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ABSTRACT 
This paper presents an approach to automatically optimiz- 
ing the retrieval quality of search engines using clickthrough 
data. Intuitively, a good information retrieval system should 
present relevant documents high in the ranking, with less 
relevant documents following below. While previous ap- 
proaches to learning retrieval functions from examples exist, 
they typically require training data generated from relevance 
judgments by experts. This makes them difficult and ex- 
pensive to apply. The goal of this paper is to develop a 
method that  utilizes clickthrough data for training, namely 
the query-log of the search engine in connection with the 
log of links the users clicked on in the presented ranking. 
Such clickthrough data is available in abundance and can 
be recorded at very low cost. Taking a Support Vector Ma- 
chine (SVM) approach, this paper presents a method for 
learning retrieval functions. From a theoretical perspective, 
this method is shown to be well-founded in a risk minimiza- 
tion framework. Furthermore, it is shown to be feasible 
even for large sets of queries and features. The theoreti- 
cal results are verified in a controlled experiment. It shows 
that  the method can effectively adapt the retrieval function 
of a meta-search engine to a particular group of users, out- 
performing Google in terms of retrieval quality after only a 
couple of hundred training examples. 

1. INTRODUCTION 
Which WWW page(s) does a user actually want to re- 

trieve when he types some keywords into a search engine? 
There are typically thousands of pages that  contain these 
words, but the user is interested in a much smaller subset. 
One could simply ask the user for feedback. If we knew the 
set of pages actually relevant to the user's query, we could 
use this as training data for optimizing (and even personal- 
izing) the retrieval function. 

Unfortunately, experience shows that  users are only rarely 
willing to give explicit feedback. However, this paper argues 
that  sufficient information is already hidden in the logfiles 
of W W W  search engines. Since major search engines re- 
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ceive millions of queries per day, such data is available in 
abundance. Compared to explicit feedback data, which is 
typically elicited in laborious user studies, any information 
that  can be extracted from logfiles is virtually free and sub- 
stantially more timely. 

This paper presents an approach to learning retrieval func- 
tions by analyzing which links the users click on in the pre- 
sented ranking. This leads to a problem of learning with 
preference examples like "for query q, document d,~ should 
be ranked higher than document db". More generally, I will 
formulate the problem of learning a ranking function over a 
finite domain in terms of empirical risk minimization. For 
this formulation, I will present a Support Vector Machine 
(SVM) algorithm that leads to a convex program and that 
can be extended to non-linear ranking functions. Experi- 
ments show that  the method can successfully learn a highly 
effective retrieval function for a meta-search engine. 

This paper is structured as follows. It starts with a defi- 
nition of what clickthrough data is, how it can be recorded, 
and how it can be used to generate training examples in 
the form of preferences. Section 3 then introduces a gen- 
eral framework for learning retrieval functions, leading to 
an SVM algorithm for learning parameterized orderings in 
Section 4. Section 5 evaluates the method based on experi- 
mental results. 

2. CLICKTHROUGH DATA IN SEARCH 
ENGINES 

Clickthrough data in search engines can be thought of 
as triplets (q, r, c) consisting of the query q, the ranking r 
presented to the user, and the set c of links the user clicked 
on. Figure i illustrates this with an example: the user asked 
the query "support vector machine", received the ranking 
shown in Figure 1, and then clicked on the links ranked 
1, 3, and 7. Since every query corresponds to one triplet, 
the amount of data that is potentially available is virtually 
unlimited. 

Clearly, users do not click on links at random, but make 
a (somewhat) informed choice. While clickthrough data is 
typically noisy and clicks are not "perfect" relevance judg- 
ments, the clicks are likely to convey some information. The 
key question is: how can this information be extracted? Be- 
fore deriving a model of how clickthrough data can be ana- 
lyzed, let's first consider how it can be recorded. 

2.1 Recording Clickthrough Data 
Clickthrough data can be recorded with little overhead 

and without compromising the functionality and usefulness 
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F i g u r e  1: R a n k i n g  p r e s e n t e d  for  t h e  q u e r y  " s u p p o r t  v e c t o r  m a c h i n e " .  M a r k e d  in b o l d  a r e  t h e  l inks t h e  u se r  
cl icked on.  

of the search engine. In particular, compared to explicit user 
feedback, it does not add any overhead for the user. The 
query q and the returned ranking r can easily be recorded 
whenever the resulting ranking is displayed to the user. For 
recording the clicks, a simple proxy system can keep a logfile. 
For the experiments in this paper, the following system was 
used. 

Each query is assigned a unique ID which is stored in 
the query-log along with the query words and the presented 
ranking. The links on the results-page presented to the user 
do not lead directly to the suggested document, but point 
to a proxy server. These links encode the query-ID and the 
URL of the suggested document. When the user clicks on 
the link, the proxy-server records the URL and the query- 
ID in the click-log. The proxy then uses the H T T P  Loca- 
tion command to forward the user to the target URL. This 
process can be made transparent to the user and does not 
influence system performance. 

This shows that  clickthrough data can be recorded easily 
and at little cost. Let's now address the key question of how 
it can be analyzed in a principled and efficient way. 

2.2 What Kind of Information does Click- 
through Data Convey? 

There are strong dependencies between the three parts of 
(q, r, c). The presented ranking r depends on the query q 
as determined by the retrieval function implemented in the 
search engine. Furthermore, the set c of clicked-on links 
depends on both the query q and the presented ranking r. 
First, a user is more likely to click on a link, if it is relevant 
to q [16]. While this dependency is desirable and interesting 
for analysis, the dependency of the clicks on the presented 
ranking r muddies the water. In particular, a user is less 
likely to click on a link low in the ranking, independent 
of how relevant it is. In the extreme, the probability that  
the user clicks on a link at rank 10.000 is virtually zero 
even if it is the document most relevant to the query. No 
user will scroll down the ranking far enough to observe this 
link. Therefore, in order to get interpretable and meaningful 

retrieval function 
bxx [ tfc I hand-tuned 

avg. clickrank 6.26::1=1.14 6.18:t=1.33 6.04::t= 0.92 

Table  1: A v e r a g e  c l i ckrank  for t h r e e  r e t r i eva l  func-  
t i ons  ( " b x x " ,  " t f c"  [23] , a n d  a " h a n d - t u n e d "  s trat -  
e g y  t h a t  uses  dif ferent  w e i g h t s  accord ing  to  H T M L  
tags )  i m p l e m e n t e d  in L A S E R .  R o w s  c o r r e s p o n d  to  
t h e  r e t r i eva l  m e t h o d  used  by  L A S E R  a t  q u e r y  t ime ;  
c o l u m n s  ho ld  va lues  f r o m  s u b s e q u e n t  e v a l u a t i o n  
w i t h  o t h e r  m e t h o d s .  F igures  r e p o r t e d  a re  m e a n s  
a n d  t w o  s t a n d a r d  e r ro r s .  T h e  d a t a  for  t h i s  t a b l e  is 
t a k e n  f r o m  [5] . 

