allowmg
them to change their minds.

(7) Do itrightthe first time—test early and refactor when necessary.

(8) Abolish local optimization—flexibly manage scope.

(9) Partner with suppliers—avoid adversarial relationships, work towards dev%I—
oping the best software.

(10) Create a culture of continuous improvement—allow the process to |mprove

learn from mistakes and successes.

21

26
27

32
Independently, Kent Beck rediscovered many of these values in the late 1980s
when he was hired by Chrysler to save their failing payroll project, Chrysler Cons-
prehensive Compensation (C3). The project was started in the early 1990s as an
attempt to unify three existing payroll systemS7q]) and had been declared a failuress
when Beck arrived. Beck, working with Ron Jeffri€¥?], decided to scrap all the 37
existing code and start the project over from scratch. A little over a year later, a ver-
sion of C3 was in use and paying employees. Beck and Jeffries were able to take a
project that had been failing for years and turn it around 180 degrees. The C3 project

© 0 N o g b~ W N P

AW W oW oW oW W oW W WWwNRNNDNDRNNDRNRNNDRNERR R B 2 B R
S © ® N o 0 & ® N P O © ® N 0 0 & ®WN P O © © N O 0 b W N B O

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 7
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 7

became the first project to use exXtreme ProgramnBap(fiscussed in detail later), 1
relying on the same values for success as Poppendiek’s Lean Programming. 2
Similar stories echo throughout the development world. In the early 1990s, the
IBM Consulting Group hired Alistair Cockburn to develop an object-oriented devel-
opment methoddZ]. Cockburn decided to interview IBM development teams angl
build a process out of best practices and lessons learned. He found that “team after
successful team ‘apologized’ for not following a formal process, for not using high-
tech [tools], for ‘merely’ sitting close to each other and discussing while they werg,”
while teams that had failed followed formal processes and were confused why it
hadn’t worked, stating “maybe they hadn't followed it well enougdZ]f Cockburn 10
used what he learned at IBM to develop the Crystal Methods (discussed in detail
later). 12
The development world was changing and, while traditional methods were hardly
falling out of fashion, it was obvious that they did not always work as intended in
all situations. Practitioners recognized that new practices were necessary to better
cope with changing requirements. And these new practices must be people-oriefated
and flexible, offering “generative rules” over “inclusive rules” which break dowir
quickly in a dynamic environmentlp]. Cockburn and Highsmith summarize theis
new challenges facing the traditional methods: 19

e Satisfying the customer has taken precedence over conforming to original pléﬁs.
21

¢ Change will happen—the focus is not how to prevent it but how to better cope
with it and reduce the cost of change throughout the development process.

e “Eliminating change early means being unresponsive to business conditions—

in other words, business failure.” 25
¢ “The market demands and expects innovative, high quality software that meets
its needs—and soon.” 27

28
29

1.2 The Agile Manifesto

“[A] bigger gathering of organizational anarchists would be hard to find” Beck
stated 2] when seventeen of the Agile proponents came together in early 2001
to discuss the new software developments methods. “What emerged was the3Ag-
ile ‘Software Development’ Manifesto. Representatives from Extreme Programming
(XP), SCRUM, DSDM, Adaptive Software Development, Crystal, Feature-Drivep
Development, Pragmatic Programming, and others sympathetic to the need fotan
alternative to documentation driven, heavyweight software development processes
convened” L2]. They summarized their viewpoint, saying that “the Agile movemerss
is not anti-methodology, in fact, many of us want to restore credibility to the woeel
methodology. We want to restore a balance. We embrace modeling, but not in order

30

© 00 N o o B~ W N -

AW W W W W W W W WWN N NDNNNDNDNNDN PR PR P B P PR R R
o © 00 N o o B W N P O VW 0 N OO g0 b~ W N PP O VW 00 N O g b~ wWw N - o

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 8
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

8 D. COHEN ET AL.

to file some diagram in a dusty corporate repository. We embrace documentation,
but not hundreds of pages of never-maintained and rarely used tomes. We planz but
recognize the limits of planning in a turbulent environmerit?][The Manifesto 3

itself reads as followsl2]:

We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

¢ Individuals and interaction over process and tools,

© 00 N o 0 b

e Working software over comprehensive documentation,
e Customer collaboration over contract negotiation, 10

Responding to change over following a plan.

That is, while there is a value in the items on the right, we value the items on the

left more. 1

The Manifesto has become an important piece of the Agile Movement, in thatsit
characterizes the values of Agile methods and how Agile distinguishes itself fréim
traditional methods. Glass amalgamates the best of the Agile and traditional ‘ap-
proaches by analyzing the Agile manifesto and comparing it with traditional values
[26]. 19

On individuals and interaction over process and tools. Glass believes that the 20
Agile community is right on this point: “Traditional software engineering has gotten
too caught up in its emphasis on procesX|[At the same time “most practitioners 22
already know that people matter more than procezs’ [23

On working software over comprehensive documentation: Glass agrees with the 24
Agile community on this point too, although with some caveat: “It is important t&
remember that the ultimate result of building software is product. Documentatisn
matters. .. but over the years, the traditionalists made a fetish of documentationz7t
became the prime goal of the document-driven lifecychs] [28

On customer collaboration over contract negotiation: Glass sympathizes with 29
both sides regarding this statement: “I deeply believe in customer collaboration, emd
... without it nothing is going to go well. | also believe in contracts, and | would net
undertake any significant collaborative effort without 2g]. 32

Onresponding to change over following a plan: Both sides are right regarding this 33
statement, according to Glass: “Over they years, we have learned two contradictory
lessons: (1) [C]lustomers and users do not always know what they want at the outset
of a software project, and we must be open to change during project execution” gnd
(2) Requirement change was one of the most common causes of software préject
failure” [26]. 38

This view, that both camps can learn from each other, is commonly held, asawe
will see in the next section. 40

© 0 N o g b~ W N P

W oW oW oW WWRNNNNRNNRNNNDRNERERR B B B Bop e
A B W N P O © ® N~ 0 00 5 ® N P O © ® N~ ® 0l & W N B O

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 9
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 9

1.3 Agile and CMM(l) 1

As mentioned above, Agile is a reaction against traditional methodologies, aﬁso
known as rigorous or plan-driven methodologi&4][One of the models often used
to represent traditional methodologies is the Capability Maturity Model (CR/IM)
[44] and its replacemefiCMMI, an extension of CMM based on the same valﬁes
Not much has been written about CMMI yet, but we believe that for this dlscussmn
what is valid for CMM is also valid for CMMP

As mentioned above, the goals of CMM are to achieve process consistency,
dictability, and reliability. Its proponents claim that it can be tailored to also fit th%
needs of small projects even though it was designed for large projects and Iarge or-
ganizations42].

Most Agile proponents do not, however, believe CMM fits their needs at all. f
one were to ask a typical software engineer whether the Capability Maturity Moéiael
for Software and process improvement were applicable to Agile Methods, the re-
sponse would most likely range from a blank stare to a hysterical laugtagl” [16
One reason is that “CMM is a belief in software development as a defined process

.. [that] can be defined in detail, [that] algorithms can be defined, [that] resujl{s
can be accurately measured, and [that] measured variations can be used to refine the
processes until they are repeatable within very close toleran8€ks™For projects
with any degree of exploration at all, Agile developers just do not believe these As-
sumptions are valid. This is a deep fundamental divide—and not one that can 1be
reconciled to some comforting middle groun@0].

Many Agile proponents also dislike CMM because of its focus on documentatlon
instead of code. A “typical” example is the company that spent two years worklng
(not using CMM though) on a project until they finally declared it a failure. Two
years of working resulted in “3500 pages of use cases, an object model with hundféds
of classes, thousands of attributes (but no methods), and, of course, no 8gde”

The same document-centric approach resulting in “documentary bloat that is n%w
endemic in our field” 24] is also reported by many others.

While Agile proponents see a deep divide between Agile and traditional methods,
this is not the case for proponents of traditional methods. Mark Paulk, the man beﬁmd
CMM, is surprisingly positive about Agile Methods and claims that “Agile Methodss
address many CMM level 2 and 3 practice$3]. XP,’ for example, addresses most34

SWe use the terms CMM and SW-CMM interchangeably to denote the Software CMM from the Saf-
ware Engineering Institute (SEI). 36

4CMM will be replaced by CMMI; see “How Will Sunsetting of the Software C#MBe Conducted”
at http://www.sei.cmu.edu/cmmi/adoption/sunset.html.

5The Personal Software Process (PSR) [s closely related to the CMM.

6E-mail conversation with Sandra Shrum, SEI.

7As XP is the most documented method, it often is used as a representative sample of Agile Methotds.

37
38
39

http://www.sei.cmu.edu/cmmi/adoption/sunset.html

© 00 N o o B~ W N -

AW W W W W W W W WWN N NDNNNDNDNNDN PR PR P B P PR R R
o © 00 N o o B W N P O VW 0 N OO g0 b~ W N PP O VW 00 N O g b~ wWw N - o

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 10
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

10 D. COHEN ET AL.

level 2 and 3 practices, but not level 4 and 87]. As a matter of fact, “most XP 1
projects that truly follow the XP rules and practices could easily be assessed at CMM

level 2 if they could demonstrate having processes for the followirig]’ [3
4

e Ensuring that the XP Rules and Practices are taught to new developers on the
project. 6
e Ensuring that the XP Rules and Practices are followed by everyone. 7

e Escalating to decision makers when the XP Rules and Practices are not follofved
and not resolved within the project. °

e Measuring the effectiveness of the XP Rules and Practices. ij

e Providing visibility to management via appropriate metrics from prior proje¢i

QA experience. 13
o Knowing when the XP Rules and Practices need to be adjusted. 14
e Having an independent person doing the above. »

16
Glazer adds, “with a little work on the organizational level, CMM level 3 is not fas;
off” [27] 18
So according to some, XP and CMddn live together 7], at least in theory. One 19
reason is that we can view XP as a software development methodology and CMM
as a software management methodology. CMM tellghet to do, while XP tells us 21
how to do it. 22
Others agree that there is no conflict. Siemens, for example, does not see CMM
and Agility as a contradiction. Agility has become a necessity with increasing market
pressure, “but should be built on top of an appropriately mature process foundatien,
not instead of it” f1]. Many make a distinction between “turbulent” environmentse
and “placid” environments, and conclude that CMM is not applicable to the “twr
bulent” environments. These claims are based on misconceptions. “In fact, working
under time pressure in the age of agility requires even better organization of the work
than before!” §1]. 30
Regarding the criticism about heavy documentation in CMM projects, Pautk
replies: “over-documentation is a pernicious problem in the software industry, espe-
cially in the Department of Defense (DoD) projectg3d]. “[P]lan-driven method- 33
ologists must acknowledge that keeping documentation to a minimum useful ®et
35
8XP supports the following level 2 practices according 46]] requirements management, software 3¢
project planning, software project tracking and oversight, software quality assurance, andsoftware con-
figuration management, but notsoftware subcontract management.
9XP supports the following level 3 practices according4#|{ organization process focus, organization
process definition, software product engineering, inter-group coordination, andpeer reviews. XP does not
support the level 3 practicesaining program andintegrated software management. 40

37
38
39

© 0 N o g b~ W N P

AW W oW oW oW W oW W WWwNRNNDNDRNNDRNRNNDRNERR R B 2 B R
S © ® N o 0 & ® N P O © ® N 0 0 & ®WN P O © © N O 0 b W N B O

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 11
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 11

is necessary. At the same time, “practices that rely on tacit knomd8dgemay 1
break down in larger teams.” [43]. Others claim that “CMM does not require 2
piles of process or project documentation” and there are “various organizations that
successfully can manage and maintain their process with a very limited amount of
paper” A1]. 5

CMMI is the latest effort to build maturity models and consists of Process Areas
(PA) and Generic Practices (GP). CMMI is similar to CMM, but more extensive in
that it covers the discipline of system engineering. In an attempt to compare Adile
and CMMI, Turner analyzed their values and concluded that their incompatibilities
are overstated and that their strengths and weaknesses complement eacitpther'f

While many tired of traditional development techniques are quick to show suppBrt
for the Agile movement, often as a reaction against CMM, others are more skefti-
cal. A common criticism, voiced by Steven Rakitin, views Agile as a step backwards
from traditional engineering practices, a disorderly “attempt to legitimize the hacl%ér
process” §i8]. Where processes such as Waterfall and Spiral stress lengthy upfront
planning phases and extensive documentation, Agile Methods tend to shift these' PI‘I-
orities elsewhere. XP, for example, holds brief iteration planning meetings in the
Planning Game to prioritize and select requirements, but generally leaves the sys?em
design to evolve over iterations through refactoring, resulting in hackKidg This
accusation of Agile of being no more than hacking is frenetically fout)i §nd
in response to this criticism, Beck states: “Refactoring, design patterns, comprehen-
sive unit testing, pair programming—these are not the tools of hackers. These are
the tools of developers who are exploring new ways to meet the difficult goals,of
rapid product delivery, low defect levels, and flexibility37]. Beck says, “the only
possible values are ‘excellent’ and ‘insanely excellent’ depending on whether liygs
are at stake or nat’. You might accuse XP practitioners of being delusional, but ngt
of being poor-quality-oriented hackers37]. “Those who would brand proponents ,q
of XP or SCRUM or any of the other Agile Methodologies as ‘hackers’ are ignoragt
of both the methodologies and the original definition of the term hackeff’ [n 5
response to the speculation that applying XP would result in a Chaotic development
process (CMM level 1), one of the Agile proponents even concluded that “XP iszin
some ways a ‘vertical’ slice through the levels 2 through33][33

The question whether Agile is hacking is probably less important than whethgr
Agile and CMM(l) can co-exist. This is due to the fact that many organizations negd
both to be Agile and show that they are mature enough to take on certain contraets.
A model that fills that need and truly combines the Agile practices and the CMM ksy
processes has not, that we are aware of, been developed yet. 38

39

10Agile Methods rely on undocumented (tacit) knowledge and avoid documentation. 40

© 00 N o o B~ W N -

AW W W W W W W W WWN N NDNNNDNDNNDN PR PR P B P PR R R
o © 00 N o o B W N P O VW 0 N OO g0 b~ W N PP O VW 00 N O g b~ wWw N - o

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 12
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

12 D. COHEN ET AL.

2. State-of-the-Art 1
2
This section discusses what it means to be Agile, describes a selected set of Agile
Methods, and concludes with a discussion on whether an organization is ready to
adopt Agile Methods. 5
6
7

2.1 What Does It Mean to be Agile?

The goal of Agile Methods is to allow an organization to be agile, but what
does it mean to be Agile? Jim Highsmith says that being Agile means being atdle
to “Deliver quickly. Change quickly. Change often37]. While Agile techniques 12
vary in practices and emphasis, they share common characteristics, including itera-
tive development and a focus on interaction, communication, and the reductionsof
resource-intensive intermediate artifacts. Developing in iterations allows the devel-
opment team to adapt quickly to changing requirements. Working in close locatien
and focusing on communication means teams can make decisions and act on them
immediately, rather than wait on correspondence. Reducing intermediate artifacts
that do not add value to the final deliverable means more resources can be devoted to
the development of the product itself and it can be completed sooner. “A great deal
of the Agile movement is about what | would call ‘programmer powe?8|[These 20
characteristics add maneuverability to the procés whereby an Agile project 21
can identify and respond to changes more quickly than a project using a traditicral
approach. 23

Cockburn and Highsmith discuss the Agile “world view,” explaining “what is news
about Agile Methods is not the practices they use, but their recognition of peoplezas
the primary drivers of project success, coupled with an intense focus on effectiveress
and maneuverability”]9]. Practitioners agree that being Agile involves more thaer
simply following guidelines that are supposed to make a project Agile. True agiliy
is more than a collection of practices; it's a frame of mind. Andrea Branca states,
“other processes mdgok Agile, but they won'tfeel Agile” [19]. 30
31
32
33

8

2.2 A Selection of Agile Methods

Agile Methods have much in common, such as what they value, but they atso
differ in the practices they suggest. In order to characterize different methods,3we
will examine the following Agile Methods: Extreme Programming, Scrum, Crystad
Methods, Feature Driven Development, Lean Development, and Dynamic Systems
Development Methodology. We will attempt to keep the depth and breadth of a#ér
discussion consistent for each method, though it will naturally be limited by tke
amount of material available. XP is well-documented and has a wealth of available

© 0 N o g b~ W N P

AW W oW oW oW W oW W WWwNRNNDNDRNNDRNRNNDRNERR R B 2 B R
S © ® N o 0 & ® N P O © ® N 0 0 & ®WN P O © © N O 0 b W N B O

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 13
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 13

case studies and reports, while DSDM is subscription-based, making it much niore
difficult to find information. The other methods lie somewhere in between. See atso
Appendix A in which we attempt to further analyze these methods.

a A~ W

2.2.1 Extreme Programming .

Extreme Programming is undoubtedly the hottest Agile Method to emerge in fe-
cent years. Introduced by Beck, Jeffries, et al., in 1998 &nd further popularized 8
by Beck'sExtreme Programming Explained: Embrace Change in 1999 and numer-
ous articles since, XP owes much of its popularity to developers disenchanted W|th
traditional methodsq9] looking for something new, something extreme.

