
adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 1
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

An Introduction to Agile Methods

DAVID COHEN, MIKAEL LINDVALL, AND
PATRICIA COSTA

Fraunhofer Center for Experimental Software Engineering
4321 Hartwick rd, Suite 500
College Park, MD 20742
USA
dcohen@fc-md.umd.edu
mlindvall@fc-md.umd.edu
pcosta@fc-md.umd.edu

Abstract
Agile Methods are creating a buzz in the software development community,
drawing their fair share of advocates and opponents. While some people con-
sider agile methods the best thing that has happened to software development in
recent years, other people view them as a backlash to software engineering and
compare them to hacking.

The aim of this chapter is to introduce the reader to agile methods allowing
him/her to judge whether or not agile methods could be useful in modern soft-
ware development. The chapter discusses the history behind agile methods as
well as the agile manifesto, a statement from the leaders of the agile movement.
It looks at what it means to be agile, discusses the role of management, describes
and compares some of the more popular agile methods, provides a guide for
deciding where an agile approach is applicable, and lists common criticisms. It
summarizes empirical studies, anecdotal reports, and lessons learned from ap-
plying agile methods and concludes with an analysis of various agile methods.

The target audiences for this chapter include practitioners, who will be in-
terested in the discussion of the different methods and their applications, re-
searchers who may want to focus on the empirical studies and lessons learned,
and educators looking to teach and learn more about agile methods.

1. Introduction . 2
1.1. History . 3
1.2. The Agile Manifesto . 7
1.3. Agile and CMM(I) . 9

ADVANCES IN COMPUTERS, VOL. 62 1 Copyright © 2004 Elsevier Inc.
ISSN: 0065-2458/DOI 10.1016/S0065-2458(03)62001-2 All rights reserved.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 2
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

2 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

2. State-of-the-Art . 12
2.1. What Does It Mean to be Agile? . 12
2.2. A Selection of Agile Methods . 12
2.3. Characteristics of Selected Agile Methods . 25
2.4. Is Your Organization Ready for Agile Methods? 25

3. State-of-the-Practice . 26
3.1. eWorkshop on Agile Methods . 27
3.2. Lessons Learned . 32
3.3. Case Studies . 34
3.4. Other Empirical Studies . 42

4. Conclusions . 46
Acknowledgements . 47
Appendix A: An Analysis of Agile Methods . 48
A.1. Extreme Programming . 49
A.2. Scrum . 53
A.3. Lean Development . 55
A.4. Feature Driven Development . 58
A.5. Dynamic Systems Development Methodology 60
References . 63

1. Introduction

The pace of life is more frantic than ever. Computers get faster every day. Start-
ups rise and fall in the blink of an eye. And we stay connected day and night with
our cable modems, cell phones, and Palm Pilots. Just as the world is changing, so
too is the art of software engineering as practitioners attempt to keep in step with the
turbulent times, creating processes that not only respond to change but embrace it.

These so-called Agile Methods are creating a buzz in the software development
community, drawing their fair share of advocates and opponents. The purpose of this
report is to address this interest and provide a comprehensive overview of the cur-
rent State-of-the-Art, as well as State-of-the-Practice, for Agile Methods. As there is
already much written about the motivations and aspirations of Agile Methods (e.g.,
[1]), we will emphasize the latter.Section 1discusses the history behind the trend,
as well as the Agile Manifesto, a statement from the leaders of the Agile movement
[12]. Section 2represents the State-of-the-Art and examines what it means to be Ag-
ile, discusses the role of management, describes and compares some of the more pop-
ular methods, provides a guide for deciding where an Agile approach is applicable,
and lists common criticisms of Agile techniques.Section 3represents State-of-the-
Practice and summarizes empirical studies, anecdotal reports, and lessons learned.
The report concludes with anAppendix A that includes a detailed analysis of vari-
ous Agile Methods for the interested reader.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 3
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

It is interesting to note that there is a lack of literature describing projects where
Agile Methods failed to produce good results. There are a number of studies report-
ing poor projects due to a negligent implementation of an Agile method, but none
where practitioners felt they executed properly but the method failed to deliver on
its promise. This may be a result of a reluctance to publish papers on unsuccessful
projects, or it may in fact be an indication that, when implemented correctly, Agile
Methods work.

1.1 History

Agile Methods are a reaction to traditional ways of developing software and ac-
knowledge the “need for an alternative to documentation driven, heavyweight soft-
ware development processes” [12]. In the implementation of traditional methods,
work begins with the elicitation and documentation of a “complete” set of require-
ments, followed by architectural and high-level design, development, and inspection.
Beginning in the mid-1990s, some practitioners found these initial development steps
frustrating and, perhaps, impossible [29]. The industry and technology move too fast,
requirements “change at rates that swamp traditional methods” [32], and customers
have become increasingly unable to definitively state their needs up front while, at
the same time, expecting more from their software. As a result, several consultants
have independently developed methods and practices to respond to the inevitable
change they were experiencing. These Agile Methods are actually a collection of
different techniques (or practices) that share the same values and basic principles.
Many are, for example, based on iterative enhancement, a technique that was intro-
duced in 1975 [?]. <ref:BT75?>

In fact, most of the Agile practices are nothing new [19]. It is instead the focus and
values behind Agile Methods that differentiate them from more traditional methods.
Software process improvement is an evolution in which newer processes build on
the failures and successes of the ones before them, so to truly understand the Agile
movement, we need to examine the methods that came before it.

According to Beck, the Waterfall Model [50] came first, as a way in which to as-
sess and build for the users’ needs. It began with a complete analysis of user require-
ments. Through months of intense interaction with users and customers, engineers
would establish a definitive and exhaustive set of features, functional requirements,
and non-functional requirements. This information is well-documented for the next
stage, design, where engineers collaborate with others, such as database and data
structure experts, to create the optimal architecture for the system. Next, program-
mers implement the well-documented design, and finally, the complete, perfectly
designed system is tested and shipped [10].

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 4
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

4 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

This process sounds good in theory, but in practice it did not always work as
well as advertised. Firstly, users changed their minds. After months, or even years,
of collecting requirements and building mockups and diagrams, users still were not
sure of what they wanted—all they knew was that what they saw in production was
not quite “it.” Secondly, requirements tend to change mid-development and when
requirements are changed, it is difficult to stop the momentum of the project to ac-
commodate the change. The traditional methods may well start to pose difficulties
when change rates are still relatively low [14] because programmers, architects, and
managers need to meet, and copious amounts of documentation need to be kept up to
date to accommodate even small changes [13]. The Waterfall model was supposed to
fix the problem of changing requirements once and for all by freezing requirements
and not allowing any change, but practitioners found that requirements just could not
be pinned down in one fell swoop as they had anticipated [10].

Incremental and iterative techniques focusing on breaking the development cy-
cle into pieces evolved from the Waterfall model [10], taking the process behind
Waterfall and repeating it throughout the development lifecycle. Incremental devel-
opment aimed to reduce development time by breaking the project into overlapping
increments. As with the Waterfall model, all requirements are analyzed before devel-
opment begins; however, the requirements are then broken into increments of stand-
alone functionality. Development of each increment may be overlapped, thus saving
time through concurrent “multitasking” across the project.

While incremental development looked to offer time savings, evolutionary meth-
ods like iterative development and the Spiral Model [13] aimed to better handle
changing requirements and manage risk. These models assess critical factors in a
structured and planned way at multiple points in the process rather than trying to
mitigate them as they appear in the project.

Iterative development breaks the project into iterations of variable length, each
producing a complete deliverable and building on the code and documentation pro-
duced before it. The first iteration starts with the most basic deliverable, and each
subsequent iteration adds the next logical set of features. Each piece is its own water-
fall process beginning with analysis, followed by design, implementation, and finally
testing. Iterative development deals well with change, as the only complete require-
ments necessary are for the current iteration. Although tentative requirements need
to exist for the next iteration, they do not need to be set in stone until the next analy-
sis phase. This approach allows for changing technology or the customer to change
their mind with minimal impact on the project’s momentum.

Similarly, the Spiral Model avoids detailing and defining the entire system upfront.
Unlike iterative development, however, where the system is built piece by piece pri-
oritized by functionality, Spiral prioritizes requirements by risk. Spiral and iterative
development offered a great leap in agility over the Waterfall process, but some prac-

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 5
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

titioners believed that they still did not respond to change as nimbly as necessary in
the evolving business world. Lengthy planning and analysis phases, as well as a sus-
tained emphasis on extensive documentation, kept projects using iterative techniques
from being truly Agile, in comparison with today’s methods.

Another important model to take into account in these discussions is the Capability
Maturity Model (CMM)1 [44], “a five-level model that describes good engineering
and management practices and prescribes improvement priorities for software orga-
nizations” [42]. The model defines 18 key process areas and 52 goals for an organiza-
tion to become a level 5 organization. Most software organizations’ maturity level is
‘Chaotic’ (CMM level one) and only a few are ‘Optimized’ (CMM level five). CMM
focuses mainly on large projects and large organizations, but can be tailored to fit
small as well as large projects due to the fact that it is formulated in a very general
way that fits diverse organizations’ needs. The goals of CMM are to achieve process
consistency, predictability, and reliability ([42]).

Ken Schwaber was one practitioner looking to better understand the CMM-based
traditional development methods. He approached the scientists at the DuPont Chemi-
cal’s Advanced Research Facility posing the question: “Why do the defined processes
advocated by CMM not measurably deliver?” [54]. After analyzing the development
processes, they returned to Schwaber with some surprising conclusions. Although
CMM focuses on turning software development into repeatable, defined, and pre-
dictable processes, the scientists found that many of them were, in fact, largely un-
predictable and unrepeatable because [54]:

• Applicable first principles are not present.

• The process is only beginning to be understood.

• The process is complex.

• The process is changing and unpredictable.

Schwaber, who would go on to develop Scrum, realized that to be truly Agile, a
process needs to accept change rather than stress predictability [54]. Practitioners
came to realize that methods that would respond to change as quickly as it arose
were necessary [58], and that in a dynamic environment, “creativity, not voluminous
written rules, is the only way to manage complex software development problems”
[19].

Practitioners like Mary Poppendieck and Bob Charette2 also began to look to other
engineering disciplines for process inspiration, turning to one of the more innovate

1We use the terms CMM and SW-CMM interchangeably to denote the Software CMM from the Soft-
ware Engineering Institute (SEI).

2Bob Charette’s “Lean Development” method will be discussed later.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 6
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

6 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

industry trends at the time, Lean Manufacturing. Started after World War II by Toy-
oda Sakichi, its counter-intuitive practices did not gain popularity in the United States
until the early 1980s. While manufacturing plants in the United States ran production
machines at 100% and kept giant inventories of both products and supplies, Toyoda
kept only enough supplies on hand to run the plant for one day, and only produced
enough products to fill current orders. Toyoda also tightly integrated Dr. W. Edwards
Deming’s Total Quality Management philosophy with his process. Deming believed
that people inherently want to do a good job, and that managers needed to allow
workers on the floor to make decisions and solve problems, build trust with suppli-
ers, and support a “culture of continuous improvement of both process and products”
[46]. Deming taught that quality was a management issue and while Japanese man-
ufacturers were creating better and cheaper products, United States manufacturers
were blaming quality issues on their workforce [46].

Poppendieck lists the 10 basic practices which make Lean Manufacturing so suc-
cessful, and their application to software development [46]:

(1) Eliminate waste—eliminate or optimize consumables such as diagrams and
models that do not add value to the final deliverable.

(2) Minimize inventory—minimize intermediate artifacts such as requirements
and design documents.

(3) Maximize flow—use iterative development to reduce development time.
(4) Pull from demand—support flexible requirements.
(5) Empower workers—generalize intermediate documents, “tell developers

what needs to be done, not how to do it.”
(6) Meet customer requirements—work closely with the customer, allowing

them to change their minds.
(7) Do it right the first time—test early and refactor when necessary.
(8) Abolish local optimization—flexibly manage scope.
(9) Partner with suppliers—avoid adversarial relationships, work towards devel-

oping the best software.
(10) Create a culture of continuous improvement—allow the process to improve,

learn from mistakes and successes.

Independently, Kent Beck rediscovered many of these values in the late 1990s
when he was hired by Chrysler to save their failing payroll project, Chrysler Com-
prehensive Compensation (C3). The project was started in the early 1990s as an
attempt to unify three existing payroll systems ([57]) and had been declared a failure
when Beck arrived. Beck, working with Ron Jeffries [32], decided to scrap all the
existing code and start the project over from scratch. A little over a year later, a ver-
sion of C3 was in use and paying employees. Beck and Jeffries were able to take a
project that had been failing for years and turn it around 180 degrees. The C3 project

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 7
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

became the first project to use eXtreme Programming [32] (discussed in detail later),
relying on the same values for success as Poppendiek’s Lean Programming.

Similar stories echo throughout the development world. In the early 1990s, the
IBM Consulting Group hired Alistair Cockburn to develop an object-oriented devel-
opment method [32]. Cockburn decided to interview IBM development teams and
build a process out of best practices and lessons learned. He found that “team after
successful team ‘apologized’ for not following a formal process, for not using high-
tech [tools], for ‘merely’ sitting close to each other and discussing while they went,”
while teams that had failed followed formal processes and were confused why it
hadn’t worked, stating “maybe they hadn’t followed it well enough” [32]. Cockburn
used what he learned at IBM to develop the Crystal Methods (discussed in detail
later).

The development world was changing and, while traditional methods were hardly
falling out of fashion, it was obvious that they did not always work as intended in
all situations. Practitioners recognized that new practices were necessary to better
cope with changing requirements. And these new practices must be people-oriented
and flexible, offering “generative rules” over “inclusive rules” which break down
quickly in a dynamic environment [19]. Cockburn and Highsmith summarize the
new challenges facing the traditional methods:

• Satisfying the customer has taken precedence over conforming to original plans.

• Change will happen—the focus is not how to prevent it but how to better cope
with it and reduce the cost of change throughout the development process.

• “Eliminating change early means being unresponsive to business conditions—
in other words, business failure.”

• “The market demands and expects innovative, high quality software that meets
its needs—and soon.”

1.2 The Agile Manifesto

“[A] bigger gathering of organizational anarchists would be hard to find” Beck
stated [12] when seventeen of the Agile proponents came together in early 2001
to discuss the new software developments methods. “What emerged was the Ag-
ile ‘Software Development’ Manifesto. Representatives from Extreme Programming
(XP), SCRUM, DSDM, Adaptive Software Development, Crystal, Feature-Driven
Development, Pragmatic Programming, and others sympathetic to the need for an
alternative to documentation driven, heavyweight software development processes
convened” [12]. They summarized their viewpoint, saying that “the Agile movement
is not anti-methodology, in fact, many of us want to restore credibility to the word
methodology. We want to restore a balance. We embrace modeling, but not in order

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 8
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

8 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

to file some diagram in a dusty corporate repository. We embrace documentation,
but not hundreds of pages of never-maintained and rarely used tomes. We plan, but
recognize the limits of planning in a turbulent environment” [12]. The Manifesto
itself reads as follows [12]:

We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

• Individuals and interaction over process and tools,

• Working software over comprehensive documentation,

• Customer collaboration over contract negotiation,

• Responding to change over following a plan.

That is, while there is a value in the items on the right, we value the items on the
left more.

The Manifesto has become an important piece of the Agile Movement, in that it
characterizes the values of Agile methods and how Agile distinguishes itself from
traditional methods. Glass amalgamates the best of the Agile and traditional ap-
proaches by analyzing the Agile manifesto and comparing it with traditional values
[26].

On individuals and interaction over process and tools: Glass believes that the
Agile community is right on this point: “Traditional software engineering has gotten
too caught up in its emphasis on process” [26]. At the same time “most practitioners
already know that people matter more than process” [26].

On working software over comprehensive documentation: Glass agrees with the
Agile community on this point too, although with some caveat: “It is important to
remember that the ultimate result of building software is product. Documentation
matters. . . but over the years, the traditionalists made a fetish of documentation. It
became the prime goal of the document-driven lifecycle” [26].

On customer collaboration over contract negotiation: Glass sympathizes with
both sides regarding this statement: “I deeply believe in customer collaboration, and
. . . without it nothing is going to go well. I also believe in contracts, and I would not
undertake any significant collaborative effort without it” [26].