results from clickthrough data, it is necessary to consider 
and model the dependencies of c on q and r appropriately. 

Before defining such a model, let's first consider an inter- 
pretation of clickthrough data that  is not appropriate. A 
click on a particular link cannot be seen as an absolute rel- 
evance judgment. Consider the empirical data in Table 1. 
The data is taken from [5] and was recorded for the search 
engine LASER covering the W W W  of the CMU School of 
Computer Science. The table shows the average rank of 
the clicks per query (e.g. 3.67 in the example in Figure 1). 
Each table cell contains the average clickrank for three re- 
trieval strategies averaged over ~ 1400 queries. The average 
clickrank is almost equal for all methods. However, accord- 
ing to subjective judgments, the three retrieval functions 
are substantially different in their ranking quality. The lack 
of difference in the observed average clickrank can be ex- 
plained as follows. Since users typically scan only the first 
I (e.g. l ~ 10 [24]) links of the ranking, clicking on a link 
cannot be interpreted as a relevance judgment on an abso- 
lute scale. Maybe a document ranked much lower in the 
list was much nmre relevant, but the user never saw it. It 
appears that  users click on the (relatively) most promising 
links in the top l, independent of their absolute relevance. 
How can these relative preference judgments be captured 
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and analyzed? 
Consider again the example from Figure 1. While it is 

not possible to infer tha t  the links 1, 3, and 7 are relevant 
on an absolute scale, it is much more plausible to infer tha t  
link 3 is more relevant than  link 2 with probability higher 
than  random. Assuming that the user scanned the ranking 
from top to bottom, he must have observed link 2 before click- 
ing on 3, making a decision to not click on it. Given tha t  
the abstracts  presented with the links are sufficiently infor- 
mative, this gives some indication of the user's preferences. 
Similarly, it is possible to infer tha t  link 7 is more relevant 
than  links 2, 4, 5, and 6. This means tha t  clickthrough data  
does not convey absolute relevance judgments,  but  partial 
relative relevance judgments for the links the user browsed 
through. A search engine ranking the returned links accord- 
ing to their relevance to q should have ranked links 3 ahead 
of 2, and link 7 ahead of 2, 4, 5, and 6. Denoting the ranking 
preferred by the user with r*, we get partial (and potentially 
noisy) information of the form 

link3 <r* link2 linkr <r ,  link2 (1) 

link7 <r* link4 

linkr <r* links 

linkr <r* link6 

This 'strategy for extracting preference feedback is summa- 
rized in the following algorithm. 

ALGORITHM 1. (EXTRACTING PREFERENCE FEEDBACK 
FROM CLICKTHROUGH) 
For a ranking (link1, link2, links, ...) and a set C contain- 

ing the ranks of the clicked-on links, extract a preference 
example 

linkl <r~ linkj 

for all pairs 1 < j < i, with i • C and j ~ C. 

Unfortunatly, this type of feedback is not suitable for stan- 
dard machine learning algorithms. The following derives a 
new learning algorithm, so tha t  this "weak" type of relative 
feedback can be used as training data. 

3. A FRAMEWORK FOR LEARNING OF 
RETRIEVAL FUNCTIONS 

The problem of information retrieval can be formalized 
as follows. For a query q and a document collection D = 
{dl, ...,din}, the optimal retrieval system should return a 
ranking r ° tha t  orders the documents in D according to their 
relevance to the query. While the query is often represented 
as merely a set of keywords, more abstractly it can also 
incorporate information about  the user and the state of the 
information search. 

Typically, retrieval systems do not achieve an optimal or- 
dering r*. Instead, an operational retrieval function f is 
evaluated by how closely its ordering rf(q) approximates the 

optimum. Formally, both  r* and rf(q) are binary relations 
over D x D tha t  fulfill the  properties of a weak ordering, 
i.e. r* C D x D and rf(q) C D × D being asymmetric, and 
negatively transitive. If a document di is ranked higher than  
dj for an ordering r, i.e. d~ < r  dj, then (di ,dj)  • r, oth- 
erwise (di, di)  ¢ r. If not stated otherwise, let's assume for 
simplicity tha t  r* and rf(q) are bo th  strict orderings. This 

means tha t  for all pairs (dl ,d2)  E D x D either di < r  dj or 
dj < r  di. However, it is straightforward to generalize most 
of the following result to r* being a weak ordering. 

Wha t  is an appropriate measure of similarity between the 
system ranking rf(q) and the target  ranking r*? For a bi- 
nary relevance scale, Average Precision [1] is most frequently 
used in information retrieval. However, most information re- 
trieval researchers agree tha t  binary relevance is very coarse 
and tha t  it is merely used as as simplifying assumption. 
Since the method presented in the following does not re- 
quire such a simplification, we will depart  from a binary 
relevance scheme and adapt  Kendall 's 7" [19][21] as a per- 
formance measure. For comparing the ordinal correlation 
of two random variables, Kendall 's r is the most frequently 
used measure in statistics. For two finite strict orderings 
r~ C D x D and rb C D x D, Kendall 's ~" can be defined 
based on the number P of concordant pairs and the number 
Q of discordant pairs (inversions). A pair di ~ dj is concor- 
dant, if both  r ,  and rb agree in how they order di and d#. It 
is discordant if they disagree. Note, tha t  on a finite domain 

D o f m d o c u m e n t s ,  t h e s u m o f P a n d Q i s ( ~ )  forstrict 

orderings. In this case, Kendall 's ~- can be defined as: 

P - Q 2Q 
r(ra,  rb) = p +-----~ = 1 - ( ~  (2) 

k / 

As an example, consider the  two rankings ra and rb as fol- 
lows: 

dl <r~ d2 <ra ds <r~ d4 <ra d5 (3) 

d3 <rb d2 <rb dl <rb d4 <rb d5 (4) 

The number of discordant pairs is 3 (ie. {d2, ds}, {dl, d2}, 
{dl, da }), while all remaining 7 pairs are concordant. There- 
fore, r(ra,  rb) = 0.4. 

