
Alvin Alexander

Scala Cookbook: Bonus Chapters

Scala Cookbook: Bonus Chapters
by Alvin Alexander

Copyright © 2013 Alvin Alexander. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Courtney Nash
Production Editor: Rachel Steely
Copyeditor: Kim Cofer
Proofreader: Linley Dolby

Indexer: Ellen Troutman
Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

August 2013: First Edition

Revision History for the First Edition:

2013-07-30: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449339616 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Scala Cookbook, the image of a long-beaked echidna, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-33961-6

[LSI]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449339616

Table of Contents

XML and XPath. 5
1. Creating XML Literals 5
2. Mixing Scala and XML 8
3. Extracting Data from XML Nodes 10
4. Basic XPath Searching with \ and \\ 15
5. Deeper XML Parsing and Extracting Tag Attributes 19
6. Extracting Data from an Array of XML Elements 22
7. Using Match Expressions with XML 25
8. Serializing and Deserializing XML 30
9. Loading XML from a URL 35
10. Loading XML from a File 38
11. Saving XML to a File 40
12. Displaying XML in a Human-Readable Format (Pretty Printing) 42

Testing and Debugging. 45
1. Installing ScalaTest 45
2. Writing TDD Tests with ScalaTest 46
3. Writing a First BDD Test with ScalaTest 49
4. Adding Given/When/Then Behavior to BDD Tests 51
5. Adding More Tests and Test Suites 54
6. Printing Expected and Actual Values When a Test Fails 55
7. Marking a Test as Pending 56
8. Testing Expected Exceptions 57
9. Mark Your Tests with Tags So You Can Include or Exclude Them 58
10. Temporarily Disabling a Test 60
11. Using Mock Objects with ScalaTest 61
12. Java-Style Logging with SLF4J 64
13. Scala-Style Logging with Grizzled-SLF4J 65

iii

14. Using JUnit with Scala 67

The Play Framework. 71
1. Creating a “Hello, World” Project 72
2. Adding a Route, Model, and Controller Method to a Play Application 81
3. Using Multiple Template Wrappers 85
4. Creating Reusable Code Blocks in Templates 86
5. Calling Scala Functions from Templates 89
6. Creating a Widget and Including It in Pages 91
7. Using CoffeeScript and LESS 93
8. Creating a Simple Form 94
9. Validating a Form 102
10. Displaying and Validating Common Play Form Elements 111
11. Selecting from a Database with Anorm 118
12. Inserting Data into a Database with Anorm 124
13. Deleting Records in a Database Table with Anorm 129
14. Updating Records in a Database Table with Anorm 130
15. Testing Queries Outside of Play 131
16. Deploying a Play Framework Project 134
17. Handling 404 and 500 Errors 138

Index. 141

iv | Table of Contents

BONUS CHAPTER

XML and XPath

Introduction
Scala has built-in support for XML, so you can freely mix XML literals into your Scala
source code. This is nice, because instead of using strings to represent XML, you create
XML literals that the compiler can understand and verify. This approach lets you easily
generate dynamic XML by interweaving Scala code and XML in the same expressions.

On the flip side, when it comes to searching XML for the data you need, you can use
XPath methods like \ and \\ to find what you’re looking for, and other methods like
child, label, and attributes to iterate over elements and extract information.

As a word of caution, if you want to parse poorly formed XHTML, don’t try to do this
with the XML library. See my blog post for examples of how to use the Java
HTMLCleaner library to solve this problem.

1. Creating XML Literals
Problem
You want to create XML variables, and embed XML into your Scala code.

Solution
You can assign XML expressions directly to variables, as shown in these examples:

val hello = <p>Hello, world</p>
val p = <person><name>Edward</name><age>42</age></person>

In the REPL, you can see that these variables are of type scala.xml.Elem:
scala> val hello = <p>Hello, world</p>
hello: scala.xml.Elem = <p>Hello, world</p>

5

http://alvinalexander.com/scala/scala-html-parsing

scala> val p = <person><name>Edward</name><age>42</age></person>
p: scala.xml.Elem = <person><name>Edward</name><age>42</age></person>

As shown, you can embed XML directly into your Scala source code. There’s no need
to embed the XML in double quotes to create a String; just assign an XML block to a
variable.

XML blocks can span multiple lines:
val foo = <p>Lorem ipsum
 dolor sit amet,
 consectetur adipisicing elit
 et cetera, et cetera</p>

A block can take as many lines as needed to solve the current problem. As shown in the
following code, an XML literal can also be the result of a method or function:

def getXml =
 <pizza>
 <crust type="thin" size="14" />
 <topping>cheese</topping>
 <topping>sausage</topping>
 </pizza>

More often, you’ll return dynamically generated XML from a method. I’ll demonstrate
that in Recipe 2.

Discussion
If you’re given a block of XML as a String, you can convert it into an XML literal with
the loadString method of the scala.xml.XML object:

scala> val dog = ↵
xml.XML.loadString("<dog><name>Rocky</name><age>12</age></dog>")
dog: scala.xml.Elem = <dog><name>Rocky</name><age>12</age></dog>

This results in an Elem object, as in the previous examples.

Note that poorly formed XML strings will lead to SAXParseExceptions:
scala> val x = scala.xml.XML.loadString("")
org.xml.sax.SAXParseException: Premature end of file.

scala> val x = scala.xml.XML.loadString("a")
org.xml.sax.SAXParseException: Content is not allowed in prolog.

scala> val x = scala.xml.XML.loadString("<a>")
org.xml.sax.SAXParseException: XML document structures must start
and end within the same entity.

6 | Bonus Chapter: XML and XPath

The Scaladoc states that the Elem class “extends the Node class, providing an immutable
data object representing an XML element.” An Elem has a label, attributes, and children,
as you’ll see in many examples in this chapter.