The 12 rules of Extreme Programming, true to the nature of the method itself, are
concise and to the point. In fact, you could almost implement XP without readlng a

page of Beck’s book. 5

e The planning game: At the start of each iteration, customers, managers, aitl
developers meet to flesh out, estimate, and prioritize requirements for the réxt
release. The requirements are called “user stories” and are captured on “sjt%ry
cards” in a language understandable by all parties.

o Small releases: An initial version of the system is put into production after thgl
first few iterations. Subsequently, working versions are putinto production any-
where from every few days to every few weeks. 23

e Metaphor: Customers, managers, and developers construct a metaphor, orset
of metaphors after which to model the system. 25

e Smple design: Developers are urged to keep design as simple as possible, “§%y
everything once and only oncel ().

e Tests: Developers work test-first; that is, they write acceptance tests for thggr
code before they write the code itself. Customers write functional tests for eggh

iteration and at the end of each iteration, all tests should run. a1
e Refactoring: As developers work, the design should be evolved to keep it &&s
simple as possible. 33

e Pair programming: Two developers sitting at the same machine write all code

e Continuousintegration: Developers integrate new code into the system as oftgp
as possible. All functional tests must still pass after integration or the new cogle
is discarded. 38

e Collective ownership: The code is owned by all developers, and they may make
changes anywhere in the code at anytime they feel necessary. 40

© 00 N o o B~ W N -

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 14
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

14 D. COHEN ET AL.

e On-site customer: A customer works with the development team at all times
to answer questions, perform acceptance tests, and ensure that development is
progressing as expected. 3

e 40-hour weeks: Requirements should be selected for each iteration such tHat
developers do not need to put in overtime. °

6
o Open workspace: Developers work in a common workspace set up with indi-
vidual workstations around the periphery and common development machipes

in the center. 0

Practitioners tend to agree that the strength of Extreme Programming does'tot
result from each of the 12 practices alone, but from the emergent properties ariding
from their combination. Highsmith lists five key principles of XP, all of which aré?
enhanced by its practices: communication, simplicity, feedback, courage, and qué?lty
work [29].

Practitioners of XP clearly state where the model works and where it does not!®
16

Teamsize: Because the development team needs to be co-located, team size is
limited to the number of people that can fit in a single room, generally agreed to,pe
from 2 to 10. 19

Iteration length: XP has the shortest recommended iteration length of the Agﬁ%

Methods under consideration, 2 weeks. 22

Support for distributed teams. Because of XP’s focus on community and co-=2s3
location, distributed teams are not supported. 24

25
Systemcriticality: XP is not necessarily geared for one system or another. Howy-
ever, most agree that there is nothing in XP itself that should limit its applicability27

28

2.2.2 Scrum 29

Scrum, along with XP, is one of the more widely used Agile Methods. Keh
Schwaber first described Scrum in 1994@][as a process that “accepts that the devel'31
opment process is unpredictable,” formalizing the “do what it takes” mentality, arid
has found success with numerous independent software vendors. The term is Bor-
rowed from Rugby: “[A] Scrum occurs when players from each team huddle closefy
together. .. in an attempt to advance down the playing field9].

Figure 1depicts the Scrum lifecycle. Scrum projects are split into |terat|0ns

(sprints) consisting of the following: i

Pre-sprint planning: All work to be done on the system is kept in what is called®
the “release backlog.” During the pre-sprint planning, features and functionality ave

© 0 N o g b~ W N P

W oW oW oW oW W WWNRNNDNRNDNDRNRNRNDRNER R B B B s s
N o 0B W RN P O © ® N O 0 B8 ®N P O © ® N O 0~ W N B O

38

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 15
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 15
Release Backlog: 1
Prioritized features

desired by the customer Sprint Backlog: Backlog items expanded 2

Features assigned to by team 3

=2 5

6

— 7

8

New functionality is Every 24 hours 9
demonstrated at end of Scrum: 15 minute daily 10

sprint meeting:

[
[

Team members discuss
what was done since last
meeting, issues and
obstacles and what will be
done before the next
meeting

[N
N

—\

B
BN

=
o

b
N o

FiG. 1. The Scrum Lifecycle (from http://www.controlchaos.com).
18

. . .19,
selected from the release backlog and placed into the “sprint backlog,” or a prigri-
tized collection of tasks to be completed during the next sprint. Since the tasks in
the backlog are generally at a higher level of abstraction, pre-sprint planning also

22
identifies a Sprint Goal reminding developers why the tasks are being performed and

at which level of detail to implement theri{]. o

Sprint: Upon completion of the pre-sprint planning, teams are handed their
sprint backlog and “told to sprint to achieve their objectives4][At this point, 26
tasks in the sprint backlog are frozen and remain unchangeable for the duratio#v of
the sprint. Team members choose the tasks they want to work on and begin devetop-
ment. Short daily meetings are critical to the success of Scrum. Scrum meetingsare
held every morning to enhance communication and inform customers, developsgrs,
and managers on the status of the project, identify any problems encounteredzand
keep the entire team focused on a common goal. 32

Post-sprint meeting: After every sprint, a post-sprint meeting is held to analyz%
project progress and demonstrate the current system.

Schwaber summarizes the key principles of Scréd:[%

36
e Small working teams that maximize communication, minimize overhead, agd
maximize sharing of tacit, informal knowledge. 38

o Adaptability to technical or marketplace (user/customer) changes to ensuresthe
best possible product is produced. 40

http://www.controlchaos.com

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 16
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

16 D. COHEN ET AL.

e Frequent ‘builds,” or construction of executables, that can be inspected, ad-

justed, tested, documented, and built on. 2
e Partitioning of work and team assignments into clean, low coupling partitiors,
or packets. 4

5
e Constant testing and documentation of a product as it is built. 6

o Ability to declare a product ‘done’ whenever required (because the competitipn
just shipped, because the company needs the cash, because the user/customer
needs the functions, because that was when it was promised 9

Team size: Development personnel are split into teams of up to seven peopilga.
A complete team should at least include a developer, quality assurance engineerizand

a documenter. W

Iteration length: While Schwaber originally suggested sprint lengths from 1 tos
6 weeks (p4]), durations are commonly held at 4 weekS]| 15

Support for distributed teams: While Scrum’s prescription does not explicitly ii
mention distributed teams or provide built-in support; a project may consist of mul-

tiple teams that could easily be distributed. 1

Systemcriticality: Scrum does not explicitly address the issue of criticality. 20
21

2.2.3 The Crystal Methods Z
The Crystal Methods were developed by Alistair Cockburn in the early 199@s.
He believed that one of the major obstacles facing product development was peor
communication and modeled the Crystal Methods to address these needs. Cockburn

explains his philosophy. “To the extent that you can replace written documentation
with face-to-face interactions, you can reduce the reliance on written work produsts
and improve the likelihood of delivering the system. The more frequently you can
deliver running, tested slices of the system, the more you can reduce the reliance
on written ‘promissory’ notes and improve the likelihood of delivering the system?
[32]. Highsmith adds: “[Crystal] focuses on people, interaction, community, skills;
talents, and communication as first order effects on performance. Process rensains
important, but secondary2p]. 34
Cockburn’s methods are named “crystal” to represent a gemstone, i.e., each facet
is another version of the process, all arranged around an identical&pra$ such, 36
the different methods are assigned colors arranged in ascending opacity. The most
Agile version is Crystal Clear, followed by Crystal Yellow, Crystal Orange, Crystad
Red, etc. The version of crystal you use depends on the number of people involeed,
which translates into a different degree of emphasis on communication. 40

© 0 N o g b~ W N P

AW W oW oW oW W oW W WWwNRNNDNDRNNDRNRNNDRNERR R B 2 B R
S © ® N o 0 & ® N P O © ® N 0 0 & ®WN P O © © N O 0 b W N B O

adcom60 v.2003/12/29 Prn:20/01/2004;
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

11:06

F:adcom62001.tex; VTEX/PS p. 17

AN INTRODUCTION TO AGILE METHODS 17
Different methodologies for different occasions
(project size, system criticality, priorities)
A
Priofitized for Legal Liability
Prioritized for Productivity & Toierance
T T
Life | '
-~ (v
o G L6 L20 L40 L100 | L200 | L500 | L1000
(@]
% Essential
26 Money
S0 (E) E6 E20 E40 E100 | E200 | E500 | E1000
(2]
L5
s ®
6 O Discretionary
2 M?S;’Y D6 | D20 | D40 | D100 | D200 | D500 | D1000
Q2
)]
T Comfort
© cé c20 C40 | C100 | €200 | C500 | C1000
»
>
1-6 -20 -40 -100 - 200 -500 -1,000

FiG. 2. Crystal Methods Framework (from http://www.crystalmethodologies.org).

As you add people to the project, you translate right on the graplyir? to more

Number of people involved
(+- 20 %)

© 00 N o o B~ W N -

NN NN B R R R R B R R R
W N P O © ® N o 0 M W N P O

24

opaque versions of crystal. As project criticality increases, the methods “harden”

and you move upwards on the graph. The methods can also be altered to fit ather
priorities, such as productivity or legal liability.

27

All Crystal methods begin with a core set of roles, work products, technigues, and

notations, and this initial set is expanded as the team grows or the method hardens.
As a necessary effect, more restraints leads to a less Agile method, but Highsmith
stresses that they are Agile nonetheless because of a common migjiset [

. . . 32
Teamsize: The Crystal Family accommodates any team size; however, Cockblé3rn

puts a premium on premium people.

Iteration length:

Up to 4 months for large, highly critical projects.

31

34
35

Support for distributed teams: Crystal Methodologies have built in support forzj

distributed teams.

38

System criticality: Crystal supports 4 basic criticalities: failure resulting in losse
of comfort, discretionary money, essential money, and life.

40

http://www.crystalmethodologies.org

© 00 N o o B~ W N -

N T e O O
© © ® N o U A W N B O

21

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 18
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

18 D. COHEN ET AL.

2.2.4 Feature Driven Development 1

Feature Driven Development arose in the late 1990s from a collaboration bethgen
Jeff DeLuca and Peter Coad. Their flagship project, like XP's C3 Project, was the
Singapore Project. DeLuca was contracted to save a failing, highly complicated
lending system. The previous contractor had spent two years producing over 3500
pages of documentation, but no cod€][DelLuca started from the beginning and,
hired Coad to assist with the object modeling. Combining their previous experienges,
they developed the feature-oriented development approach that came to be known as
FDD. 10

Highsmith explains FDD’s core valueg8q): 1

¢ A system for building systems is necessary in order to scale to larger projects.

13
o A simple, well-defined process works best. “
e Process steps should be logiead their worth immediately obviousto each 5

team member. 16

e ‘Process pride’ can keep the real work from happening. 17

e Good processes move to the background so the team members can focu$ on
results. 19

20
e Short, iterative, feature-driven life cycles are best. 0

22
Develop an overall model: As depicted inFig. 3, the FDD process begins with ,5

developing a model. Team members and experts work together to create a “walk-

through” version of the system. 25

26

27

(more‘shape than content) P A design package 28

An object model - (sequences) | | Completed 29
+ informal features list A categorized || A development (more content | | client-valued

+ notes on alternatives list of features | | plan than shape) | | function 30

31
32
33
34

Build by 35
feature

Develop
an
overall feature

fS:tiLdr:s Plan by Debs)ilgn

list feature 36
37
38
39

FiG. 3. FDD Process (from http://www.togethercommunity.com). 40

model

http://www.togethercommunity.com

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 19
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 19

Build afeatureslist: Next, the team identifies a collection of features represent-
ing the system. Features are small items useful in the eyes of the client. Theyzare
similar to XP story cards written in a language understandable by all parties. Fea-
tures should take up to 10 days to devel@p][Features requiring more time than4
10 days are broken down into subfeatures. 5

Plan by feature: The collected feature list is then prioritized into subsection;%
called “design packages.” The design packages are assigned to a chief programmer,
who in turn assigns class ownership and responsibility to the other developers. .

Design by feature & build by feature: After design packages are assigned, the
iterative portion of the process begins. The chief programmer chooses a subset of
features that will take 1 to 2 weeks to implement. These features are then planned in
more detail, built, tested, and integrated. 13

Teamsize: Team size varies depending on the complexity of the feature at hansd
DelLuca stresses the importance of premium people, especially modeling experts

Iteration length: Up to two weeks. 17

Support for distributed teams. FDD is designed for multiple teams and, while |t
does not have built-in support for distributed environments, it should be adaptable

Criticality: The FDD prescription does not specifically address project critical
ity. 22
23

2.2.5 Lean Development 24

25
Lean Development (LD), started by Bob Charette, draws on the success Lgan

Manufacturing found in the automotive industry in the 1980s. While other Agilg
Methods look to change the development process, Charette believes that to be fruly
Agile you need to change how companies work from the top down. Lean Develgp-

ment’s 12 principles focus on management stratedigéls [20

(1) Satisfying the customer is the highest priority. 31
(2) Always provide the best value for the money. 32
(3) Success depends on active customer participation. 33
(4) Every LD project is a team effort. 34
(5) Everything is changeable. 35
(6) Domain, not point, solutions. 36
(7) Complete, do not construct. 37
(8) An 80 percent solution today instead of 100 percent solution tomorrow. 38
(9) Minimalism is essential. 39

(10) Needs determine technology. 40

© 00 N o o B~ W N -

AW W W W W W W W WWN N NDNNNDNDNNDN PR PR P B P PR R R
o © 00 N o o B W N P O VW 0 N OO g0 b~ W N PP O VW 00 N O g b~ wWw N - o

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 20
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

20 D. COHEN ET AL.
(11) Product growth is feature growth, not size growth. 1
(12) Never push LD beyond its limits. 2

3
Because LD is more of a management philosophy than a development process, feam
size, iteration length, team distribution, and system criticality are not directly ad-

dressed. 6

7

2.2.6 Dynamic Systems Development Method 8

Dynamic Systems Development Method (DSDM), according to their web’site?
is not so much a method as it is a framework. Arising in the early 1990s, DSDM
is actually a formalization of RAD practice&9]. As depicted inFig. 4, the DSDM b
lifecycle has six stages: Pre-project, Feasibility Study, Business Study, Funcnolnal
Model Iteration, Design and Build Iteration, Implementation, and Post-project.

Pre-project: The pre-project phase establishes that the project is ready to begin,
funding is available, and that everything is in place to commence a successful project.

17
Feasibility study: DSDM stresses that the feasibility study should be short, ng
more than a few week$§]. Along with the usual feasibility activities, this phase

should determine whether DSDM is the right approach for the project. 20

Businessstudy: The business study phase is “strongly collaborative, using a sé-
ries of facilitated workshops attended by knowledgeable and empowered staff iho
can quickly pool their knowledge and gain consensus as to the priorities of the tfe-
velopment” (http://www.dsdm.org). The result of this phase is the Business Aréa
Definition, which identifies users, markets, and business processes affected by°the

system. 26
27

Functional model iteration: The functional model iteration aims to build on,g
the high-level requirements identified in the business study. The DSDM frameweggk
works by building a number of prototypes based on risk and evolves these prototypes
into the complete system. This phase and the design and build phase have a common
process: 32
33
34
35

(1) Identify what is to be produced.
(2) Agree how and when to do it.
(3) Create the product.

(4) Check that it has been produced correctly (by reviewing documents, demon—

strating a prototype or testing part of the systé). s

Uhttp:/iwww.dsdm.org. 39
L2http:/mvww.dsdm.org. 40

http://www.dsdm.org
http://www.dsdm.org
http://www.dsdm.org

© 0 N o g b~ W N P

AW W oW oW oW W oW W WWwNRNNDNDRNNDRNRNNDRNERR R B 2 B R
S © ® N o 0 & ® N P O © ® N 0 0 & ®WN P O © © N O 0 b W N B O

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06

aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS

Functional Model Iteration:

1. Identify what is to be
produced.

2. Agree how and when to do it.
3. Create the product.

4. Check that it has been
produced correctly

Pre-
project

\

Feasibility
Study:
Is DSDM right
for the project?

|

usiness
Study:
Business
rocesses affectel
and their
information needs

F:adcom62001.tex; VTEX/PS p. 21

21

\ Design and Build Iteration:

FIG. 4. The DSDM Lifecycle (from http://www.dsdm.org).

P

1itation:

1. Implement.

2. Review business.
3. Check user approval and
user guidelines.
4. Train users.

1. Identify design prototypes.
2. Agree how and when to do it.

3. Create design prototype.
4. Review design prototype.

}

Post-
project

© 00 N o o B~ W N -

AW W OW W oW oW oW W WWNNNDNDRNNDRNRNNDRERR R B 2 R
S © ® N o O & ® N P O © ® N 0 0~ ®WN P O © © N O a0 b W N B O

http://www.dsdm.org

© 00 N o o B~ W N -

AW W W W W W W W WWN N NDNNNDNDNNDN PR PR P B P PR R R
o © 00 N o o B W N P O VW 0 N OO g0 b~ W N PP O VW 00 N O g b~ wWw N - o

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 22
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

22 D. COHEN ET AL.

Design and build iteration: The prototypes from the functional model iterationt
are completed, combined, and tested and a working system is delivered to the ugers.

Implementation: During this phase, the system is transitioned into use. An I3—
crement Review Document is created during implementation that discusses the state
of the system. Either the system is found to meet all requirements and can be consid-
ered complete, or there is missing functionality (due to omission or time concerns).
If there is still work to be done on the system, the functional model, design and buj/d,

and implementation phases are repeated until the system is complete. 0

Post-project: This phase includes normal post-project clean-up, as well as df-

going maintenance. 1
Because of DSDM'’s framework nature, it does not specifically address team size,

exact iteration lengths, distribution, or system criticality. 13

14

2.2.7 Agile Modeling 1

16
Agile Modeling (AM) is proposed by Scott AmbleP]. It is a method based on 17
values, principles and practices that focus on modeling and documentation of s@ft-
ware. AM recognizes that modeling is a critical activity for a project success and
addresses how to model in an effective and Agile mansier [20
The three main goals of AM ar&J: 21

(1) To define and show how to put into practice a collection of values, pr|n0|ples
and practices that lead to effective and lightweight modeling.

(2) To address the issue on how to apply modeling techniques on Agile software
development processes.