Why is this similarity measure appropriate for informa- 
tion retrieval? Equation (2) depends only on Q for a fixed 
collection. Taken as a distance measure, Q fulfills the axioms 
of Kemeny and Snell [18] for strict orderings. Furthermore, 
it is proportional to the measure of Yao [26] proposed for 
evaluating information retrieval systems. If applied to a bi- 
nary relevance scale, it is easy to see tha t  maximizing (2) 
is equivalent to minimizing the average rank of the relevant 
documents. And finally, r(rf(q),r*) is related to Average 
Precision [1]. In particular, the number of inversions Q gives 
a lower bound on the Average Precision as follows. 

R is the number of relevant documents. The proof is given 
in the appendix. These arguments show how r(rf(q) , r  °) 
relates to retrieval quality. They demonstrate tha t  maxi- 
mizing 1"(rf(q), r*) is connected to improved retrieval quality 
in multiple frameworks. 

We are now in a position to define the problem of learn- 
ing a ranking function. For a fixed but  unknown distribution 
Pr(q, r*) of queries and target  rankings on a document col- 
lection D with m documents, the  goal is to learn a retrieval 
function f(q) for which the expected Kendall 's I" 

Tp(f) = f ~-(rf(q), r*)dPr(q,  r*) (6) 

135 



is maximal. Note that (6) is (proportional to) a risk func- 
tional [25] with - ~  as the loss function. While the goal of 
learning is now defined, the question remains whether it is 
possible to design learning methods that optimize (6)? 

4. AN SVM A L G O R I T H M  FOR LEARNING 
OF RANKING FUNCTIONS 

Most work on machine learning in information retrieval 
does not consider the formulation of above, but simplifies 
the task to a binary classification problem with the two 
classes "relevant" and "non-relevant". Such a simplification 
has several drawbacks. For example, due to a strong ma- 
jority of "non-relevant" documents, a learner will typically 
achieve the maximum predictive classification accuracy, if it 
always responds "non-relevant',  independent of where the 
relevant documents are ranked. But even more importantly, 
Section 2.2 showed that such absolute relevance judgments 
cannot be extracted from clickthrough data, so that they 
are simply not available. Therefore, the following algorithm 
directly addresses (6), taking an empirical risk minimiza- 
tion approach [25]. Given an independently and identically 
distributed training sample S of size n containing queries q 
with their target rankings r* 

(q.r;), (q2, r~) ..... (q.,r:). (7) 

the learner £ will select a ranking function f from a family 
of ranking functions F that maximizes the empirical 7- 

n 

vs(f) = ~ Z T(rf(q0' r;).  (8) 
i = 1  

on the training sample. Note that this setup is analogous to 
e.g. classification by minimizing training error, just that the 
target is not a class label, but a binary ordering relation. 

4.1 The Ranking SVM Algorithm 
Is it possible to design an algorithm and a family of rank- 

ing functions F so that (a) finding the function f • F maxi- 
mizing (8) is efficient, and (b) that this function generalizes 
well beyond the training data. Consider the class of linear 
ranking functions 

(di, dj) • fw(q) ~ ~&(q, di) > ~&(q, dj). (9) 

is a weight vector that is adjusted by learning. ,Iv(q, d) is 
a mapping onto features that describe the match between 
query q and document d like in the description-oriented re- 
trieval approach of Fuhr et al. [10][11]. Such features are, 
for example, the number of words that query and document 
share, the number of words they share inside certain HTML 
tags (e.g. TITLE, H1, H2, ...), or the page-rank of d [22] 
(see also Section 5.2). Figure 2 illustrates how the weight 
vector ag determines the ordering of four points in a two- 
dimensional example. For any weight vector ~, the points 
are ordered by their projection onto ~g (or, equivalently, by 
their signed distance to a hyperplane with normal vector ~). 
This means that for ~g~ the points are ordered (1, 2, 3, 4), 
while ~2 implies the ordering (2, 3, 1, 4). 

Instead of maximizing (8) directly, it is equivalent to min- 
imize the number Q of discordant pairs in Equation (2). For 
the class of linear ranking functions (9), this is equivalent to 
finding the weight vector so that  the maximum number of 

2, 
~ 0  3 

i 
l 
i 

~4 

Figure 2: Example  of  how two weight vec to r s  vT1 and 
~2 rank  four  poin ts .  

the following inequalities is fulfilled. 

V(di, dj) • r~ : ag&(ql,di ) > ag&(qi,dj) (10) 

V(di,di) • r~:  ~g(b(q,,di) > ag&(q,,dj) (11) 

Unfortunately, a direct generalization of the result in [13] 
shows that this problem is NP-hard. However, just like in 
classification SVMs [7], it is possible to approximate the 
solution by introducing (non-negative) slack variables ~i,3,k 
and minimizing the upper bound ~ ~id,k. Adding SVM reg- 
ularization for margin maximization to the objective leads 
to the following optimization problem, which is similar to 
the ordinal regression approach in [12]. 

OPTIMIZATION PROBLEM 1. (RANKING SVM) 
1 

minimize: V(~,  ~3 = ~ ~ ~ + c ~ ~,,j,~ 02) 
subject to: 

V(da, dj) • r~ : ~cb(ql, dl) _> we(q1, dj) + 1 - ~i,j,1 
. . .  (13) 

V(di, dj) • r~ : ~<b(q., ~ )  _> ~ ( q n ,  dj) + 1 - ~,,./,. 