When parsing XML, the classes you’ll run into most often are Elem, Node, and
NodeSeq. The relationship between these classes (and a few others) is shown in Figure 1.

Figure 1. The main classes in the scala.xml class hierarchy

The Elem, Node, and NodeSeq classes are described in Table 1.

Table 1. Descriptions of the most commonly used scala.xml classes
Name Description

Elem An immutable object that represents an XML element.

Node An abstract class representing nodes in an XML tree. It contains an implementation of XPath methods like \ and
\\.

NodeSeq A wrapper around Seq[Node], with XPath and comprehension methods. Typically seen as the result of XPath
searches.

Although the Elem class has more than 160 methods, don’t be intimidated; many of these
come from the ability to treat an Elem as a sequential collection. There are a small handful
of commonly used, XML-specific methods, and those are listed in Table 3 in Recipe 3.

The NodeSeq class is simpler. Like the Elem class, it implements the \ and \\ methods
for XPath searching, and then is primarily composed of common collection methods.

1. Creating XML Literals | 7

If you get deeply involved in XML parsing and creation, you’ll also run into some of the
other Scala classes. The most common of those are listed in Table 2.

Table 2. Other scala.xml classes you may encounter
Name Description

NodeBuffer Extends ArrayBuffer[Node] and adds an &+ method that lets you build a sequence of XML nodes using
a fluent style.

PCData From the Scaladoc, “this class (which is not used by all XML parsers, but always used by the XHTML one)
represents parseable character data, which appeared as CDATA sections in the input and is to be preserved as
CDATA sections in the output.” Example:

scala> val x = PCData("<p>hello</p>")
x: scala.xml.PCData = <![CDATA[<p>hello</p>]]>

Text Implements an XML node for text (PCDATA). Programming in Scala refers to it as, “A node holding just text.”
Example:

scala> val x = Text("<p>Sundance</p>")
x: scala.xml.Text = <p>Sundance</p>

Unparsed An XML node for unparsed content. Per the Scaladoc, it will output verbatim, and “all bets are off regarding
wellformedness etc.” Example:

// intentional error

scala> val x = Unparsed("</p>foo<p>")
x: scala.xml.Unparsed = </p>foo<p>

See Also
• The Elem class
• The Node class
• The NodeSeq class

2. Mixing Scala and XML
Problem
You want to dynamically generate XML from your Scala source code, such as creating
output for a SOAP web service.

Solution
A great feature of Scala’s XML support is that you can interweave XML and regular Scala
source code together. This lets you dynamically generate XML from your Scala code.

To create XML with dynamic, embedded data, just put your Scala code in curly braces
inside the XML tags, as shown in the following example:

8 | Bonus Chapter: XML and XPath

http://bit.ly/11U05cu
http://bit.ly/17iJTQn
http://bit.ly/19118d1

scala> val name = "Bill"
name: String = Bill

scala> val age = 42
age: Int = 42

scala> val p = <person><name>{name}</name><age>{age}</age></person>
p: scala.xml.Elem = <person><name>Bill</name><age>42</age></person>

In this example, the Scala variables name and age are put inside curly braces, inside the
XML literals. The variable p in the REPL results shows that they’re translated to their
values (Bill and 42, respectively). Methods and other expressions can be used in the
same way.

This ability to weave Scala code and XML together is similar to using a templating
system, and is a great way to generate dynamic XML output, including output like an
RSS news feed, all forms of business data, or a simple XHTML UL/LI tag combination:

scala> val fruits = List("apple", "banana", "orange")
fruits: List[java.lang.String] = List(apple, banana, orange)

scala> val ul = {fruits.map(i => {i})}
ul: scala.xml.Elem = applebananaorange

scala> println(ul)
applebananaorange

You can use the same technique to generate XHTML <select> and <option> tags, such
as for a list of states or credit card options, and any other form of XML data.

Discussion
As shown in the fruits example, XML literals can contains Scala code in curly braces,
and that code can include additional XML literal values, which can contain Scala code.
This nesting of Scala and XML can continue to go deeper, as needed.

To explain how this works, let’s look at the code again:
val ul = {fruits.map(i => {i})}

Here’s how this code works:

• The XML expression is enclosed in the matching tags.
• The curly braces begin the fruits.map Scala expression.
• tags are embedded in the code block passed to the map method.
• The variable i is enclosed in curly braces inside the tags, where it will be

replaced by its values as the map method executes.

2. Mixing Scala and XML | 9

If you’ve used XML/HTML templating tools previously, you can appreciate the power
of this approach.
NodeBuffer

The NodeBuffer class provides another nice way to dynamically build XML. The fol‐
lowing example shows how to build a set of tags as a NodeBuffer, and then insert
those elements into a final tag:

scala> val x = new xml.NodeBuffer
x: scala.xml.NodeBuffer = ArrayBuffer()

scala> x += apple
res0: x.type = ArrayBuffer(apple)

scala> x += banana
res1: x.type = ArrayBuffer(apple, banana)

scala> val ul = {x}
ul: scala.xml.Elem = applebanana

NodeBuffer is a simple convenience class that extends ArrayBuffer[Node]. It adds one
method named &+ that appends the given object to the buffer and returns a this ref‐
erence for convenience. This lets you write a “fluent” style of code like this, if you prefer:

val nb = new xml.NodeBuffer
val nb2 = nb &+ apple &+ banana &+ cherry

3. Extracting Data from XML Nodes
Problem
You want to extract information from XML you receive, so you can use the data in your
application.

Solution
Use the methods of Scala Elem and NodeSeq classes to extract the data. The most com‐
monly used methods of the Elem class are shown in Table 3.