(3) To address how you can apply effective modeling techniques mdependenGtIy

of the software process in use. 28

AM is not a complete software development method. Instead, it focuses only on doc-
umentation and modeling and can be used with any software development process.
You start with a base process and tailor it to use AM. Ambler illustrates, for exampie,
how to use AM with both XP and Unified Process (UB) [32
The values of AM include those of XP—communication, simplicity, feedback anrel
courage—and also include humility. It is critical for project success that you heasse
effective communication in your team and also with the stakeholder of the projest.
You should strive to develop the simplest solution that meets your needs and tosget
feedback often and early. You should also have the courage to make and stick to your
decisions and also have the humility to admit that you may not know everything aad
that others may add value to your project efforts. 39
Following is a summary of the principles of AN2Z]; 40

© 0 N o g b~ W N P

AW W oW oW oW W oW W WWwNRNNDNDRNNDRNRNNDRNERR R B 2 B R
S © ® N o 0 & ® N P O © ® N 0 0 & ®WN P O © © N O 0 b W N B O

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 23
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 23

(1) Assumesimplicity: Assume that the simplest solution is the best solution. 1t
(2) Content is more important than representation: You can use “post it” notes, 2
whiteboard or a formal document. What matters is the content. 3
(3) Embrace change: Accept the fact the change happens. 4
(4) Enabling your next effort is your secondary goal: Your project can still be a 5
failure if you deliver it and it is not robust enough to be extended. 6
(5) Everyone can learn from everyone else: Recognize that you can never truly?
master something. There is always an opportunity to learn from others. s
(6) Incremental change: Change your system a small portion at a time, instead

of trying to get everything accomplished in one big release. 10
(7) Know your models: You need to know the strengths and weaknesses of mod-
els to use them effectively. 12
(8) Local adaptation: You can modify AM to adapt to your environment. 13

(9) Maximize stakeholder investment: Stakeholders have the right to decide hows
to invest their money and they should have a final say on how those resounges

are invested. 16
(10) Model with a purpose: If you cannot identify why you are doing something,17
why bother? 18
(11) Multiple models: You have a variety of modeling artifacts (e.g., UML dia-19
grams, data models, user interface models, etc.). 20
(12) Open and honest communication: Open and honest communications enablet
people to make better decisions. 22
(13) Quality work: You should invest effort into making permanent artifacts (e.gz3
code, documentation) of sufficient quality. 24
(14) Rapid feedback: Prefer rapid feedback to delayed feedback whenever possi-
ble. 26
(15) Software isyour primary goal: The primary goal is to produce high-quality 27
software that meets stakeholders’ needs. 28
(16) Travel light: Create just enough models and documents to get by. 29
(17) Work with peopl€e sinstincts: Your instincts can offer input into your model- 30
ing efforts. 31

32
33
(1) Active stakeholder participation: Project success requires a significant leveds

Here is a summary of the AM practice3 |

of stakeholder involvement. 35
(2) Apply modeling standards: Developers should agree and follow a commons
set of modeling standards on a software project. 37

(3) Apply theright artifact(s): Modeling artifacts (UML diagram, use case, datzs
flow diagram, source code) have different strengths and weaknesses. Make
sure you use the appropriate one for your situation. 40

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 24
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

24 D. COHEN ET AL.

© 00 N o o B~ W N -

W W W W W W W NN NN NN DN DN DN DN P PR R R R R R
o o A W N P O © 0 N O o & W N B O © 0 N 0o o & W N O

37

(4) Collective ownership: Everyone can modify any model and artifact they need

to. 2
(5) Consider testability: When modeling, always ask the question: “how are we
going to test this?” 4
(6) Createseveral modelsin parallel: By creating several models you can iterateé
between them and select the best model that suits your needs. 6
(7) Createsimplecontent: You should not add additional aspects to your artifacts
unless they are justifiable. 8

(8) Depict models simply: Use a subset of the modeling notation available t&
you, creating a simple model that shows the key features you are tryingtto

understand. 11
(9) Discardtemporary models: Discard working models created if they no longer?
add value to your project. 13

(10) Display models publicly: Make your models accessible for the entire team.
(11) Formalize contract models: A contract model is always required when you'
are working with an external group that controls an information resouré®
(e.g., a database) required by your system. o
(12) Iterate to another artifact: Whenever you get “stuck” working on an artifact'®
(if you are working with a use case and you are struggling to describe tHe
business logic), iterate with another artifact. 2
(13) Model in small increments: Model a little, code a little, test a little and deliver 2*
a little. 22
(14) Model to communicate: One of the reasons to model is to communicate wit?®
the team or to create a contract model. 2
(15) Model to understand: The main reasons for modeling is to understand th&
system you are building, consider approaches and choose the best one. *°
(16) Model with others: It is very dangerous to model alone. 2
(17) Prove it with code: To determine if your model will actually work, validate 28
your model by writing the corresponding code. 29
(18) Reuse existing resources. There is a lot of information available that model-*
ers can reuse to their benefit. 3
(19) Update only when it hurts: Only update a model or artifact when you ab-?
solutely need to. %
(20) Use the simplest tools: Use the simplest tool that works in your case: a nap3—4
kin, a whiteboard and even CASE tools if they are the most effective for yozu:r

situation.
37

Since AM is not a complete software process development method and shouldbe

used with other development methods, the team size, exact iteration lengths, distvib-
ution and system criticality will depend on the development process being used. 40

© 0 N o g b~ W N P

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 25
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 25
TABLE | 1
PRESCRIPTIVECHARACTERISTICS 5
XP Scrum Crystal FDD [LD] DSDM | AM 5

Team size 2-10 1-7 Variable Variable

Iteration length 2weeks | 4weeks | <4 months| <2 weeks N/A 4
Distributed support No Adaptable Yes Adaptable 5
System criticality Adaptable| Adaptable| Alltypes | Adaptable 6
.
8

©

2.3 Characteristics of Selected Agile Methods
10
Table Ipresents the collected prescriptive characteristics of the discussed methgds.

As we have seen, different Agile Methods have different characteristics. A brigf
comparison of Crystal Clear and XP resulted, for example, in the follovdgp [13

e XP pursues greater productivity through increased discipline, but it is harder bor
a team to follow. 15

e Crystal Clear permits greater individuality within the team and more relaxia:d
work habits in exchange for some loss in productivity.

18
¢ Crystal Clear may be easier for a team to adopt, but XP produces better resylts
if the team can follow it. 2

e A team can start with Crystal Clear and move to XP; a team that fails with Xk
can move to Crystal Clear. 22
23

24

2.4 Is Your Organization Ready for Agile Methods?

25

As we have seen, there are many Agile Methods to select from, each bringithg
practices that will change the daily work of the organization. Before an organizatin
selects and implements an Agile Method, it should ponder whether or not it is reagly
for Agile or not. Scott Ambler discusses factors affecting successful adoption in #is
article “When Does(n't) Agile Modeling Make Sense?” [7]. Number one on his list, 30
“Agile adoption, will be most successful when there is a conceptual fit between the
organization and the Agile view. Also important for adoption are your project and
business characteristics. Is your team already working incrementally? What is3he
team’s motivation? What kind of support can the team expedf?’Are there ade- 34
guate resources available? How volatile are the project requirements? Barry Boghm
suggests using traditional methods for projects where requirements change lesssthan
1% per month14]. 37

Ambler also suggests the importance of an Agile champion—someone to tackle
the team’s challenges so they can work easily Boehm stresses the importancese
of having well-trained developers, since Agile processes tend to place a high degree

© 00 N o o B~ W N -

AW W W W W W W W WWN N NDNNNDNDNNDN PR PR P B P PR R R
o © 00 N o o B W N P O VW 0 N OO g0 b~ W N PP O VW 00 N O g b~ wWw N - o

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 26
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

26 D. COHEN ET AL.

of reliance on a developer’s tacit knowleddel]. The customer also needs to bet
devoted to the project, and must be able to make decisions. “Poor customers result
in poor systems” 19]. Boehm adds, “Unless customer participants are committed,
knowledgeable, collaborative, representative, and empowered, the developed prod-
ucts typically do not transition into use successfully, even though they may satisfy
the customer”14]. 6
Alistair Cockburn lists a few caveats when adopting an Agile process: 7

8
¢ As the number of people on a project grows, there is an increased straingon
communications. 1

e As system criticality increases, there is decreased “tolerance for personal styl-
istic variations.” 12

If Agile Methods do not seem to be a good fit for your project or organization righat
off the bat, Ambler suggests partial adoptiofj. [Look at your current develop-
ment process, identify the areas that need the most improvement, and adopt ,&5 ile
techniques that specifically address your target areas. After successful adoptlon of
the chosen practices and, even better, a demonstrated improvement to your cl)é/er—
all process, continue selecting and implementing Agile techniques until you h%/e

adopted the entire process. 0

21
22
3. State-of-the-Practice 23
24
Agile Methods are gaining popularity in industry, although they comprise a mix
of accepted and controversial software engineering practices. In recent years, there
have been many stories and anecdotes of industrial teams experiencing successmwith
Agile Methods. There is, however, an urgent need to empirically assess the applica-
bility of these methods, in a structured manner, in order to build an experienee
base for better decision-making. In order to reach their goals, software develop-
ment teams need, for example, to understand and choose the right models and tech-
niques to support their projects. They must consider key questions such as “What
is the best life-cycle model to choose for a particular project? What is an appropgi-
ate balance of effort between documenting the work and getting the product imple-
mented? When does it pay off to spend major efforts on planning in advance and
avoid change, and when is it more beneficial to plan less rigorously and embrace
change?” 37
While previous sections of this report discussed Agile Methods from a state-gf-
the-art perspective, this section addresses these questions and captures the staie-of-
the-practice and the experiences from applying Agile Methods in different settings.

© 0 N o g b~ W N P

AW W oW oW oW W oW W WWwNRNNDNDRNNDRNRNNDRNERR R B 2 B R
S © ® N o 0 & ® N P O © ® N 0 0 & ®WN P O © © N O 0 b W N B O

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 27
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 27

The section starts with results from an eWorkshop on Agile Methods followed by

other empirical studies. 2
3

4

3.1 eWorkshop on Agile Methods 5

The goal of the Center for Empirically-Based Software Engineering (CeBASE)
is to collect and disseminate knowledge on software engineering. A central activ-
ity toward achieving this goal has been the running of “eWorkshops” (or on-lifie
meetings). The CeBASE project defined the eWorkst8@hd has, for example, °
used it to collect empirical evidence on defect reduction and CG5pB This sec-
tion is based on a paper that discusses the findings of an eWorkshop in wh|ch ex-
periences and knowledge were gathered from, and shared between, Agile experts
located throughout the worl@f]. The names of these 18 participants are listed |n

the acknowledgments of this report. s

16

3.1.1 Seeding the eDiscussion =

For this eWorkshop, Barry Boehm’s January 2002 IEEE Computer artigle [8
Highsmith and Cockburn’s article81,2Q, and the Agile Manifestt served as 1°
background material, together with material defining Agile Methods such as Extrethe
Programming (XP)11], Scrum B4], Feature Driven Development (FDD){], Dy- %
namic Systems Development Method (DSDMJ], Crystal [L7], and Agile Model- 22
ing [2]. =

Boehm brings up a number of different characteristics regarding Agile Methdds
compared to what he calls “Plan-Driven Methods,” the more traditional Waterfall, ify-
cremental or Spiral methods. Boehm contends that Agile, as described by Highsriith
and Cockburn31], emphasizes several critical people-factors, such as amicability,
talent, skill, and communication, at the same time noting that 49.99% of the worléPs
software developers are below average in these areas. While Agile does not reduire
uniformly highly capable people, it relies on tacit knowledge to a higher degree tHin
plan-driven projects that emphasize documentation. Boehm argues that there’ls a
risk that this situation leads to architectural mistakes that cannot be easily deteé?ted
by external reviewers due to the lack of documentatich.[

Boehm also notes that Cockburn and Highsmith conclude that “Agile developmé&ht
is more difficult for larger teams” and that plan-driven organizations scale-up better
[31]. At the same time, the bureaucracy created by plan-driven processes does’not
fit small projects either. This, again, ties back to the question of selecting the r|§7ht

practices for the task at hani].
39

Bhttp://vww.agileAlliance.org. 40

http://www.agileAlliance.org

© 00 N o o B~ W N -

NNN RN NN B B R R R R e e
O B ®W N B O © ® N © 00 b W N B O

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 28
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

28 D. COHEN ET AL.

Boehm questions the applicability of the Agile emphasis on simplicity. XP’s phi-
losophy of YAGNI (You Aren’t Going to Need It)1[1] is a symbol of the recom- 2
mended simplicity that emphasizes eliminating architectural features that do ot
support the current version. Boehm feels this approach fits situations where future
requirements are unknown. In cases where future requirements are known, thesrisk
is, however, that the lack of architectural support could cause severe architectural
problems later. This raises questions like “What is the right balance between creating
a grandiose architecture up-front and adding features as they are needed?” Baehm
contends that plan-driven processes are most needed in high-assurance sbfffware [
Traditional goals of plan-driven processes such as predictability, repeatability and
optimization are often characteristics of reliable safety critical software development.
Knowing for what kind of applications different practices (traditional or Agile) are
most beneficial is crucial, especially for safety critical applications where human
lives can be at stake if the software fails. 14

Based on background material, the following issues were discussed: 15

(1) The definition of Agile. 10
(2) Selecting projects suitable for Agile. v
(3) Introducing the method. 18

(4) Managing the project. 22

Each of these will be discussed in the following section. The full discussion summary
can be found on the FC-MD web site (http://fc-md.umd.edu). 22
23

3.1.2 Definition 24

The eWorkshop began with a discussion regarding the definition of Agile andﬁs
characteristics, resulting in the following working definition.
Agile Methods are:

27

28
o Iterative: Delivers a full system at the very beginning and then changes the
functionality of each subsystem with each new release. 30

e Incremental: The system as specified in the requirements is partitioned intb
small subsystems by functionality. New functionality is added with each ne#
release. 33

e Sdlf-organizing: The team has the autonomy to organize itself to best compléfe
the work items. ®

36
e Emergent: Technology and requirements are “allowed” to emerge through the

product development cycle. 28

All Agile Methods follow the four values and twelve principles of the Agile Mani-se
festo. 40

http://fc-md.umd.edu

© 0 N o g b~ W N P

AW W oW oW oW W oW W WWwNRNNDNDRNNDRNRNNDRNERR R B 2 B R
S © ® N o 0 & ® N P O © ® N 0 0 & ®WN P O © © N O 0 b W N B O

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 29
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 29

3.1.3 Selecting Projects Suitable for Agile Methods 1

The most important factor that determines when Agile is applicable is probalzaly

project size. From the discussion it became clear that theB&jis [.

e Plenty of experience of teams with up to 12 people. 5

e Some descriptions of teams of approximately 25 people. 6

¢ A few data points regarding teams of up to 100 people, e.g., 45 and 90-per;son
teams.

9
¢ Isolated descriptions of teams larger than 100 people. (e.g., teams of 150 gnd
800 people were mentioned and documented in. 1

Many participants felt that any team could be Agile, regardless of its size. AliS-
tair Cockburn argued that size is an issue. As size grows, coordinating interfaces
becomes a dominant issue. Face-to-face communication breaks down and becémes
more difficult and complex past 20—-40 people. Most participants agreed, but thihk
that this statement is true for any development process. Past 20—40 people, somel‘klnd
of scale-up strategies must be applied.

One scale-up strategy that was mentioned was the organization of large prOJ@ctS
into teams of teams. On one occasion, an 800-person team was organized u8ing
“scrums of scrums”§3]. Each team was staffed with members from multiple prod?®
uct lines in order to create a widespread understanding of the project as a wile.
Regular, but short, meetings of cross-project sub-teams (senior people or com#on
technical areas) were held regularly to coordinate the project and its many tean® of
teams. It was pointed out that a core team responsible for architecture and standards
(also referred to as glue) is needed in order for this configuration to work. Thése
people work actively with the sub-teams and coordinate the work. 26

Effective ways of coordinating multiple teams include yearly holding conferenc&s
to align interfaces, rotation of people between teams in 3-month internships, &hd
shared test case results. Examples of strategies for coping with larger teams are2floc-
umented in Jim Highsmith’s Agile Software Development Ecosyst@§jsip which 30
the 800-person team is described. 31

There is an ongoing debate about whether or not Agile requires “good people32o
be effective. This is an important argument to counter since “good people” can meke
just about anything happen and that specific practices are not important when 3fou
work with good people. This suggests that perhaps the success of Agile Meth®ds
could be attributed to the teams of good folks, rather than practices and principies.
On the other hand, participants argued that Agile Methods are intrinsically valuakte.
Participants agreed that a certain percentage of experienced people are needes for
a successful Agile project. There was some consensus that 25%—33% of the preject
personnel must be “competent and experienced.” 40

© 00 N o o B~ W N -

AW W W W W W W W WWN N NDNNNDNDNNDN PR PR P B P PR R R
o © 00 N o o B W N P O VW 0 N OO g0 b~ W N PP O VW 00 N O g b~ wWw N - o

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 30
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

30 D. COHEN ET AL.

“Competent” in this context means:

e Possess real-world experience in the technology domain.
e Have built similar systems in the past.
e Possess good people and communication skills.

a A W N P

It was noted that experience with actually building systems is much more |mportant
than experience with Agile development methods. The level of experience m|9ht
even be as low as 10% if the teams practice pair programréjgpd if the makeup .
of the specific programmers in each pair is fairly dynamic over the project cycle
(termed “pair rotation”). Programmers on teams that practice pair rotation have an
enhanced environment for mentoring and for learning from each other.

One of the most widespread criticisms of Agile Methods is that they do not WOlI’?k
for systems that have criticality, reliability and safety requirements. There was some
disagreement about suitability for these types of projects. Some participants felt %hat
Agile Methods work if performance requirements are made explicit early, andllf
proper levels of testing can be planned for. Others argue that Agile best fits applllg;a-
tions that can be built “bare bones” very quickly, especially applications that spend
most of their lifetime in maintenance.