ViVjVk : ~id,k _> 0 (14) 

C is a parameter that allows trading-off margin size against 
training error. Geometrically, the margin 6 is the distance 
between the closest two projections within all target rank- 
ings. This is illustrated in Figure 2. 

Optimization Problem 1 is convex and has no local op- 
tima. By rearranging the constraints (13) as 

(&(qk, d~) - &(qk, d~)) > 1 - ~,,~,k, (15) 

it becomes apparent that the optimization problem is equiv- 
alent to that  of a classification SVM on pairwise difference 
vectors ¢(q~, d~) - &(qk, dj). Due to this similarity, it can 
be solved using decomposition algorithms similar to those 
used for SVM classification. In the following, an adaptation 
of the SVMlightalgorithm [14] is used for training 1. 

It can be shown that the learned retrieval function fw. can 
always be represented as a linear combination of the feature 

1Available at http://svmlight.joachims.org 
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vectors. 

(d,, d#) E f~* (q) (16) 

¢:=*" ~*¢(q ,  di) > ~ ' ~ ( q , d # )  (17) 

Ea~.,#(q~d,)@(q, di) > ~a~j~(q}d,)~b(q, dj) (18) 

This makes it possible to use Kernels [4][25] and extend the 
Ranking SVM algorithm to non-linear retrieval functions. 
The a~, l can be derived from the values of the dual variables 
at the solution. 

Most commonly, f~. will be used for ranking the set of 
documents according to a new query q. In this case it is 
sufficient to sort the documents by their value of 

rsv(q, di) = ~*~(q ,  di) = E a ~ j ~ ( q k , d z ) ~ ( q , d # ) .  (19) 

If Kernels are not used, this property makes the applica- 
tion of the learned retrieval function very efficient. Fast 
algorithms exists for computing rankings based on linear 
functions by means of inverted indices (see e.g. [1]). 

4.2 Using Partial Feedback 
If clickthrough logs are the source of t raining data, the full 

target  ranking r* for a query q is not observable. However, 
as shown in Section 2.2, a subset r '  C r* can be inferred 
from the logfile. It is straightforward to adapt  the Ranking 
SVM to the case of such partial da ta  by replacing r* with 
the observed preferences r ~. Given a training set S 

(ql, r l) ,  (q2, r~) ..... (q,~, r~) (20) 

with partial information about the target ranking, this re- 
sults in the following algorithm. 

OPTIMIZATION PROBLEM 2. (RANKING SVM (PAR- 
TIAL)) 

1 
minimize: V(~, ~-) = ~ ~ .  ~ + C Z ~i,3,k (21) 

subject to: 

V(~, dj) e rl : w~(ql ,  d~) > u ~ ( q l ,  dj) + 1 - ~,,j.1 

... (22) 

V(d~, dj) Er t ,  : ~ ( q , ,  &) > ~,I)(q,, dj) + 1 - ~,.j,, 

ViVjVk : ~ij,k _> 0 (23) 

The resulting retrieval function is defined analogously. Us- 
ing this algorithm results in finding a ranking function tha t  
has a low number of discordant pairs with respect to the 
observed parts of the target ranking. 

5. EXPERIMENTS 
The following experiments verify whether the inferences 

drawn from the clickthrough data  are justified, and whether 
the Ranking SVM can successfully use such partial prefer- 
ence data. First, the experiment setup in the framework 
of a meta-search engine is described. It follow the results 
of an offiine experiment and an online experiment. The of_ 
fline experiment is designed to verify tha t  the Ranking SVM 
can indeed learn a retrieval function maximizing Kendall 's v 
on partial  preference feedback. The online experiment goes 
further and verifies tha t  the learned retrieval function does 
improve retrieval quality as desired. 

5.1 Experiment Setup: Meta-Search 
To elicit da ta  and provide a framework for testing the al- 

gorithm, I implemented a W W W  meta-search engine called 
"Striver". Meta-search engines combine the results of sev- 
eral basic search engines without having a database of their 
own. Such a setup has several advantages. First, it is easy 
to implement while covering a large document collection - -  
namely the whole WWW. Second, the basic search engines 
provide a basis for comparison. 

The "Striver" meta-search engine works as follows. The 
user types a query into Striver's interface. This query is for- 
warded to "Google", "MSNSearch", "Excite", "Altavista ' ,  
and "Hotbot".  The results pages returned by these basic 
search engines are analyzed and the top 100 suggested links 
are extracted. After canonicalizing URLs, the union of these 
links composes the candidate set V. Striver ranks the links 
in V according to its learned retrieval function f~.  and 
presents the top 50 links to the user. For each link, the 
system displays the title of the page along with its URL. 
The clicks of the user are recorded using the proxy system 
described in Section 2.1. 

To be able to compare the quality of different retrieval 
functions, the method described in [16] is used. The key 
idea is to present two rankings at the same time. This par- 
ticular form of presentation leads to a blind statistical test 
so tha t  the clicks of the user demonstrate  unbiased prefer- 
ences. In particular, to compared two rankings A and B, 
they are combined into a single ranking C so tha t  the fol- 
lowing condition holds for any top l links of the combined 
ranking. The top l links of the combined ranking C contain 
the top ka links from A and the top kb links from B, with 
Ika -kbl _< 1. In other words, if the user scans the links of C 
from top to bottom, at any point he has seen almost equally 
many links from the top of A as from the top of B. It is 
shown in [16] tha t  such a combined ranking always exists 
and tha t  it can be constructed efficiently. 

An example is given in Figure 3. The results of two re- 
trieval functions are combined into one ranking tha t  is pre- 
sented to the user. Note tha t  the abstracts and all other 
aspects of the presentation are unified, so tha t  the user can- 
not tell which retrieval strategy proposed a particular page. 
In the example, the user clicks on links 1, 3, and 7. Wha t  
inference can one draw from these clicks? 

In the example, the user must have seen the top 4 links 
from both  individual rankings, since he clicked on link 7 in 
the combined ranking. He decided to click on 3 links in the 
top 4 in ranking A (namely 1, 2, and 4), but  only on 1 link 
in ranking B (namely 1). It is reasonable to conclude, tha t  
(with probability larger than  random) the top 4 links from 
A were judged to be bet ter  than  those from B for this query. 