Table 3. Commonly used methods of the Elem class
Method Description

x \ "div" Searches the XML literal x for elements of type <div>. Only searches immediate child nodes
(no grandchild or “descendant” nodes).

x \\ "div" Searches the XML literal x for elements of type <div>. Returns matching elements from child
nodes at any depth of the XML tree.

x.attribute("class") Returns the value of the given attribute in the current node.
foo.attribute("x") returns Some(10).

10 | Bonus Chapter: XML and XPath

Method Description

x.attributes Returns all attributes of the current node, prefixed and unprefixed, in no particular order.
scala> foo.attributes
res0: scala.xml.MetaData = x="10" y="20"

x.child Returns the children of the current node.
<a>foo.child returns foo.

x.copy(...) Returns a copy of the element, letting you replace data during the copy process.

x.label The name of the current element.
<a>foo.label returns a.

x.text Returns a concatenation of text(n) for each child n.

x.toString Emits the XML literal as a String. Use scala.xml.PrettyPrinter to format the
output, if desired.

The following examples demonstrate most of the methods in Table 3. Given this XML
literal:

scala> val x = <div class="content"><p>Hello</p><p>world</p></div>
x: scala.xml.Elem = <div class="content"><p>Hello</p><p>world</p></div>

you can search for and extract subelements with the \ and \\ XPath methods:
scala> x \ "p"
res0: scala.xml.NodeSeq = NodeSeq(<p>Hello</p>, <p>world</p>)

scala> x \\ "p"
res1: scala.xml.NodeSeq = NodeSeq(<p>Hello</p>, <p>world</p>)

These methods will be demonstrated more in subsequent recipes.

The label method returns the name of the current element. A <p> tag returns p, a <div>
tag returns div, etc.:

scala> x.label
res2: String = div

scala> <name>Joe</name>.label
res3: String = name

The text method returns the text from all subelements, which the Scaladoc describes
as “a concatenation of all text(n) for each child n”:

scala> x.text
res4: String = Helloworld

Later examples will demonstrate how to improve on this result.

Element attributes are extracted with the attribute or attributes methods. The fol‐
lowing examples demonstrate how to call these methods, and the values they return:

scala> x.attribute("class")
res5: Option[Seq[scala.xml.Node]] = Some(content)

3. Extracting Data from XML Nodes | 11

scala> x.attributes("class")
res6: Seq[scala.xml.Node] = content

scala> x.attributes.get("class")
res7: Option[Seq[scala.xml.Node]] = Some(content)

The following examples demonstrate how those same method calls behave when you
search for an attribute that doesn’t exist:

scala> x.attribute("foo")
res8: Option[Seq[scala.xml.Node]] = None

scala> x.attributes("foo")
res9: Seq[scala.xml.Node] = null

scala> x.attributes.get("foo")
res10: Option[Seq[scala.xml.Node]] = None

scala> x.attributes.get("foo").getOrElse("N/A")
res11: Object = N/A

To demonstrate more ways to work with element attributes, let’s create a new element:
scala> val w = <forecast day="Thu" date="10 Nov 2011" low="37" high="58" />
w: scala.xml.Elem = <forecast day="Thu" date="10 Nov 2011" low="37" high="58" />

These examples show how attribute and attributes work with multiple attributes:
scala> w.attribute("day")
res0: Option[Seq[scala.xml.Node]] = Some(Thu)

scala> w.attributes("day")
res1: Seq[scala.xml.Node] = Thu

scala> w.attributes
res2: scala.xml.MetaData = day="Thu" date="10 Nov 2011" low="37" high="58"

These examples show how to iterate over a set of attributes:
scala> for (a <- w.attributes) println(s"key: ${a.key}, value: ${a.value}")
key: day, value: Thu
key: date, value: 10 Nov 2011
key: low, value: 37
key: high, value: 58

scala> w.attributes.asAttrMap
res3: Map[String,String] = Map(low -> 37, date -> 10 Nov 2011,
 day -> Thu, high -> 58)

Child elements

The child method returns all child nodes of the current element. To demonstrate this,
let’s create a new XML variable:

12 | Bonus Chapter: XML and XPath

scala> val p = <person><name>Ken</name><age>23</age></person>
p: scala.xml.Elem = <person><name>Ken</name><age>23</age></person>

The child method returns immediate child nodes:
scala> p.child
res0: Seq[scala.xml.Node] = ArrayBuffer(<name>Ken</name>, <age>23</age>)

You can use child to iterate over all the children:
scala> for (n <- p.child) println(n)
<name>Ken</name>
<age>23</age>

Because child returns a sequence, you can also access the child elements like this:
scala> p.child(0)
res1: scala.xml.Node = <name>Ken</name>

scala> p.child(0).label
res2: String = name

scala> p.child(0).text
res3: String = Ken

scala> p.child(1)
res4: scala.xml.Node = <age>23</age>

scala> p.child(1).text.toInt
res5: Int = 23

Text and strings

The toString method returns the XML structure as a String:
scala> p.toString
res6: String = <person><name>Ken</name><age>23</age></person>

You can improve this result with the PrettyPrinter. See Recipe 11.

This approach shows another way to extract the text from the elements:
scala> for (n <- p.child) yield n.text
res7: Seq[String] = ArrayBuffer(Ken, 23)

There are more ways to tackle these problems using XPath methods, which will be shown
in subsequent chapters.

As a word of caution, be careful with the text method. It returns different results de‐
pending on how the XML is formatted, which can be a particular problem when ex‐
tracting XHTML data. To demonstrate this, the following examples show the output
when there is a space before the
 tag, and when there is no space:

scala> <div><p>Hello, world,
it's me.</p></div>.text
res0: String = Hello, world, it's me.