Onresponding to change over following a plan: Both sides are right regarding this
statement, according to Glass: “Over they years, we have learned two contradictory
lessons: (1) [C]ustomers and users do not always know what they want at the outset
of a software project, and we must be open to change during project execution” and
(2) Requirement change was one of the most common causes of software project
failure” [26].

This view, that both camps can learn from each other, is commonly held, as we
will see in the next section.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 9
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

1.3 Agile and CMM(I)

As mentioned above, Agile is a reaction against traditional methodologies, also
known as rigorous or plan-driven methodologies [14]. One of the models often used
to represent traditional methodologies is the Capability Maturity Model (CMM)3

[44] and its replacement4 CMMI, an extension of CMM based on the same values.5

Not much has been written about CMMI yet, but we believe that for this discussion,
what is valid for CMM is also valid for CMMI.6

As mentioned above, the goals of CMM are to achieve process consistency, pre-
dictability, and reliability. Its proponents claim that it can be tailored to also fit the
needs of small projects even though it was designed for large projects and large or-
ganizations [42].

Most Agile proponents do not, however, believe CMM fits their needs at all. “If
one were to ask a typical software engineer whether the Capability Maturity Model
for Software and process improvement were applicable to Agile Methods, the re-
sponse would most likely range from a blank stare to a hysterical laughter” [59].
One reason is that “CMM is a belief in software development as a defined process
. . . [that] can be defined in detail, [that] algorithms can be defined, [that] results
can be accurately measured, and [that] measured variations can be used to refine the
processes until they are repeatable within very close tolerances” [30]. “For projects
with any degree of exploration at all, Agile developers just do not believe these as-
sumptions are valid. This is a deep fundamental divide—and not one that can be
reconciled to some comforting middle ground” [30].

Many Agile proponents also dislike CMM because of its focus on documentation
instead of code. A “typical” example is the company that spent two years working
(not using CMM though) on a project until they finally declared it a failure. Two
years of working resulted in “3500 pages of use cases, an object model with hundreds
of classes, thousands of attributes (but no methods), and, of course, no code” [30].
The same document-centric approach resulting in “documentary bloat that is now
endemic in our field” [24] is also reported by many others.

While Agile proponents see a deep divide between Agile and traditional methods,
this is not the case for proponents of traditional methods. Mark Paulk, the man behind
CMM, is surprisingly positive about Agile Methods and claims that “Agile Methods
address many CMM level 2 and 3 practices” [43]. XP,7 for example, addresses most

3We use the terms CMM and SW-CMM interchangeably to denote the Software CMM from the Soft-
ware Engineering Institute (SEI).

4CMM will be replaced by CMMI; see “How Will Sunsetting of the Software CMM® Be Conducted”
at http://www.sei.cmu.edu/cmmi/adoption/sunset.html.

5The Personal Software Process (PSP) [34] is closely related to the CMM.
6E-mail conversation with Sandra Shrum, SEI.
7As XP is the most documented method, it often is used as a representative sample of Agile Methods.

http://www.sei.cmu.edu/cmmi/adoption/sunset.html

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 10
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

10 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

level 28 and 39 practices, but not level 4 and 5 [42]. As a matter of fact, “most XP
projects that truly follow the XP rules and practices could easily be assessed at CMM
level 2 if they could demonstrate having processes for the following:” [27]

• Ensuring that the XP Rules and Practices are taught to new developers on the
project.

• Ensuring that the XP Rules and Practices are followed by everyone.

• Escalating to decision makers when the XP Rules and Practices are not followed
and not resolved within the project.

• Measuring the effectiveness of the XP Rules and Practices.

• Providing visibility to management via appropriate metrics from prior project
QA experience.

• Knowing when the XP Rules and Practices need to be adjusted.

• Having an independent person doing the above.

Glazer adds, “with a little work on the organizational level, CMM level 3 is not far
off” [27].

So according to some, XP and CMMcan live together [27], at least in theory. One
reason is that we can view XP as a software development methodology and CMM
as a software management methodology. CMM tells uswhat to do, while XP tells us
how to do it.

Others agree that there is no conflict. Siemens, for example, does not see CMM
and Agility as a contradiction. Agility has become a necessity with increasing market
pressure, “but should be built on top of an appropriately mature process foundation,
not instead of it” [41]. Many make a distinction between “turbulent” environments
and “placid” environments, and conclude that CMM is not applicable to the “tur-
bulent” environments. These claims are based on misconceptions. “In fact, working
under time pressure in the age of agility requires even better organization of the work
than before!” [41].

Regarding the criticism about heavy documentation in CMM projects, Paulk
replies: “over-documentation is a pernicious problem in the software industry, espe-
cially in the Department of Defense (DoD) projects” [43]. “[P]lan-driven method-
ologists must acknowledge that keeping documentation to a minimum useful set

8XP supports the following level 2 practices according to [42]: requirements management, software
project planning, software project tracking and oversight, software quality assurance, andsoftware con-
figuration management, but notsoftware subcontract management.

9XP supports the following level 3 practices according to [42]: organization process focus, organization
process definition, software product engineering, inter-group coordination, andpeer reviews. XP does not
support the level 3 practicestraining program andintegrated software management.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 11
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

is necessary. At the same time, “practices that rely on tacit knowledge10 . . . may
break down in larger teams. . .” [43]. Others claim that “CMM does not require
piles of process or project documentation” and there are “various organizations that
successfully can manage and maintain their process with a very limited amount of
paper” [41].

CMMI is the latest effort to build maturity models and consists of Process Areas
(PA) and Generic Practices (GP). CMMI is similar to CMM, but more extensive in
that it covers the discipline of system engineering. In an attempt to compare Agile
and CMMI, Turner analyzed their values and concluded that their incompatibilities
are overstated and that their strengths and weaknesses complement each other [59].

While many tired of traditional development techniques are quick to show support
for the Agile movement, often as a reaction against CMM, others are more skepti-
cal. A common criticism, voiced by Steven Rakitin, views Agile as a step backwards
from traditional engineering practices, a disorderly “attempt to legitimize the hacker
process” [48]. Where processes such as Waterfall and Spiral stress lengthy upfront
planning phases and extensive documentation, Agile Methods tend to shift these pri-
orities elsewhere. XP, for example, holds brief iteration planning meetings in the
Planning Game to prioritize and select requirements, but generally leaves the system
design to evolve over iterations through refactoring, resulting in hacking [48]. This
accusation of Agile of being no more than hacking is frenetically fought [15] and
in response to this criticism, Beck states: “Refactoring, design patterns, comprehen-
sive unit testing, pair programming—these are not the tools of hackers. These are
the tools of developers who are exploring new ways to meet the difficult goals of
rapid product delivery, low defect levels, and flexibility” [32]. Beck says, “the only
possible values are ‘excellent’ and ‘insanely excellent’ depending on whether lives
are at stake or not’. . . You might accuse XP practitioners of being delusional, but not
of being poor-quality-oriented hackers” [32]. “Those who would brand proponents
of XP or SCRUM or any of the other Agile Methodologies as ‘hackers’ are ignorant
of both the methodologies and the original definition of the term hacker” [12]. In
response to the speculation that applying XP would result in a Chaotic development
process (CMM level 1), one of the Agile proponents even concluded that “XP is in
some ways a ‘vertical’ slice through the levels 2 through 5” [35].

The question whether Agile is hacking is probably less important than whether
Agile and CMM(I) can co-exist. This is due to the fact that many organizations need
both to be Agile and show that they are mature enough to take on certain contracts.
A model that fills that need and truly combines the Agile practices and the CMM key
processes has not, that we are aware of, been developed yet.

10Agile Methods rely on undocumented (tacit) knowledge and avoid documentation.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 12
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

12 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

2. State-of-the-Art

This section discusses what it means to be Agile, describes a selected set of Agile
Methods, and concludes with a discussion on whether an organization is ready to
adopt Agile Methods.

2.1 What Does It Mean to be Agile?

The goal of Agile Methods is to allow an organization to be agile, but what
does it mean to be Agile? Jim Highsmith says that being Agile means being able
to “Deliver quickly. Change quickly. Change often” [32]. While Agile techniques
vary in practices and emphasis, they share common characteristics, including itera-
tive development and a focus on interaction, communication, and the reduction of
resource-intensive intermediate artifacts. Developing in iterations allows the devel-
opment team to adapt quickly to changing requirements. Working in close location
and focusing on communication means teams can make decisions and act on them
immediately, rather than wait on correspondence. Reducing intermediate artifacts
that do not add value to the final deliverable means more resources can be devoted to
the development of the product itself and it can be completed sooner. “A great deal
of the Agile movement is about what I would call ‘programmer power”’ [26]. These
characteristics add maneuverability to the process [18], whereby an Agile project
can identify and respond to changes more quickly than a project using a traditional
approach.

Cockburn and Highsmith discuss the Agile “world view,” explaining “what is new
about Agile Methods is not the practices they use, but their recognition of people as
the primary drivers of project success, coupled with an intense focus on effectiveness
and maneuverability” [19]. Practitioners agree that being Agile involves more than
simply following guidelines that are supposed to make a project Agile. True agility
is more than a collection of practices; it’s a frame of mind. Andrea Branca states,
“other processes maylook Agile, but they won’tfeel Agile” [18].

2.2 A Selection of Agile Methods

Agile Methods have much in common, such as what they value, but they also
differ in the practices they suggest. In order to characterize different methods, we
will examine the following Agile Methods: Extreme Programming, Scrum, Crystal
Methods, Feature Driven Development, Lean Development, and Dynamic Systems
Development Methodology. We will attempt to keep the depth and breadth of our
discussion consistent for each method, though it will naturally be limited by the
amount of material available. XP is well-documented and has a wealth of available

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 13
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

case studies and reports, while DSDM is subscription-based, making it much more
difficult to find information. The other methods lie somewhere in between. See also
Appendix A, in which we attempt to further analyze these methods.

2.2.1 Extreme Programming

Extreme Programming is undoubtedly the hottest Agile Method to emerge in re-
cent years. Introduced by Beck, Jeffries, et al., in 1998 [57] and further popularized
by Beck’sExtreme Programming Explained: Embrace Change in 1999 and numer-
ous articles since, XP owes much of its popularity to developers disenchanted with
traditional methods [29] looking for something new, something extreme.

The 12 rules of Extreme Programming, true to the nature of the method itself, are
concise and to the point. In fact, you could almost implement XP without reading a
page of Beck’s book.

• The planning game: At the start of each iteration, customers, managers, and
developers meet to flesh out, estimate, and prioritize requirements for the next
release. The requirements are called “user stories” and are captured on “story
cards” in a language understandable by all parties.

• Small releases: An initial version of the system is put into production after the
first few iterations. Subsequently, working versions are put into production any-
where from every few days to every few weeks.

• Metaphor: Customers, managers, and developers construct a metaphor, or set
of metaphors after which to model the system.

• Simple design: Developers are urged to keep design as simple as possible, “say
everything once and only once” [10].

• Tests: Developers work test-first; that is, they write acceptance tests for their
code before they write the code itself. Customers write functional tests for each
iteration and at the end of each iteration, all tests should run.

• Refactoring: As developers work, the design should be evolved to keep it as
simple as possible.

• Pair programming: Two developers sitting at the same machine write all code.

• Continuous integration: Developers integrate new code into the system as often
as possible. All functional tests must still pass after integration or the new code
is discarded.

• Collective ownership: The code is owned by all developers, and they may make
changes anywhere in the code at anytime they feel necessary.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 14
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

14 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

• On-site customer: A customer works with the development team at all times
to answer questions, perform acceptance tests, and ensure that development is
progressing as expected.

• 40-hour weeks: Requirements should be selected for each iteration such that
developers do not need to put in overtime.

• Open workspace: Developers work in a common workspace set up with indi-
vidual workstations around the periphery and common development machines
in the center.

Practitioners tend to agree that the strength of Extreme Programming does not
result from each of the 12 practices alone, but from the emergent properties arising
from their combination. Highsmith lists five key principles of XP, all of which are
enhanced by its practices: communication, simplicity, feedback, courage, and quality
work [29].

Practitioners of XP clearly state where the model works and where it does not.

Team size: Because the development team needs to be co-located, team size is
limited to the number of people that can fit in a single room, generally agreed to be
from 2 to 10.

Iteration length: XP has the shortest recommended iteration length of the Agile
Methods under consideration, 2 weeks.

Support for distributed teams: Because of XP’s focus on community and co-
location, distributed teams are not supported.

System criticality: XP is not necessarily geared for one system or another. How-
ever, most agree that there is nothing in XP itself that should limit its applicability.

2.2.2 Scrum

Scrum, along with XP, is one of the more widely used Agile Methods. Ken
Schwaber first described Scrum in 1996 [54] as a process that “accepts that the devel-
opment process is unpredictable,” formalizing the “do what it takes” mentality, and
has found success with numerous independent software vendors. The term is bor-
rowed from Rugby: “[A] Scrum occurs when players from each team huddle closely
together. . . in an attempt to advance down the playing field” [29].

Figure 1 depicts the Scrum lifecycle. Scrum projects are split into iterations
(sprints) consisting of the following:

Pre-sprint planning: All work to be done on the system is kept in what is called
the “release backlog.” During the pre-sprint planning, features and functionality are

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 15
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

FIG. 1. The Scrum Lifecycle (from http://www.controlchaos.com).

selected from the release backlog and placed into the “sprint backlog,” or a priori-
tized collection of tasks to be completed during the next sprint. Since the tasks in
the backlog are generally at a higher level of abstraction, pre-sprint planning also
identifies a Sprint Goal reminding developers why the tasks are being performed and
at which level of detail to implement them [29].

Sprint: Upon completion of the pre-sprint planning, teams are handed their
sprint backlog and “told to sprint to achieve their objectives” [54]. At this point,
tasks in the sprint backlog are frozen and remain unchangeable for the duration of
the sprint. Team members choose the tasks they want to work on and begin develop-
ment. Short daily meetings are critical to the success of Scrum. Scrum meetings are
held every morning to enhance communication and inform customers, developers,
and managers on the status of the project, identify any problems encountered, and
keep the entire team focused on a common goal.

Post-sprint meeting: After every sprint, a post-sprint meeting is held to analyze
project progress and demonstrate the current system.

Schwaber summarizes the key principles of Scrum [54]:

• Small working teams that maximize communication, minimize overhead, and
maximize sharing of tacit, informal knowledge.

• Adaptability to technical or marketplace (user/customer) changes to ensure the
best possible product is produced.

http://www.controlchaos.com

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 16
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

16 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

• Frequent ‘builds,’ or construction of executables, that can be inspected, ad-
justed, tested, documented, and built on.

• Partitioning of work and team assignments into clean, low coupling partitions,
or packets.

• Constant testing and documentation of a product as it is built.

• Ability to declare a product ‘done’ whenever required (because the competition
just shipped, because the company needs the cash, because the user/customer
needs the functions, because that was when it was promised. . .).

Team size: Development personnel are split into teams of up to seven people.
A complete team should at least include a developer, quality assurance engineer, and
a documenter.

Iteration length: While Schwaber originally suggested sprint lengths from 1 to
6 weeks ([54]), durations are commonly held at 4 weeks [29].

Support for distributed teams: While Scrum’s prescription does not explicitly
mention distributed teams or provide built-in support; a project may consist of mul-
tiple teams that could easily be distributed.

System criticality: Scrum does not explicitly address the issue of criticality.

2.2.3 The Crystal Methods

The Crystal Methods were developed by Alistair Cockburn in the early 1990s.
He believed that one of the major obstacles facing product development was poor
communication and modeled the Crystal Methods to address these needs. Cockburn
explains his philosophy. “To the extent that you can replace written documentation
with face-to-face interactions, you can reduce the reliance on written work products
and improve the likelihood of delivering the system. The more frequently you can
deliver running, tested slices of the system, the more you can reduce the reliance
on written ‘promissory’ notes and improve the likelihood of delivering the system”
[32]. Highsmith adds: “[Crystal] focuses on people, interaction, community, skills,
talents, and communication as first order effects on performance. Process remains
important, but secondary” [29].

Cockburn’s methods are named “crystal” to represent a gemstone, i.e., each facet
is another version of the process, all arranged around an identical core [29]. As such,
the different methods are assigned colors arranged in ascending opacity. The most
Agile version is Crystal Clear, followed by Crystal Yellow, Crystal Orange, Crystal
Red, etc. The version of crystal you use depends on the number of people involved,
which translates into a different degree of emphasis on communication.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 17
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

FIG. 2. Crystal Methods Framework (from http://www.crystalmethodologies.org).