It is straightforward to design hypothesis tests regard- 
ing the user preferences based on such a combined ranking. 
Roughly speaking, if a user does not have any preference 
regarding A or B, he will click equally often on links in the 
top k of each ranking. If for a sample of pairs (A1, B1), ... 
, (An, Ba) the user clicks on significantly more links from A 
than  from B, then A must contain more relevant links than 
B in the following sense. Formalizing the assumption tha t  

• users click by some e > 0 more often on a more relevant 
link than  on a less relevant link 

• and tha t  the decision of the user to click on a link is 
not influenced by other factors (i.e. links from both A 
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R a n k i n g  As 

1. K e r n e l  M a c h i n e s  
h t t p  : / / s u m . f l r s t . g v a d . d e /  

2. S V M - L i g h t  S u p p o r t  V e c t o r  M a c h i n e  
h t t p  : l / s i s . g r a d . d e /  ~ t h o r s t e n / a v m . l i g h t /  

3, S u p p o r t  V e c t o r  M a c h i n e  a n d  K e r n e l  ... R e f e r e n c e s  
h t t p  : / / s v m . . . . . e o v n / S V M r e f s . h t m l  

4. L u c e n t  T e c h n o l o g i e s :  S V M  de rno  a p p l e t  
h t t p  : / / s v r n . . . . , c o r n / S V T / S V M s v t , h t r n l  

5. R o y a l  H o l l o w a y  S u p p o r t  V e c t o r  M a c h i n e  
h t t p  : / / s v m . d c s . r h b n e . a c . u k /  

6. S u p p o r t  V e c t o r  M a c h i n e  - T h e  S o f t w a r e  
h t t p  : / / w ~ v w . s u p p o r t - - v e c t o r .  n e t / s o f t w a r e . h t ~ n l  

7. S u p p o r t  V e c t o r  M a c h i n e  - T u t o r i a l  
h t t p  : / / w w c v . a u p p o r t - - v e e t o r . n e t / t u t o r i a i . h t m l  

8. S u p p o r t  V e c t o r  I~/lachine 
h t t p  : / / ~ b o l i v a r . f r e e s e r v e r & . c o m /  

R a n k i n g  B I  

I .  K e r n e l  M a c h i n e s  
h t t p  : / / s v m . f i r a t . g r n d . d e /  

2. S u p p o r t  V e c t o r  M a c h i n e  
h t t p  : / / j b o l t v a r .  f r e e s e r v e r s . c o m /  

3. A n  I n t r o d u c t i o n  t o  S u p p o r t  V e c t o r  M a c h i n e s  
h t t p  : / / ~ w ~ . l u p p o r t  -- v e c t o r . n e t /  

4.  A r c h i v e s  o f  S U P P O R T - V E C T O R - M A C H I N E S  ... 
h t t p  : / / ~ v w w , j t a c m a i l . a c . u k / l i s t s / S U P P O R T . . ,  

5. S V M - L i g h t  S u p p o r t  V e c t o r  M ~ c h l n e  
h t t p  : / / a i # . g v n d . d e /  ~ t h o r s t e n / s v m - l i g h t /  

6. S u p p o r t  V e c t o r  M a c h i n e  - T h e  S o f t w a r e  
h t t p  : / / w w l v . s u p p o r t - - v e c t o r . n e t / s o y ¢ ~ a r e . h t ~ l  

7. L a g r ~ n g i a n  S u p p o r t  V e c t o r  M a c h i n e  H o m e  P a g e  
h t t p  : / / w l o w . c s . ' w i s c . e d u / d m i / l s v v n  

8. A S u p p o r t  ... - B e n n e t t ,  B l u e  ( R e s e a r c h l n d e x )  
h t t p  : / / c i t e s e e r . . . / b e n n e t t 9 7 s u p p o r t . h t m l  

C o m b i n e d  R e s u l t s l  

I .  K e r n e l  M a c h i n e s  
h t t p  : / / s v t n . f i r s t . g r n d . d e  / 

2. S u p p o r t  V e c t o r  M a c h i n e  
h t t p  : / / ~ b o l i v a r . f r e e s e r v e r s . c o ~ /  

3 .  S V M - L I E h t  S u p p o r t  V e c t o r  M a c h i n e  
h t t p  : l / s i s . g r a d . d e /  ~ t h o r s t e n / s v v a . ~ i g h t /  

4. A n  I n t r o d u c t i o n  t o  S u p p o r t  V e c t o r  M a c h i n e s  
h t t p  : / / ~ v w w . m u p p o r t  -- v e c t o r . n e t /  

5. S u p p o r t  V e c t o r  M a c h i n e  a n d  K e r n e l  M e t h o d s  R e f e r e n c e s  
h t t p  : l / a r m . r e s e a r c h . b e l l  -- l a b s . c o m / S V M r e f s . h t v n l  

6. A r c h i v e s  o f  S U P P O R T - V E C T O R - M A C H I N E S O J I S C M A I L . A C . U K  
h t t p  : / / w ~ t v . J i $ c ~ a i l . a c . u k / l i m t s / S U P P O ] ; t T - - V E C T O R - - M A C t t l N E S . h t ~ l  

7.  L u c e n t  T o c h n o l o g l e s ,  S V M  d e r n o  a p p l e t  
h t t p  : / / s v m . r e s e a r c h . b e l l  -- l a b s . ¢ o m / S V T / S V M s v t . h t m l  

8. R o y a l  H o l l o w s y  S u p p o r t  V e c t o r  M a c h i n e  
h t t p  : / / s v m . d c s . r h b n c . a c . u k /  

9. S u p p o r t  V e c t o r  M a c h i n e  - T h e  S o f t w a r e  
h t t p  : / / ~ w . s u p p o r t  -- v e e t o r . n e t / s o y t w a r e . h t m l  

10. L a g r v . n g i a n  S u p p o r t  V e c t o r  M a c h i n e  H o m e  P a g e  
h t t p  : / / w w t v . e s . w i s c . e d u / d m i / i s v m  

F i g u r e  3: E x a m p l e  for q u e r y  " s u p p o r t  v e c t o r  m a c h i n e " .  T h e  two  u p p e r  boxes  show t h e  r ank ings  r e t u r n e d  
by re t r i eva l  func t ions  A a n d  B.  T h e  lower box  con ta ins  t h e  c o m b i n e d  r ank ing  p r e s e n t e d  t o  t h e  user .  T h e  
l inks t h e  use r  cl icked on  a r e  m a r k e d  in bold .  

and B are presented in the same way) 

it is proven and empirically verified in [16] that the conclu- 
sions drawn from this method lead to the same result as 
an evaluation with explicit manual relevance judgments for 
large s. 