3. Extracting Data from XML Nodes | 13

scala> <div><p>Hello, world,
it's me.</p></div>.text
res1: String = Hello, world,it's me.

In the next examples, the same XML, formatted in different ways, yields different results:
scala> <div><p>Is 2 > 1?</p><p>Why do you ask?</p></div>.text
res2: String = Is 2 > 1?Why do you ask?

scala> <div>
 | <p>Is 2 > 1?</p>
 | <p>Why do you ask?</p>
 | </div>.text
res3: String =
"
Is 2 > 1?
Why do you ask?
"

If you need to extract text in this manner, a workaround is to extract the text components
individually into a sequence, and then recombine the sequence as desired. The following
example demonstrates how to accomplish this with the child, label, and text methods.
Given this XML literal:

val xml = <div><p>Is 2 > 1?</p><p>Why do you ask?</p></div>

the child method returns the elements as a sequence:
scala> xml.child
res0: Seq[scala.xml.Node] =
 ArrayBuffer(<p>Is 2 > 1?</p>, <p>Why do you ask?</p>)

This lets you write the following code, which creates a sequence of strings from the <p>
tags:

val strings = for {
 e <- xml.child
 if e.label == "p"
} yield e.text

The REPL shows that the resulting variable strings has the following type and data:
strings: Seq[String] = ArrayBuffer(Is 2 > 1?, Why do you ask?)

In the XPath recipes in this chapter, you’ll see how to accomplish some of the same tasks
using the \ and \\ methods.
Example data sets and REPL memory errors

If you want to test these commands against large data sets, the University of Washington’s
Computer Science department maintains a nice collection of sample XML data.

The NASA data set is 23 MB, and causes the REPL to crash with a Java heap space error:
scala> val xml = scala.xml.XML.loadFile("nasa.xml")
java.lang.OutOfMemoryError: Java heap space ...

14 | Bonus Chapter: XML and XPath

http://www.cs.washington.edu/research/xmldatasets/

To get around this problem, you can allocate more heap space when starting the REPL
with this command:

$ scala -J-Xms256m -J-Xmx512m

or this command:
$ env JAVA_OPTS="-Xms256m -Xmx512m" scala

4. Basic XPath Searching with \ and \\
Problem
You want to search an XML tree for the data you need using XPath expressions.

Solution
Use the \ and \\ methods, which are analogous to the XPath / and // expressions. The
\ method returns all matching elements directly under the current node, and \\ returns
all matching elements from all nodes under the current node (all descendant nodes).

To demonstrate this difference, create this XML literal:
scala> val a = <div><p>Hello,
world</p></div>
a: scala.xml.Elem = <div><p>Hello,
world</p></div>

The \ method finds the <p> tag because it’s directly under the <div> tag:
scala> a \ "p"
res0: scala.xml.NodeSeq = NodeSeq(<p>Hello,
world</p>)

But it won’t find the
 tag in the XML literal, because it’s not directly under the
<div> tag:

scala> a \ "br"
res1: scala.xml.NodeSeq = NodeSeq()

However, the \\ method can find it, because it searches through all descendant nodes
(children, grandchildren, etc.) under the <div> tag:

scala> a \\ "br"
res2: scala.xml.NodeSeq = NodeSeq(
)

Using the \ method

As a deeper demonstration of the \ method, first create this XML literal:
val x = <stocks>
 <stock>AAPL</stock>
 <stock>AMZN</stock>
 <stock>GOOG</stock>
</stocks>

4. Basic XPath Searching with \ and \\ | 15

Given this XML, the following expression returns all <stock> elements:
scala> x \ "stock"
res0: scala.xml.NodeSeq =
 NodeSeq(<stock>AAPL</stock>, <stock>AMZN</stock>, <stock>GOOG</stock>)

As shown in the REPL output, this returns an instance of a NodeSeq, which is a simple
wrapper around Seq[Node] (a sequence of nodes). Like the Elem class, NodeSeq supports
the \ and \\ search methods, as well as the usual large variety of collection methods.

Once you have a NodeSeq, you can work with the data it contains. For instance, you can
create a list of stock symbols like this:

scala> (x \ "stock").map(_.text)
res1: scala.collection.immutable.Seq[String] = List(AAPL, AMZN, GOOG)

If this is confusing, it can help to see it broken down into smaller steps. First, get a
sequence of elements with the \ method, and assign the result to a variable:

scala> val nodes = x \ "stock"
nodes: scala.xml.NodeSeq =
 NodeSeq(<stock>AAPL</stock>, <stock>AMZN</stock>, <stock>GOOG</stock>)

You can see that nodes is a variable of type NodeSeq. Each individual node is of type
Elem:

scala> for (n <- nodes) println(n.getClass)
class scala.xml.Elem
class scala.xml.Elem
class scala.xml.Elem

Each element contains its XML tag as well as its data:
scala> for (n <- nodes) println(n)
<stock>AAPL</stock>
<stock>AMZN</stock>
<stock>GOOG</stock>

So, to extract only the data from each node, call the text method:
scala> for (n <- nodes) println(n.text)
AAPL
AMZN
GOOG

Putting this together, you can create a list of stock names using a for/yield loop:
scala> val stockNames = for (n <- nodes) yield n.text
stockNames: scala.collection.immutable.Seq[String] = List(AAPL, AMZN, GOOG)

That loop is equivalent to this map method call:
scala> val stockNames = nodes.map(_.text)
stockNames: scala.collection.immutable.Seq[String] = List(AAPL, AMZN, GOOG)

16 | Bonus Chapter: XML and XPath

Because NodeSeq has all the usual sequence methods, it’s easy to get the information you
want from the XML. For instance, you can find the number of nodes, or filter the results
to get only the stocks you want:

// same as 'nodes.length'
scala> (x \ "stock").length
res1: Int = 3

scala> nodes.map(_.text).filter(_.startsWith("A"))
res2: scala.collection.immutable.Seq[String] = List(AAPL, AMZN)

Using the \\ method

The \ method only returns matches on immediate subelements. To search deeper—the
entire XML tree—use the \\ method.