There was also some disagreement about the best Agile Methods for critical
projects. A consensus seemed to form that the Agile emphasis on testing, parﬁ%u—
larly the test-driven development practice of XP, is the key to working with theSe
projects. Since all tests have to be passed before release, projects developed wiffi XP
can adhere to strict (or safety) requirements. Customers can write acceptance 2t3ésts
that measure nonfunctional requirements, but they are more difficult and may reqwre
more sophisticated environments than Unit tests.

Many participants felt that Agile Methods render it easier to address critical i isstes
since the customer gives requirements, makes important issues explicit earlyzand
provides continual input. The phrase “responsibly responding to change” mpﬁgs
that there is a need to investigate the source of the change and adjust the soluﬁlon
accordingly, not just respond and move on. When applied right, “test first” sat|sf|es

this requirement. 32

33
34
An importantissue is how to introduce Agile Methods in an organization and hew
much formal training is required before a team can start using it. A majority (though
not all) of the participants felt that Agile Methods require less formal training than
traditional methods. For example, pair programming helps minimize what is needed
in terms of training, because people mentor each other. This kind of mentoring ¢by
some referred to as tacit knowledge transfer) is argued to be more important than

3.1.4 Introducing Agile Methods: Training Requirements

© 0 N o g b~ W N P

AW W oW oW oW W oW W WWwNRNNDNDRNNDRNRNNDRNERR R B 2 B R
S © ® N o 0 & ® N P O © ® N 0 0 & ®WN P O © © N O 0 b W N B O

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 31
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 31

explicit training. The emphasis is rather on skill development, not on learning Agile
Methods. Training on how to apply Agile Methods can many times occur as self-
training. Some participants have seen teams train themselves successfully. Thespar-
ticipants concluded that there should be enough training material available for XP,

Crystal, Scrum, and FDD. 5
6

3.1.5 Project Management: Success Factors and Warning !
Signs 8

9

One of the most effective ways to learn from previous experience is to analyze past
projects from the perspective of success factors. The three most important sucoess
factors identified among the participants were culture, people, and communicatian.

To be Agile is a cultural matter. If the culture is not right, then the organizatian
cannot be Agile. In addition, teams need some amount of local control. They must
have the ability to adapt working practices as they feel appropriate. The culture meist
also be supportive of negotiation, as negotiation forms a large part of Agile cultune.

As discussed above, it is important to have competent team members. Organi-
zations using Agile use fewer, but more competent people. These people mustbe
trusted, and the organization must be willing to live with the decisions developess
make, not consistently second-guess their decisions. 20

Organizations that want to be agile need to have an environment that facilitates
rapid communication between team members. Examples are physically co-located
teams and pair programming. 23

It was pointed out that organizations need to carefully implement these success
factors in order for them to happen. The participants concluded that Agile Meth-
ods are most appropriate when requirements are emergent and rapidly changingztand
there is always some technical uncertainty!). Fast feedback from the customer isan-
other factor that is critical for success. In fact, Agile is based on close interactmn
with the customer and expects that the customer will be on-site to provide the quisk-
est possible feedback, a critical success factor. 30

A critical part of project management is recognizing early warning signs that s-
dicate that something has gone wrong. The question posed to participants was “Btow
can management know when to take corrective action to minimize risks?” 33

Participants concluded that the daily meetings provide a useful way of measuring
problems. As a result of the general openness of the project and because discussions
of these issues are encouraged during the daily meeting, people will bring up preb-
lems. Low morale expressed by the people in the daily meeting will also reveal tbrat
something has gone wrong that the project manager must deal with. Another ingli-
cator is when “useless documentation” is produced, even though it can be hareb to
determine what useless documentation is. Probably the most important warning sign

© 00 N o o B~ W N -

AW W W W W W W W WWN N NDNNNDNDNNDN PR PR P B P PR R R
o © 00 N o o B W N P O VW 0 N OO g0 b~ W N PP O VW 00 N O g b~ wWw N - o

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 32
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

32 D. COHEN ET AL.

is when the team is falling behind on planned iterations. As a result, having frequent
iterations is very important to monitor for this warning sign. 2
A key tenet of Agile Methods (especially in XP) is refactoring. Refactoring means
improving the design of existing code without changing the functionality of the sys-
tem. The different forms of refactoring involve simplifying complex statements, ag-
stracting common solutions into reusable code, and the removal of duplicate code.
Not all participants were comfortable with refactoring the architecture of a system
because refactoring would affect all internal and external stakeholders. Instead sfre-
quent refactoring of reasonably-sized code, and minimizing its scope to keep changes
more local, were recommended. Most participants felt that large-scale refactoring is
not a problem, since it is frequently necessary and more feasible using Agile Meth-
ods. Participants strongly felt that traditional “Big Design Up Front (BDUF)” ig2
rarely on target, and its lack of applicability is often not fed back to the team that
created the BDUF, making it impossible for them to learn from experience. It was
again emphasized that testing is the major issue in Agile. Big architectural changes
do not need to be risky, for example, if a set of automated tests is provided as a
“safety net.” 17
Product and project documentation is a topic that has drawn much attention in dis-
cussions about Agile. Is any documentation necessary at all? If so, how do you deter-
mine how much is needed? Scott Ambler commented that documentation becomes
out of date and should be updated only “when it hurts.” Documentation is a poor farm
of communication, but is sometimes necessary in order to retain critical informatien.
Many organizations demand more documentation than is needed. The organizations’
goal should be to communicate effectively, and documentation should be one ofhe
last options to fulfill that goal. Barry Boehm mentioned that project documentatian
makes it easier for an outside expert to diagnose problems. Kent Beck disagreed say-
ing that, as an outside expert who spends a large percentage of his time diagnasing
projects, he is looking for people “stuff” (like quiet asides) and not technical detaits.
Bil Kleb said that with Agile Methods, documentation is assigned a cost and its ex-
tentis determined by the customer (excepting internal documentation). Scott Ambder
suggested his Agile Documentation essay as good reference for this4ppic [31
32
33
34
Several lessons can be learned from this discussion that should prove to be ¥se-
ful to those considering applying Agile Methods in their organization. These lessefs
should be carefully examined and challenged by future projects to identify the @ir-
cumstances in which they hold and when they are not applicable. 38
Any team could be Agile, regardless of the team size, but should be considered
because greater numbers of people make communication more difficult. Much 4as

3.2 Lessons Learned

© 0 N o g b~ W N P

W oW oW oW oW W WWNRNNDNRNDNDRNRNRNDRNER R B B B s s
N o 0B W RN P O © ® N O 0 B8 ®N P O © ® N O 0~ W N B O

38

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 33
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 33

been written about small teams, but less information is available regarding larger
teams, for which scale-up strategies are necessary. 2

e Experience is important for an Agile project to succeed, but experience with
actually building systems is much more important than experience with Ag-
ile Methods. It was estimated that 25%—-33% of the project personnel must,be
“competent and experienced,” but the necessary percentage might even be as
low as 10% if the teams practice pair programming due to the fact that thegy
mentor each other. 0

e Agile Methods require less formal training than traditional methods. Pair prae-
gramming helps minimize what is needed in terms of training, because peaple
mentor each other. Mentoring is more important than regular training that can
many times be completed as self-training. Training material is available in par-
ticular for XP, Crystal, Scrum, and FDD. 14

¢ Reliable and safety-critical projects can be conducted using Agile Methods. Pér-
formance requirements must be made explicit early, and proper levels of testihg
must be planned. It is easier to address critical issues using Agile Methods sitice
the customer gives requirements, sets explicit priorities early and provides ctin-
tinual input. 19

e The three most important success factors are culture, people, and commzoni-
cation. Agile Methods need cultural support, otherwise they will not succe%g.
Competent team members are crucial. Agile Methods use fewer, but more com-
petent, people. Physically co-located teams and pair programming support rgpid
communication. Close interaction with the customer and frequent customer

feedback are critical success factors. 26

e Early warning signs can be spotted in Agile projects, e.g., low morale expressed
during the daily meeting. Other signs are production of “useless documentatign”
and delays of planned iterations. 29

e Refactoring should be done frequently and of reasonably-sized code, keepig
the scope down and local. Large-scale refactoring is not a problem, andlis
more feasible using Agile Methods. Traditional “BDUF” is a waste of timé?
and doesn'’tlead to a learning experience. Big architectural changes do not riéed
to be risky if a set of automated tests is maintained. 34

e Documentation should be assigned a cost and its extent be determined by35the
customer. Many organizations demand more than is needed. The goal shoufi:i be
to communicate effectively and documentation should be the last option.

In another eWorkshop, the following experiences were reported regarding Agile and
CMM: 40

© 00 N o o B~ W N -

AW W W W W W W W WWN N NDNNNDNDNNDN PR PR P B P PR R R
o © 00 N o o B W N P O VW 0 N OO g0 b~ W N PP O VW 00 N O g b~ wWw N - o

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 34
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

34 D. COHEN ET AL.

e At Boeing, XP was used before CMM was implemented and they were abletto
implement the spirit of the CMM without making large changes to their soft-
ware processes. They used XP successfully, and CMM helped introducesthe
Project Management Discipline. 4

o Asea Brown Boveri (ABB) is introducing XP while transitioning from CMM to°
CMMI worldwide. They are in the opposite position from Boeing: CMM(I) was
introduced several years before XP, which is true for their corporate research
centers as well as for business units.

e NASA Langley Research Center reported a better match with CMM and AgjLIg
when the CMM part is worded generally, as in “follow a practice of choice,’
and not delving into specifics such as, “must have spec sheet 5 pages long.},

o ABB added that their organization has adopted the CMMI framework and thegy
are incorporating Agile practices into the evolutionary development lifecycle
model. They believe that there is a clear distinction between life cycle mog-
els and continuous process improvement models such as CMMI and both.are
not incompatible. No incompatibilities between Agile and CMM were reported
[39]. 18

19

20

21

3.3 Case Studies

Another important source of empirical data is case studies. In this section, e
report from a selected number of case studies on different aspects of applying Aﬁne
Methods.

25

3.3.1 Introducing XP ij

Karlstrém reports on a project at Online Telemarketing in Lund, Sweden, whesge
XP was applied36]. The report is based both on observation and interviews witla
the team that applied XP. The project was a success despite the fact that the custemer
had a very poor idea of the system at the beginning of the project. All XP practices
were practically introduced. The ones that worked the best were: planning gasne,
collective ownership, and customer on site. They found small releases and testing
difficult to introduce. 34

Online Telemarketing is a small company specializing in telephone-based sajes
of third party goods. It had recently been expanded internationally and management
realized that a new sales support system would be required. COTS alternatives were
investigated and discarded because they were expensive, and incorporating desired
functionality was difficult. The lack of detailed requirements specifications froea
management, and the lack of a similar system, motivated the use of XP. 40

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 35
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 35

The system was developed in Visual Basic, and it had 10K lines of code. The
development started in December 2000 and the first functional system was launehed
in April 2001. The product has been in operation since August 2001. 3

The senior management at Online Telemarketing assumed the role of a customer.
Configuration management started without a tool and developers were supposed to
copy the files to a directory. This worked when they had two developers. When the
team grew, they added a text file to manage copies to checkout directory. This7so-
lution still presented problems when the developers were out or working different
schedules. Once the communication issues were resolved the solution worked. o

The following experiences were reported: 10

(1) The planning game: In total, 150 stories were implemented. Stories weré
added during the whole project. In the beginning, time estimates were indc-
curate, but became better after a few weeks passed. Breaking the stories'fhto
tasks was hard for the developers, causing them to create too detailed stotfes.
It was hard to set a common level of detail for the stories. In the end, tHFs
practice proved to be one of the greatest successes.

(2) Small releases: The first iteration took too long because of the lack of ext’
perience with XP. Once a complete bare system was implemented, it Was
easier to implement small releases. During the long initial release, they trféd
to maintain the communication between the developers and the customef?to
avoid mistakes in development. 2

(3) Metaphor: They used a document that was an attempt at a requirements dféc-
ument, before they decided to use XP and their metaphor. As the proﬁa”ct
progressed, the document was not updated.

(4) Smple design: The development team stressed implementing the simplé&3t
possible solution at all times. They thought that this practice saved them tiffie
when a much larger solution would be implemented, avoiding unnecessé?ry
code.

(5) Testing: Test-first was difficult to implement at first and VBUnit was hard t&°
learn and set up. When the time pressure increased, the developers start®d to
ignore test-first. Although they saw the benefits, it involved too much wori
Since it was hard to write tests for the GUI and the team thought that méx-
tering a GUI testing tool would take too long, they decided to test the GBA
manually. The customer tested the functionality of the system before edth
release, and when a problem was found a correction card was created. 35

(6) Refactoring: No tools for refactoring were used, and the team performeed
minor refactoring continuously. No major refactoring of the code was pe¥-
formed. 38

(7) Pair programming: They used pair programming at all times. At first theso
developers were not comfortable, but later they started to work naturally aid

© 00 N o o B~ W N -

AW W W W W W W W WWN N NDNNNDNDNNDN PR PR P B P PR R R
o © 00 N o o B W N P O VW 0 N OO g0 b~ W N PP O VW 00 N O g b~ wWw N - o

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 36
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

36 D. COHEN ET AL.

efficiently in pairs. The developers were inexperienced, which might be why
they felt uncomfortable. The lead developer thought that they produced cade
faster in pairs than they would have if working alone. 3
(8) Collective ownership: This practice worked well. The developers avoided ir4
ritations by thinking of bugs as group issues instead of as someone’s defect.
The configuration management, however, was not very effective and sorme-
times developers were afraid to change code if not in direct contact with
others. 8
(9) Continuous integration: This practice was natural in the development envi¢
ronment. As soon as the code was finished, it was integrated. 10
(10) 40-hour week: Since the developers were part-time, this practice was ad-
justed and followed. 12
(11) Onsite-customer: This practice worked well, despite some schedule conflict§
because the developers were part-time and the customer was played by Busy
senior managers. 15
(12) Coding standards: A coding standard document was developed in the begitt
ning of the project and updated when needed. Over time, developers becdme
a little relaxed in following the standards, but once this was identified as #n

issue, it was reinforced. 19
20

3.3.2 Launching XP at a Process-Intensive Company Z
Grenning reports experiences from the introduction of an adaptation of XP inan
organization with a large formal software development proc28s The task was 24
to build a new system to replace an existing safety-critical legacy system. The new
system was an embedded-systems application running on Windows NT. 26
The system was divided into subsystems developed by different units. The author
was called to help one of these units. The author was very enthusiastic about XP2and
decided to convince the team to apply some of the techniques. 29
The company already had a process in place that added a lot of overhead tadhe
development because requirements were partially defined and deadlines were tight.
Recognizing that the organization culture believed in up-front requirements and
designs followed by reviews and approvals, the team decided to “choose their bat-
tles” and introduce the practices that would be most beneficial for the project. One
major issue was documentation. How much documentation was sufficient? The team
would be developing a piece that was supposed to work with pieces being develgped
by other teams using the standard process at the organization. They identifiedsthat
they needed enough documentation to define the product requirements, sustain sech-
nical reviews and support the system'’s maintainers. Clean and understandable seurce
code and some form of interface documentation was necessary due to the need to

© 0 N o g b~ W N P

AW W oW oW oW W oW W WWwNRNNDNDRNNDRNRNNDRNERR R B 2 B R
S © ® N o 0 & ® N P O © ® N 0 0 & ®WN P O © © N O 0 b W N B O

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 37
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 37

collaborate with other teams. XP recognizes that documentation has a cost andtthat
incomplete documentation might be cost-effective, but choosing not to create any
documentation would be unacceptable in this environment. 3
When proposing the new approach to management, story cards appeared unac-
ceptable and the team decided to use cases instead of story cards. The management
was concerned with future maintenance of the system; if the system was transitianed
to another team, more than readable code would be needed. After some discussions,
the team decided to create high-level documentation at the end of the projectgin-
stead of documenting in the beginning followed by updates during the project. Bhe
management, however, still wanted to be able to review the design. The propased
solution was to document the design decisions and have them reviewed at the end of
every month. This removed the review from the critical path of the project. 12
Despite compromising on a few issues, the team got permission to apply test-fiest,
pair programming, short iterations, continuous integration, refactoring, planning, and
team membership for the customer. 15
According to Grenning, at the project’s conclusion, the programmers were happy
with their creation. After the fourth iteration the project manager was satisfied. The
reason is that they already had working code at a point when their regular progess
would have produced only three documents. The project manager also recognized
that dependencies between the features were almost non-existent since they follgyved
the customer’s priorities and not the priorities dictated by a big design up front. The
team was Agile and able to adapt to other subsystems’ changing needs. 2
Grenning points out the importance of including senior team members becayse
they “spread the wealth of knowledge, and both they (senior people) and their pair
partners learn"38]. Despite the fact that the project was terminated due to changgs
in the market, the management was very pleased with results and two other pjlot
projects were started. >
At the end of the report, the author gives advice to management and developgers
willing to try XP. For managers, itis important to try XP on a team with open-mindegl
leaders, encourage XP practices, and recruit a team that wants to try XP insteag of
forcing a team to use XP. For developers, the advice is to identify the problems that

they might solve, develop a sales pitch and do a pilot projgt [-

33
3.3.3 Using XP in a Maintenance Environment 2

Poole and Huisman report their experience with introducing XP in lona Technote-
gies (45]. Because of its rapid growth and time-to-market pressures, the engineefihg
team often ignored engineering practices. As a result, they ended up with a degefier-
ated code that was salvaged in reengineering efforts that led to XP. 38

As part of the improvement effort, they used a bug-tracking tool to identify prok»
lem areas of the code. The code was cleaned through the elimination of used eode

© 00 N o o B~ W N -

AW W W W W W W W WWN N NDNNNDNDNNDN PR PR P B P PR R R
o © 00 N o o B W N P O VW 0 N OO g0 b~ W N PP O VW 00 N O g b~ wWw N - o

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 38
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