As you add people to the project, you translate right on the graph inFig. 2to more
opaque versions of crystal. As project criticality increases, the methods “harden”
and you move upwards on the graph. The methods can also be altered to fit other
priorities, such as productivity or legal liability.

All Crystal methods begin with a core set of roles, work products, techniques, and
notations, and this initial set is expanded as the team grows or the method hardens.
As a necessary effect, more restraints leads to a less Agile method, but Highsmith
stresses that they are Agile nonetheless because of a common mindset [29].

Team size: The Crystal Family accommodates any team size; however, Cockburn
puts a premium on premium people.

Iteration length: Up to 4 months for large, highly critical projects.

Support for distributed teams: Crystal Methodologies have built in support for
distributed teams.

System criticality: Crystal supports 4 basic criticalities: failure resulting in loss
of comfort, discretionary money, essential money, and life.

http://www.crystalmethodologies.org

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 18
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

18 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

2.2.4 Feature Driven Development

Feature Driven Development arose in the late 1990s from a collaboration between
Jeff DeLuca and Peter Coad. Their flagship project, like XP’s C3 Project, was the
Singapore Project. DeLuca was contracted to save a failing, highly complicated
lending system. The previous contractor had spent two years producing over 3500
pages of documentation, but no code [29]. DeLuca started from the beginning and
hired Coad to assist with the object modeling. Combining their previous experiences,
they developed the feature-oriented development approach that came to be known as
FDD.

Highsmith explains FDD’s core values [29]:

• A system for building systems is necessary in order to scale to larger projects.

• A simple, well-defined process works best.

• Process steps should be logicaland their worth immediately obvious to each
team member.

• ‘Process pride’ can keep the real work from happening.

• Good processes move to the background so the team members can focus on
results.

• Short, iterative, feature-driven life cycles are best.

Develop an overall model: As depicted inFig. 3, the FDD process begins with
developing a model. Team members and experts work together to create a “walk-
through” version of the system.

FIG. 3. FDD Process (from http://www.togethercommunity.com).

http://www.togethercommunity.com

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 19
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

Build a features list: Next, the team identifies a collection of features represent-
ing the system. Features are small items useful in the eyes of the client. They are
similar to XP story cards written in a language understandable by all parties. Fea-
tures should take up to 10 days to develop [29]. Features requiring more time than
10 days are broken down into subfeatures.

Plan by feature: The collected feature list is then prioritized into subsections
called “design packages.” The design packages are assigned to a chief programmer,
who in turn assigns class ownership and responsibility to the other developers.

Design by feature & build by feature: After design packages are assigned, the
iterative portion of the process begins. The chief programmer chooses a subset of
features that will take 1 to 2 weeks to implement. These features are then planned in
more detail, built, tested, and integrated.

Team size: Team size varies depending on the complexity of the feature at hand.
DeLuca stresses the importance of premium people, especially modeling experts.

Iteration length: Up to two weeks.

Support for distributed teams: FDD is designed for multiple teams and, while it
does not have built-in support for distributed environments, it should be adaptable.

Criticality: The FDD prescription does not specifically address project critical-
ity.

2.2.5 Lean Development

Lean Development (LD), started by Bob Charette, draws on the success Lean
Manufacturing found in the automotive industry in the 1980s. While other Agile
Methods look to change the development process, Charette believes that to be truly
Agile you need to change how companies work from the top down. Lean Develop-
ment’s 12 principles focus on management strategies [29]:

(1) Satisfying the customer is the highest priority.
(2) Always provide the best value for the money.
(3) Success depends on active customer participation.
(4) Every LD project is a team effort.
(5) Everything is changeable.
(6) Domain, not point, solutions.
(7) Complete, do not construct.
(8) An 80 percent solution today instead of 100 percent solution tomorrow.
(9) Minimalism is essential.

(10) Needs determine technology.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 20
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

20 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

(11) Product growth is feature growth, not size growth.
(12) Never push LD beyond its limits.

Because LD is more of a management philosophy than a development process, team
size, iteration length, team distribution, and system criticality are not directly ad-
dressed.

2.2.6 Dynamic Systems Development Method

Dynamic Systems Development Method (DSDM), according to their website,11

is not so much a method as it is a framework. Arising in the early 1990s, DSDM
is actually a formalization of RAD practices [29]. As depicted inFig. 4, the DSDM
lifecycle has six stages: Pre-project, Feasibility Study, Business Study, Functional
Model Iteration, Design and Build Iteration, Implementation, and Post-project.

Pre-project: The pre-project phase establishes that the project is ready to begin,
funding is available, and that everything is in place to commence a successful project.

Feasibility study: DSDM stresses that the feasibility study should be short, no
more than a few weeks [56]. Along with the usual feasibility activities, this phase
should determine whether DSDM is the right approach for the project.

Business study: The business study phase is “strongly collaborative, using a se-
ries of facilitated workshops attended by knowledgeable and empowered staff who
can quickly pool their knowledge and gain consensus as to the priorities of the de-
velopment” (http://www.dsdm.org). The result of this phase is the Business Area
Definition, which identifies users, markets, and business processes affected by the
system.

Functional model iteration: The functional model iteration aims to build on
the high-level requirements identified in the business study. The DSDM framework
works by building a number of prototypes based on risk and evolves these prototypes
into the complete system. This phase and the design and build phase have a common
process:

(1) Identify what is to be produced.
(2) Agree how and when to do it.
(3) Create the product.
(4) Check that it has been produced correctly (by reviewing documents, demon-

strating a prototype or testing part of the system).12

11http://www.dsdm.org.
12http://www.dsdm.org.

http://www.dsdm.org
http://www.dsdm.org
http://www.dsdm.org

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 21
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

FIG. 4. The DSDM Lifecycle (from http://www.dsdm.org).

http://www.dsdm.org

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 22
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

22 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

Design and build iteration: The prototypes from the functional model iteration
are completed, combined, and tested and a working system is delivered to the users.

Implementation: During this phase, the system is transitioned into use. An In-
crement Review Document is created during implementation that discusses the state
of the system. Either the system is found to meet all requirements and can be consid-
ered complete, or there is missing functionality (due to omission or time concerns).
If there is still work to be done on the system, the functional model, design and build,
and implementation phases are repeated until the system is complete.

Post-project: This phase includes normal post-project clean-up, as well as on-
going maintenance.

Because of DSDM’s framework nature, it does not specifically address team size,
exact iteration lengths, distribution, or system criticality.

2.2.7 Agile Modeling

Agile Modeling (AM) is proposed by Scott Ambler [2]. It is a method based on
values, principles and practices that focus on modeling and documentation of soft-
ware. AM recognizes that modeling is a critical activity for a project success and
addresses how to model in an effective and Agile manner [3].

The three main goals of AM are [3]:

(1) To define and show how to put into practice a collection of values, principles
and practices that lead to effective and lightweight modeling.

(2) To address the issue on how to apply modeling techniques on Agile software
development processes.

(3) To address how you can apply effective modeling techniques independently
of the software process in use.

AM is not a complete software development method. Instead, it focuses only on doc-
umentation and modeling and can be used with any software development process.
You start with a base process and tailor it to use AM. Ambler illustrates, for example,
how to use AM with both XP and Unified Process (UP) [2].

The values of AM include those of XP—communication, simplicity, feedback and
courage—and also include humility. It is critical for project success that you have
effective communication in your team and also with the stakeholder of the project.
You should strive to develop the simplest solution that meets your needs and to get
feedback often and early. You should also have the courage to make and stick to your
decisions and also have the humility to admit that you may not know everything and
that others may add value to your project efforts.

Following is a summary of the principles of AM [2]:

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 23
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

(1) Assume simplicity: Assume that the simplest solution is the best solution.
(2) Content is more important than representation: You can use “post it” notes,

whiteboard or a formal document. What matters is the content.
(3) Embrace change: Accept the fact the change happens.
(4) Enabling your next effort is your secondary goal: Your project can still be a

failure if you deliver it and it is not robust enough to be extended.
(5) Everyone can learn from everyone else: Recognize that you can never truly

master something. There is always an opportunity to learn from others.
(6) Incremental change: Change your system a small portion at a time, instead

of trying to get everything accomplished in one big release.
(7) Know your models: You need to know the strengths and weaknesses of mod-

els to use them effectively.
(8) Local adaptation: You can modify AM to adapt to your environment.
(9) Maximize stakeholder investment: Stakeholders have the right to decide how

to invest their money and they should have a final say on how those resources
are invested.

(10) Model with a purpose: If you cannot identify why you are doing something,
why bother?

(11) Multiple models: You have a variety of modeling artifacts (e.g., UML dia-
grams, data models, user interface models, etc.).

(12) Open and honest communication: Open and honest communications enable
people to make better decisions.

(13) Quality work: You should invest effort into making permanent artifacts (e.g.,
code, documentation) of sufficient quality.

(14) Rapid feedback: Prefer rapid feedback to delayed feedback whenever possi-
ble.

(15) Software is your primary goal: The primary goal is to produce high-quality
software that meets stakeholders’ needs.

(16) Travel light: Create just enough models and documents to get by.
(17) Work with people’s instincts: Your instincts can offer input into your model-

ing efforts.

Here is a summary of the AM practices [2]:

(1) Active stakeholder participation: Project success requires a significant level
of stakeholder involvement.

(2) Apply modeling standards: Developers should agree and follow a common
set of modeling standards on a software project.

(3) Apply the right artifact(s): Modeling artifacts (UML diagram, use case, data
flow diagram, source code) have different strengths and weaknesses. Make
sure you use the appropriate one for your situation.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 24
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

24 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

(4) Collective ownership: Everyone can modify any model and artifact they need
to.

(5) Consider testability: When modeling, always ask the question: “how are we
going to test this?”

(6) Create several models in parallel: By creating several models you can iterate
between them and select the best model that suits your needs.

(7) Create simple content: You should not add additional aspects to your artifacts
unless they are justifiable.

(8) Depict models simply: Use a subset of the modeling notation available to
you, creating a simple model that shows the key features you are trying to
understand.

(9) Discard temporary models: Discard working models created if they no longer
add value to your project.

(10) Display models publicly: Make your models accessible for the entire team.
(11) Formalize contract models: A contract model is always required when you

are working with an external group that controls an information resource
(e.g., a database) required by your system.

(12) Iterate to another artifact: Whenever you get “stuck” working on an artifact
(if you are working with a use case and you are struggling to describe the
business logic), iterate with another artifact.

(13) Model in small increments: Model a little, code a little, test a little and deliver
a little.

(14) Model to communicate: One of the reasons to model is to communicate with
the team or to create a contract model.

(15) Model to understand: The main reasons for modeling is to understand the
system you are building, consider approaches and choose the best one.

(16) Model with others: It is very dangerous to model alone.
(17) Prove it with code: To determine if your model will actually work, validate

your model by writing the corresponding code.
(18) Reuse existing resources: There is a lot of information available that model-

ers can reuse to their benefit.
(19) Update only when it hurts: Only update a model or artifact when you ab-

solutely need to.
(20) Use the simplest tools: Use the simplest tool that works in your case: a nap-

kin, a whiteboard and even CASE tools if they are the most effective for your
situation.

Since AM is not a complete software process development method and should be
used with other development methods, the team size, exact iteration lengths, distrib-
ution and system criticality will depend on the development process being used.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 25
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

TABLE I
PRESCRIPTIVECHARACTERISTICS

XP Scrum Crystal FDD LD DSDM AM
Team size 2–10 1–7 Variable Variable
Iteration length 2 weeks 4 weeks < 4 months < 2 weeks N/A
Distributed support No Adaptable Yes Adaptable
System criticality Adaptable Adaptable All types Adaptable

2.3 Characteristics of Selected Agile Methods

Table Ipresents the collected prescriptive characteristics of the discussed methods.
As we have seen, different Agile Methods have different characteristics. A brief

comparison of Crystal Clear and XP resulted, for example, in the following [32]:

• XP pursues greater productivity through increased discipline, but it is harder for
a team to follow.

• Crystal Clear permits greater individuality within the team and more relaxed
work habits in exchange for some loss in productivity.

• Crystal Clear may be easier for a team to adopt, but XP produces better results
if the team can follow it.

• A team can start with Crystal Clear and move to XP; a team that fails with XP
can move to Crystal Clear.

2.4 Is Your Organization Ready for Agile Methods?

As we have seen, there are many Agile Methods to select from, each bringing
practices that will change the daily work of the organization. Before an organization
selects and implements an Agile Method, it should ponder whether or not it is ready
for Agile or not. Scott Ambler discusses factors affecting successful adoption in his
article “When Does(n’t) Agile Modeling Make Sense?” [7]. Number one on his list,
“Agile adoption, will be most successful when there is a conceptual fit between the
organization and the Agile view. Also important for adoption are your project and
business characteristics. Is your team already working incrementally? What is the
team’s motivation? What kind of support can the team expect?” [7]. Are there ade-
quate resources available? How volatile are the project requirements? Barry Boehm
suggests using traditional methods for projects where requirements change less than
1% per month [14].

Ambler also suggests the importance of an Agile champion—someone to tackle
the team’s challenges so they can work easily [7]. Boehm stresses the importance
of having well-trained developers, since Agile processes tend to place a high degree

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 26
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

26 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

of reliance on a developer’s tacit knowledge [14]. The customer also needs to be
devoted to the project, and must be able to make decisions. “Poor customers result
in poor systems” [19]. Boehm adds, “Unless customer participants are committed,
knowledgeable, collaborative, representative, and empowered, the developed prod-
ucts typically do not transition into use successfully, even though they may satisfy
the customer” [14].

Alistair Cockburn lists a few caveats when adopting an Agile process:

• As the number of people on a project grows, there is an increased strain on
communications.

• As system criticality increases, there is decreased “tolerance for personal styl-
istic variations.”

If Agile Methods do not seem to be a good fit for your project or organization right
off the bat, Ambler suggests partial adoption [7]. Look at your current develop-
ment process, identify the areas that need the most improvement, and adopt Agile
techniques that specifically address your target areas. After successful adoption of
the chosen practices and, even better, a demonstrated improvement to your over-
all process, continue selecting and implementing Agile techniques until you have
adopted the entire process.

3. State-of-the-Practice

Agile Methods are gaining popularity in industry, although they comprise a mix
of accepted and controversial software engineering practices. In recent years, there
have been many stories and anecdotes of industrial teams experiencing success with
Agile Methods. There is, however, an urgent need to empirically assess the applica-
bility of these methods, in a structured manner, in order to build an experience
base for better decision-making. In order to reach their goals, software develop-
ment teams need, for example, to understand and choose the right models and tech-
niques to support their projects. They must consider key questions such as “What
is the best life-cycle model to choose for a particular project? What is an appropri-
ate balance of effort between documenting the work and getting the product imple-
mented? When does it pay off to spend major efforts on planning in advance and
avoid change, and when is it more beneficial to plan less rigorously and embrace
change?”

While previous sections of this report discussed Agile Methods from a state-of-
the-art perspective, this section addresses these questions and captures the state-of-
the-practice and the experiences from applying Agile Methods in different settings.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 27
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

The section starts with results from an eWorkshop on Agile Methods followed by
other empirical studies.

3.1 eWorkshop on Agile Methods

The goal of the Center for Empirically-Based Software Engineering (CeBASE)
is to collect and disseminate knowledge on software engineering. A central activ-
ity toward achieving this goal has been the running of “eWorkshops” (or on-line
meetings). The CeBASE project defined the eWorkshop [9] and has, for example,
used it to collect empirical evidence on defect reduction and COTS [55]. This sec-
tion is based on a paper that discusses the findings of an eWorkshop in which ex-
periences and knowledge were gathered from, and shared between, Agile experts
located throughout the world [37]. The names of these 18 participants are listed in
the acknowledgments of this report.

3.1.1 Seeding the eDiscussion

For this eWorkshop, Barry Boehm’s January 2002 IEEE Computer article [14],
Highsmith and Cockburn’s articles [31,20], and the Agile Manifesto13 served as
background material, together with material defining Agile Methods such as Extreme
Programming (XP) [11], Scrum [54], Feature Driven Development (FDD) [16], Dy-
namic Systems Development Method (DSDM) [56], Crystal [17], and Agile Model-
ing [2].