Given this XML:
val x =
<portfolio>
 <stocks>
 <stock>AAPL</stock>
 <stock>AMZN</stock>
 <stock>GOOG</stock>
 </stocks>
 <reits>
 <reit>Super REIT 1</reit>
 </reits>
</portfolio>

the \ method returns an empty NodeSeq when searching for <stock> elements:
scala> x \ "stock"
res0: scala.xml.NodeSeq = NodeSeq()

You can solve this problem by exactly specifying the path to the <stock> elements with
multiple \ method calls:

scala> x \ "stocks" \ "stock"
res1: scala.xml.NodeSeq =
 NodeSeq(<stock>AAPL</stock>, <stock>AMZN</stock>, <stock>GOOG</stock>)

But the \\ method can be a simpler approach to finding the desired elements. It searches
the entire XML tree to find all elements that match your search query:

scala> (x \\ "stock").foreach(println)
<stock>AAPL</stock>
<stock>AMZN</stock>
<stock>GOOG</stock>

As shown before, you can convert the XML data to a list of strings, if desired:
scala> (x \\ "stock").map(_.text)
res2: scala.collection.immutable.Seq[String] = List(AAPL, AMZN, GOOG)

4. Basic XPath Searching with \ and \\ | 17

Discussion
In addition to the approaches shown, you can use the _ wildcard with the \ and \\
methods. For instance, given this XML that represents a group of people you know:

val people =
<people>
 <family>
 <person>Mom</person>
 </family>
 <friends>
 <person>Bill</person>
 <person>Candy</person>
 </friends>
</people>

You can list family members like this:
scala> val family = people \ "family" \ "person"
family: scala.xml.NodeSeq = NodeSeq(<person>Mom</person>)

You can list friends like this:
scala> val friends = people \ "friends" \ "person"
friends: scala.xml.NodeSeq =
NodeSeq(<person>Bill</person>, <person>Candy</person>)

You can list everyone you know by using the _ wildcard in place of specifying family
or friends:

scala> val allPeople = people \ "_" \ "person"
allPeople: scala.xml.NodeSeq =
NodeSeq(<person>Mom</person>, <person>Bill</person>, <person>Candy</person>)

Without the wildcard character, you’d have to create the lists of family and friends and
then merge them together manually.

Once you have the list of people, you can access the elements one at a time:
scala> allPeople(0)
res0: scala.xml.Node = <person>Mom</person>

scala> allPeople(1)
res1: scala.xml.Node = <person>Bill</person>

You can also iterate over all of the elements as usual:
scala> allPeople.foreach(println)
<person>Mom</person>
<person>Bill</person>
<person>Candy</person>

scala> for (person <- allPeople) println(person.text)
Mom
Bill

18 | Bonus Chapter: XML and XPath

Candy

scala> allPeople.map(_.text)
res2: scala.collection.immutable.Seq[String] = List(Mom, Bill, Candy)

For more examples of how to use the \ and \\ methods, see Recipe 5, “Deeper XML
Parsing and Extracting Tag Attributes”.

See Also
• The Elem class
• The NodeSeq class

5. Deeper XML Parsing and Extracting Tag Attributes
Problem
You need to perform deep XML searches, combining the \ and \\ methods, and possibly
searching directly for tag attributes.

Solution
Combine the \\ and \ methods as needed to search the XML. When you need to extract
tag attributes, place an @ character before the attribute name.

Given this simplified version of the Yahoo Weather RSS Feed:
val weather =
<rss>
 <channel>
 <title>Yahoo! Weather - Boulder, CO</title>
 <item>
 <title>Conditions for Boulder, CO at 2:54 pm MST</title>
 <forecast day="Thu" date="10 Nov 2011" low="37" high="58" text="Partly Cloudy"
 code="29" />
 </item>
 </channel>
</rss>

you can access the <forecast> tag like this:
scala> val forecast = weather \ "channel" \ "item" \ "forecast"
forecast: scala.xml.NodeSeq = NodeSeq(<forecast day="Thu"
 date="10 Nov 2011" low="37" high="58" text="Partly Cloudy" code="29"/>)

You can also directly access the attributes of the <forecast> element with these
expressions:

5. Deeper XML Parsing and Extracting Tag Attributes | 19

http://bit.ly/1aqcgOr
http://bit.ly/12T6PSM
http://developer.yahoo.com/weather/

val day = weather \ "channel" \ "item" \ "forecast" \ "@day"
val date = weather \ "channel" \ "item" \ "forecast" \ "@date"

However, once you’ve created the forecast variable, it’s easier to access the attributes
like this:

val day = forecast \ "@day" // Thu
val date = forecast \ "@date" // 10 Nov 2011
val low = forecast \ "@low" // 37
val high = forecast \ "@high" // 58
val text = forecast \ "@text" // Partly Cloudy

Each of these attributes is returned as a NodeSeq:
scala> val day = forecast \ "@day"
day: scala.xml.NodeSeq = Thu

You can convert that to a String with the text method:
scala> val day = (forecast \ "@day").text
day: String = Thu

A nice feature of this approach is that if an attribute is missing, it kindly returns an
empty NodeSeq:

scala> val foo = forecast \ "@foo"
foo: scala.xml.NodeSeq = NodeSeq()

This makes it easy to iterate over the results when elements are found, and when they’re
not found.