5.2 Offline Experiment 
This experiment verifies that the Ranking SVM can in- 

deed learn regularities using partial feedback from click- 
through data. To generate a first training set, I used the 
Striver search engine for all of my own queries during Oc- 
tober, 2001. Striver displayed the results of Google and 
MSNSearch using the combination method from the previ- 
ous section. All clickthrough triplets were recorded. This 
resulted in 112 queries with a non-empty set of clicks. This 
data provides the basis for the following offline experiment. 

To learn a retrieval function using the Ranking SVM, it 
is necessary to design a suitable feature mapping ~(q,d)  
describing the match between a query q and a document d. 
The following features are used in the experiment. However, 
this set of features is likely to be far from optimal. While 
the attributes reflect some of my intuition about what could 
be important for learning a good ranking, I included only 
those features that were easy to implement. Furthermore, 
I did not do any feature selection or similar tuning, so that 
an appropriate design of features promises much room for 
improvement. The implemented features are the following: 

1. Rank in other search engines (38 features total): 

rank_X: 100 minus rank in X E {Google, MSN-Search, 

Altavista, Hotbot, Excite} divided by 100 (mini- 
mum 0) 

t o p l _ X :  ranked #1  in X E {Google, MSNSearch, A1- 
tavista, Hotbot, Excite} (binary {0, 1}) 

toplO_X:  ranked in top 10 in X E {Google, MSN- 
Search, Altavista, Hotbot, Excite} (binary {0, 1}) 

top50_X:  ranked in top 50 in X E {Google, MSN- 
Search, Altavista, Hotbot, Excite} (binary {0, 1}) 

t o p l c o u n t _ X :  ranked #1  in X of the 5 search engines 

t o p l 0 c o u n t _ X :  ranked in top 10 in X of the 5 search 
engines 

top50coun t_X:  ranked in top 50 in X of the 5 search 
engines 

2. Query/Content Match (3 features total): 

query_url_coslne:  cosine between URL-words and 
query (range [0, 1]) 

query_abs t rac t_cos ine :  cosine between title-words 
and query (range [0, 1]) 

domaln_name_in_query :  query contains domain- 
name from URL (binary {0, 1}) 

3. Popularity-Attributes (~  20.000 features total): 

ur l_length:  length of URL in characters divided by 
30 

c o u n t r y . X :  country code X of URL (binary attribute 
{0, 1} for each country code) 
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Comparison more clicks on learned less clicks on learned tie (with clicks) no clicks total  

Learned vs. Google 29 13 27 19 88 
Learned vs. MSNSearch 18 4 7 11 40 
Learned vs. Toprank 21 9 11 11 52 

T a b l e  2: Pairwise  c o m p a r i s o n  of  t h e  l e a r n e d  r e t r i e v a l  f u n c t i o n  w i t h  Goog le ,  M S N S e a r c h ,  and the  n o n - l e a r n i n g  
meta-search  ranking.  The  c o u n t s  i n d i c a t e  for  h o w  m a n y  q u e r i e s  a u se r  c l icked o n  m o r e  l inks  f r o m  the  top  of  
t h e  r a n k i n g  r e t u r n e d  by the  r e s p e c t i v e  r e t r i e v a l  f u n c t i o n .  

25 

2O 

LU 15 

I1= 

MSNSearch - -  
Google 

Learn,.g ' ? " ~ : : : :  

-°*.~o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

~-- ............ ÷ .......................... ~ ....... 
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Number of Training Queries 

Figure  4: Genera l i za t ion  e r r o r  of  t h e  R a n k i n g  S V M  
d e p e n d i n g  on the  s ize  o f  the  tra in ing  set .  The  e r r o r  
b a r s  show o n e  s t a n d a r d  e r r o r .  

domain .X:  domain X of URL (binary at t r ibute {0, 1} 
for each domain name) 

abstract_contains_home: word "home" appears in 
URL or title (binary at t r ibute  {0, 1}) 

u r l_con ta ins_ t i lde :  URL contains "~"  (binary attri- 
bute {0, 1}) 

ur l_X:  URL X as an atom (binary at t r ibute  {0, 1}) 

From the 112 queries, pairwise preferences were extracted 
according to Algorithm 1 described in Section 2.2. In ad- 
dition, 50 constraints were added for each clicked-on docu- 
ment indicating tha t  it should be ranked higher than a ran- 
dom other document in the candidate set V. While the lat- 
ter constraints are not based on user feedback, they should 
hold for the optimal ranking in most cases. These addi- 
tional constraints help stabilize the learning result and keep 
the learned ranking function somewhat close to the original 
rankings. 

Figure 4 shows the predictive performance of the Ranking 
SVM. To produce the graph, the full da ta  set is split ran- 
domly into a training and a test  set. The x-axis shows the 
number of t raining queries. The y-axis shows the percent- 
age of pairwise preference constraints tha t  are not fulfilled in 
the test set. Each point is an average over 10 (5-20 training 
queries) / 20 (40-80 training queries) different tes t / t ra in ing 
splits. When training the Ranking SVM, no kernel was used 
and C, the trade-off between training error and margin, was 
selected from C E {0.001, 0.003,0.005, 0.01} by minimizing 
leave-one-out error on the training set. The graph shows 
tha t  the Ranking SVM can learn regularities in the prefer- 

ences. The test  error decreases to around 10%. The graph 
also shows the number  of constraints violated by the rank- 
ings produced by Google and MSNSearch. Their error rates 
are substantially larger than  for the learned retrieval func- 
tion. 

These results provide a first proof of concept and justify 
a larger-scale experiment with multiple users. In particular, 
while the offiine experiment verifies tha t  the Ranking SVM 
can learn to predict the preference constraints, it is not clear 
whether the learned retrieval function does improve the re- 
trieval quality objectively. This question is addressed by the 
following experiment. 