38 D. COHEN ET AL.

and the introduction of patterns that made it easier to test, maintain and understand
the code. As part of this effort, one lead engineer promoted stronger engineeting
practices making engineers constantly consider how they could improve the quality
of their code. Testing of the whole system was also automated. After all these trans-
formations, the company saw a lot of improvement. Despite their progress, however,
they still had issues to resolve regarding testing, visibility, morale and personal werk
practices. They already had a maintenance process in place that had a lot in contmon
with XP practices, so they decided to apply XP in order to solve the remaining issues.
All bugs reported by customers, enhancement requirements, and new functienal
requirements are documented. That documentation is accessible by both customers
and the team. They do not use index cards for the requirements and the requirements
are not in the form of user stories yet. Index cards are used to track tasks and those
tasks are added to storyboards. The developers estimate the tasks, and the customers
prioritize them. When the tasks are finished, they are removed from the storybosxd,
recorded in a spreadsheet and the cards are archived in the task log. They also mtro-
duced daily stand-up meetings to increase visibility and also stimulate communiea-
tion among the team members. 17
They automated their whole testing process, making it possible to test the whele
system with the click of a button. All engineers are supposed to test the whole system
after changes are made to ensure nothing was broken. 20
They report that convincing programmers to do pair programming is extremely
difficult. Luckily, their pair programming experience came to them by accident. ta
2000, a customer engineer working with them paired with the developers. The expe-
rience was good, the team felt that they worked more effectively, the overall prodesc-
tivity was high and morale improved. They are now trying to formally introduce péds
programming. 26
Increments are kept short and they continuously produce small releases. Refac-
toring has also been extensively applied, which can be seen in the code reviews.
Engineers are encouraged to identify areas of the code that are candidates for refac-
toring, and they follow up after delivery with a refactoring task in the storyboareb.
In order to improve communications, they also changed the workspace to make pair
programming easier and facilitate discussions of their ideas on whiteboards. 32
The effort seemed to pay off and the productivity increase is noticeable. In thsir
point of view the greatest benefit to the team has been the increase in visibility. ¥he
storyboards let people see what others are doing and help management track progress
and plan. 36
They conclude the paper pointing out that the application of pair programmiig
and collection of metrics can improve their process. They believe that improving the
pair programming initiative can improve their lack of cross-training among the coge
base’s many modules. The metrics are critical to the planning game, since estimating

© 0 N o g b~ W N P

AW W oW oW oW W oW W WWwNRNNDNDRNNDRNRNNDRNERR R B 2 B R
S © ® N o 0 & ® N P O © ® N 0 0 & ®WN P O © © N O 0 b W N B O

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 39
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 39

how long a story will take requires finding a similar story in the past and researching
how long it took. Currently they are tracking estimates and actuals on a spreadsheet
and are working to integrate this into their defect tracking system. 3

4

3.3.4 XP’s “Bad Smells” 5

In an attempt to provide early warning signals (“bad smells”) when applying Xii’,
Elssamadisy and Schalliol analyzed a three-year project involving 30 developerss(SO
in total) that produced about 500,000 lines of executable ca@édp The project .
switched to XP due to previous experiences with ineffective traditional methocljos.
The lessons learned from the experience of applying XP can be useful to others:11

e Customers are typically happy during early iterations but later begin to com-
plain about many things from all iterations. The customer needs to be coached
to provide early and honest feedback. Elssamadisy and Schalliol suggest they
think like buying a tailored suit in which you cannot just have measurements

taken at the beginning. 16
e Programmers are typically not sure of how functionality works together. Large
complex systems require a good metaphor or overview. 18

 Everyone claims the story cards are finished, yet it requires weeks of full-tirfie
development to deliver a quality application. The solution is to create a precise
list of tasks that must be completed before a story is finished, and make sire
programmers adhere to the rules: Acknowledge poorly estimated stories &nd
reprioritize. Do not rush to complete them and cut corners with refactoring Gr
testing. 2

25
The authors concluded pointing out that the team needs to be conscious of the progess

the whole time, and that laziness will affect the whole team. >7

28
3.3.5 Introducing Scrum in Organizations 29

Cohn and Ford72] have successfully introduced Scrum to seven organizatioffs
over a period of four years. They discuss their lessons learned, as well as mistakés.

In several cases they encountered resistance from developers who preferréd to
develop non-code artifacts and from those who “valued their contribution to a projétct
by the number of meetings attended in a given d&?].[Some even tried to put 34
more documentation back into the process. The solution used by the authors is t@not
intervene and instead let peers decide whether to adopt suggestions or not. 36

The authors were surprised to find that many developers view Agile Methodssas
micromanagement. In traditional projects, developers meet the project manager éhce
a week, but in an Agile environment they meet daily. To change developers’ per-
ceptions, the project manager has to show that he is there to remove obstaclegg not

© 00 N o o B~ W N -

AW W W W W W W W WWN N NDNNNDNDNNDN PR PR P B P PR R R
o © 00 N o o B W N P O VW 0 N OO g0 b~ W N PP O VW 00 N O g b~ wWw N - o

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 40
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

40 D. COHEN ET AL.

to complain about missed deadlines and must not be judgmental when developers
report that they will be delayed with their tasks. 2

Distributed development has been successful, and the authors believe that meth-
ods other than Scrum can also be used in distributed environments. They propose
waiting two or three months until developers get used to Agile development befére
implementing distributed development. In order for distributed development to wosk,
many people must be brought together for the first few weeks of the project. 7

Experience shows that Agile Methods require good developers and that “produc-
tivity difference matters most when two programmers are writing coddit is] °
irrelevant during those times when both are, for example, trapped in an unneces®ary
meeting” P2]. When fully engaged, a team will move quickly. If there are too man§t
slow people, the whole team will slow down or move forward without them. 12

One team was overly zealous and did not anticipate productivity decrease duting
transition and did not use forethought well enough. The conclusion is that “this te&m
did not have the discipline required for XP and, while paying lip service to XP, théy
were actually doing nothing more than hackingZ2]. 16

The authors’ experience is that testers are even more prone to view Agile as¥hi-
cromanagement. In typical organizations, testers do not receive much attention ffdbm
managers and are not used to the extra attention they get in Agile processes. In¥dlv-
ing testers in the daily routine as soon as possible poses one solution, but they si8uld
not write code or unit tests for programmers. 2t

A common experience is that managers are reluctant to give up the feeling?of
control they get from documents typically generated by document-driven methé&d-
ologies. The solution is to show where past commitments have been incorféct
(time/date/cost/functionality), so that management can be convinced to try Adfle
Methods. 26

A surprising experience is that the Human Resource (HR) department can be&in-
volved in a project adopting Agile processes. The authors experienced several c8ses
where HR received complaints by developers who did not like the process. For @x-
ample, they received specific complaints regarding pair programming. Working with
and informing HR beforehand so that they are prepared to deal with issues that might

appear, can prevent this situation. 32
33

34
35
Scott Ambler describes two different approaches for developing software in tego
successful Internet startups that provided insights to what later became Agile Mad-
eling [6]. 38
The two companies were growing and needed to redesign their systems. They
wanted to use an accredited software development process like Rational Unifted

3.3.6 Lessons in Agility from Internet-Based Development

© 0 N o g b~ W N P

N NN R R R B R B R R R
N P O © ©® N o 0 M W N P O

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 41
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 41

Process (RUP) to gain the trust of investors, while at the same time they warited
a process that would not impose a lot of bureaucracy that might slow them down.
In both organizations, management and some members of the development team
wanted more modeling; others thought it was a waste of time. Ambler calls the cam-
panies XYZ and PQR. 5
XYZ used an approach of modeling in teams. The team would design by white-
boarding. In the beginning, they were uncomfortable with whiteboarding and tried’to
use CASE tools instead, but they later discovered that whiteboarding was more &ffi-
cient because a modeling language did not limit them and they could more quickly
express their ideas. 10
PQR decided to hire a chief architect. The architect talked to members of the tedim,
and designed privately. Later he published his results on the web and members ofthe
team gave him feedback. 13
Both organizations developed in a highly interactive manner and released inéte-
mentally in short cycles. Both generated documentation in HTML and learned tkat
design and documentation are separate activities. XYZ's architecture was develéped
more quickly, since lots of people worked in parallel. XYZ’s architecture found
greater acceptance since the development team participated in the architectural t&am.
PQR’s approach led to lower costs, since the chief architect worked alone. The cHief
architect also provided a single source control that sometimes caused a bottlene&k in
the process. Both approaches resulted in scalable architecture that met the neéds of
the organization, and both approaches worked well within a RUP environment. 22

Ambler shares the lessons learned from these approaches: 23
24

e People matter and were key to the success, in accordance with the Agile Mapi-
festo: “value of individuals over processes and tools][26

e You do not need as much documentation as you think. Both organizations cre-
ated only documentation that was useful and needed. 28

e Communication is critical. Less documentation led to greater communicatiof?

e Modeling tools are not as useful as you think. The organizations tried to use
UML modeling tools, but the tools generated more documentation than neeaied
and were limited to the UML language. White boards and flipcharts, on t33e
other hand, were very useful. o

e You need a variety of modeling techniques in your toolkit. Since UML wag
not sufficient, both companies needed to perform process-, user interface- gnd
data-modeling. 37

e Big up-front design is not required. Both organizations quickly began wogk
without waiting months for detailed modeling and documentation before thesy
started. 40

© 00 N o o B~ W N -

AW W W W W W W W WWN N NDNNNDNDNNDN PR PR P B P PR R R
o © 00 N o o B W N P O VW 0 N OO g0 b~ W N PP O VW 00 N O g b~ wWw N - o

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 42
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

42 D. COHEN ET AL.

o Reuse the wheel, do not reinventit. At XYZ, they took advantage of open soutce

whenever possible. 2
3

4
5

3.3.7 Agile Modeling and the Unified Process

Ambler presents a case study of the introduction of a combination of Agile Modél-
ing and Rational Unified Process|[The method was introduced in a small project”
Failure would be noticeable, but would not jeopardize the whole organization. Afn-
bler points out the importance of the organization’s will to change in the succes§ of
the introduction.

Different people on the team with different backgrounds had various reactions to
the method. For example, one member of the team was used to Big Design Up Flront
and had a hard time doing an incremental design and development. Others felt more
comfortable. Management was involved and interested in the effort and satlsflecli to
see constant progress in the project.

While whiteboards made sense to the team members, they were not comfortgble
with index cards and post it notes. They needed a document using the appropyjate
tools (Together/J, Microsoft Visio, etc.). In Ambler’s opinion, the team produced tQg
much documentation. This is, however, not necessarily negative since documengjng
increased their comfort level during the transition. 1

22
23

3.4 Other Empirical Studies 24

. 25
In this section we discuss a selected set of experiments and surveys on Agile Mzeeth-

ods. .

28

3.4.1 XP in a Business-to-Business (B2B) Start-up 29

30
In the paper “Extreme adoption experiences of a B2B start-8§]; fhe authors 5,

report from a case study in which two nearly identical projects used XP and non-%P
practices. The XP-project delivered the same amount of functionality during a shoster
period of time and required considerably less effort than the non-XP project. The
XP project also increased code quality with test-first, resulting in a 70% reductn
in bugs and increased architectural quality. The value of the study is questionatle,
however, as the non-XP project was stopped 20 months into the project “because
of excessive costs of ownershiB3] and the XP project “was suspended after nines
months of development’3[3]. The conclusions are thus based on extrapolations ef
the unfinished projects and not on complete projects. 40

© 0 N o g b~ W N P

AW W oW oW oW W oW W WWwNRNNDNDRNNDRNRNNDRNERR R B 2 B R
S © ® N o 0 & ® N P O © ® N 0 0 & ®WN P O © © N O 0 b W N B O

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 43
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 43

3.4.2 Empirical Experiments with XP 1

In order to compare XP and traditional methodologies, the authors ran a pilot §(P
experiment{0]. The study involved eighty 2nd year undergraduate students as part
of a project for real clients. The students were divided into fifteen teams workipg
for three clients. During five weeks, each of the three clients described what trgeir
software needs were. After that, the software was developed. Some teams used XP
while others did not. At the end of the semester, five versions of the system that each
of the clients had specified were produced. The clients evaluated the quality of the
systems without knowing which systems were developed using XP and which opes
were not. 1

This experiment demonstrated that the XP teams generated more useful documen-
tation and better manuals than the other teams. Two of the three clients found that
the best external factors were in the products produced by the XP teams. The lecfur-
ers concluded that the products delivered by the XP teams possessed better intgrnal

qualities. 1

17

3.4.3 Survey Conducted by Cutter Consortium 18

Cockburn and Highsmith mention results from a survey conducted by the Cutter
Consortium in 2001. Two hundred people from organizations all over the world fé-
sponded to the survey(]. The findings pointed out by Cockburn and HighsmitH*

22

are:
23

e Compared to a similar study in 2000, many more organizations were usingaat

least one Agile Method. 25
e In terms of business performance, customer satisfaction and quality, Agide
Methods showed slightly better results than traditional methods. 27

28
29

e Agile Methods lead to better employee morale.

30

3.4.4 Quantitative Survey on XP Projects u
Rumpe and Schrdder report the results of a survey conducted in 200Edrty- 32
five participants involved in XP projects from companies of various sizes and diffes-
ent international locations completed the survey. Respondents had different levetg of
experience and participated in finished and in-progress projects using XP. 35
The main results of the survey indicate that most projects were successful andeall
of the developers would use XP on the next project if appropriate. The results also
indicate that most problems are related to resistance to change: developers refused to
do pair programming and managers were skeptical, etc. Common code ownership,
testing and continuous integration were the most useful practices. Less used and #ost

© 00 N o o B~ W N -

AW W W W W W W W WWN N NDNNNDNDNNDN PR PR P B P PR R R
o © 00 N o o B W N P O VW 0 N OO g0 b~ W N PP O VW 00 N O g b~ wWw N - o

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 44
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

44 D. COHEN ET AL.

difficult to apply were metaphor and on-site customer. The success factors most often
mentioned were testing, pair programming and the focus of XP on the right goals.
The authors point out potential problems with the survey. XP might be deenfed
successful due to the fact that the respondents were happy with XP. Others thathad
bad experiences with XP might not have been reached or did not answer. Also, €arly
adopters tend to be highly motivated, which may be responsible for projects’ success.
Interestingly, the results showed that there are larger projects that use XP. Ffom

the total of responses: 8
9

e 35.6% teams had up to 5 people, 10

e 48.9% teams had up to 10 people, u

e 11.1% teams had up to 15 people, and 12

e 4.4% teams had up to 40 people. 14

The survey asked respondents to rate project progress and results relative to tradl—
tional approaches on a scale from 5 (much better5amuch worse). On average, -
respondents rated the cost of late changes, the quality of results, the fun factor of
work, and on-time delivery higher than a three on this scale. No negative ratings were

1
given. The authors divided the results between the finished and ongoing prOJects.ZEt is
interesting to note that both the cost of change and quality were deemed less poszlltive
by the finished projects than the ongoing ones. The authors suggest that this susfains

the fact that changes in later phases still have higher costs. ”

24

3.4.5 How to Get the Most Out of XP and Agile Methods 25

Reifer reports the results of a survey of thirty-one projects that used XP/AgEGLe
Methods practices4P]. The goals of the survey were to identify the practices beg
ing used, their scope and conditions, the costs and benefits of their use and lesgons
learned. 30

Most projects were characterized by small teams (less than ten participants), with
the exception of one project that had thirty engineers. All projects were low-risk apad
lasted one-year or less. The primary reason for applying XP/Agile Methods wasgo
decrease time-to-market. 34

Startup seemed most difficult for the majority of the organizations: Enthusiastic
staff that wanted to try new techniques needed to convince management. Practices

introduced in pilot projects represented low-risk to the organization. 37
The projects noticed an average gain of 15%—23% in productivity, 5%—7% cemst
reduction on average and 25%—-50% reduction in time to market. 39

The paper also points out 4 success factors: 40

© 0 N o g b~ W N P

W oW W W WRNNRNNNNRNNRNNERER R B B B e e
5 W N P O © ® N o O s ®N P O © ©® N © 00 b W N B O

35

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 45
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 45

e Proper domain fit: XP/Agile Methods have been recognized as working best an
small projects, where systems being developed are precedent, requirements are
stable and architecture is well established. 3

e Suitable state of organizational readiness: XP/Agile requires a cultural change
Make sure the workforce is well trained and educated.

e Processfocus. Adapt and refine instead of throwing away what you have. Agilg
projects work best when integrated into an existing framework. 8

e Appropriate practice set: Do not be afraid to put new practices in place when
they are needed to get the job done. 10
11

3.4.6 Costs and Benefits of Pair Programming 12

13

Pair Programming, one of the key practices of XP, marks a radical departure frgm
traditional methods and has been the focus of some controversy. Pair programming
has been argued to improve quality of software and improve successes of projgcts
by increasing communication in the teams. Others, however, are skeptical because
it seems to take two people to do the work of one, and some developers do,pot
feel comfortable working in pairs. Pros and cons, as well as main concepts, hgst
practices, and practical advice to successfully apply Pair Programming, are discugsed
in a paper based on an experiment at the University of Utah where one third of the
class developed the projects individually and the rest developed in pairs. The results
were analyzed from the point of views of economics, satisfaction, and design quality

[21]. 24

e Economics: The results showed that the pairs only spent 15% more time 1
program than the individuals and the code produced by pairs had 15% feder
defects. Thus, pair programming can be justified purely on economic grouﬁas
since the cost of fixing defects is high. o

o Satisfaction: Results from interviews with individuals who tried pair program-,
ming were analyzed. Although some were skeptical and did not feel comfayt-
able at first, most programmers enjoyed the experience. 2

e Design quality: In the Utah study, the pairs not only completed their projects
with better quality but also implemented the same functionality in fewer lines
of code. This is an indication of better design. 35

Other benefits of pair programming are continuous reviews, problem solvmg

learning, and staff and project managemenj w8

e Continuous reviews. Pair programming serves as a continual design and coste
review that helps the removal of defects. 40

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 46
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

46 D. COHEN ET AL.

e Problem solving: The teams found that, by developing in pairs, they had the
ability to solve problems faster. 2

e Learning: The teams emphasized how much they learned from each other by Ho-
ing pair programming. Pair programmers often mention that they also learned to
discuss and work together, improving team communications and effectiveness.

o Staff and project management: From the staff and project management poin;t3
of view, since people are familiar with each piece of code, staff-loss risks are

reduced. .