I created the forecast variable by specifying the full path to the <forecast> tag at‐
tributes, but you can simplify the expression by using \\ instead of \:

scala> val day = weather \\ "forecast" \ "@day"
day: scala.xml.NodeSeq = Thu

If you’re comfortable with your data—for instance, if you know there is only one day
attribute that can be found—you can shorten that expression to only this:

scala> val day = weather \\ "@day"
day: scala.xml.NodeSeq = NodeSeq(Thu)

Discussion
To demonstrate more XPath search expressions, create this XML literal:

val xml =
 <order>
 <item name="Pizza" price="12.00">
 <pizza>
 <crust type="thin" size="14" />
 <topping>cheese</topping>
 <topping>sausage</topping>
 </pizza>

20 | Bonus Chapter: XML and XPath

 </item>
 <item name="Breadsticks" price="4.00">
 <breadsticks />
 </item>
 <tax type="federal">0.80</tax>
 <tax type="state">0.80</tax>
 <tax type="local">0.40</tax>
 </order>

The following examples, which combine XPath and Scala expressions, show how to
extract different pieces of information from that XML, including the elements and at‐
tributes. The comments before each expression state what I’m looking for:

// get the <item> elements from the order
scala> val items = xml \ "item"
items: scala.xml.NodeSeq =
NodeSeq(<item name="Pizza" price="12.00">
 <pizza>
 <crust type="thin" size="14"/>
 <topping>cheese</topping>
 <topping>sausage</topping>
 </pizza>
 </item>, <item name="Breadsticks" price="4.00">
 <breadsticks/>
 </item>)

// number of items in the order
scala> val numItems = items.length
numItems: Int = 2

// list of item prices
scala> val prices = items.map(i => i \ "@price")
prices: scala.collection.immutable.Seq[scala.xml.NodeSeq] = List(12.00, 4.00)

// the subtotal price
scala> val subtotal = items.map(i => (i \ "@price").text.toDouble).sum
subtotal: Double = 16.0

// list of taxes
scala> val taxItems = xml \ "tax"
taxItems: scala.xml.NodeSeq = NodeSeq(<tax type="federal">0.80</tax>,
<tax type="state">0.80</tax>, <tax type="local">0.40</tax>)

// the total tax
scala> val totalTax = taxItems.map(i => i.text.toDouble).sum
totalTax: Double = 2.0

// list of toppings on the pizza
scala> val toppings = (item \ "pizza" \ "topping").map(_.text)
toppings: scala.collection.immutable.Seq[String] = List(cheese, sausage)

You can access individual tax items like this:

5. Deeper XML Parsing and Extracting Tag Attributes | 21

// get the federal tax
val federalTax = for {
 item <- taxItems
 if (item \ "@type").text == "federal"
} yield item.text

That code returns a List(0.80), a List[String], which you can convert to a numeric
value as shown in the examples.

6. Extracting Data from an Array of XML Elements
Problem
Your XML data has an array of elements, and you need to extract the first element,
second element, or more generally, the Nth element.

Solution
The following simplified version of the XML from the Yahoo Weather API has three
<forecast> elements:

val weather = <rss>
<channel>
<title>Yahoo! Weather - Boulder, CO</title>
<item>
<!-- multiple yweather:forecast elements -->
<forecast day="Thu" date="10 Nov 2011" low="37" high="58"
 text="Partly Cloudy" code="29" />
<forecast day="Fri" date="11 Nov 2011" low="39" high="58"
 text="Mostly Cloudy" code="28" />
<forecast day="Sat" date="12 Nov 2011" low="32" high="49" text="Cloudy"
 code="27" />
</item>
</channel>
</rss>

To access the data in the first <forecast> element, wrap the XPath expression in paren‐
theses and append (0) to it. You can access the first element using a series of \ method
calls:

val day = (weather \ "channel" \ "item" \ "forecast")(0) \ "@day"
val date = (weather \ "channel" \ "item" \ "forecast")(0) \ "@date"

Or you can access it with a single \\ method call, if you prefer:
val low = (weather \\ "forecast")(0) \ "@low"
val high = (weather \\ "forecast")(0) \ "@high"

Either approach yields this result:

22 | Bonus Chapter: XML and XPath

http://developer.yahoo.com/weather/

scala> val date = (weather \\ "forecast")(0) \ "@date"
date: scala.xml.NodeSeq = 10 Nov 2011

Better yet, create a forecasts object first, and then extract the attributes from it:
// 1) creates a NodeSeq with the three <forecast> elements
val forecasts = weather \ "channel" \ "item" \ "forecast"

// 2) extract the attributes
val day = forecasts(0) \ "@day" // Thu (as a NodeSeq)
val date = forecasts(0) \ "@date" // 10 Nov 2011
val low = forecasts(0) \ "@low" // 37
val high = forecasts(0) \ "@high" // 58
val text = forecasts(0) \ "@text" // Partly Cloudy

This approach returns the elements as a NodeSeq:
scala> val day = forecasts(0) \ "@day"
day: scala.xml.NodeSeq = Thu

To extract the attributes as a String instead, add the text method to the end of the
expression:

scala> val day = (forecasts(0) \ "@day").text
day: String = Thu

If the attribute doesn’t exist, this returns an empty string:
scala> val foo = ((weather \\ "forecast")(0) \ "@FOO").text
foo: String = ""

You can access data from other <forecast> elements in the same way. Here’s the date
from the second element in the array:

scala> val date = ((weather \\ "forecast")(1) \ "@date").text
date: String = 11 Nov 2011

As with any array you need to be careful, because if you try to access an array element
that doesn’t exist, you’ll get an IndexOutOfBoundsException:

scala> val date = ((weather \\ "forecast")(49) \ "@date").text
java.lang.IndexOutOfBoundsException: 49