Boehm brings up a number of different characteristics regarding Agile Methods
compared to what he calls “Plan-Driven Methods,” the more traditional Waterfall, in-
cremental or Spiral methods. Boehm contends that Agile, as described by Highsmith
and Cockburn [31], emphasizes several critical people-factors, such as amicability,
talent, skill, and communication, at the same time noting that 49.99% of the world’s
software developers are below average in these areas. While Agile does not require
uniformly highly capable people, it relies on tacit knowledge to a higher degree than
plan-driven projects that emphasize documentation. Boehm argues that there is a
risk that this situation leads to architectural mistakes that cannot be easily detected
by external reviewers due to the lack of documentation [14].

Boehm also notes that Cockburn and Highsmith conclude that “Agile development
is more difficult for larger teams” and that plan-driven organizations scale-up better
[31]. At the same time, the bureaucracy created by plan-driven processes does not
fit small projects either. This, again, ties back to the question of selecting the right
practices for the task at hand [14].

13http://www.agileAlliance.org.

http://www.agileAlliance.org

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 28
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

28 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

Boehm questions the applicability of the Agile emphasis on simplicity. XP’s phi-
losophy of YAGNI (You Aren’t Going to Need It) [11] is a symbol of the recom-
mended simplicity that emphasizes eliminating architectural features that do not
support the current version. Boehm feels this approach fits situations where future
requirements are unknown. In cases where future requirements are known, the risk
is, however, that the lack of architectural support could cause severe architectural
problems later. This raises questions like “What is the right balance between creating
a grandiose architecture up-front and adding features as they are needed?” Boehm
contends that plan-driven processes are most needed in high-assurance software [14].
Traditional goals of plan-driven processes such as predictability, repeatability and
optimization are often characteristics of reliable safety critical software development.
Knowing for what kind of applications different practices (traditional or Agile) are
most beneficial is crucial, especially for safety critical applications where human
lives can be at stake if the software fails.

Based on background material, the following issues were discussed:

(1) The definition of Agile.
(2) Selecting projects suitable for Agile.
(3) Introducing the method.
(4) Managing the project.

Each of these will be discussed in the following section. The full discussion summary
can be found on the FC-MD web site (http://fc-md.umd.edu).

3.1.2 Definition
The eWorkshop began with a discussion regarding the definition of Agile and its

characteristics, resulting in the following working definition.
Agile Methods are:

• Iterative: Delivers a full system at the very beginning and then changes the
functionality of each subsystem with each new release.

• Incremental: The system as specified in the requirements is partitioned into
small subsystems by functionality. New functionality is added with each new
release.

• Self-organizing: The team has the autonomy to organize itself to best complete
the work items.

• Emergent: Technology and requirements are “allowed” to emerge through the
product development cycle.

All Agile Methods follow the four values and twelve principles of the Agile Mani-
festo.

http://fc-md.umd.edu

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 29
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 29

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

3.1.3 Selecting Projects Suitable for Agile Methods
The most important factor that determines when Agile is applicable is probably

project size. From the discussion it became clear that there is [29]:

• Plenty of experience of teams with up to 12 people.

• Some descriptions of teams of approximately 25 people.

• A few data points regarding teams of up to 100 people, e.g., 45 and 90-person
teams.

• Isolated descriptions of teams larger than 100 people. (e.g., teams of 150 and
800 people were mentioned and documented in.

Many participants felt that any team could be Agile, regardless of its size. Alis-
tair Cockburn argued that size is an issue. As size grows, coordinating interfaces
becomes a dominant issue. Face-to-face communication breaks down and becomes
more difficult and complex past 20–40 people. Most participants agreed, but think
that this statement is true for any development process. Past 20–40 people, some kind
of scale-up strategies must be applied.

One scale-up strategy that was mentioned was the organization of large projects
into teams of teams. On one occasion, an 800-person team was organized using
“scrums of scrums” [53]. Each team was staffed with members from multiple prod-
uct lines in order to create a widespread understanding of the project as a whole.
Regular, but short, meetings of cross-project sub-teams (senior people or common
technical areas) were held regularly to coordinate the project and its many teams of
teams. It was pointed out that a core team responsible for architecture and standards
(also referred to as glue) is needed in order for this configuration to work. These
people work actively with the sub-teams and coordinate the work.

Effective ways of coordinating multiple teams include yearly holding conferences
to align interfaces, rotation of people between teams in 3-month internships, and
shared test case results. Examples of strategies for coping with larger teams are doc-
umented in Jim Highsmith’s Agile Software Development Ecosystems [29], in which
the 800-person team is described.

There is an ongoing debate about whether or not Agile requires “good people” to
be effective. This is an important argument to counter since “good people” can make
just about anything happen and that specific practices are not important when you
work with good people. This suggests that perhaps the success of Agile Methods
could be attributed to the teams of good folks, rather than practices and principles.
On the other hand, participants argued that Agile Methods are intrinsically valuable.
Participants agreed that a certain percentage of experienced people are needed for
a successful Agile project. There was some consensus that 25%–33% of the project
personnel must be “competent and experienced.”

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 30
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

30 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

“Competent” in this context means:

• Possess real-world experience in the technology domain.

• Have built similar systems in the past.

• Possess good people and communication skills.

It was noted that experience with actually building systems is much more important
than experience with Agile development methods. The level of experience might
even be as low as 10% if the teams practice pair programming [63] and if the makeup
of the specific programmers in each pair is fairly dynamic over the project cycle
(termed “pair rotation”). Programmers on teams that practice pair rotation have an
enhanced environment for mentoring and for learning from each other.

One of the most widespread criticisms of Agile Methods is that they do not work
for systems that have criticality, reliability and safety requirements. There was some
disagreement about suitability for these types of projects. Some participants felt that
Agile Methods work if performance requirements are made explicit early, and if
proper levels of testing can be planned for. Others argue that Agile best fits applica-
tions that can be built “bare bones” very quickly, especially applications that spend
most of their lifetime in maintenance.

There was also some disagreement about the best Agile Methods for critical
projects. A consensus seemed to form that the Agile emphasis on testing, particu-
larly the test-driven development practice of XP, is the key to working with these
projects. Since all tests have to be passed before release, projects developed with XP
can adhere to strict (or safety) requirements. Customers can write acceptance tests
that measure nonfunctional requirements, but they are more difficult and may require
more sophisticated environments than Unit tests.

Many participants felt that Agile Methods render it easier to address critical issues
since the customer gives requirements, makes important issues explicit early and
provides continual input. The phrase “responsibly responding to change” implies
that there is a need to investigate the source of the change and adjust the solution
accordingly, not just respond and move on. When applied right, “test first” satisfies
this requirement.

3.1.4 Introducing Agile Methods: Training Requirements

An important issue is how to introduce Agile Methods in an organization and how
much formal training is required before a team can start using it. A majority (though
not all) of the participants felt that Agile Methods require less formal training than
traditional methods. For example, pair programming helps minimize what is needed
in terms of training, because people mentor each other. This kind of mentoring (by
some referred to as tacit knowledge transfer) is argued to be more important than

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 31
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 31

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

explicit training. The emphasis is rather on skill development, not on learning Agile
Methods. Training on how to apply Agile Methods can many times occur as self-
training. Some participants have seen teams train themselves successfully. The par-
ticipants concluded that there should be enough training material available for XP,
Crystal, Scrum, and FDD.

3.1.5 Project Management: Success Factors and Warning
Signs

One of the most effective ways to learn from previous experience is to analyze past
projects from the perspective of success factors. The three most important success
factors identified among the participants were culture, people, and communication.

To be Agile is a cultural matter. If the culture is not right, then the organization
cannot be Agile. In addition, teams need some amount of local control. They must
have the ability to adapt working practices as they feel appropriate. The culture must
also be supportive of negotiation, as negotiation forms a large part of Agile culture.

As discussed above, it is important to have competent team members. Organi-
zations using Agile use fewer, but more competent people. These people must be
trusted, and the organization must be willing to live with the decisions developers
make, not consistently second-guess their decisions.

Organizations that want to be agile need to have an environment that facilitates
rapid communication between team members. Examples are physically co-located
teams and pair programming.

It was pointed out that organizations need to carefully implement these success
factors in order for them to happen. The participants concluded that Agile Meth-
ods are most appropriate when requirements are emergent and rapidly changing (and
there is always some technical uncertainty!). Fast feedback from the customer is an-
other factor that is critical for success. In fact, Agile is based on close interaction
with the customer and expects that the customer will be on-site to provide the quick-
est possible feedback, a critical success factor.

A critical part of project management is recognizing early warning signs that in-
dicate that something has gone wrong. The question posed to participants was “How
can management know when to take corrective action to minimize risks?”

Participants concluded that the daily meetings provide a useful way of measuring
problems. As a result of the general openness of the project and because discussions
of these issues are encouraged during the daily meeting, people will bring up prob-
lems. Low morale expressed by the people in the daily meeting will also reveal that
something has gone wrong that the project manager must deal with. Another indi-
cator is when “useless documentation” is produced, even though it can be hard to
determine what useless documentation is. Probably the most important warning sign

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 32
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

32 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

is when the team is falling behind on planned iterations. As a result, having frequent
iterations is very important to monitor for this warning sign.

A key tenet of Agile Methods (especially in XP) is refactoring. Refactoring means
improving the design of existing code without changing the functionality of the sys-
tem. The different forms of refactoring involve simplifying complex statements, ab-
stracting common solutions into reusable code, and the removal of duplicate code.

Not all participants were comfortable with refactoring the architecture of a system
because refactoring would affect all internal and external stakeholders. Instead, fre-
quent refactoring of reasonably-sized code, and minimizing its scope to keep changes
more local, were recommended. Most participants felt that large-scale refactoring is
not a problem, since it is frequently necessary and more feasible using Agile Meth-
ods. Participants strongly felt that traditional “Big Design Up Front (BDUF)” is
rarely on target, and its lack of applicability is often not fed back to the team that
created the BDUF, making it impossible for them to learn from experience. It was
again emphasized that testing is the major issue in Agile. Big architectural changes
do not need to be risky, for example, if a set of automated tests is provided as a
“safety net.”

Product and project documentation is a topic that has drawn much attention in dis-
cussions about Agile. Is any documentation necessary at all? If so, how do you deter-
mine how much is needed? Scott Ambler commented that documentation becomes
out of date and should be updated only “when it hurts.” Documentation is a poor form
of communication, but is sometimes necessary in order to retain critical information.
Many organizations demand more documentation than is needed. The organizations’
goal should be to communicate effectively, and documentation should be one of the
last options to fulfill that goal. Barry Boehm mentioned that project documentation
makes it easier for an outside expert to diagnose problems. Kent Beck disagreed, say-
ing that, as an outside expert who spends a large percentage of his time diagnosing
projects, he is looking for people “stuff” (like quiet asides) and not technical details.
Bil Kleb said that with Agile Methods, documentation is assigned a cost and its ex-
tent is determined by the customer (excepting internal documentation). Scott Ambler
suggested his Agile Documentation essay as good reference for this topic [4].

3.2 Lessons Learned

Several lessons can be learned from this discussion that should prove to be use-
ful to those considering applying Agile Methods in their organization. These lessons
should be carefully examined and challenged by future projects to identify the cir-
cumstances in which they hold and when they are not applicable.

Any team could be Agile, regardless of the team size, but should be considered
because greater numbers of people make communication more difficult. Much has

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 33
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 33

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

been written about small teams, but less information is available regarding larger
teams, for which scale-up strategies are necessary.

• Experience is important for an Agile project to succeed, but experience with
actually building systems is much more important than experience with Ag-
ile Methods. It was estimated that 25%–33% of the project personnel must be
“competent and experienced,” but the necessary percentage might even be as
low as 10% if the teams practice pair programming due to the fact that they
mentor each other.

• Agile Methods require less formal training than traditional methods. Pair pro-
gramming helps minimize what is needed in terms of training, because people
mentor each other. Mentoring is more important than regular training that can
many times be completed as self-training. Training material is available in par-
ticular for XP, Crystal, Scrum, and FDD.

• Reliable and safety-critical projects can be conducted using Agile Methods. Per-
formance requirements must be made explicit early, and proper levels of testing
must be planned. It is easier to address critical issues using Agile Methods since
the customer gives requirements, sets explicit priorities early and provides con-
tinual input.

• The three most important success factors are culture, people, and communi-
cation. Agile Methods need cultural support, otherwise they will not succeed.
Competent team members are crucial. Agile Methods use fewer, but more com-
petent, people. Physically co-located teams and pair programming support rapid
communication. Close interaction with the customer and frequent customer
feedback are critical success factors.

• Early warning signs can be spotted in Agile projects, e.g., low morale expressed
during the daily meeting. Other signs are production of “useless documentation”
and delays of planned iterations.

• Refactoring should be done frequently and of reasonably-sized code, keeping
the scope down and local. Large-scale refactoring is not a problem, and is
more feasible using Agile Methods. Traditional “BDUF” is a waste of time
and doesn’t lead to a learning experience. Big architectural changes do not need
to be risky if a set of automated tests is maintained.

• Documentation should be assigned a cost and its extent be determined by the
customer. Many organizations demand more than is needed. The goal should be
to communicate effectively and documentation should be the last option.

In another eWorkshop, the following experiences were reported regarding Agile and
CMM:

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 34
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

34 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

• At Boeing, XP was used before CMM was implemented and they were able to
implement the spirit of the CMM without making large changes to their soft-
ware processes. They used XP successfully, and CMM helped introduce the
Project Management Discipline.

• Asea Brown Boveri (ABB) is introducing XP while transitioning from CMM to
CMMI worldwide. They are in the opposite position from Boeing: CMM(I) was
introduced several years before XP, which is true for their corporate research
centers as well as for business units.

• NASA Langley Research Center reported a better match with CMM and Agile
when the CMM part is worded generally, as in “follow a practice of choice,”
and not delving into specifics such as, “must have spec sheet 5 pages long.”

• ABB added that their organization has adopted the CMMI framework and they
are incorporating Agile practices into the evolutionary development lifecycle
model. They believe that there is a clear distinction between life cycle mod-
els and continuous process improvement models such as CMMI and both are
not incompatible. No incompatibilities between Agile and CMM were reported
[38].

3.3 Case Studies

Another important source of empirical data is case studies. In this section, we
report from a selected number of case studies on different aspects of applying Agile
Methods.

3.3.1 Introducing XP

Karlström reports on a project at Online Telemarketing in Lund, Sweden, where
XP was applied [36]. The report is based both on observation and interviews with
the team that applied XP. The project was a success despite the fact that the customer
had a very poor idea of the system at the beginning of the project. All XP practices
were practically introduced. The ones that worked the best were: planning game,
collective ownership, and customer on site. They found small releases and testing
difficult to introduce.

Online Telemarketing is a small company specializing in telephone-based sales
of third party goods. It had recently been expanded internationally and management
realized that a new sales support system would be required. COTS alternatives were
investigated and discarded because they were expensive, and incorporating desired
functionality was difficult. The lack of detailed requirements specifications from
management, and the lack of a similar system, motivated the use of XP.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 35
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 35

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

The system was developed in Visual Basic, and it had 10K lines of code. The
development started in December 2000 and the first functional system was launched
in April 2001. The product has been in operation since August 2001.

The senior management at Online Telemarketing assumed the role of a customer.
Configuration management started without a tool and developers were supposed to
copy the files to a directory. This worked when they had two developers. When the
team grew, they added a text file to manage copies to checkout directory. This so-
lution still presented problems when the developers were out or working different
schedules. Once the communication issues were resolved the solution worked.

The following experiences were reported:

(1) The planning game: In total, 150 stories were implemented. Stories were
added during the whole project. In the beginning, time estimates were inac-
curate, but became better after a few weeks passed. Breaking the stories into
tasks was hard for the developers, causing them to create too detailed stories.
It was hard to set a common level of detail for the stories. In the end, this
practice proved to be one of the greatest successes.

(2) Small releases: The first iteration took too long because of the lack of ex-
perience with XP. Once a complete bare system was implemented, it was
easier to implement small releases. During the long initial release, they tried
to maintain the communication between the developers and the customer, to
avoid mistakes in development.

(3) Metaphor: They used a document that was an attempt at a requirements doc-
ument, before they decided to use XP and their metaphor. As the project
progressed, the document was not updated.

(4) Simple design: The development team stressed implementing the simplest
possible solution at all times. They thought that this practice saved them time
when a much larger solution would be implemented, avoiding unnecessary
code.