Pair programming is further discussed in a new book by Williams and Ke&sler [10

11

12

4. Conclusions 13

14

Agile Methods are here to stay, no doubt about it. Agile Methods will probably

not “win” over traditional methods but live in symbiosis with them. While many Agze
ile proponents see a gap between Agile and traditional methods, many practitiomers
believe this narrow gap can be bridged. Glass even thinks that “[tJraditionalists have

a lot to learn from the Agile folks” and that “traditional software engineering can he

enriched by paying attention to new ideas springing up from the field’ [20

21

Why will Agile Methods not rule out traditional methods? 22

Agile Methods will not out rule traditional methods because diverse proceséiés
for software engineering are still needed. Developing software for a space shuzgtle
is not the same as developing software for a toasiel. Not to mention that the X
need to maintain software, typically a much bigger concern than development, %ESO
differs according to the circumstances?]. Software maintenance is, however, not .
an issue discussed in Agile circles yet, probably because it is too early to draw any

conclusions on how Agile Methods might impact software maintenance. %0

31

So what is it that governs what method to use? o

One important factor when selecting a development method is the number of géo-
ple involved, i.e., project size. The more people involved in the project, the more rig-
orous communication mechanisms need to be. According to Alistair Cockburn, theére
is one method for each project size, starting with Crystal Clear for small projects astd,
as the project grows larger, the less Agile the methods becohe | 37

Other factors that have an impact on the rigor of the development methods sare
application domain, criticality, and innovativene&$][Applications that may en- 39
danger human life, like manned space missions, must, for example, undergo n¥ach

© 0 N o g b~ W N P

AW W oW oW oW W oW W WWwNRNNDNDRNNDRNRNNDRNERR R B 2 B R
S © ® N o 0 & ® N P O © ® N 0 0 & ®WN P O © © N O 0 b W N B O

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 47
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 47

stricter quality control than less critical applications. At the same time, a traditional
method might kill projects that need to be highly innovative and are extremely sen-
sitive to changes in market needs. 3

In conclusion, the selection of a method for a specific project must be very careful,
taking into consideration many different factors, including those mentioned above.
In many cases, being both Agile and stable at the same time will be necessary. A éon-
tradictory combination, it seems, and therefore extra challenging, but notimpossible.
As Siemens states, “We firmly believe that agility is necessary, but that it shouldébe

built on top of an appropriately mature process foundation, not instead @fiit" [©
10

Where is Agile going? i
Agile is currently an umbrella concept encompassing many different methods. %P
is the most well known Agile Method. While there may always be many small metia-
ods due to the fact that their proponents are consultants who need a method to gaide
their work, we expect to see some consolidation in the near future. We comparetthe
situation to events in the object-oriented world in the 1990s, where many different
gurus promoted their own methodology. In a few years, Rational, with Grady Booeh,
became the main player on the method market by recruiting two of the main gungs:
James Rumbaugh (OMT) and Ivar Jacobsson (Objectory). Quickly the “three ami-
gos” abandoned the endless debates regarding whose method was superior, which
mainly came down to whether objects are best depicted as clouds (Booch), rectan-
gles (OMT), or circles (Objectory), and instead formed a unified alliance to quiclky
become the undisputed market leader for object-oriented methods. We speculatéthat
the same can happen to the Agile Methods, based, for example, on the market-leader
XP. Even if the Agile consolidation is slow or non-existent, what most likely wil¢
happen, independent of debates defining what is and is not Agile, practitioners ill
select and apply the most beneficial Agile practices. They will do so simply becaése
Agile has proven that there is much to gain from using their approaches and becéuse

of the need of the software industry to deliver better software, faster and cheape#®
31

32
33
34
This book chapter was based on a State-of-the-Art Report entitled “Agile Softwase
Development” authored by the same authors and produced by DoD Data & Analysis
Center for Software (DACS). 37
We would like to recognize our expert contributors who participated in the first
eWorkshop on Agile Methods and thereby contributed to the section on State-of-the-
Practice: 40

ACKNOWLEDGEMENTS

© 00 N o o B~ W N -

AW W W W W W W W WWN N NDNNNDNDNNDN PR PR P B P PR R R
o © 00 N o o B W N P O VW 0 N OO g0 b~ W N PP O VW 00 N O g b~ wWw N - o

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 48
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

48 D. COHEN ET AL.

Scott Ambler (Ronin International, Inc.),

Ken Auer (RoleModel Software, Inc.),

Kent Beck (founder and director of the Three Rivers Institute),

Winsor Brown (University of Southern California),

Alistair Cockburn (Humans and Technology),

Hakan Erdogmus (National Research Council of Canada),

Peter Hantos (Xerox), Philip Johnson (University of Hawaii),

Bil Kleb (NASA Langley Research Center),

Tim Mackinnon (Connextra Ltd.),

Joel Martin (National Research Council of Canada),

Frank Maurer (University of Calgary),

Atif Memon (University of Maryland and Fraunhofer Center for Experimental
Software Engineering),

Granville (Randy) Miller (TogetherSoft),

Gary Pollice (Rational Software),

Ken Schwaber (Advanced Development Methods, Inc. and one of the developers
of Scrum),

Don Wells (ExtremeProgramming.org),

William Wood (NASA Langley Research Center).

We also would like to thank our colleagues who helped arrange the eWorkshop and

co-authored that same section:

Victor Basili, Barry Boehm, Kathleen Dangle, Forrest Shull, Roseanne Tesoriero,
Laurie Williams, Marvin Zelkowitz.

We would like to thank Jen Dix for proof reading this chapter.

Appendix A: An Analysis of Agile Methods

© 0 N o g b~ W N P

A O T N
N o o0 W N B O

18

20
21
22
23
24
25
26
27

‘Agile’ has become a buzzword in the software industry. Many methods afd
processes are referred to as ‘Agile,” making it difficult to distinguish between offe
and the next. There is a lack of literature on techniques with which to compare séfft-

ware development methods, so we have developed processes through which to #raw

this comparison. This technique will not be the focus of this section, nor do we gur-

antee its comprehensiveness, but we found it adequate for our analysis, whict¥3we

will discuss in detail below.

34

While conducting our research, we found it difficult to distinguish between met-

ods in respect to which aspect of software development each method targeteds To

help with our own understanding, we decided to examine each method in termg7of
what activities it supports, and to what extent. All methods, whether traditional sr
Agile, address the following project aspects to varying degrees: development sap-

port, management support, communications support, and decision-making support.

© 0 N o g b~ W N P

AW W oW oW oW W oW W WWwNRNNDNDRNNDRNRNNDRNERR R B 2 B R
S © ® N o 0 & ® N P O © ® N 0 0 & ®WN P O © © N O 0 b W N B O

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 49
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 49

Although critics may find more project areas missing from this list, these are the four
we felt were most critical for Agile Methods. 2
The next obstacle was to find a basis for comparison between methods. For this,
we decided to use each method’s core practices or rules. This method for comparson
does have its drawbacks: 5

e Some methods, like XP, have a discrete collection of practices while others, I|ke
Scrum, are not as clearly delineated.

e Processes such as Lean Development (LD) present more principles than Q,rac-
tices. LD’s “Satisfying the customer is the highest priority” principle, for in5,
stance, is stated at a much more abstract level than Scrum’s Constant Te§;ing
practice. 1

e Relying on a method’s stated core practices naturally leaves a lot of the method
behind. Daily standup meetings practiced in XP are not explicitly stated in the
12 practices but, nonetheless, emphasize XP’s attention to communication.is

Despite these acknowledged limitations, we feel each method’s core practice¥’ or
principles provide a good representation of the method’s focus. Researchers infer-
ested in pursuing further this line of analysis may want to explore how to adequafély
represent and compare methods and processes.

We began by breaking the support groups (development, management, cm-
munication, decision-making) into smaller subsections for easier analysis. Dev&l-
opment was redefined as requirements collection/analysis, design, coding, fést-
ing/integration, and maintenance. Management was clarified as project manége-
ment. Communication was split into developer-customer, developer-manager, 4#nd
developer-developer communication. Decision-making was separated into reléase
planning, design & development, and project management. 26

A survey was conducted asking five experts to classify the core practices of XP,
Scrum, Lean Development, FDD, and DSDM. The results were averaged and ccfor-
coded in an attempt to create easily readable results. Support agreement of more2than
60% is black, 0-59% is white, and 0% (all experts agreed there is no support) is giay.

A brief explanation of well-supported (black) aspects follows each chart. 31
32

33

A.1 Extreme Programming 34

XP was the method best understood by our experts; all five responded. X®’s
practices are abbreviated as: The Planning Game (PG), Small Releases (SR)3The
Metaphor (M), Simple Design (SD), Test-First Development (TF), Refactoring (RY,
Pair Programming (PP), Continuous Integration (Cl), Collective Code Ownership
(CO), On-Site Customer (OC), 40-Hour Work Week (WW), and Open Workspate
(OW). 40

© 00 N o o B~ W N -

AW W W W W W W W WWN N NDNNNDNDNNDN PR PR P B P PR R R
o © 00 N o o B W N P O VW 0 N OO g0 b~ W N PP O VW 00 N O g b~ wWw N - o

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 50
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

50 D. COHEN ET AL.

TABLE Il 1

XP DEVELOPMENTSUPPORT 2

5D |TF |R |PP | CI |CCO| OSC|WW [OW 3

Requirements 4

Design 5

Coding 6

Testing/ ;
Integration

Maintenance 8

PG:

SR:

SD:

TF:

PP:

Cl:

CCO:

OSC:

9
The Planning Game is used for Requirements collection and clarification
at the beginning of each iteration and is also employed to address Mainte-

nance issues between iterations. 12
Small Releases force developers to Design-in components and Test after
each release. 14

. Interestingly, our experts found Metaphor, the oft-cited least understodd

practice, to provide support for all phases of development. By creating oﬁe
or a set of metaphors to represent the system, decisions involving Requwe—
ments, Design, Coding, Testing/Integration, and Maintenance can be ea?ly
evaluated for relevance and priority.

Simple Design helps a developer choose their Design, tells them hovglto
Code sections when presented with multiple alternatives, and makes Main-
tenance easier than a complicated design. ”

Test-First is a way of Coding as well as a Testing approach, and makes
Maintenance easier by providing a test suite against which modifications
can be checked. 26

: Refactoring tells a developer to simplify the Design when she sees the &p-

tion, affects Coding in the same way, and facilitates Maintenance by keép-
ing the design simple. 29
Pair Programming has two developers code at the same computer, andlets
them collaborate with Designing and Coding. Maintenance is affected Bé-
cause two developers working together will usually produce less, and beﬁzer
written code than a single developer working alone.

Continuous Integration is an approach to Coding, and obviously effeggs
how and when developers Integrate new code. s

Collective Code Ownership is a way for developers to program, giviag
them the option to modify other’s Code. 38

On-Site Customer impacts Requirements because developers may diseuss
and clarify requirements at any time. 40

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 51
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 51

OW: Open Workspace allows all developers, even those beyond the pair pro-

gramming team, to collaborate with Coding and Integration. 2
TABLE I 3
XP MANAGEMENT SUPPORT 4
PG |SE |M |[5D |TF [R |PP |CI | CCO|OSC| WW | OW 5
IManagement 6
;
PG: The Planning Game allows the project manager to meet with all the project
stakeholders to plan the next iteration. 9
SR: Small Releases tell the manager how often to iterate. 10

Cl: Continuous Integration allows the project manager (PM) to see the curr(}:int
state of the system at any point in time.

13
OSC: On-Site Customer enables the manager to better interact with the customer
than she would be able to with an offsite customer. 15

WW: The 40 hour Work Week provides a philosophy on how to manage peopte.
OW: Open Workspace tells the PM how the work environment should be set tp.
18

19

TABLE IV
XP COMMUNICATION SUPPORT

TF | R CCO | OSC | WW

20
21

SR M OW

Developer-
Customer
Developer-
Manager
Developer-
Developer

22

27
PG: The Planning Game helps the Developers communicate with the Customer,
the Manager, and other Developers, in the beginning of each iteration.

SR:

M:

SD:

TF:

Small Releases provide instant project progress assessment for Customers,
Managers, and Developers between iterations. 31

Using a Metaphor or a set of metaphors allows Customers, Managers, &d
Developers to communicate in a common, non-technical language. 33
Simple Design encourages Developers to communicate their ideas as %Em
ply as possible. s
Test-First allows Developers to communicate the purpose of code beforg it
is even developed. 38

: Refactoring encourages Developers to simplify code, making the design

simpler and easier to understand. 40

© 00 N o o B~ W N -

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 52
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

52

PP:

Cl:

CCO:

OSC:

OoWw:

D. COHEN ET AL.

Pair Programming allow sets of Developers to communicate intensely
while coding. 2

Continuous Integration allows the Managers and Developers to check fhe
current state of the system at any time.

Collective Code Ownership allows Developers to communicate throuegh
code, comments, and documentation. .,

On-Site Customer facilitates quick communication between the Customer

and the Developers. 9
Open Workspace enables Developers and Managers to communi¢ate

quickly and freely. 1

TABLE V 12

XP DECISION-MAKING SUPPORT 13

Release
Planning

Project

PG:

SR:

M:

SD:

TF:

PP:

Cl:

CCO:

Design and

Development

IManagement

SD[TF |[R [PP [CI [CColosC|ww|ow]|
15

16
17
18
19

20

The Planning Game assists decision making for Releases and helps Préject
Managers plan the project. 22

Small Releases dictates how often to iterate which affects Release Plannlng
and Project Management.

Metaphor guides Design decisions based on how well the design fits gge

metaphor. ”7
Simple Design guides Design decisions when presented with multipde
choices. 29

Test-First tells the developer that before he Designs and Develops any ﬁ%w
code, he must first write the test.

Pair Programming lets programmers collaborate on Design and Devefop-

ment decisions. w

Continuous Integration instructs the programmers to integrate on a regylar
basis, which affects how Design and Development is conducted. 36

Collective Code Ownership encourages developers to make changes to
parts of the code that they did not author instead of waiting for the original
developer to get around to it, and affects how Design and Developmentds
conducted. 40

© 0 N o g b~ W N P

AW W oW oW oW W oW W WWwNRNNDNDRNNDRNRNNDRNERR R B 2 B R
S © ® N o 0 & ® N P O © ® N 0 0 & ®WN P O © © N O 0 b W N B O

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 53
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 53

OSC: On-Site Customer allows the customer and PM to interact frequently, en-

abling quick decision-making. 2
3
4

A.2 Scrum 5

Only three experts felt comfortable answering about Scrum. The core practices’are
abbreviated: Small Teams (ST), Frequent Builds (FB), Low-Coupling Packets (LCP),
Constant Testing (CT), Constant Documentation (CD), Iterative Controls (IC), Abfil-
ity to declare the project done at any time (DPD).

10

TABLE VI 1

SCRUM DEVELOPMENTSUPPORT 1

ST FB LCP cT CD Ic DPD 13

Requirements 1
Design

Coding 5

Testing/ 16

Integration 17

Maintenance 18

ST: Breaking the development group into Small Teams affects how the syst;%m

FB:

LCP:

CT:

CD:

DPD:

is Designed and distributed between teams. 01

Frequent Builds affects Coding practices and means that new code needs to
be Integrated on a regular basis. Maintenance is also affected, as a cument
version of the system is always available for testing, catching errors earligr.

Low-Coupling Packets influences the system Design and Coding practieces.
Testing, Integration, and Maintenance should be made easier due to relative
component independence. 27

Constant Testing changes the way developers need to Code, Test and fhte-
grate, and should make Maintenance easier by catching more bugs dufﬂwg
development.

Constant Documentation affects the way Requirements, Design, and ng-
ing are conducted. The presence of up-to-date documentation should f%gil—

itate testing and maintenance. o

. Iterative Controls help prioritize and guide Requirements collection angl

Design. They also affect how Coding, and Testing and Integration are cgg-
ducted. 37
The ability to declare a project done at any time has far reaching consse-

guences; every step in the development process should be treated as3éf it
were in the last iteration. 40

© 00 N o o B~ W N -

W N N NN N NN N NN PR PR R R R R R
O ©W 00 N o O b W N P O ©W 0 N O OO » W N - O

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 54
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

54

D. COHEN ET AL.

TABLE VII
SCRUM MANAGEMENT SUPPORT

ST:

FB:

LCP:
CT:

CD:

DPD:

Management

ST FB LCP 24k CD IC DFD

A W N P

5
Small Teams means Managers have to manage and distribute work between

teams and team leaders. 7

Frequent Builds allows Managers to see the state of the system at any given

time to track progress. 9
10

11
Constant Testing provides the Manager with a system he can demo or ghip

at any time. 13

Constant Documentation provides an up-to-date snapshot of the systemand
its progress, which can be used by the Manager for tracking or for bringirg
new people up to speed. 16

Low Coupling Packets influences how Managers distribute work.

. Iterative Controls help the Manager gauge requirements, functionality, risk,
18

and plan iterations.