Iterating over the elements

If instead of accessing the <forecast> nodes as individual array elements, you want to
handle the same data in a loop, first grab all of the <forecast> nodes using an XPath
expression, and then iterate over them, as desired:

val forecastNodes = (weather \\ "forecast")

forecastNodes.foreach{ n =>
 val day = (n \ "@day").text
 val date = (n \ "@date").text
 val low = (n \ "@low").text

6. Extracting Data from an Array of XML Elements | 23

 println(s"$day, $date, Low: $low")
}

This results in the following output:
Thu, 10 Nov 2011, Low: 37
Fri, 11 Nov 2011, Low: 39
Sat, 12 Nov 2011, Low: 32

Discussion
To explain this approach, it helps to see that when accessing array elements by their
index value, the first portion of the search finds the <forecast> elements and returns
them as a NodeSeq:

scala> weather \\ "forecast"
res0: scala.xml.NodeSeq = NodeSeq(
<forecast high="58" low="37" day="Thu" code="29" date="10 Nov 2011"
 text="Partly Cloudy"></forecast>,
<forecast high="58" low="39" day="Fri" code="28" date="11 Nov 2011"
 text="Mostly Cloudy"></forecast>,
<forecast high="49" low="32" day="Sat" code="27" date="12 Nov 2011"
 text="Cloudy"></forecast>)

Enclosing the expression in parentheses and adding (0) after it returns the zeroth ele‐
ment of the array:

scala> (weather \\ "forecast")(0)
res1: scala.xml.Node = <forecast high="58" low="37" day="Thu" code="29"
date="10 Nov 2011" text="Partly Cloudy"></forecast>

Each element in the NodeSeq is an Elem instance:
scala> (weather \\ "forecast")(0).getClass
res0: Class[_ <: scala.xml.Node] = class scala.xml.Elem

Therefore, once you’re working with one <forecast> element, you can access its tag
attributes, such as the day attribute:

scala> (weather \\ "forecast")(0) \ "@day"
res1: scala.xml.NodeSeq = Thu

As with any array, add (1), (2), etc., to access the other <forecast> elements.

See Also
The Yahoo Weather API

24 | Bonus Chapter: XML and XPath

http://bit.ly/12ubzOT
http://developer.yahoo.com/weather/

7. Using Match Expressions with XML
Problem
You want to use match expressions as another way to access the information contained
in XML data.

Solution
Given this XML literal:

val pizzaNode =
 <pizza>
 <crust type="thin" size="14" />
 <topping>cheese</topping>
 <topping>sausage</topping>
 </pizza>

you can access the <topping> and <crust> elements with a match expression, like this:
pizzaNode match {
 case <topping>{value}</topping> => println(s"Got a topping: $value")
 case <crust /> => println("Got a <crust/> tag")
 case _ => println("D'oh!")
}

You’ll usually put a match expression like this in a method, so let’s do that here:
/**
* Version 1
* A pizza node can have <topping> and <crust> tags.
*/
def handlePizzaNode(pizzaNode: Node) {
 pizzaNode match {
 case <topping>{value}</topping> => println(s"Got a topping: $value")
 case <crust /> => println("Got a <crust/> tag")
 case _ => println("D'oh!")
 }
}

A few examples in the REPL demonstrate how this works. First, a <topping> element:
scala> val node = <topping>cheese</topping>
node: scala.xml.Elem = <topping>cheese</topping>

scala> handlePizzaNode(node)
Got a topping: cheese

Next, a <crust> element:
scala> val node = <crust type="thin" size="14" />
node: scala.xml.Elem = <crust type="thin" size="14"/>

7. Using Match Expressions with XML | 25

scala> handlePizzaNode(node)
Got a <crust/> tag

The following example demonstrates how to iterate over all the <topping> nodes in the
<pizza>:

scala> for (topping <- pizzaNode \ "topping") handlePizzaNode(topping)
Got a topping: cheese
Got a topping: sausage

Use @ to access node attributes

Accessing the attributes of the <crust> tag and using them on the right side of its case
statement takes a bit more work.

As a solution to this problem, add a variable to a pattern match:
variableName @ pattern

This creates a variable-binding pattern. If the pattern succeeds, it sets the variable to the
object it matches.

Using this approach to solve the current problem, rewrite the <crust> tag case state‐
ment like this:

case crust @ <crust /> => println(s"Got a <crust/> tag: $crust")

The modified version of the method now looks like this:
/**
* Version 2: Get access to the <crust> tag attributes.
*/
def handlePizzaNode(pizzaNode: Node) {
 pizzaNode match {
 case <topping>{value}</topping> =>
 println(s"Got a topping: $value")
 case crust @ <crust /> =>
 val crustSize = crust \ "@size"
 val crustType = crust \ "@type"
 println(s"crustSize: $crustSize, crustType: $crustType")
 case _ =>
 println("D'oh!")
 }
}

Running the code in the REPL again, you can now access the <crust> data on the right
side of the case statement:

scala> val node = <crust type="thin" size="14" />
node: scala.xml.Elem = <crust type="thin" size="14"/>

scala> handlePizzaNode(node)
crustSize: 14, crustType: thin

26 | Bonus Chapter: XML and XPath

A real-world method should either return the nodes that were found by each case
match, or call a method to act on each node. The following code demonstrates the second
approach, how you might act on each node by calling addTopping, setCrustSize, and
setCrustType methods (which are left as an exercise for the reader to implement):

/**
* Version 3: Call useful methods
*/
def handlePizzaNode(pizzaNode: Node) {
 pizzaNode match {
 case <topping>{value}</topping> =>
 addTopping(value)
 case crust @ <crust /> =>
 setCrustSize((node \ "@size").text)
 setCrustType((node \ "@type").text)
 case _ => println("D'oh!")
 }
}