(5) Testing: Test-first was difficult to implement at first and VBUnit was hard to
learn and set up. When the time pressure increased, the developers started to
ignore test-first. Although they saw the benefits, it involved too much work.
Since it was hard to write tests for the GUI and the team thought that mas-
tering a GUI testing tool would take too long, they decided to test the GUI
manually. The customer tested the functionality of the system before each
release, and when a problem was found a correction card was created.

(6) Refactoring: No tools for refactoring were used, and the team performed
minor refactoring continuously. No major refactoring of the code was per-
formed.

(7) Pair programming: They used pair programming at all times. At first the
developers were not comfortable, but later they started to work naturally and

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 36
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

36 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

efficiently in pairs. The developers were inexperienced, which might be why
they felt uncomfortable. The lead developer thought that they produced code
faster in pairs than they would have if working alone.

(8) Collective ownership: This practice worked well. The developers avoided ir-
ritations by thinking of bugs as group issues instead of as someone’s defect.
The configuration management, however, was not very effective and some-
times developers were afraid to change code if not in direct contact with
others.

(9) Continuous integration: This practice was natural in the development envi-
ronment. As soon as the code was finished, it was integrated.

(10) 40-hour week: Since the developers were part-time, this practice was ad-
justed and followed.

(11) On site-customer: This practice worked well, despite some schedule conflicts
because the developers were part-time and the customer was played by busy
senior managers.

(12) Coding standards: A coding standard document was developed in the begin-
ning of the project and updated when needed. Over time, developers became
a little relaxed in following the standards, but once this was identified as an
issue, it was reinforced.

3.3.2 Launching XP at a Process-Intensive Company

Grenning reports experiences from the introduction of an adaptation of XP in an
organization with a large formal software development process [28]. The task was
to build a new system to replace an existing safety-critical legacy system. The new
system was an embedded-systems application running on Windows NT.

The system was divided into subsystems developed by different units. The author
was called to help one of these units. The author was very enthusiastic about XP and
decided to convince the team to apply some of the techniques.

The company already had a process in place that added a lot of overhead to the
development because requirements were partially defined and deadlines were tight.

Recognizing that the organization culture believed in up-front requirements and
designs followed by reviews and approvals, the team decided to “choose their bat-
tles” and introduce the practices that would be most beneficial for the project. One
major issue was documentation. How much documentation was sufficient? The team
would be developing a piece that was supposed to work with pieces being developed
by other teams using the standard process at the organization. They identified that
they needed enough documentation to define the product requirements, sustain tech-
nical reviews and support the system’s maintainers. Clean and understandable source
code and some form of interface documentation was necessary due to the need to

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 37
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 37

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

collaborate with other teams. XP recognizes that documentation has a cost and that
incomplete documentation might be cost-effective, but choosing not to create any
documentation would be unacceptable in this environment.

When proposing the new approach to management, story cards appeared unac-
ceptable and the team decided to use cases instead of story cards. The management
was concerned with future maintenance of the system; if the system was transitioned
to another team, more than readable code would be needed. After some discussions,
the team decided to create high-level documentation at the end of the project, in-
stead of documenting in the beginning followed by updates during the project. The
management, however, still wanted to be able to review the design. The proposed
solution was to document the design decisions and have them reviewed at the end of
every month. This removed the review from the critical path of the project.

Despite compromising on a few issues, the team got permission to apply test-first,
pair programming, short iterations, continuous integration, refactoring, planning, and
team membership for the customer.

According to Grenning, at the project’s conclusion, the programmers were happy
with their creation. After the fourth iteration the project manager was satisfied. The
reason is that they already had working code at a point when their regular process
would have produced only three documents. The project manager also recognized
that dependencies between the features were almost non-existent since they followed
the customer’s priorities and not the priorities dictated by a big design up front. The
team was Agile and able to adapt to other subsystems’ changing needs.

Grenning points out the importance of including senior team members because
they “spread the wealth of knowledge, and both they (senior people) and their pair
partners learn” [28]. Despite the fact that the project was terminated due to changes
in the market, the management was very pleased with results and two other pilot
projects were started.

At the end of the report, the author gives advice to management and developers
willing to try XP. For managers, it is important to try XP on a team with open-minded
leaders, encourage XP practices, and recruit a team that wants to try XP instead of
forcing a team to use XP. For developers, the advice is to identify the problems that
they might solve, develop a sales pitch and do a pilot project [28].

3.3.3 Using XP in a Maintenance Environment
Poole and Huisman report their experience with introducing XP in Iona Technolo-

gies [45]. Because of its rapid growth and time-to-market pressures, the engineering
team often ignored engineering practices. As a result, they ended up with a degener-
ated code that was salvaged in reengineering efforts that led to XP.

As part of the improvement effort, they used a bug-tracking tool to identify prob-
lem areas of the code. The code was cleaned through the elimination of used code

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 38
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

38 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

and the introduction of patterns that made it easier to test, maintain and understand
the code. As part of this effort, one lead engineer promoted stronger engineering
practices making engineers constantly consider how they could improve the quality
of their code. Testing of the whole system was also automated. After all these trans-
formations, the company saw a lot of improvement. Despite their progress, however,
they still had issues to resolve regarding testing, visibility, morale and personal work
practices. They already had a maintenance process in place that had a lot in common
with XP practices, so they decided to apply XP in order to solve the remaining issues.

All bugs reported by customers, enhancement requirements, and new functional
requirements are documented. That documentation is accessible by both customers
and the team. They do not use index cards for the requirements and the requirements
are not in the form of user stories yet. Index cards are used to track tasks and those
tasks are added to storyboards. The developers estimate the tasks, and the customers
prioritize them. When the tasks are finished, they are removed from the storyboard,
recorded in a spreadsheet and the cards are archived in the task log. They also intro-
duced daily stand-up meetings to increase visibility and also stimulate communica-
tion among the team members.

They automated their whole testing process, making it possible to test the whole
system with the click of a button. All engineers are supposed to test the whole system
after changes are made to ensure nothing was broken.

They report that convincing programmers to do pair programming is extremely
difficult. Luckily, their pair programming experience came to them by accident. In
2000, a customer engineer working with them paired with the developers. The expe-
rience was good, the team felt that they worked more effectively, the overall produc-
tivity was high and morale improved. They are now trying to formally introduce pair
programming.

Increments are kept short and they continuously produce small releases. Refac-
toring has also been extensively applied, which can be seen in the code reviews.
Engineers are encouraged to identify areas of the code that are candidates for refac-
toring, and they follow up after delivery with a refactoring task in the storyboard.
In order to improve communications, they also changed the workspace to make pair
programming easier and facilitate discussions of their ideas on whiteboards.

The effort seemed to pay off and the productivity increase is noticeable. In their
point of view the greatest benefit to the team has been the increase in visibility. The
storyboards let people see what others are doing and help management track progress
and plan.

They conclude the paper pointing out that the application of pair programming
and collection of metrics can improve their process. They believe that improving the
pair programming initiative can improve their lack of cross-training among the code
base’s many modules. The metrics are critical to the planning game, since estimating

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 39
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 39

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

how long a story will take requires finding a similar story in the past and researching
how long it took. Currently they are tracking estimates and actuals on a spreadsheet
and are working to integrate this into their defect tracking system.

3.3.4 XP’s “Bad Smells”
In an attempt to provide early warning signals (“bad smells”) when applying XP,

Elssamadisy and Schalliol analyzed a three-year project involving 30 developers (50
in total) that produced about 500,000 lines of executable code [25]. The project
switched to XP due to previous experiences with ineffective traditional methods.
The lessons learned from the experience of applying XP can be useful to others:

• Customers are typically happy during early iterations but later begin to com-
plain about many things from all iterations. The customer needs to be coached
to provide early and honest feedback. Elssamadisy and Schalliol suggest they
think like buying a tailored suit in which you cannot just have measurements
taken at the beginning.

• Programmers are typically not sure of how functionality works together. Large
complex systems require a good metaphor or overview.

• Everyone claims the story cards are finished, yet it requires weeks of full-time
development to deliver a quality application. The solution is to create a precise
list of tasks that must be completed before a story is finished, and make sure
programmers adhere to the rules: Acknowledge poorly estimated stories and
reprioritize. Do not rush to complete them and cut corners with refactoring or
testing.

The authors concluded pointing out that the team needs to be conscious of the process
the whole time, and that laziness will affect the whole team.

3.3.5 Introducing Scrum in Organizations
Cohn and Ford [22] have successfully introduced Scrum to seven organizations

over a period of four years. They discuss their lessons learned, as well as mistakes.
In several cases they encountered resistance from developers who preferred to

develop non-code artifacts and from those who “valued their contribution to a project
by the number of meetings attended in a given day” [22]. Some even tried to put
more documentation back into the process. The solution used by the authors is to not
intervene and instead let peers decide whether to adopt suggestions or not.

The authors were surprised to find that many developers view Agile Methods as
micromanagement. In traditional projects, developers meet the project manager once
a week, but in an Agile environment they meet daily. To change developers’ per-
ceptions, the project manager has to show that he is there to remove obstacles, not

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 40
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

40 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

to complain about missed deadlines and must not be judgmental when developers
report that they will be delayed with their tasks.

Distributed development has been successful, and the authors believe that meth-
ods other than Scrum can also be used in distributed environments. They propose
waiting two or three months until developers get used to Agile development before
implementing distributed development. In order for distributed development to work,
many people must be brought together for the first few weeks of the project.

Experience shows that Agile Methods require good developers and that “produc-
tivity difference matters most when two programmers are writing code. . . [it is]
irrelevant during those times when both are, for example, trapped in an unnecessary
meeting” [22]. When fully engaged, a team will move quickly. If there are too many
slow people, the whole team will slow down or move forward without them.

One team was overly zealous and did not anticipate productivity decrease during
transition and did not use forethought well enough. The conclusion is that “this team
did not have the discipline required for XP and, while paying lip service to XP, they
were actually doing nothing more than hacking” [22].

The authors’ experience is that testers are even more prone to view Agile as mi-
cromanagement. In typical organizations, testers do not receive much attention from
managers and are not used to the extra attention they get in Agile processes. Involv-
ing testers in the daily routine as soon as possible poses one solution, but they should
not write code or unit tests for programmers.

A common experience is that managers are reluctant to give up the feeling of
control they get from documents typically generated by document-driven method-
ologies. The solution is to show where past commitments have been incorrect
(time/date/cost/functionality), so that management can be convinced to try Agile
Methods.

A surprising experience is that the Human Resource (HR) department can be in-
volved in a project adopting Agile processes. The authors experienced several cases
where HR received complaints by developers who did not like the process. For ex-
ample, they received specific complaints regarding pair programming. Working with
and informing HR beforehand so that they are prepared to deal with issues that might
appear, can prevent this situation.

3.3.6 Lessons in Agility from Internet-Based Development

Scott Ambler describes two different approaches for developing software in two
successful Internet startups that provided insights to what later became Agile Mod-
eling [6].

The two companies were growing and needed to redesign their systems. They
wanted to use an accredited software development process like Rational Unified

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 41
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 41

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

Process (RUP) to gain the trust of investors, while at the same time they wanted
a process that would not impose a lot of bureaucracy that might slow them down.
In both organizations, management and some members of the development team
wanted more modeling; others thought it was a waste of time. Ambler calls the com-
panies XYZ and PQR.

XYZ used an approach of modeling in teams. The team would design by white-
boarding. In the beginning, they were uncomfortable with whiteboarding and tried to
use CASE tools instead, but they later discovered that whiteboarding was more effi-
cient because a modeling language did not limit them and they could more quickly
express their ideas.

PQR decided to hire a chief architect. The architect talked to members of the team,
and designed privately. Later he published his results on the web and members of the
team gave him feedback.

Both organizations developed in a highly interactive manner and released incre-
mentally in short cycles. Both generated documentation in HTML and learned that
design and documentation are separate activities. XYZ’s architecture was developed
more quickly, since lots of people worked in parallel. XYZ’s architecture found
greater acceptance since the development team participated in the architectural team.
PQR’s approach led to lower costs, since the chief architect worked alone. The chief
architect also provided a single source control that sometimes caused a bottleneck in
the process. Both approaches resulted in scalable architecture that met the needs of
the organization, and both approaches worked well within a RUP environment.

Ambler shares the lessons learned from these approaches:

• People matter and were key to the success, in accordance with the Agile Mani-
festo: “value of individuals over processes and tools” [12].

• You do not need as much documentation as you think. Both organizations cre-
ated only documentation that was useful and needed.

• Communication is critical. Less documentation led to greater communication.

• Modeling tools are not as useful as you think. The organizations tried to use
UML modeling tools, but the tools generated more documentation than needed
and were limited to the UML language. White boards and flipcharts, on the
other hand, were very useful.

• You need a variety of modeling techniques in your toolkit. Since UML was
not sufficient, both companies needed to perform process-, user interface- and
data-modeling.

• Big up-front design is not required. Both organizations quickly began work
without waiting months for detailed modeling and documentation before they
started.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 42
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

42 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

• Reuse the wheel, do not reinvent it. At XYZ, they took advantage of open source
whenever possible.

3.3.7 Agile Modeling and the Unified Process

Ambler presents a case study of the introduction of a combination of Agile Model-
ing and Rational Unified Process [5]. The method was introduced in a small project.
Failure would be noticeable, but would not jeopardize the whole organization. Am-
bler points out the importance of the organization’s will to change in the success of
the introduction.

Different people on the team with different backgrounds had various reactions to
the method. For example, one member of the team was used to Big Design Up Front
and had a hard time doing an incremental design and development. Others felt more
comfortable. Management was involved and interested in the effort and satisfied to
see constant progress in the project.

While whiteboards made sense to the team members, they were not comfortable
with index cards and post it notes. They needed a document using the appropriate
tools (Together/J, Microsoft Visio, etc.). In Ambler’s opinion, the team produced too
much documentation. This is, however, not necessarily negative since documenting
increased their comfort level during the transition.

3.4 Other Empirical Studies

In this section we discuss a selected set of experiments and surveys on Agile Meth-
ods.

3.4.1 XP in a Business-to-Business (B2B) Start-up

In the paper “Extreme adoption experiences of a B2B start-up” [33], the authors
report from a case study in which two nearly identical projects used XP and non-XP
practices. The XP-project delivered the same amount of functionality during a shorter
period of time and required considerably less effort than the non-XP project. The
XP project also increased code quality with test-first, resulting in a 70% reduction
in bugs and increased architectural quality. The value of the study is questionable,
however, as the non-XP project was stopped 20 months into the project “because
of excessive costs of ownership” [33] and the XP project “was suspended after nine
months of development” [33]. The conclusions are thus based on extrapolations of
the unfinished projects and not on complete projects.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 43
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 43

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

3.4.2 Empirical Experiments with XP

In order to compare XP and traditional methodologies, the authors ran a pilot XP
experiment [40]. The study involved eighty 2nd year undergraduate students as part
of a project for real clients. The students were divided into fifteen teams working
for three clients. During five weeks, each of the three clients described what their
software needs were. After that, the software was developed. Some teams used XP
while others did not. At the end of the semester, five versions of the system that each
of the clients had specified were produced. The clients evaluated the quality of the
systems without knowing which systems were developed using XP and which ones
were not.

This experiment demonstrated that the XP teams generated more useful documen-
tation and better manuals than the other teams. Two of the three clients found that
the best external factors were in the products produced by the XP teams. The lectur-
ers concluded that the products delivered by the XP teams possessed better internal
qualities.

3.4.3 Survey Conducted by Cutter Consortium

Cockburn and Highsmith mention results from a survey conducted by the Cutter
Consortium in 2001. Two hundred people from organizations all over the world re-
sponded to the survey [20]. The findings pointed out by Cockburn and Highsmith
are:

• Compared to a similar study in 2000, many more organizations were using at
least one Agile Method.

• In terms of business performance, customer satisfaction and quality, Agile
Methods showed slightly better results than traditional methods.

• Agile Methods lead to better employee morale.

3.4.4 Quantitative Survey on XP Projects

Rumpe and Schröder report the results of a survey conducted in 2001 [51]. Forty-
five participants involved in XP projects from companies of various sizes and differ-
ent international locations completed the survey. Respondents had different levels of
experience and participated in finished and in-progress projects using XP.