5 .3  I n t e r a c t i v e  O n l i n e  Experiment 
To show tha t  the learned retrieval function improves re- 

trieval, the following online experiment was conducted. Start- 
ing on October 31 "t, 2001, the Striver search engine was 
made available to a group of approximately 20 users. The 
group consisted of researcher and students of the AI unit 
at  the University of Dortmund headed by Prof. K. Morik. 
They were asked to use Striver just  like they would use any 
other W W W  search engine. By November 20 th, the system 
had collected 260 training queries (with at least one click). 
On these queries, the Ranking SVM was trained using the 
same ~(q, d) and the same general setup as described above. 
The learned function was then implemented in Striver and 
used for ranking the candidate set V. During the evalua- 
tion period lasting until December 2 "d, the learned retrieval 
function is compared against: 

• Google 

• MSNSearch 

Toprank: A baseline meta-search engine tha t  ranks 
links retrieved at rank 1 by either Google, MSNSearch, 
Altavista, Excite, or Hotbot,  before links ranked 2, 
before those ranked 3 etc. 

The different strategies are compared using the method de- 
scribed in Section 5.1. The learned retrieval strategy is pre- 
sented in combination with one of the three baseline rank° 
ings selected at  random. Table 2 shows for how many queries 
users click on more/less links from the top of the learned re- 
trieval function. The first line of the table compares the 
learned retrieval function with Google. On 29 queries, the 
users click on more links from the learned function, on 13 
queries they click on more links from Google, and on 27+19 
queries they click on an equal number (or none). Using a 
two-tailed binomial sign test, the difference is significant at 
a 95%-level, leading to the conclusion tha t  the learned re- 
trieval function is be t ter  than  tha t  of Google for this group 
of users. The same applies to the other two comparisons. 
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weight feature 
0.60 query_abstract_cosine 
0.48 topl0..google 
0.24 query_url_cosine 
0.24 toplcount_l 
0.24 topl0_msnsearch 
0.22 host_citeseer 
0.21 domain_nec 
0.19 topl0count_3 
0.17 topl_google 
0.17 country_de 

0.16 abstract_contains_home 
0.16 topl_hotbot 

0.14 domain_nameAn_query 

-0.13 domain_tu-bs 
-0.15 country_fi 
-0.16 top50count_4 
-0.17 url_length 
-0.32 topl0count_0 
-0.38 toplcount_0 

Table  3: F e a t u r e s  w i t h  l arges t  a n d  s m a l l e s t  w e i g h t s  
as  l e a r n e d  f r o m  t h e  t r a i n i n g  d a t a  in t h e  o n l i n e  e x -  
p e r i m e n t .  

5.4 Analysis of the Learned Function 
The previous result shows that the learned function im- 

proves retrieval. But what does the learned function look 
like? Is it reasonable and intuitive? Since the Ranking SVM 
learns a linear function, one can analyze the function by 
studying the learned weights. Table 3 displays the weights 
of some features, in particular, those with the highest abso- 
lute weights. Roughly speaking, a high positive (negative) 
weight indicates that documents with these features should 
be higher (lower) in the ranking. 

The weights in Table 3 are reasonable for this group of 
users. Since many queries were for scientific material, it ap- 
pears natural that URLs from the domain "citeseer" (and 
the alias "nec") received positive weight. The most influ- 
ential weights are for the cosine match between query and 
abstract, whether the URL is in the top 10 from Google, 
and for the cosine match between query and the words in 
the URL. A document receives large negative weights, if it is 
not ranked top 1 by any search engine, if it not in the top 10 
of any search engine (note that the second implies the first), 
and if the URL is long. All these weights are reasonable and 
make sense intuitively. 

6. DISCUSSION AND RELATED WORK 
The experimental results show that the Ranking SVM can 

successfully learn an improved retrieval function from click- 
through data. Without any explicit feedback or manual pa- 
rameter tuning, it has automatically adapted to the partic- 
ular preferences of a group of ~ 20 users. This improvement 
is not only a verification that the Ranking SVM can learn 
using partial ranking feedback, but also an argument for per- 
sonalizing retrieval functions. Unlike conventional search 
engines that have to "fit" their retrieval function to large 
and therefore heterogeneous groups of users due to the cost 

of manual tuning, machine learning techniques can improve 
retrieval substantially by tailoring the retrieval function to 
small and homogenous groups (or even individuals) without 
prohibitive costs. 

While previous work on learning retrieval functions exists 
(e.g. [10]), most methods require explicit relevance judg- 
ments. Most closely related is the approach of Bartell et 
al. [2]. They present a mixture-of-experts algorithms for 
linearly combining ranking experts by maximizing a differ- 
ent rank correlation criterion. However, in their setup they 
rely on explicit relevance judgments. A similar algorithm for 
combining rankings was proposed by Cohen at al. [6]. They 
show empirically and theoretically that their algorithm finds 
a combination that performs close to the best of the basic 
experts. The boosting algorithm of Freund et al. [9] is an ap- 
proach to combining many weak ranking rules into a strong 
ranking functions. While they also (approximately) mini- 
mize the number of inversions, they do not explicitly con- 
sider a distribution over queries and target rankings. How- 
ever, their algorithm can probably be adapted to the setting 
considered in this paper. Algorithmically most closely re- 
lated is the SVM approach to ordinal regression by Herbrich 
et al. [12]. But, again, they consider a different sampling 
model. In ordinal regression all objects interact and they are 
ranked on the same scale. For the ranking problem in infor- 
mation retrieval, rankings need to be consistent only within 
a query, but not between queries. This makes the ranking 
problem less constrained. For example, in the ranking prob- 
lem two documents di and dj can end up at very different 
ranks for two different queries qk and q~ even if they have 
exactly the same feature vector (i.e. ~(qk,d~) = ~(q~,dj)). 
An elegant perceptron-like algorithm for ordinal regression 
was recently proposed by Crammer and Singer [8]. An in- 
teresting question is whether such an online algorithm can 
also be used to solve the optimization problem connected to 
the Ranking SVM. 