19
The ability to declare a product done at any time is a Management philogp-
phy placing emphasis on usability and correctness of the system rather than

strict feature growth. 2
TABLE VIII 23
SCRUM COMMUNICATION SUPPORT 24

ST:

FB:

LCP:

CT:

Developer-
Customer
Developer-
Manager

Developer-
Developer

FB LCP CT 25

26
27
28
29

30

31
Small Teams help break down communications barriers, allowing easy, n-
formal communication between all parties in the teams. 33

Frequent Builds enables Developers to communicate the status of the §§/s-
3

tem with other Developers and Managers at any time. o

Low Coupling Packets reduce the need for technical communications be-
tween Developers. 38

Constant Testing allows Developers to know the current state of the system
at any pointin time. 40

© 0 N o g b~ W N P

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

34
35
36
37
38
39
40

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 55
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 55

CD: By providing comprehensive up-to-date documentation, any stakeholder
can learn about their respective interests in the system. 2
IC: Iterative Controls provide a means through which Customers, Managemént
and Developers collaborate to plan iterations.
TABLE IX °
SCRUM DECISIONMAKING SUPPORT 6
LCP CT !
Eelease 8
Planning 9
Design and 10
Development 11
Project 12
IManagement 13
ST: Small Teams make all levels of decision-making easier by mvolvmglé
smaller number of individuals on lower level decisions.
FB: Frequent Builds help Managers plan and monitor Releases and Deveflgp—
ment. s
LCP: Low-Coupling Packets help guide Design decisions. 19
CT: Constant Testing tells developers to test as they Code. 20
CD: Constant Documentation dictates that documentation should be produted

DPD:

and kept up to date not only for code but also for Requirements and Rele&se
Planning. The produced documentation helps guide the PM. 2

24
: Iterative Controls help guide the PM with respect to Release Planning de-

cisions. ”

The ability to declare a project done at any time affects what kind of feg-
tures or fixes are incorporated into the next Release, and also affects,the
mentality with which the PM Manages the Project. 29
30
31

A.3 Lean Development -

The 12 principles of LD are abbreviated as: Satisfying the Customer is the higtest
priority (SC), always provide the Best Value for the money (BV), success dependson
active Customer Participation (CP), every LD project is a Team Effort (TE), Everp-
thing is Changeable (EC), Domain not point Solutions (DS), Complete do not cen-
struct (C), an 80 percent solution today instead of 100 percent solution tomorrew
(80%), Minimalism is Essential (ME), Needs Determine Technology (NDT), proee
uct growth is Feature Growth not size growth (FG), and Never Push LD beyondsits
limits (NP). 3 experts contributed to the LD survey. 40

© 00 N o o B~ W N -

AW W W W W W W W WWN N NDNNNDNDNNDN PR PR P B P PR R R
o © 00 N o o B W N P O VW 0 N OO g0 b~ W N PP O VW 00 N O g b~ wWw N - o

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 56
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

56 D. COHEN ET AL.
TABLE X 1
LEAN DEVELOPMENTSUPPORT 2
SC |BV |CP|TE |EC |DS|C 80% | ME | NDT |FG | NF 3
Eequirements 4
Design 5
Coding 6
Testing/ .
Integration o
Maintenance .

BV: Always provide the Best Value for the money means that during require-

CP:

TE:
DS:

ments analysis, easy-to-implement features that provide a quick win are im-
plemented, rather than hard to implement features that do not provide imrte-
diate value. Similarly, this effects Coding and Design. They should be dotse
with optimal trade-off between quality and time. 14

Requirements collection and analysis works best with active Customer Par-
ticipation. ii
Every phase of development is a Team Effort. 18

By focusing on Domain Solutions, Design and Coding should look to cre-
ate reusable components. Domain solutions will be pre-tested and shoulddbe
easier to Integrate and Maintain than brand new code. 21

: When Designing to Construct a new system, LD teams look to purchase péts

of the system that may already be commercially available. By doing so, Test-
ing and Integration should be easier, as the shrink-wrapped portion is, ideztty,

bug-free. 25
26

27

TABLE XI
LEAN DEVELOPMENTMANAGEMENT SUPPORT

SC |BY |CP|TE |EC |D3S | C 80% | ME |NDT|FG |NP
Management 29

28

30

SC: The PM needs to change her frame of mind to make Customer Satisfaction

the highest priority, as opposed to budget, politics, and other concerns. 32

BV: The PM also needs to manage the project with the goal to build and priofi-

tize the system to provide the Best Value for the money. 34

CP: It becomes the PM’s responsibility to keep the Customer ParticipatingZZn

the project. o

TE: The PM needs to include the entire Team in decision-making processessg
80%: Instead of making everything perfect, the PM should focus on providing the

best system she can at the moment. 40

© 0 N o g b~ W N P

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 57
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 57

ME: The PM should focus on keeping team size, code size, documentation, and

budget as small as necessary for a successful project. 2

TABLE Xl 3

LEAN DEVELOPMENTCOMMUNICATIONS SUPPORT 4

SC |BV |CP [TE |EC |DS | C 30% | ME | NDT |FG | NP 5

Developer- 6

Customer 7

Developer- 8

Manager 9
Developer- 10
Developer 1

SC: Ensuring Customer Satisfaction entails enhanced communication betwien
the Developers and Customers. 13

CP: Active Customer Participation gives Customers more incentive to work Wit;}'l

the Developers. o

TE: The ‘everything is a Team Effort’ philosophy encourages communication be-
tween all members of the team. 18

TaBLE XIII 19
LEAN DEVELOPMENTDECISIONMAKING SUPPORT

20
21
Eelease 2
Planning
Design and
Development
Project
IManagement

23
24

25

26

27

SC: Prioritizing Customer Satisfaction means that during Release Planning, ke-
sign and Development, and Project Management, the interest of the cis-

tomer may have to be put before that of the team. 30
BV: Providing the Best Value for the money is a management philosophy, &f-
fecting mostly what requirements get prioritized for what release. 82

CP: Active Customer Participation provides decision support for PM'’s, andzis
also instrumental in prioritizing Release features. s

EC: Having the ability to Change Everything means that Release and Designgle-
cisions are not set in stone, letting them be made more quickly and changed
later if necessary. 38

C: Anemphasis on Constructing based on already-built components has a large
effect on Design decisions. 40

© 00 N o o B~ W N -

NN N NRNNNNRER R R B B R op R
® N o O A W N RBP O © ©® N O 00 b W N B O

29

34

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06

58

D. COHEN ET AL.

F:adcom62001.tex; VTEX/PS p. 58
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

80%: Having an 80% solution today means that, from a Release, Design, andPM
perspective, adding a new feature today is a better decision than completing

an old one.

3

ME: Minimalism helps a PM decide what artifacts to produce during develop-
5

ment.

6
NDT: The Needs Determine Technology philosophy helps the PM and designgers
decide on an appropriate solution rather than a high-tech solution for high-

tech’s sake.

9

FG: By emphasizing Feature Growth, Releases and PM's tend to push features
more than other requirements.

A.4 Feature Driven Development

11
12
13
14

The core practices of FDD are abbreviated: problem domain Object Mod&l-
ing (OM), Feature Development (FD), Component/class Ownership (CO), Feattire
Teams (FT), Inspections (1), Configuration Management (CM), Regular Builds (Réf ,
and Visibility of progress and results (V). Only 2 experts felt comfortable enoug

. 9
with FDD to complete the survey.

TABLE XIV

FEATURE DRIVEN DEVELOPMENT SUPPORT

oM

FD

CO

FT

I

CM

Requirements
Design
Coding

Testing/
Integration

Maintenance

OM: Object Modeling provides a different approach to Design.

20
21
22
23
24
25
26
27
28
29
30

FD: Feature Development provides a development methodology that effects3he
way Design, Coding, and Integration are approached. Maintenance is &fo
affected as the system is considered as a collection of features rather fiian

lines of code.

34

CO: Individual Code Ownership means that Design, Coding, and Integration E);é
come individual efforts.

FT: Feature Teams means that the feature as a whole becomes a team effortg

I: Inspections are a testing technique that should produce better and more bug-
free code that is easier to Maintain.

37

40

© 0 N o g b~ W N P

AW W oW oW oW W oW W WWwNRNNDNDRNNDRNRNNDRNERR R B 2 B R
S © ® N o 0 & ® N P O © ® N 0 0 & ®WN P O © © N O 0 b W N B O

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 59
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

CM:

AN INTRODUCTION TO AGILE METHODS 59

Configuration Managementis established for support of Testing, Integration,
and Maintenance. 2

RB: Regular Builds affect coding procedures, help to integrate testing and in3te—

gration during the development process, and make maintenance easier W|th
more bug-free code.

6

TABLE XV 7

FEATURE DRIVEN DEVELOPMENTMANAGEMENT SUPPORT 8
Okt FD CO FT I CM RB v 9

Management

10

FD:

CO:

FT:

Feature Development allows the PM to manage teams by easily separaﬂﬁng
development workload.

Code Ownership gives the PM a point of contact about any piece of tﬂe
system. 15

Feature Teams allow the PM to break the team effort into more easily ma#-
ageable sections. 17

RB: Regular Builds give the PM a snapshot of the system at any point in time 18

AT . . 19

V: Visibility of progress allows easy tracking of the project. 0

TABLE XVI 21

FEATURE DRIVEN DEVELOPMENTCOMMUNICATION SUPPORT 2

Developer- 4

Custorner -
Developer-

Manager %

Developer- 2

Developer 28

29

OM: Object Modeling allows Developers to communicate with Managers aggl

FD:

CO:

FT:

other Developers specifically, and in detail, about small components of the

system. 32
Feature Development allows the Developer to prototype and display workiig
units of the system to Managers and Customers. 34

Code Ownership gives Managers and other Developers a point of confact
about specific sections of code in the system.

Feature Teams allow easy collaboration and communication between Dey@l-
opers and Managers. 39

. Inspections allow Developers to read, explain and understand the code. 40

© 00 N o o B~ W N -

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

35
36
37
38
39
40

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 60
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

60 D. COHEN ET AL.

CM: Configuration Management provides a vehicle for communication for De-

velopers and Managers. 2
RB: Regular Builds let Developers and Managers see the current state of the $ys-
tem. 4
5
V: Progress Visibility allows the Customer to track the project with ease. 6
TABLE XVII 7
FEATURE DRIVEN DEVELOPMENTDECISIONMAKING SUPPORT 8
O I Chi kB v 9

Release
Planning
Design and
Development
Project
Management

OM: Object Modeling allows for a flexible framework for Design. 16

FD: Feature Development allows for easy distribution of features in releases. Rro-
totyped features can be tested, designed, and developed, and Project an-
agers can manage the system as a set of features. 19

CO: Code Ownership gives PM’s a point of contact for specific pieces of code?°

FT: By building a small team to handle Features, decision-making for releazsle,
design and development is delegated to the group. It also guides the PE\ZI’S

resource allocation. o

I: Inspections correct and reshape design and code. 25
CM: Configuration Management provides a resource and reference for PM’s. 26

RB: Regular Builds provide feedback during Development. 21
2
V: Visibility allows the project manager to track the project and make changg:s

when necessary. 20

31

32

33
Only one expert felt comfortable enough with DSDM to complete the survey.

DSDM's principles are abbreviated: Active User Involvement is imperative (AUI;

DSDM teams must be Empowered to make decisions (E), focus is on Delivery ®f

Products (DOP), Fitness for business purpose is the essential criterion for acceptance

of deliverables (F), Iterative and incremental development is necessary to convesge

on an accurate business solution (1), all changes during development are Reversible

(R), requirements are baselines at a High Level (HL), Testing is Integrated through-

A.5 Dynamic Systems Development Methodology

© 0 N o g b~ W N P

AW W oW oW oW W oW W WWwNRNNDNDRNNDRNRNNDRNERR R B 2 B R
S © ® N o 0 & ® N P O © ® N 0 0 & ®WN P O © © N O 0 b W N B O

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 61
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 61
out the life cycle (TI), and a Collaborative and Cooperative approach between:all
stakeholders is essential (CC). 2

DYNAMIC SYSTEMSDEVELOPMENTMETHODOLOGYDEVELOPMENTSUPPORT

TABLE XVIII

Design

Requirements

Coding

Testing/

Integration

Maintenance

AUI: Active User Involvement is important for good Requirements collection. 12

E:

DOP:

HL:

Team Empowerment allows developers to make the right decisions durifig
Design and Coding. 14

. . 15
Frequent Delivery Of Products gives the customer a system they can 'Il'gst
while it is still under development. -

Incremental development affects the entire development process, breaking
Requirements collection, Design, Coding, Testing, Integration, and Maintg-
nance into short cycles. 20

. Reversible decisions means developers can feel freer to commit to decisins

during Design and Coding. During Testing or Integration these decisions
can be reversed, if necessary. 23

High Level requirements keep Requirements collection at an abstractfén
high enough for participation from all stakeholders. ®

. . . 6

Tl Constant Testing and Integration allows bugs to be caught and fixed ea@?er
in the development lifecycle. 28

CC: A Collaborative approach between stakeholders will assist in accurate Re-
quirements collection. 20
TABLE XIX 31
DYNAMIC SYSTEMSDEVELOPMENTMETHODOLOGY MANAGEMENT SUPPORT 32
AUI E DoP | F I R HL TI e 33
Management 34

AUI: The Project Manager needs to manage collaboration between users andthe

Customer and Developers. %
. . 37
E: Empowering teams means Management has to be more flexible. a8
DOP: Focus on the Delivery Of Products is a Management mindset. 29
F: Management needs to consider Fitness for purpose over other factors. 4o

© 00 N o o B~ W N -

AW W W W W W W W WWN N NDNNNDNDNNDN PR PR P B P PR R R
o © 00 N o o B W N P O VW 0 N OO g0 b~ W N PP O VW 00 N O g b~ wWw N - o

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 62

aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

62 D. COHEN ET AL.

I: lterative development breaks Management into smaller, more intense ty-

cles.

2

R: The project manager needs to feel free to make decisions without worryfhg

about irReversible consequences.

CC: Managers need to facilitate Collaboration between stakeholders.

TABLE XX
DYNAMIC SYSTEMSDEVELOPMENTMETHODOLOGY COMMUNICATION SUPPORT

Developer-
Customer
Developer-
MManager
Developer-
Developer

© 00 N o 0 b

15

AUI: Active User Involvement ensures good communication between Develap-

ers and the Customer.

17

DOP: Frequent Delivery Of Products allows Managers and Customers to ké&p

up-to-date on the status of the system.

19

. 20
I: Incremental development gives Developers, Managers, and Customers fre-

quent opportunities to interact.

22

HL: High Level requirements provide Developers with a vehicle for nons
technical requirements communication with Managers and Customers. 24

TI: Integrated Testing allows Developers and Managers to see the state of?he

system at any point in time.

CC: A Collaborative approach keeps the Customer actively involved.

TABLE XXI

DYNAMIC SYSTEMSDEVELOPMENTMETHODOLOGYDECISIONMAKING SUPPORT

AUL E

CC

Release
Planning
Design and
Development
Project
Management

AUIl: Management needs to keep users actively involved.

E: Teams can feel free to make design and development decisions as theysee

fit.

26
27
28
29
30
31
32
33
34
35
36
37
38

40

© 0 N o g b~ W N P

NN NN NNR B R B B B B B R
a B W N P O © ©® N~ O 00 A W N P O

26
<uncitgt>
28
29
30
31
32
33
34
35
36
37
38
39
40

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 63
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 63

DOP: Management philosophy needs to reflect the frequent delivery of products

and plan releases accordingly. 2
F: Management needs to evaluate decisions on fitness for the business 3pur—
pose.

I: Iterative development makes decision-making cycles shorter and deals vgith
smaller, more frequent decisions. ;

R: Reversible decisions means that decision making does not have to be 190%

complete or hold up the process until made. 9
TI: Developers learn to test frequently during development. 10
11
12
REFERENCES 13
14
[1] Abrahamsson PSalo O, Ronkainen J.Warsta J."“Agile software development meth- 15
ods”, VTT Publications 478 (2002). 16
2] Ambler S, Agile Modeling, John Wiley and Sons, 2002. 17

[
[3
[4

] Ambler S, “Introduction to agile modeling (AM)”. Available: http://www.ronin-intl. 1s
com/publications/agileModeling.pdf, 2002. 19

] Ambler S, “Agile documentation”, http://www.agilemodeling.com/essaysk,
agileDocumentation.htm, 2001, 12-4-2002.