The main results of the survey indicate that most projects were successful and all
of the developers would use XP on the next project if appropriate. The results also
indicate that most problems are related to resistance to change: developers refused to
do pair programming and managers were skeptical, etc. Common code ownership,
testing and continuous integration were the most useful practices. Less used and most

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 44
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

44 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

difficult to apply were metaphor and on-site customer. The success factors most often
mentioned were testing, pair programming and the focus of XP on the right goals.

The authors point out potential problems with the survey. XP might be deemed
successful due to the fact that the respondents were happy with XP. Others that had
bad experiences with XP might not have been reached or did not answer. Also, early
adopters tend to be highly motivated, which may be responsible for projects’ success.

Interestingly, the results showed that there are larger projects that use XP. From
the total of responses:

• 35.6% teams had up to 5 people,

• 48.9% teams had up to 10 people,

• 11.1% teams had up to 15 people, and

• 4.4% teams had up to 40 people.

The survey asked respondents to rate project progress and results relative to tradi-
tional approaches on a scale from 5 (much better) to−5 (much worse). On average,
respondents rated the cost of late changes, the quality of results, the fun factor of
work, and on-time delivery higher than a three on this scale. No negative ratings were
given. The authors divided the results between the finished and ongoing projects. It is
interesting to note that both the cost of change and quality were deemed less positive
by the finished projects than the ongoing ones. The authors suggest that this sustains
the fact that changes in later phases still have higher costs.

3.4.5 How to Get the Most Out of XP and Agile Methods

Reifer reports the results of a survey of thirty-one projects that used XP/Agile
Methods practices [49]. The goals of the survey were to identify the practices be-
ing used, their scope and conditions, the costs and benefits of their use and lessons
learned.

Most projects were characterized by small teams (less than ten participants), with
the exception of one project that had thirty engineers. All projects were low-risk and
lasted one-year or less. The primary reason for applying XP/Agile Methods was to
decrease time-to-market.

Startup seemed most difficult for the majority of the organizations: Enthusiastic
staff that wanted to try new techniques needed to convince management. Practices
introduced in pilot projects represented low-risk to the organization.

The projects noticed an average gain of 15%–23% in productivity, 5%–7% cost
reduction on average and 25%–50% reduction in time to market.

The paper also points out 4 success factors:

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 45
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 45

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

• Proper domain fit: XP/Agile Methods have been recognized as working best on
small projects, where systems being developed are precedent, requirements are
stable and architecture is well established.

• Suitable state of organizational readiness: XP/Agile requires a cultural change.
Make sure the workforce is well trained and educated.

• Process focus: Adapt and refine instead of throwing away what you have. Agile
projects work best when integrated into an existing framework.

• Appropriate practice set: Do not be afraid to put new practices in place when
they are needed to get the job done.

3.4.6 Costs and Benefits of Pair Programming

Pair Programming, one of the key practices of XP, marks a radical departure from
traditional methods and has been the focus of some controversy. Pair programming
has been argued to improve quality of software and improve successes of projects
by increasing communication in the teams. Others, however, are skeptical because
it seems to take two people to do the work of one, and some developers do not
feel comfortable working in pairs. Pros and cons, as well as main concepts, best
practices, and practical advice to successfully apply Pair Programming, are discussed
in a paper based on an experiment at the University of Utah where one third of the
class developed the projects individually and the rest developed in pairs. The results
were analyzed from the point of views of economics, satisfaction, and design quality
[21].

• Economics: The results showed that the pairs only spent 15% more time to
program than the individuals and the code produced by pairs had 15% fewer
defects. Thus, pair programming can be justified purely on economic grounds
since the cost of fixing defects is high.

• Satisfaction: Results from interviews with individuals who tried pair program-
ming were analyzed. Although some were skeptical and did not feel comfort-
able at first, most programmers enjoyed the experience.

• Design quality: In the Utah study, the pairs not only completed their projects
with better quality but also implemented the same functionality in fewer lines
of code. This is an indication of better design.

Other benefits of pair programming are continuous reviews, problem solving,
learning, and staff and project management [21]:

• Continuous reviews: Pair programming serves as a continual design and code
review that helps the removal of defects.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 46
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

46 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

• Problem solving: The teams found that, by developing in pairs, they had the
ability to solve problems faster.

• Learning: The teams emphasized how much they learned from each other by do-
ing pair programming. Pair programmers often mention that they also learned to
discuss and work together, improving team communications and effectiveness.

• Staff and project management: From the staff and project management point
of view, since people are familiar with each piece of code, staff-loss risks are
reduced.

Pair programming is further discussed in a new book by Williams and Kessler [62].

4. Conclusions

Agile Methods are here to stay, no doubt about it. Agile Methods will probably
not “win” over traditional methods but live in symbiosis with them. While many Ag-
ile proponents see a gap between Agile and traditional methods, many practitioners
believe this narrow gap can be bridged. Glass even thinks that “[t]raditionalists have
a lot to learn from the Agile folks” and that “traditional software engineering can be
enriched by paying attention to new ideas springing up from the field” [26].

Why will Agile Methods not rule out traditional methods?
Agile Methods will not out rule traditional methods because diverse processes

for software engineering are still needed. Developing software for a space shuttle
is not the same as developing software for a toaster [39]. Not to mention that the
need to maintain software, typically a much bigger concern than development, also
differs according to the circumstances [52]. Software maintenance is, however, not
an issue discussed in Agile circles yet, probably because it is too early to draw any
conclusions on how Agile Methods might impact software maintenance.

So what is it that governs what method to use?
One important factor when selecting a development method is the number of peo-

ple involved, i.e., project size. The more people involved in the project, the more rig-
orous communication mechanisms need to be. According to Alistair Cockburn, there
is one method for each project size, starting with Crystal Clear for small projects and,
as the project grows larger, the less Agile the methods become [17].

Other factors that have an impact on the rigor of the development methods are
application domain, criticality, and innovativeness [26]. Applications that may en-
danger human life, like manned space missions, must, for example, undergo much

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 47
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 47

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

stricter quality control than less critical applications. At the same time, a traditional
method might kill projects that need to be highly innovative and are extremely sen-
sitive to changes in market needs.

In conclusion, the selection of a method for a specific project must be very careful,
taking into consideration many different factors, including those mentioned above.
In many cases, being both Agile and stable at the same time will be necessary. A con-
tradictory combination, it seems, and therefore extra challenging, but not impossible.
As Siemens states, “We firmly believe that agility is necessary, but that it should be
built on top of an appropriately mature process foundation, not instead of it” [41].

Where is Agile going?

Agile is currently an umbrella concept encompassing many different methods. XP
is the most well known Agile Method. While there may always be many small meth-
ods due to the fact that their proponents are consultants who need a method to guide
their work, we expect to see some consolidation in the near future. We compare the
situation to events in the object-oriented world in the 1990s, where many different
gurus promoted their own methodology. In a few years, Rational, with Grady Booch,
became the main player on the method market by recruiting two of the main gurus:
James Rumbaugh (OMT) and Ivar Jacobsson (Objectory). Quickly the “three ami-
gos” abandoned the endless debates regarding whose method was superior, which
mainly came down to whether objects are best depicted as clouds (Booch), rectan-
gles (OMT), or circles (Objectory), and instead formed a unified alliance to quickly
become the undisputed market leader for object-oriented methods. We speculate that
the same can happen to the Agile Methods, based, for example, on the market-leader
XP. Even if the Agile consolidation is slow or non-existent, what most likely will
happen, independent of debates defining what is and is not Agile, practitioners will
select and apply the most beneficial Agile practices. They will do so simply because
Agile has proven that there is much to gain from using their approaches and because
of the need of the software industry to deliver better software, faster and cheaper.

ACKNOWLEDGEMENTS

This book chapter was based on a State-of-the-Art Report entitled “Agile Software
Development” authored by the same authors and produced by DoD Data & Analysis
Center for Software (DACS).

We would like to recognize our expert contributors who participated in the first
eWorkshop on Agile Methods and thereby contributed to the section on State-of-the-
Practice:

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 48
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

48 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

Scott Ambler (Ronin International, Inc.),
Ken Auer (RoleModel Software, Inc.),
Kent Beck (founder and director of the Three Rivers Institute),
Winsor Brown (University of Southern California),
Alistair Cockburn (Humans and Technology),
Hakan Erdogmus (National Research Council of Canada),
Peter Hantos (Xerox), Philip Johnson (University of Hawaii),
Bil Kleb (NASA Langley Research Center),
Tim Mackinnon (Connextra Ltd.),
Joel Martin (National Research Council of Canada),
Frank Maurer (University of Calgary),
Atif Memon (University of Maryland and Fraunhofer Center for Experimental

Software Engineering),
Granville (Randy) Miller (TogetherSoft),
Gary Pollice (Rational Software),
Ken Schwaber (Advanced Development Methods, Inc. and one of the developers

of Scrum),
Don Wells (ExtremeProgramming.org),
William Wood (NASA Langley Research Center).

We also would like to thank our colleagues who helped arrange the eWorkshop and
co-authored that same section:

Victor Basili, Barry Boehm, Kathleen Dangle, Forrest Shull, Roseanne Tesoriero,
Laurie Williams, Marvin Zelkowitz.

We would like to thank Jen Dix for proof reading this chapter.

Appendix A: An Analysis of Agile Methods

‘Agile’ has become a buzzword in the software industry. Many methods and
processes are referred to as ‘Agile,’ making it difficult to distinguish between one
and the next. There is a lack of literature on techniques with which to compare soft-
ware development methods, so we have developed processes through which to draw
this comparison. This technique will not be the focus of this section, nor do we guar-
antee its comprehensiveness, but we found it adequate for our analysis, which we
will discuss in detail below.

While conducting our research, we found it difficult to distinguish between meth-
ods in respect to which aspect of software development each method targeted. To
help with our own understanding, we decided to examine each method in terms of
what activities it supports, and to what extent. All methods, whether traditional or
Agile, address the following project aspects to varying degrees: development sup-
port, management support, communications support, and decision-making support.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 49
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 49

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

Although critics may find more project areas missing from this list, these are the four
we felt were most critical for Agile Methods.

The next obstacle was to find a basis for comparison between methods. For this,
we decided to use each method’s core practices or rules. This method for comparison
does have its drawbacks:

• Some methods, like XP, have a discrete collection of practices while others, like
Scrum, are not as clearly delineated.

• Processes such as Lean Development (LD) present more principles than prac-
tices. LD’s “Satisfying the customer is the highest priority” principle, for in-
stance, is stated at a much more abstract level than Scrum’s Constant Testing
practice.

• Relying on a method’s stated core practices naturally leaves a lot of the method
behind. Daily standup meetings practiced in XP are not explicitly stated in the
12 practices but, nonetheless, emphasize XP’s attention to communication.

Despite these acknowledged limitations, we feel each method’s core practices or
principles provide a good representation of the method’s focus. Researchers inter-
ested in pursuing further this line of analysis may want to explore how to adequately
represent and compare methods and processes.

We began by breaking the support groups (development, management, com-
munication, decision-making) into smaller subsections for easier analysis. Devel-
opment was redefined as requirements collection/analysis, design, coding, test-
ing/integration, and maintenance. Management was clarified as project manage-
ment. Communication was split into developer-customer, developer-manager, and
developer-developer communication. Decision-making was separated into release
planning, design & development, and project management.

A survey was conducted asking five experts to classify the core practices of XP,
Scrum, Lean Development, FDD, and DSDM. The results were averaged and color-
coded in an attempt to create easily readable results. Support agreement of more than
60% is black, 0–59% is white, and 0% (all experts agreed there is no support) is gray.
A brief explanation of well-supported (black) aspects follows each chart.

A.1 Extreme Programming
XP was the method best understood by our experts; all five responded. XP’s

practices are abbreviated as: The Planning Game (PG), Small Releases (SR), The
Metaphor (M), Simple Design (SD), Test-First Development (TF), Refactoring (R),
Pair Programming (PP), Continuous Integration (CI), Collective Code Ownership
(CO), On-Site Customer (OC), 40-Hour Work Week (WW), and Open Workspace
(OW).

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 50
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

50 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

TABLE II
XP DEVELOPMENTSUPPORT

PG: The Planning Game is used for Requirements collection and clarification
at the beginning of each iteration and is also employed to address Mainte-
nance issues between iterations.

SR: Small Releases force developers to Design-in components and Test after
each release.

M: Interestingly, our experts found Metaphor, the oft-cited least understood
practice, to provide support for all phases of development. By creating one
or a set of metaphors to represent the system, decisions involving Require-
ments, Design, Coding, Testing/Integration, and Maintenance can be easily
evaluated for relevance and priority.

SD: Simple Design helps a developer choose their Design, tells them how to
Code sections when presented with multiple alternatives, and makes Main-
tenance easier than a complicated design.

TF: Test-First is a way of Coding as well as a Testing approach, and makes
Maintenance easier by providing a test suite against which modifications
can be checked.

R: Refactoring tells a developer to simplify the Design when she sees the op-
tion, affects Coding in the same way, and facilitates Maintenance by keep-
ing the design simple.

PP: Pair Programming has two developers code at the same computer, and lets
them collaborate with Designing and Coding. Maintenance is affected be-
cause two developers working together will usually produce less, and better
written code than a single developer working alone.

CI: Continuous Integration is an approach to Coding, and obviously effects
how and when developers Integrate new code.

CCO: Collective Code Ownership is a way for developers to program, giving
them the option to modify other’s Code.

OSC: On-Site Customer impacts Requirements because developers may discuss
and clarify requirements at any time.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 51
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 51

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

OW: Open Workspace allows all developers, even those beyond the pair pro-
gramming team, to collaborate with Coding and Integration.

TABLE III
XP MANAGEMENT SUPPORT

PG: The Planning Game allows the project manager to meet with all the project
stakeholders to plan the next iteration.

SR: Small Releases tell the manager how often to iterate.

CI: Continuous Integration allows the project manager (PM) to see the current
state of the system at any point in time.

OSC: On-Site Customer enables the manager to better interact with the customer
than she would be able to with an offsite customer.

WW: The 40 hour Work Week provides a philosophy on how to manage people.

OW: Open Workspace tells the PM how the work environment should be set up.

TABLE IV
XP COMMUNICATION SUPPORT

PG: The Planning Game helps the Developers communicate with the Customer,
the Manager, and other Developers, in the beginning of each iteration.

SR: Small Releases provide instant project progress assessment for Customers,
Managers, and Developers between iterations.

M: Using a Metaphor or a set of metaphors allows Customers, Managers, and
Developers to communicate in a common, non-technical language.

SD: Simple Design encourages Developers to communicate their ideas as sim-
ply as possible.

TF: Test-First allows Developers to communicate the purpose of code before it
is even developed.

R: Refactoring encourages Developers to simplify code, making the design
simpler and easier to understand.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 52
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

52 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

PP: Pair Programming allow sets of Developers to communicate intensely
while coding.

CI: Continuous Integration allows the Managers and Developers to check the
current state of the system at any time.

CCO: Collective Code Ownership allows Developers to communicate through
code, comments, and documentation.

OSC: On-Site Customer facilitates quick communication between the Customer
and the Developers.

OW: Open Workspace enables Developers and Managers to communicate
quickly and freely.

TABLE V
XP DECISION-MAKING SUPPORT

PG: The Planning Game assists decision making for Releases and helps Project
Managers plan the project.

SR: Small Releases dictates how often to iterate which affects Release Planning
and Project Management.

M: Metaphor guides Design decisions based on how well the design fits the
metaphor.

SD: Simple Design guides Design decisions when presented with multiple
choices.

TF: Test-First tells the developer that before he Designs and Develops any new
code, he must first write the test.

PP: Pair Programming lets programmers collaborate on Design and Develop-
ment decisions.

CI: Continuous Integration instructs the programmers to integrate on a regular
basis, which affects how Design and Development is conducted.

CCO: Collective Code Ownership encourages developers to make changes to
parts of the code that they did not author instead of waiting for the original
developer to get around to it, and affects how Design and Development is
conducted.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 53
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 53

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

OSC: On-Site Customer allows the customer and PM to interact frequently, en-
abling quick decision-making.

A.2 Scrum

Only three experts felt comfortable answering about Scrum. The core practices are
abbreviated: Small Teams (ST), Frequent Builds (FB), Low-Coupling Packets (LCP),
Constant Testing (CT), Constant Documentation (CD), Iterative Controls (IC), Abil-
ity to declare the project done at any time (DPD).

TABLE VI
SCRUM DEVELOPMENTSUPPORT

ST: Breaking the development group into Small Teams affects how the system
is Designed and distributed between teams.