Some attempts have been made to use implicit feedback 
by observing clicking behavior in retrieval systems [5] and 
browsing assistants [17] [20]. However, the semantics of the 
learning process and its results are unclear as demonstrated 
in Section 2.2. The commercial search engine "Direct Hit" 
makes use of clickthrough data. The precise mechanism, 
however, is unpublished. While for a different problem, an 
interesting use of clickthrough data was proposed in [3]. 
They use clickthrough data for identifying related queries 
and URLs. 

What are the computational demands of training the Rank- 
ing SVM on clickthrough data? Since SVMlight[15] solves 
the dual optimization problem, it depends only on inner 
products between feature vectors ¢I,(q, d). If these feature 
vectors are sparse as above, SVMtightcan handle millions 
of features efficiently. Most influential on the training time 
is the number of constraints in Optimization Problem 2. 
However, when using clickthrough data, the number of con- 
straints scales only linearly with the number of queries, if 
the number of clicks per query is upper bounded. In other 
applications, SVMl~ghthas already showed that it can solve 
problems with several millions of constraints using a regular 
desktop computer. However, scaling to the order of mag- 
nitude found in major search engines is an interesting open 
problem. 
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7. CONCLUSIONS AND FUTURE WORK 
This paper presented an approach to mining logfiles of 

W W W  search engines with the goal of improving their re- 
trieval performance automatically. The key insight is that 
such clickthrough data can provide training data in the form 
of relative preferences. Based on a new formulation of the 
learning problem in information retrieval, this paper de- 
rives an algorithm for learning a ranking function. Taking a 
Support Vector approach, the resulting training problem is 
tractable even for large numbers of queries and large num- 
bers of features. Experimental results show that the algo- 
rithm performs well in practice, successfully adapting the 
retrieval function of a meta-search engine to the preferences 
of a group of users. 

This paper opens a series of question regarding the use 
machine learning in search engines. What is a good size 
of a user group and how can such groups be determined? 
Clearly, there is a trade-off between the amount of train- 
ing data (ie. large group) and maximum homogeneity (ie. 
single user). Is it possible to use clustering algorithms to 
find homogenous groups of users? Furthermore, can click- 
through data also be used to adapt a search engine not to 
a group of users, but to the properties of a particular doc- 
ument collection? In particular, the factory-settings of any 
off-the-shelf retrieval system are necessarily suboptimal for 
any particular collection. Shipping off-the-shelf search en- 
gines with learning capabilities would enable them to opti- 
mize (and maintain) their performance automatically after 
being installed in a company intranet. 

However, the algorithm is not limited to meta-search en- 
gines on the WWW. There are many situations where the 
goal of learning is a ranking based on some parameter (e.g. 
query). In particular, most recommender problems can be 
cast in this way. Particularly interesting in the recommender 
setting is the fact that the Ranking SVM can be trained 
with partial preference data. For example, consider a rec- 
ommender system that aims to learn my TV watching pref- 
erences. By observing my "channel surfing" behavior, the 
system can infer which shows I prefer over other programs 
at a particular time. But again, this is a relative preference, 
not a preference on an absolute scale. 

Open questions regarding the algorithm itself concern its 
theoretical characterization and its efficient implementation. 
Is it possible to prove generalization bounds based on the 
margin? Or, even more interesting from a practical point 
of view, is it possible to analyze the process of multiple 
learning/feedback steps in the sense, of an incremental on- 
line algorithm? As elaborated before, there is a dependence 
between the links presented to the user, and those for which 
the system receives feedback. It would be interesting to ex- 
plore active learning ideas to optimize this feedback. In this 
framework it might also be possible to explore mechanisms 
that make the algorithm robust against "spamming". It 
is currently not clear in how far a single user could mali- 
ciously influence the ranking function by repeatedly clicking 
on particular links. Regarding algorithms for solving the 
optimization problem, it seems likely that they can be fur- 
ther sped up, since the constraints have a special form. In 
particular, online algorithms would be most appropriate in 
many application settings. 
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APPENDIX 
THEOREM 1. Let r~t be the ranking placing all relevant 

documents ahead of all non-relevant documents and let rsus 
be the learned ranking. If Q is the number of discordant 
pairs between r~et and r~us , then the average precison is at 
least 

AvgPrec(r,u,,r~,) > ~ Q +  ( R + i  ~ x / i  
- -  2 i = 1  

if there are R relevant documents. 

number of discordant Q as follows. 

p l + . . . + p R = Q + (  R + l ) 2  (25) 

It is now possible to write the lower bound as the follow- 
ing integer optimization problem. It computes the worst 
possible Average Precision for a fixed value of Q. 

1 ~ i (26) 
minimize: P(pl ..... pn) = R i=l  P-~ 

subject, to: Pl + "" + Pn = Q + ( R + i ) 2  (27) 

1 < p i  < ... < pn (28) 

pl, ...,pn integer (29) 

Relaxing the problem by removing the last two sets of con- 
straints can only decrease the minimum, so that the solution 
without the constraints is still a lower bound. The remain- 
ing problem is convex and can be solved using Lagrange 
multipliers. The Lagrangian is 

l ~ L + a  _ ~-1 (30) 
L(pl, . . . ,pn,~) = ~ "= P~ 

At the minimum of the optimization problem, the Lagrangian 
is known to have partial derivatives equal to zero. Starting 
with the partiM derivatives for the pi 

5L(pl .... ,pn, j3) = _ i R _ l  p~_2 + f l ~ O ,  (31) 
5 pi 

solving for pi, and substituting back into the Lagrangian 
leads to 

(32) 
i = l  

Now taking the derivative with respect to ~3 

,L(p  ..... 0) [Q_ 1)]__. o, (33) 
~,o ~ L 

solving for fl, and again substituting into the Lagrangian 
leads to the desired solution. [] 

PROOF. If p l , . . . ,pa  are the ranks of the relevant docu- 
ments in rsu, sorted in increasing order, then Average Pre- 
cision can be computed as 

AvgPrec(rsus, rr~l) = ~ i=1 pi (24) 

What is the minimum value of AvgPrec(rsvs,rr~l), given 
that the number of discordant pairs is fixed. It is easy to 
see that the sum of the ranks Pl -4- ... -4- pa  is related to the 
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