[5] Ambler S, “Agile modeling and the unified process”, http://www.agilemodeling. comé2
essays/agileModelingRUP.htm, 2001, 12-4-2002.
[6] Ambler S, “Lessons in agility from internet-based developmehBEE Software 19 (2)
(Mar. 2002) 66-73.
[7] Ambler S, “When does(n't) agile modeling make sense?”, http://www.agilemodeling®
com/essays/whenDoesAMWork.htm, 2002, 12-4-2002. 26
[8] Bailey R.Ashworth N, Wallace N, “Challenges for stakeholders in adopting XP”, in:27
Proc. 3rd International Conference on eXtreme Programming and Agile Processesin 28
Software Engineering—xP2002, 2002, pp. 86—89. Available: http://www.xp2002.0rg/ 29
atti/Bailey-Ashworth-ChallengesforStakeholdersinAdoptingXP.pdf. 30
[9] Basili V.R., Tesoriero R. Costa R.Lindvall M., Rus I, Shull F, Zelkowitz M.V., 3
“Building an experience base for software engineering: A report on the first CeBASE
eWorkshop”, in:Proc. Profes (Product Focused Software Process Improvement), 2001,
pp. 110-125. Available: http://citeseer.nj.nec.com/basiliO1building.html.
[10] Beck K, “Embrace change with extreme programmingZEE Computer (Oct. 1999)
70-77.
[11] Beck K., Extreme Programming Explained: Embracing Change, Addison—Wesley, 1999.
[12] Beck K, Cockburn A, Jeffries R, Highsmith J, “Agile manifesto”, http://www. 87
agilemanifesto.org, 2001, 12-4-2002. 38
[13] Boehm B, “A spiral model of software development and enhancemd®fEE Com 3°
puter 21 (5) (1988) 61-72. 40

23
24

33
34
35

http://www.ronin-intl.com/publications/agileModeling.pdf
http://www.ronin-intl.com/publications/agileModeling.pdf
http://www.ronin-intl.com/publications/agileModeling.pdf
http://www.agilemodeling.com/essays/agileDocumentation.htm
http://www.agilemodeling.com/essays/agileDocumentation.htm
http://www.agilemodeling.com/essays/agileDocumentation.htm
http://www.agilemodeling.com/essays/agileModelingRUP.htm
http://www.agilemodeling.com/essays/agileModelingRUP.htm
http://www.agilemodeling.com/essays/agileModelingRUP.htm
http://www.agilemodeling.com/essays/whenDoesAMWork.htm
http://www.agilemodeling.com/essays/whenDoesAMWork.htm
http://www.agilemodeling.com/essays/whenDoesAMWork.htm
http://www.xp2002.org/atti/Bailey-Ashworth-ChallengesforStakeholdersinAdoptingXP.pdf
http://www.xp2002.org/atti/Bailey-Ashworth-ChallengesforStakeholdersinAdoptingXP.pdf
http://www.xp2002.org/atti/Bailey-Ashworth-ChallengesforStakeholdersinAdoptingXP.pdf
http://citeseer.nj.nec.com/basili01building.html
http://www.agilemanifesto.org
http://www.agilemanifesto.org
http://www.agilemanifesto.org

© 00 N o o B~ W N -

N o
5 w N B O

15
<uncit&y>
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 64

aid:

64

(14]
(15]

(16]
(17]
(18]
(19]
(20]

(21]

(22]

[23] Deias R.Giampiero M, Murru O, “Introducing XP in a start-up”, inProc. 3rd

(24]
(25]

(26]
(27]
(28]
(29]

(30]
(31]

(32]
(33]
(34]

(35]

62001 pii: S0065-2458(03)62001-2 docsubty: REV

D. COHEN ET AL.

Boehm B, “Get ready for agile methods, with caréEEEE Computer (Jan. 2002) 64—69. 1
Bowers P. “Highpoints from the agile software development forurChosstalk (Oct. 2
2002) 26-27. 3
Coad B,.deLuca J.Lefebvre E, Java Modeling in Color with UML, Prentice Hall, 1999. 4
Cockburn A, “Selecting a project’s methodologyEEE Software 17 (4) (2000) 64-71. s
Cockburn A, “Agile software development joins the ‘would-be’ crowdutter IT Jour- 6
nal (Jan. 2002) 6-12. 7
Cockburn A, Highsmith J, “Agile software development: The business of innovation”g
|EEE Computer (Sept. 2001) 120-122. N
Cockburn A, Highsmith J, “Agile software development: The people factotEEE
Computer (Nov. 2001) 131-133.

Cockburn A, Williams L., “The costs and benefits of pair programming”, Rroc. eX-
treme Programming and Flexible Processes in Software Engineering—XP2000, 2000.
Available: http://collaboration.csc.ncsu.edu/laurie/Papers/XPSardinia.PDF.
Cohn M, Ford D, “Introducing an agile process to an organization”, http://www.14

mountaingoatsoftware.com/articles/IntroducingAnAgileProcess.pdf, 2002, 8-2-2002™°
16

17

10
11
12
13

International Conference on eXtreme Programming and Agile Processes in Soft-
ware Engineering—XP2002, 2002, pp. 62-65. Available: http://www.xp2002.org/atti/18
Deias-Mugheddu--IntroducingXPinastart-up.pdf. 19
DeMarco T, Boehm B, “The agile methods fray'lEEE Computer (June 2002) 90-92. 20
Elssamadisy A.Schalliol G, “Recognizing and responding to ‘bad smells’ in extreme21

programming,” 2002, pp. 617-622. 22
Glass R, “Agile versus traditional: Make love, not warGutter 1T Journal (Dec. 2001) 23
12-18. 24
Glazer H, “Dispelling the process myth: Having a process does not mean sacrificisg
agility or creativity”, Crosstalk (Nov. 2001). 26

Grenning J.“Launching extreme programming at a process-intensive compdayg
Software 18 (6) (Nov. 2001) 27-33.

Highsmith J, Agile Software Development Ecosystems, Addison—Wesley, Boston, MA,
2002.

Highsmith J, “What is agile software developmentZrosstalk (Oct. 2002) 4-9. L
Highsmith J, Cockburn A, “Agile software development: The business of innovation",32
|EEE Computer (Sept. 2001) 120-122.

Highsmith J, Orr K., Cockburn A, “Extreme programming”, inE-Business Application
Delivery, Feb. 2000, pp. 4-17. Available: http://WWW.cutter.com/freestuff/eadOOOZ.pdi‘g.4
Hodgetts P.Phillips D, “Extreme adoption experiences of a B2B start-up”, http:/#°
www.extremejava.com/eXtremeAdoptioneXperiencesofaB2BStartUp.pdf, 12-4-2002%
Humphrey W.S. A Discipline for Software Engineering, Addison-Wesley, Reading,
MA, 1995. 38
Jeffries R, “Extreme programming and the capability maturity model”, http://www39
xprogramming.com/xpmag/xp_and_cmm.htm, 12-4-2002. 40

28
29
30

http://collaboration.csc.ncsu.edu/laurie/Papers/XPSardinia.PDF
http://www.mountaingoatsoftware.com/articles/IntroducingAnAgileProcess.pdf
http://www.mountaingoatsoftware.com/articles/IntroducingAnAgileProcess.pdf
http://www.mountaingoatsoftware.com/articles/IntroducingAnAgileProcess.pdf
http://www.xp2002.org/atti/Deias-Mugheddu--IntroducingXPinastart-up.pdf
http://www.xp2002.org/atti/Deias-Mugheddu--IntroducingXPinastart-up.pdf
http://www.xp2002.org/atti/Deias-Mugheddu--IntroducingXPinastart-up.pdf
http://www.cutter.com/freestuff/ead0002.pdf
http://www.extremejava.com/eXtremeAdoptioneXperiencesofaB2BStartUp.pdf
http://www.extremejava.com/eXtremeAdoptioneXperiencesofaB2BStartUp.pdf
http://www.extremejava.com/eXtremeAdoptioneXperiencesofaB2BStartUp.pdf
http://www.xprogramming.com/xpmag/xp_and_cmm.htm
http://www.xprogramming.com/xpmag/xp_and_cmm.htm
http://www.xprogramming.com/xpmag/xp_and_cmm.htm

© 0 N o g b~ W N P

NRNNN NN NN R R R B B B R R B
N o 01 R W N P O © ® N o A W N PO

28
<uncited>
30
31
32
33
34
35
36
37
38
39
40

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 65

aid:

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]
[44]

[45]

[46]

62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 65

Karlstrom D, “Introducing extreme programming—an experience report”,Aroc. 1
3rd International Conference on eXtreme Programming and Agile Processes in Soft- 2
ware Engineering—XP2002, 2002, pp. 24—-29. Available: http://www.xp2002.org/atti/s
DanielKarlstrom--IntroducingExtremeProgramming.pdf.

Lindvall M., Basili V.R., Boehm B, Costa B.Dangle K, Shull F, Tesoriero R.Williams
L., Zelkowitz M.V., “Empirical findings in agile methods”, inProc. Extreme Pro-
gramming and Agile Methods—XP/Agile Universe 2002, 2002, pp. 197-207. Available:
http://fc-md.umd.edu/mikli/Lindvall_agile_universe_eworkshop.pdf.

Lindvall Mi., Basili V.R., Boehm B, Costa B. Shull F, Tesoriero R. Williams L.,
Zelkowitz M.V., Results from the 2nd eéWbrkshop on agile methods, Fraunhofer Cen-
ter for Experimental Software Engineering, College Park, Maryland 20742, Aug., 206%.
Technical Report 02-109.

Lindvall M., Rus I, “Process diversity in software developmenEEE Software 17 (4) 12
(Aug. 2000) 14-71. Available: http://fc-md.umd.edu/mikli/LindvallProcessDiversityt3
pdf. 14
Macias F, Holcombe M, Gheorghe M. “Empirical experiments with XP”, inProc. 15
3rd International Conference on eXtreme Programming and Agile Processes in Soft- 16
ware Engineering—XP2002, 2002, pp. 225—-228. Available: http://iww.xp2002.org/atti/,;
Macias-Holcombe--EmpiricalexperimentswithXP.pdf. 18
Paulisch F.Volker A., “Agility—build on a mature foundation”, inProc. Software En-
gineering Process Group Conference—SEPG 2002, 2002.

Paulk M.C, “Extreme programming from a CMM perspectivéEEE Software 18 (6)
(2001) 19-26.

Paulk M.C, “Agile methodologies and process disciplin€tpsstalk (Oct. 2002) 15-18. 2
Paulk M.C, “Key practices of the capability maturity model, version 1.1, Technicaf®
Report CMU/SEI-93-TR-25, 1993. 2
Poole C, Huisman J.“Using extreme programming in a maintenance environment2>
|EEE Software 18 (6) (Nov. 2001) 42-50. 26
Poppendieck M. “Lean programming”, http://www.agilealliance.org/articles/articlest?
LeanProgramming.htm, 2001, 4-12-2002. 28

IS

© 0 N o O

19
20
21

[47] Puttman D.“Where has all the management gone?”, iRroc. 3rd Inter- 29

[48]
[49]

[50]

[51]

national Conference on eXtreme Programming and Agile Processes in Soft- 3o
ware Engineering—XP2002, 2002, pp. 39—42. Available: http://www.xp2002.org/atti/ 5,
DavidPutman--WhereHasAllTheManagementGone.pdf. 2
Rakitin S.R, “Manifesto elicits cynicism”]EEE Computer 34 (12) (Dec. 2001) 4.
Reifer D, “How to get the most out of extreme programming/agile methods'Rioc.
Extreme Programming and Agile Methods—XP/Agile Universe 2002, 2002, pp. 185— s
196.

Royce W.W, “Managing the development of large software systems: Concepts and te%%
niques”, in:Proc. WESCON, 1970, pp. 1-9.

Rumpe B, Schréder A, “Quantitative survey on extreme programming project”. Avail-38
able: http://www.xp2002.org/atti/Rumpe-Schroder-- 39
QuantitativeSurveyonExtremeProgrammingProjects.pdf, 2002. 40

33

http://www.xp2002.org/atti/DanielKarlstrom--IntroducingExtremeProgramming.pdf
http://www.xp2002.org/atti/DanielKarlstrom--IntroducingExtremeProgramming.pdf
http://www.xp2002.org/atti/DanielKarlstrom--IntroducingExtremeProgramming.pdf
http://fc-md.umd.edu/mikli/Lindvall_agile_universe_eworkshop.pdf
http://fc-md.umd.edu/mikli/LindvallProcessDiversity.pdf
http://fc-md.umd.edu/mikli/LindvallProcessDiversity.pdf
http://fc-md.umd.edu/mikli/LindvallProcessDiversity.pdf
http://www.xp2002.org/atti/Macias-Holcombe--EmpiricalexperimentswithXP.pdf
http://www.xp2002.org/atti/Macias-Holcombe--EmpiricalexperimentswithXP.pdf
http://www.xp2002.org/atti/Macias-Holcombe--EmpiricalexperimentswithXP.pdf
http://www.agilealliance.org/articles/articles/LeanProgramming.htm
http://www.agilealliance.org/articles/articles/LeanProgramming.htm
http://www.agilealliance.org/articles/articles/LeanProgramming.htm
http://www.xp2002.org/atti/DavidPutman--WhereHasAllTheManagementGone.pdf
http://www.xp2002.org/atti/DavidPutman--WhereHasAllTheManagementGone.pdf
http://www.xp2002.org/atti/DavidPutman--WhereHasAllTheManagementGone.pdf
http://www.xp2002.org/atti/Rumpe-Schroder--QuantitativeSurveyonExtremeProgrammingProjects.pdf
http://www.xp2002.org/atti/Rumpe-Schroder--QuantitativeSurveyonExtremeProgrammingProjects.pdf
http://www.xp2002.org/atti/Rumpe-Schroder--QuantitativeSurveyonExtremeProgrammingProjects.pdf

18

<uncited>
19

<uncitéy>
21

22
23

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 66

aid:

66

(52]

(53]
(54]

[55]

[56]
[57]

(58]

[59]

62001 pii: S0065-2458(03)62001-2 docsubty: REV

D. COHEN ET AL.

Rus I, Seaman G Lindvall M., “Process diversity in software maintenance—guest edi-
tors’ introduction”, Software Maintenance Research and Practice, Dec. 2002, in press. 2
Schwaber K.Beedle M, Agile Software Devel opment with SCRUM, Prentice Hall, 2002. 3
Schwaber K. “Controlled chaos: living on the edge”, http://www.agilealliance.orgl
articles/articles/ap.pdf, 2002, 4-12-2002. 5
Shull F, Basili V.R,, Boehm B, Brown A.W., Costa P.Lindvall M., Port D, Rus

I., Tesoriero R.Zelkowitz M.V., “What we have learned about fighting defects”, in:
Proc. 8th International Software Metrics Symposium, 2002, pp. 39—42. Available: http://
fc-md.umd.edu/fcmd/Papers/shull_defects.ps.

Stapleton J.DSDM: The Method in Practice, Addison—Wesley, 1997.

The C3 Team“Chrysler goes to “extremes”™, inDistributed Computing, Oct. 1998,
pp. 24-28. 1
Turk D., France R.Rumpe B, “Limitations of agile software processes”, iRroc. 12
3rd International Conference on eXtreme Programming and Agile Processes in Soft- 13
ware Engineering—XP2002, 2002. Available: http://www4.informatik.tu-muenchen. 14
de/~rumpe/ps/XP02.Limitations.pdf. 15
Turner R, Jain A, “Agile meets CMMI: Culture clash or common cause?”, Rtoc. 4
extreme Programming and Agile Methods—XP/Agile Universe 2002, 2002, pp. 153—
165.

17

. . . . 18
[60] Vic B, Turner A.J, “Iterative enhancement: A practical technique for software develo%

[61] Bellott V, Burton R.R, Ducheneaut N.Howard M, Neuwirth C, Smith I, “XP in a

(62]
(63]

ment”, IEEE Transactions on Software Engineering 1 (4) (1975) 390-396.
20

research lab: The hunt for strategic value”, Rroc. 3rd International Conference on 2

eXtreme Programming and Agile Processes in Software Engineering—XP2002, 2002, 22
pp. 56—61. Available: http://www.xp2002.org/atti/Bellotti-Burton--XPInAResearchLals3
df. 24
SViIIiams L., Kessler R.R.Pair Programming llluminated, Addison—Wesley, 2003. 25
Williams L., Kessler R.R.Cunningham W.Jeffries R, “Strengthening the case for pair »¢
programming”,|EEE Software 17 (4) (2000) 19-25. 27
28

29

30

31

32

33

34

35

36

37

38

39

40

http://www.agilealliance.org/articles/articles/ap.pdf
http://www.agilealliance.org/articles/articles/ap.pdf
http://www.agilealliance.org/articles/articles/ap.pdf
http://fc-md.umd.edu/fcmd/Papers/shull_defects.ps
http://fc-md.umd.edu/fcmd/Papers/shull_defects.ps
http://fc-md.umd.edu/fcmd/Papers/shull_defects.ps
http://www4.informatik.tu-muenchen.de/~rumpe/ps/XP02.Limitations.pdf
http://www4.informatik.tu-muenchen.de/~rumpe/ps/XP02.Limitations.pdf
http://www4.informatik.tu-muenchen.de/~rumpe/ps/XP02.Limitations.pdf
http://www.xp2002.org/atti/Bellotti-Burton--XPInAResearchLab.pdf
http://www.xp2002.org/atti/Bellotti-Burton--XPInAResearchLab.pdf
http://www.xp2002.org/atti/Bellotti-Burton--XPInAResearchLab.pdf

	An Introduction to Agile Methods
	Introduction
	History
	The Agile Manifesto
	Agile and CMM(I)

	State-of-the-Art
	What Does It Mean to be Agile?
	A Selection of Agile Methods
	Extreme Programming
	Team size:
	Iteration length:
	Support for distributed teams:
	System criticality:

	Scrum
	Pre-sprint planning:
	Sprint:
	Post-sprint meeting:
	Team size:
	Iteration length:
	Support for distributed teams:
	System criticality:

	The Crystal Methods
	Team size:
	Iteration length:
	Support for distributed teams:
	System criticality:

	Feature Driven Development
	Develop an overall model:
	Build a features list:
	Plan by feature:
	Design by feature & build by feature:
	Team size:
	Iteration length:
	Support for distributed teams:
	Criticality:

	Lean Development
	Dynamic Systems Development Method
	Pre-project:
	Feasibility study:
	Business study:
	Functional model iteration:
	Design and build iteration:
	Implementation:
	Post-project:

	Agile Modeling

	Characteristics of Selected Agile Methods
	Is Your Organization Ready for Agile Methods?

	State-of-the-Practice
	eWorkshop on Agile Methods
	Seeding the eDiscussion
	Definition
	Selecting Projects Suitable for Agile Methods
	Introducing Agile Methods: Training Requirements
	Project Management: Success Factors and Warning Signs

	Lessons Learned
	Case Studies
	Introducing XP
	Launching XP at a Process-Intensive Company
	Using XP in a Maintenance Environment
	XP's ``Bad Smells''
	Introducing Scrum in Organizations
	Lessons in Agility from Internet-Based Development
	Agile Modeling and the Unified Process

	Other Empirical Studies
	XP in a Business-to-Business (B2B) Start-up
	Empirical Experiments with XP
	Survey Conducted by Cutter Consortium
	Quantitative Survey on XP Projects
	How to Get the Most Out of XP and Agile Methods
	Costs and Benefits of Pair Programming

	Conclusions
	Why will Agile Methods not rule out traditional methods?
	So what is it that governs what method to use?
	Where is Agile going?

	Acknowledgements
	An Analysis of Agile Methods
	Extreme Programming
	Scrum
	Lean Development
	Feature Driven Development
	Dynamic Systems Development Methodology

	References