FB: Frequent Builds affects Coding practices and means that new code needs to
be Integrated on a regular basis. Maintenance is also affected, as a current
version of the system is always available for testing, catching errors earlier.

LCP: Low-Coupling Packets influences the system Design and Coding practices.
Testing, Integration, and Maintenance should be made easier due to relative
component independence.

CT: Constant Testing changes the way developers need to Code, Test and Inte-
grate, and should make Maintenance easier by catching more bugs during
development.

CD: Constant Documentation affects the way Requirements, Design, and Cod-
ing are conducted. The presence of up-to-date documentation should facil-
itate testing and maintenance.

IC: Iterative Controls help prioritize and guide Requirements collection and
Design. They also affect how Coding, and Testing and Integration are con-
ducted.

DPD: The ability to declare a project done at any time has far reaching conse-
quences; every step in the development process should be treated as if it
were in the last iteration.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 54
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

54 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

TABLE VII
SCRUM MANAGEMENT SUPPORT

ST: Small Teams means Managers have to manage and distribute work between
teams and team leaders.

FB: Frequent Builds allows Managers to see the state of the system at any given
time to track progress.

LCP: Low Coupling Packets influences how Managers distribute work.

CT: Constant Testing provides the Manager with a system he can demo or ship
at any time.

CD: Constant Documentation provides an up-to-date snapshot of the system and
its progress, which can be used by the Manager for tracking or for bringing
new people up to speed.

IC: Iterative Controls help the Manager gauge requirements, functionality, risk,
and plan iterations.

DPD: The ability to declare a product done at any time is a Management philoso-
phy placing emphasis on usability and correctness of the system rather than
strict feature growth.

TABLE VIII
SCRUM COMMUNICATION SUPPORT

ST: Small Teams help break down communications barriers, allowing easy, in-
formal communication between all parties in the teams.

FB: Frequent Builds enables Developers to communicate the status of the sys-
tem with other Developers and Managers at any time.

LCP: Low Coupling Packets reduce the need for technical communications be-
tween Developers.

CT: Constant Testing allows Developers to know the current state of the system
at any point in time.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 55
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 55

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

CD: By providing comprehensive up-to-date documentation, any stakeholder
can learn about their respective interests in the system.

IC: Iterative Controls provide a means through which Customers, Management,
and Developers collaborate to plan iterations.

TABLE IX
SCRUM DECISIONMAKING SUPPORT

ST: Small Teams make all levels of decision-making easier by involving a
smaller number of individuals on lower level decisions.

FB: Frequent Builds help Managers plan and monitor Releases and Develop-
ment.

LCP: Low-Coupling Packets help guide Design decisions.

CT: Constant Testing tells developers to test as they Code.

CD: Constant Documentation dictates that documentation should be produced
and kept up to date not only for code but also for Requirements and Release
Planning. The produced documentation helps guide the PM.

IC: Iterative Controls help guide the PM with respect to Release Planning de-
cisions.

DPD: The ability to declare a project done at any time affects what kind of fea-
tures or fixes are incorporated into the next Release, and also affects the
mentality with which the PM Manages the Project.

A.3 Lean Development

The 12 principles of LD are abbreviated as: Satisfying the Customer is the highest
priority (SC), always provide the Best Value for the money (BV), success depends on
active Customer Participation (CP), every LD project is a Team Effort (TE), Every-
thing is Changeable (EC), Domain not point Solutions (DS), Complete do not con-
struct (C), an 80 percent solution today instead of 100 percent solution tomorrow
(80%), Minimalism is Essential (ME), Needs Determine Technology (NDT), prod-
uct growth is Feature Growth not size growth (FG), and Never Push LD beyond its
limits (NP). 3 experts contributed to the LD survey.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 56
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

56 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

TABLE X
LEAN DEVELOPMENTSUPPORT

BV: Always provide the Best Value for the money means that during require-
ments analysis, easy-to-implement features that provide a quick win are im-
plemented, rather than hard to implement features that do not provide imme-
diate value. Similarly, this effects Coding and Design. They should be done
with optimal trade-off between quality and time.

CP: Requirements collection and analysis works best with active Customer Par-
ticipation.

TE: Every phase of development is a Team Effort.

DS: By focusing on Domain Solutions, Design and Coding should look to cre-
ate reusable components. Domain solutions will be pre-tested and should be
easier to Integrate and Maintain than brand new code.

C: When Designing to Construct a new system, LD teams look to purchase parts
of the system that may already be commercially available. By doing so, Test-
ing and Integration should be easier, as the shrink-wrapped portion is, ideally,
bug-free.

TABLE XI
LEAN DEVELOPMENTMANAGEMENT SUPPORT

SC: The PM needs to change her frame of mind to make Customer Satisfaction
the highest priority, as opposed to budget, politics, and other concerns.

BV: The PM also needs to manage the project with the goal to build and priori-
tize the system to provide the Best Value for the money.

CP: It becomes the PM’s responsibility to keep the Customer Participating in
the project.

TE: The PM needs to include the entire Team in decision-making processes.

80%: Instead of making everything perfect, the PM should focus on providing the
best system she can at the moment.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 57
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 57

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

ME: The PM should focus on keeping team size, code size, documentation, and
budget as small as necessary for a successful project.

TABLE XII
LEAN DEVELOPMENTCOMMUNICATIONS SUPPORT

SC: Ensuring Customer Satisfaction entails enhanced communication between
the Developers and Customers.

CP: Active Customer Participation gives Customers more incentive to work with
the Developers.

TE: The ‘everything is a Team Effort’ philosophy encourages communication be-
tween all members of the team.

TABLE XIII
LEAN DEVELOPMENTDECISIONMAKING SUPPORT

SC: Prioritizing Customer Satisfaction means that during Release Planning, De-
sign and Development, and Project Management, the interest of the cus-
tomer may have to be put before that of the team.

BV: Providing the Best Value for the money is a management philosophy, af-
fecting mostly what requirements get prioritized for what release.

CP: Active Customer Participation provides decision support for PM’s, and is
also instrumental in prioritizing Release features.

EC: Having the ability to Change Everything means that Release and Design de-
cisions are not set in stone, letting them be made more quickly and changed
later if necessary.

C: An emphasis on Constructing based on already-built components has a large
effect on Design decisions.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 58
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

58 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

80%: Having an 80% solution today means that, from a Release, Design, and PM
perspective, adding a new feature today is a better decision than completing
an old one.

ME: Minimalism helps a PM decide what artifacts to produce during develop-
ment.

NDT: The Needs Determine Technology philosophy helps the PM and designers
decide on an appropriate solution rather than a high-tech solution for high-
tech’s sake.

FG: By emphasizing Feature Growth, Releases and PM’s tend to push features
more than other requirements.

A.4 Feature Driven Development

The core practices of FDD are abbreviated: problem domain Object Model-
ing (OM), Feature Development (FD), Component/class Ownership (CO), Feature
Teams (FT), Inspections (I), Configuration Management (CM), Regular Builds (RB),
and Visibility of progress and results (V). Only 2 experts felt comfortable enough
with FDD to complete the survey.

TABLE XIV
FEATURE DRIVEN DEVELOPMENTSUPPORT

OM: Object Modeling provides a different approach to Design.

FD: Feature Development provides a development methodology that effects the
way Design, Coding, and Integration are approached. Maintenance is also
affected as the system is considered as a collection of features rather than
lines of code.

CO: Individual Code Ownership means that Design, Coding, and Integration be-
come individual efforts.

FT: Feature Teams means that the feature as a whole becomes a team effort.

I: Inspections are a testing technique that should produce better and more bug-
free code that is easier to Maintain.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 59
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 59

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

CM: Configuration Management is established for support of Testing, Integration,
and Maintenance.

RB: Regular Builds affect coding procedures, help to integrate testing and inte-
gration during the development process, and make maintenance easier with
more bug-free code.

TABLE XV
FEATURE DRIVEN DEVELOPMENTMANAGEMENT SUPPORT

FD: Feature Development allows the PM to manage teams by easily separating
development workload.

CO: Code Ownership gives the PM a point of contact about any piece of the
system.

FT: Feature Teams allow the PM to break the team effort into more easily man-
ageable sections.

RB: Regular Builds give the PM a snapshot of the system at any point in time.

V: Visibility of progress allows easy tracking of the project.

TABLE XVI
FEATURE DRIVEN DEVELOPMENTCOMMUNICATION SUPPORT

OM: Object Modeling allows Developers to communicate with Managers and
other Developers specifically, and in detail, about small components of the
system.

FD: Feature Development allows the Developer to prototype and display working
units of the system to Managers and Customers.

CO: Code Ownership gives Managers and other Developers a point of contact
about specific sections of code in the system.

FT: Feature Teams allow easy collaboration and communication between Devel-
opers and Managers.

I: Inspections allow Developers to read, explain and understand the code.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 60
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

60 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

CM: Configuration Management provides a vehicle for communication for De-
velopers and Managers.

RB: Regular Builds let Developers and Managers see the current state of the sys-
tem.

V: Progress Visibility allows the Customer to track the project with ease.

TABLE XVII
FEATURE DRIVEN DEVELOPMENTDECISIONMAKING SUPPORT

OM: Object Modeling allows for a flexible framework for Design.

FD: Feature Development allows for easy distribution of features in releases. Pro-
totyped features can be tested, designed, and developed, and Project Man-
agers can manage the system as a set of features.

CO: Code Ownership gives PM’s a point of contact for specific pieces of code.

FT: By building a small team to handle Features, decision-making for release,
design and development is delegated to the group. It also guides the PM’s
resource allocation.

I: Inspections correct and reshape design and code.

CM: Configuration Management provides a resource and reference for PM’s.

RB: Regular Builds provide feedback during Development.

V: Visibility allows the project manager to track the project and make changes
when necessary.

A.5 Dynamic Systems Development Methodology

Only one expert felt comfortable enough with DSDM to complete the survey.
DSDM’s principles are abbreviated: Active User Involvement is imperative (AUI),
DSDM teams must be Empowered to make decisions (E), focus is on Delivery Of
Products (DOP), Fitness for business purpose is the essential criterion for acceptance
of deliverables (F), Iterative and incremental development is necessary to converge
on an accurate business solution (I), all changes during development are Reversible
(R), requirements are baselines at a High Level (HL), Testing is Integrated through-

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 61
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 61

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

out the life cycle (TI), and a Collaborative and Cooperative approach between all
stakeholders is essential (CC).

TABLE XVIII
DYNAMIC SYSTEMSDEVELOPMENTMETHODOLOGYDEVELOPMENTSUPPORT

AUI: Active User Involvement is important for good Requirements collection.

E: Team Empowerment allows developers to make the right decisions during
Design and Coding.

DOP: Frequent Delivery Of Products gives the customer a system they can Test
while it is still under development.

I: Incremental development affects the entire development process, breaking
Requirements collection, Design, Coding, Testing, Integration, and Mainte-
nance into short cycles.

R: Reversible decisions means developers can feel freer to commit to decisions
during Design and Coding. During Testing or Integration these decisions
can be reversed, if necessary.

HL: High Level requirements keep Requirements collection at an abstraction
high enough for participation from all stakeholders.

TI: Constant Testing and Integration allows bugs to be caught and fixed earlier
in the development lifecycle.

CC: A Collaborative approach between stakeholders will assist in accurate Re-
quirements collection.

TABLE XIX
DYNAMIC SYSTEMSDEVELOPMENTMETHODOLOGYMANAGEMENT SUPPORT

AUI: The Project Manager needs to manage collaboration between users and the
Customer and Developers.

E: Empowering teams means Management has to be more flexible.

DOP: Focus on the Delivery Of Products is a Management mindset.

F: Management needs to consider Fitness for purpose over other factors.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 62
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

62 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

I: Iterative development breaks Management into smaller, more intense cy-
cles.

R: The project manager needs to feel free to make decisions without worrying
about irReversible consequences.

CC: Managers need to facilitate Collaboration between stakeholders.

TABLE XX
DYNAMIC SYSTEMSDEVELOPMENTMETHODOLOGYCOMMUNICATION SUPPORT

AUI: Active User Involvement ensures good communication between Develop-
ers and the Customer.

DOP: Frequent Delivery Of Products allows Managers and Customers to keep
up-to-date on the status of the system.

I: Incremental development gives Developers, Managers, and Customers fre-
quent opportunities to interact.

HL: High Level requirements provide Developers with a vehicle for non-
technical requirements communication with Managers and Customers.

TI: Integrated Testing allows Developers and Managers to see the state of the
system at any point in time.

CC: A Collaborative approach keeps the Customer actively involved.

TABLE XXI
DYNAMIC SYSTEMSDEVELOPMENTMETHODOLOGYDECISIONMAKING SUPPORT

AUI: Management needs to keep users actively involved.

E: Teams can feel free to make design and development decisions as they see
fit.

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 63
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 63

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

DOP: Management philosophy needs to reflect the frequent delivery of products
and plan releases accordingly.

F: Management needs to evaluate decisions on fitness for the business pur-
pose.

I: Iterative development makes decision-making cycles shorter and deals with
smaller, more frequent decisions.

R: Reversible decisions means that decision making does not have to be 100%
complete or hold up the process until made.

TI: Developers learn to test frequently during development.

REFERENCES

[1] Abrahamsson P., Salo O., Ronkainen J., Warsta J., “Agile software development meth-
ods”,VTT Publications 478 (2002).

[2] Ambler S., Agile Modeling, John Wiley and Sons, 2002.
[3] Ambler S., “Introduction to agile modeling (AM)”. Available: http://www.ronin-intl.

com/publications/agileModeling.pdf, 2002.
[4] Ambler S., “Agile documentation”, http://www.agilemodeling.com/essays/

agileDocumentation.htm, 2001, 12-4-2002.
[5] Ambler S., “Agile modeling and the unified process”, http://www.agilemodeling.com/

essays/agileModelingRUP.htm, 2001, 12-4-2002.
[6] Ambler S., “Lessons in agility from internet-based development”,IEEE Software 19 (2)

(Mar. 2002) 66–73.
[7] Ambler S., “When does(n’t) agile modeling make sense?”, http://www.agilemodeling.

com/essays/whenDoesAMWork.htm, 2002, 12-4-2002.
<uncited> [8] Bailey P., Ashworth N., Wallace N., “Challenges for stakeholders in adopting XP”, in:

Proc. 3rd International Conference on eXtreme Programming and Agile Processes in
Software Engineering—XP2002, 2002, pp. 86–89. Available: http://www.xp2002.org/
atti/Bailey-Ashworth-ChallengesforStakeholdersinAdoptingXP.pdf.

[9] Basili V.R., Tesoriero R., Costa P., Lindvall M., Rus I., Shull F., Zelkowitz M.V.,
“Building an experience base for software engineering: A report on the first CeBASE
eWorkshop”, in:Proc. Profes (Product Focused Software Process Improvement), 2001,
pp. 110–125. Available: http://citeseer.nj.nec.com/basili01building.html.

[10] Beck K., “Embrace change with extreme programming”,IEEE Computer (Oct. 1999)
70–77.

[11] Beck K., Extreme Programming Explained: Embracing Change, Addison–Wesley, 1999.
[12] Beck K., Cockburn A., Jeffries R., Highsmith J., “Agile manifesto”, http://www.

agilemanifesto.org, 2001, 12-4-2002.
[13] Boehm B., “A spiral model of software development and enhancement”,IEEE Com-

puter 21 (5) (1988) 61–72.

http://www.ronin-intl.com/publications/agileModeling.pdf
http://www.ronin-intl.com/publications/agileModeling.pdf
http://www.ronin-intl.com/publications/agileModeling.pdf
http://www.agilemodeling.com/essays/agileDocumentation.htm
http://www.agilemodeling.com/essays/agileDocumentation.htm
http://www.agilemodeling.com/essays/agileDocumentation.htm
http://www.agilemodeling.com/essays/agileModelingRUP.htm
http://www.agilemodeling.com/essays/agileModelingRUP.htm
http://www.agilemodeling.com/essays/agileModelingRUP.htm
http://www.agilemodeling.com/essays/whenDoesAMWork.htm
http://www.agilemodeling.com/essays/whenDoesAMWork.htm
http://www.agilemodeling.com/essays/whenDoesAMWork.htm
http://www.xp2002.org/atti/Bailey-Ashworth-ChallengesforStakeholdersinAdoptingXP.pdf
http://www.xp2002.org/atti/Bailey-Ashworth-ChallengesforStakeholdersinAdoptingXP.pdf
http://www.xp2002.org/atti/Bailey-Ashworth-ChallengesforStakeholdersinAdoptingXP.pdf
http://citeseer.nj.nec.com/basili01building.html
http://www.agilemanifesto.org
http://www.agilemanifesto.org
http://www.agilemanifesto.org

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 64
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

64 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

[14] Boehm B., “Get ready for agile methods, with care”,IEEE Computer (Jan. 2002) 64–69.
[15] Bowers P., “Highpoints from the agile software development forum”,Crosstalk (Oct.

2002) 26–27.
[16] Coad P., deLuca J., Lefebvre E., Java Modeling in Color with UML, Prentice Hall, 1999.
[17] Cockburn A., “Selecting a project’s methodology”,IEEE Software 17 (4) (2000) 64–71.
[18] Cockburn A., “Agile software development joins the ‘would-be’ crowd”,Cutter IT Jour-

nal (Jan. 2002) 6–12.
[19] Cockburn A., Highsmith J., “Agile software development: The business of innovation”,

IEEE Computer (Sept. 2001) 120–122.
[20] Cockburn A., Highsmith J., “Agile software development: The people factor”,IEEE

Computer (Nov. 2001) 131–133.
[21] Cockburn A., Williams L., “The costs and benefits of pair programming”, in:Proc. eX-

treme Programming and Flexible Processes in Software Engineering—XP2000, 2000.
Available: http://collaboration.csc.ncsu.edu/laurie/Papers/XPSardinia.PDF.

[22] Cohn M., Ford D., “Introducing an agile process to an organization”, http://www.
mountaingoatsoftware.com/articles/IntroducingAnAgileProcess.pdf, 2002, 8-2-2002.

<uncited> [23] Deias R., Giampiero M., Murru O., “Introducing XP in a start-up”, in:Proc. 3rd
International Conference on eXtreme Programming and Agile Processes in Soft-
ware Engineering—XP2002, 2002, pp. 62–65. Available: http://www.xp2002.org/atti/
Deias-Mugheddu--IntroducingXPinastart-up.pdf.

[24] DeMarco T., Boehm B., “The agile methods fray”,IEEE Computer (June 2002) 90–92.
[25] Elssamadisy A., Schalliol G., “Recognizing and responding to ‘bad smells’ in extreme

programming,” 2002, pp. 617–622.
[26] Glass R., “Agile versus traditional: Make love, not war”,Cutter IT Journal (Dec. 2001)

12–18.
[27] Glazer H., “Dispelling the process myth: Having a process does not mean sacrificing

agility or creativity”,Crosstalk (Nov. 2001).
[28] Grenning J., “Launching extreme programming at a process-intensive company”,IEEE

Software 18 (6) (Nov. 2001) 27–33.
[29] Highsmith J., Agile Software Development Ecosystems, Addison–Wesley, Boston, MA,

2002.
[30] Highsmith J., “What is agile software development?”,Crosstalk (Oct. 2002) 4–9.
[31] Highsmith J., Cockburn A., “Agile software development: The business of innovation”,

IEEE Computer (Sept. 2001) 120–122.
[32] Highsmith J., Orr K., Cockburn A., “Extreme programming”, in:E-Business Application

Delivery, Feb. 2000, pp. 4–17. Available: http://www.cutter.com/freestuff/ead0002.pdf.
[33] Hodgetts P., Phillips D., “Extreme adoption experiences of a B2B start-up”, http://

www.extremejava.com/eXtremeAdoptioneXperiencesofaB2BStartUp.pdf, 12-4-2002.
[34] Humphrey W.S., A Discipline for Software Engineering, Addison–Wesley, Reading,

MA, 1995.
[35] Jeffries R., “Extreme programming and the capability maturity model”, http://www.

xprogramming.com/xpmag/xp_and_cmm.htm, 12-4-2002.

http://collaboration.csc.ncsu.edu/laurie/Papers/XPSardinia.PDF
http://www.mountaingoatsoftware.com/articles/IntroducingAnAgileProcess.pdf
http://www.mountaingoatsoftware.com/articles/IntroducingAnAgileProcess.pdf
http://www.mountaingoatsoftware.com/articles/IntroducingAnAgileProcess.pdf
http://www.xp2002.org/atti/Deias-Mugheddu--IntroducingXPinastart-up.pdf
http://www.xp2002.org/atti/Deias-Mugheddu--IntroducingXPinastart-up.pdf
http://www.xp2002.org/atti/Deias-Mugheddu--IntroducingXPinastart-up.pdf
http://www.cutter.com/freestuff/ead0002.pdf
http://www.extremejava.com/eXtremeAdoptioneXperiencesofaB2BStartUp.pdf
http://www.extremejava.com/eXtremeAdoptioneXperiencesofaB2BStartUp.pdf
http://www.extremejava.com/eXtremeAdoptioneXperiencesofaB2BStartUp.pdf
http://www.xprogramming.com/xpmag/xp_and_cmm.htm
http://www.xprogramming.com/xpmag/xp_and_cmm.htm
http://www.xprogramming.com/xpmag/xp_and_cmm.htm

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 65
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

AN INTRODUCTION TO AGILE METHODS 65

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

[36] Karlström D., “Introducing extreme programming—an experience report”, in:Proc.
3rd International Conference on eXtreme Programming and Agile Processes in Soft-
ware Engineering—XP2002, 2002, pp. 24–29. Available: http://www.xp2002.org/atti/
DanielKarlstrom--IntroducingExtremeProgramming.pdf.

[37] Lindvall M., Basili V.R., Boehm B., Costa P., Dangle K., Shull F., Tesoriero R., Williams
L., Zelkowitz M.V., “Empirical findings in agile methods”, in:Proc. Extreme Pro-
gramming and Agile Methods—XP/Agile Universe 2002, 2002, pp. 197–207. Available:
http://fc-md.umd.edu/mikli/Lindvall_agile_universe_eworkshop.pdf.

[38] Lindvall Mi., Basili V.R., Boehm B., Costa P., Shull F., Tesoriero R., Williams L.,
Zelkowitz M.V., Results from the 2nd eWorkshop on agile methods, Fraunhofer Cen-
ter for Experimental Software Engineering, College Park, Maryland 20742, Aug., 2002.
Technical Report 02-109.

[39] Lindvall M., Rus I., “Process diversity in software development”,IEEE Software 17 (4)
(Aug. 2000) 14–71. Available: http://fc-md.umd.edu/mikli/LindvallProcessDiversity.
pdf.

[40] Macias F., Holcombe M., Gheorghe M., “Empirical experiments with XP”, in:Proc.
3rd International Conference on eXtreme Programming and Agile Processes in Soft-
ware Engineering—XP2002, 2002, pp. 225–228. Available: http://www.xp2002.org/atti/
Macias-Holcombe--EmpiricalexperimentswithXP.pdf.

[41] Paulisch F., Völker A., “Agility—build on a mature foundation”, in:Proc. Software En-
gineering Process Group Conference—SEPG 2002, 2002.

[42] Paulk M.C., “Extreme programming from a CMM perspective”,IEEE Software 18 (6)
(2001) 19–26.

[43] Paulk M.C., “Agile methodologies and process discipline”,Crosstalk (Oct. 2002) 15–18.
[44] Paulk M.C., “Key practices of the capability maturity model, version 1.1”, Technical

Report CMU/SEI-93-TR-25, 1993.
[45] Poole C., Huisman J., “Using extreme programming in a maintenance environment”,

IEEE Software 18 (6) (Nov. 2001) 42–50.
[46] Poppendieck M., “Lean programming”, http://www.agilealliance.org/articles/articles/

LeanProgramming.htm, 2001, 4-12-2002.
<uncited> [47] Puttman D., “Where has all the management gone?”, in:Proc. 3rd Inter-

national Conference on eXtreme Programming and Agile Processes in Soft-
ware Engineering—XP2002, 2002, pp. 39–42. Available: http://www.xp2002.org/atti/
DavidPutman--WhereHasAllTheManagementGone.pdf.

[48] Rakitin S.R., “Manifesto elicits cynicism”,IEEE Computer 34 (12) (Dec. 2001) 4.
[49] Reifer D., “How to get the most out of extreme programming/agile methods”, in:Proc.

Extreme Programming and Agile Methods—XP/Agile Universe 2002, 2002, pp. 185–
196.

[50] Royce W.W., “Managing the development of large software systems: Concepts and tech-
niques”, in:Proc. WESCON, 1970, pp. 1–9.

[51] Rumpe B., Schröder A., “Quantitative survey on extreme programming project”. Avail-
able: http://www.xp2002.org/atti/Rumpe-Schroder--
QuantitativeSurveyonExtremeProgrammingProjects.pdf, 2002.

http://www.xp2002.org/atti/DanielKarlstrom--IntroducingExtremeProgramming.pdf
http://www.xp2002.org/atti/DanielKarlstrom--IntroducingExtremeProgramming.pdf
http://www.xp2002.org/atti/DanielKarlstrom--IntroducingExtremeProgramming.pdf
http://fc-md.umd.edu/mikli/Lindvall_agile_universe_eworkshop.pdf
http://fc-md.umd.edu/mikli/LindvallProcessDiversity.pdf
http://fc-md.umd.edu/mikli/LindvallProcessDiversity.pdf
http://fc-md.umd.edu/mikli/LindvallProcessDiversity.pdf
http://www.xp2002.org/atti/Macias-Holcombe--EmpiricalexperimentswithXP.pdf
http://www.xp2002.org/atti/Macias-Holcombe--EmpiricalexperimentswithXP.pdf
http://www.xp2002.org/atti/Macias-Holcombe--EmpiricalexperimentswithXP.pdf
http://www.agilealliance.org/articles/articles/LeanProgramming.htm
http://www.agilealliance.org/articles/articles/LeanProgramming.htm
http://www.agilealliance.org/articles/articles/LeanProgramming.htm
http://www.xp2002.org/atti/DavidPutman--WhereHasAllTheManagementGone.pdf
http://www.xp2002.org/atti/DavidPutman--WhereHasAllTheManagementGone.pdf
http://www.xp2002.org/atti/DavidPutman--WhereHasAllTheManagementGone.pdf
http://www.xp2002.org/atti/Rumpe-Schroder--QuantitativeSurveyonExtremeProgrammingProjects.pdf
http://www.xp2002.org/atti/Rumpe-Schroder--QuantitativeSurveyonExtremeProgrammingProjects.pdf
http://www.xp2002.org/atti/Rumpe-Schroder--QuantitativeSurveyonExtremeProgrammingProjects.pdf

adcom60 v.2003/12/29 Prn:20/01/2004; 11:06 F:adcom62001.tex; VTEX/PS p. 66
aid: 62001 pii: S0065-2458(03)62001-2 docsubty: REV

66 D. COHEN ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

[52] Rus I., Seaman C., Lindvall M., “Process diversity in software maintenance—guest edi-
tors’ introduction”,Software Maintenance Research and Practice, Dec. 2002, in press.

[53] Schwaber K., Beedle M., Agile Software Development with SCRUM, Prentice Hall, 2002.
[54] Schwaber K., “Controlled chaos: living on the edge”, http://www.agilealliance.org/

articles/articles/ap.pdf, 2002, 4-12-2002.
[55] Shull F., Basili V.R., Boehm B., Brown A.W., Costa P., Lindvall M., Port D., Rus

I., Tesoriero R., Zelkowitz M.V., “What we have learned about fighting defects”, in:
Proc. 8th International Software Metrics Symposium, 2002, pp. 39–42. Available: http://
fc-md.umd.edu/fcmd/Papers/shull_defects.ps.

[56] Stapleton J., DSDM: The Method in Practice, Addison–Wesley, 1997.
[57] The C3 Team, “Chrysler goes to “extremes””, in:Distributed Computing, Oct. 1998,

pp. 24–28.
[58] Turk D., France R., Rumpe B., “Limitations of agile software processes”, in:Proc.

3rd International Conference on eXtreme Programming and Agile Processes in Soft-
ware Engineering—XP2002, 2002. Available: http://www4.informatik.tu-muenchen.
de/~rumpe/ps/XP02.Limitations.pdf.

[59] Turner R., Jain A., “Agile meets CMMI: Culture clash or common cause?”, in:Proc.
eXtreme Programming and Agile Methods—XP/Agile Universe 2002, 2002, pp. 153–
165.

<uncited> [60] Vic B., Turner A.J., “Iterative enhancement: A practical technique for software develop-
ment”, IEEE Transactions on Software Engineering 1 (4) (1975) 390–396.

<uncited> [61] Bellott V., Burton R.R., Ducheneaut N., Howard M., Neuwirth C., Smith I., “XP in a
research lab: The hunt for strategic value”, in:Proc. 3rd International Conference on
eXtreme Programming and Agile Processes in Software Engineering—XP2002, 2002,
pp. 56–61. Available: http://www.xp2002.org/atti/Bellotti-Burton--XPInAResearchLab.
pdf.

[62] Williams L., Kessler R.R., Pair Programming Illuminated, Addison–Wesley, 2003.
[63] Williams L., Kessler R.R., Cunningham W., Jeffries R., “Strengthening the case for pair

programming”,IEEE Software 17 (4) (2000) 19–25.

http://www.agilealliance.org/articles/articles/ap.pdf
http://www.agilealliance.org/articles/articles/ap.pdf
http://www.agilealliance.org/articles/articles/ap.pdf
http://fc-md.umd.edu/fcmd/Papers/shull_defects.ps
http://fc-md.umd.edu/fcmd/Papers/shull_defects.ps
http://fc-md.umd.edu/fcmd/Papers/shull_defects.ps
http://www4.informatik.tu-muenchen.de/~rumpe/ps/XP02.Limitations.pdf
http://www4.informatik.tu-muenchen.de/~rumpe/ps/XP02.Limitations.pdf
http://www4.informatik.tu-muenchen.de/~rumpe/ps/XP02.Limitations.pdf
http://www.xp2002.org/atti/Bellotti-Burton--XPInAResearchLab.pdf
http://www.xp2002.org/atti/Bellotti-Burton--XPInAResearchLab.pdf
http://www.xp2002.org/atti/Bellotti-Burton--XPInAResearchLab.pdf

	An Introduction to Agile Methods
	Introduction
	History
	The Agile Manifesto
	Agile and CMM(I)

	State-of-the-Art
	What Does It Mean to be Agile?
	A Selection of Agile Methods
	Extreme Programming
	Team size:
	Iteration length:
	Support for distributed teams:
	System criticality:

	Scrum
	Pre-sprint planning:
	Sprint:
	Post-sprint meeting:
	Team size:
	Iteration length:
	Support for distributed teams:
	System criticality:

	The Crystal Methods
	Team size:
	Iteration length:
	Support for distributed teams:
	System criticality:

	Feature Driven Development
	Develop an overall model:
	Build a features list:
	Plan by feature:
	Design by feature & build by feature:
	Team size:
	Iteration length:
	Support for distributed teams:
	Criticality:

	Lean Development
	Dynamic Systems Development Method
	Pre-project:
	Feasibility study:
	Business study:
	Functional model iteration:
	Design and build iteration:
	Implementation:
	Post-project:

	Agile Modeling

	Characteristics of Selected Agile Methods
	Is Your Organization Ready for Agile Methods?

	State-of-the-Practice
	eWorkshop on Agile Methods
	Seeding the eDiscussion
	Definition
	Selecting Projects Suitable for Agile Methods
	Introducing Agile Methods: Training Requirements
	Project Management: Success Factors and Warning Signs

	Lessons Learned
	Case Studies
	Introducing XP
	Launching XP at a Process-Intensive Company
	Using XP in a Maintenance Environment
	XP's ``Bad Smells''
	Introducing Scrum in Organizations
	Lessons in Agility from Internet-Based Development
	Agile Modeling and the Unified Process

	Other Empirical Studies
	XP in a Business-to-Business (B2B) Start-up
	Empirical Experiments with XP
	Survey Conducted by Cutter Consortium
	Quantitative Survey on XP Projects
	How to Get the Most Out of XP and Agile Methods
	Costs and Benefits of Pair Programming

	Conclusions
	Why will Agile Methods not rule out traditional methods?
	So what is it that governs what method to use?
	Where is Agile going?

	Acknowledgements
	An Analysis of Agile Methods
	Extreme Programming
	Scrum
	Lean Development
	Feature Driven Development
	Dynamic Systems Development Methodology

	References