Handling an array of elements

Now that you’ve seen the use of the @ symbol in case statements, you can extend the
approach to handle multiple elements of the same type, such as multiple <stock> ele‐
ments contained in this XML literal:

val stocks =
 <stocks>
 <stock>AAPL</stock>
 <stock>AMZN</stock>
 <stock>GOOG</stock>
 </stocks>

The following match expression shows the formula to access and print the value of each
<stock> element:

stocks match {
 case <stocks>{stocks @ _*}</stocks> =>
 for (stock @ <stock>{_*}</stock> <- stocks)
 println(s"stock: ${stock.text}")
}

When that code is run, it yields the following output:
stock: AAPL
stock: AMZN
stock: GOOG

Discussion
There are a few pitfalls to be aware of when using match expressions with XML. For
example, I showed an earlier example like this that works:

7. Using Match Expressions with XML | 27

// this works
<p>Hello, world</p> match {
 case <p>{text}</p> => println(text)
}

But it’s important to know that in a match expression, the tags have to be an exact match.
The following match expression blows up with a MatchError, because I’m looking for
text between matching <topping> tags, but the text is given in an attribute of the
<topping> tag:

// throws a MatchError
<topping value="Hello, world" /> match {
 case <topping>{text}</topping> => println(text)
}

Although that demonstrates a communication error that’s likely to throw off most al‐
gorithms, you’ll also get a MatchError if the <topping> tags are formed correctly, but
are empty:

// throws a MatchError
<topping></topping> match {
 case <topping>{text}</topping> => println(text)
}

With that case statement, you’ll also get a MatchError if the <topping> tags contain
another XML tag:

// throws a MatchError
<topping>Green
olives</topping> match {
 case <topping>{text}</topping> => println(text)
}

To solve these problems, and other similar problems, the correct approach is to write
one or more case statements to handle the XML you want to allow, and then add a
default case statement to prevent a MatchError from being thrown by your match
expression, as shown here:

<topping></topping> match {
 case <topping>{text}</topping> => println(text)
 case _ => println("got something else")
}

Handling unexpected tags

XML tags embedded in other XML tags can also cause problems in match expressions.
I showed in other recipes that you can extract the text from the following XML literal,
even though it contains a
 tag:

scala> <p>mystery
</p>.text
res0: String = mystery

But attempting to match that XML literal in the following match expression throws a
MatchError:

28 | Bonus Chapter: XML and XPath

// this throws a MatchError
<p>Hello,
world</p> match {
 case <p>{content}</p> => println(content)
}

A quick trip into the REPL helps us understand the problem:
scala> val hello = <p>Hello,
world</p>
hello: scala.xml.Elem = <p>Hello,
world</p>

scala> hello.child.foreach(e => println(e.getClass))
class scala.xml.Text
class scala.xml.Elem
class scala.xml.Text

hello was expected to contain plain text, but it contains other XML entities. Contrast
that output with the output from this example, where the
 tag is removed:

scala> val hello = <p>Hello, world</p>
hello: scala.xml.Elem = <p>Hello, world</p>

scala> hello.child.foreach(e => println(e.getClass))
class scala.xml.Text

When only <p> tags are used, hello contains only a Text element, and you can suc‐
cessfully get a match in your match expression; but when one or more
 tags are
included inside the <p> tags, the match expression fails.

To solve this problem, you need to change the left side of the case statement. Using the
@ approach shown in the Solution helps you get where you need to be:

// this works
<p>Hello,
world</p> match {
 case <p>{ n @ _* }</p> => n.foreach(println)
}

This prints the following output in the REPL:
Hello,

world

In summary, use this syntax to handle the left side of the case statement, and manipulate
the resulting elements as needed on the right side of the statement.

7. Using Match Expressions with XML | 29

Can’t match attributes

As shown in the Solution, you can’t easily match node attributes in a match expression.
To get around this problem, use one of the following approaches with your case
statements.

If your XML node only has one attribute, like this:
val node = <crust type="thin" />

you can use this approach:
node match {
 case c @ <crust/> if (c \ "@type").text == "thin" => println(s"type is thin")
 case c @ <crust/> if (c \ "@type").text == "thick" => println(s"type is thin")
}

With multiple attributes, you’ll probably want to use the approach shown in the Solu‐
tion, handling the attributes on the right side of the case statement:

val node = <crust type="thin" size="14" />

node match {
 case crust @ <crust /> =>
 val crustSize = crust \ "@size"
 val crustType = crust \ "@type"
 println(s"crustSize: $crustSize, crustType: $crustType")
}

See Also
The pattern matching approach shown in this recipe is similar to other recipes
in this chapter, and can also be combined with them, specifically Recipes 3
through 6.

8. Serializing and Deserializing XML
Problem
You want to convert the data in a Scala class to its equivalent XML, or convert an XML
representation of a class to an instance of the class.

Solution
There are two primary approaches to solving this problem:

30 | Bonus Chapter: XML and XPath

• Convert the fields in your Scala class to and from XML using the techniques shown
in previous recipes in this chapter, i.e., a “manual conversion” process.

• Use a library like XStream to assist in the conversion process, writing converters as
necessary.

This solution demonstrates both approaches.
The manual conversion process

The following code has a toXml method in the class to convert the fields in a class to
XML, and a fromXml method in the object to convert an XML literal to the fields in a
class, using a manual process. This example uses a Stock class, meant to hold data for
an instance of a stock, such as Stock("NFLX","Netflix",165.50):

class Stock(var symbol: String, var businessName: String, var price: Double) {

 // (a) convert Stock fields to XML
 def toXml = {
 <stock>
 <symbol>{symbol}</symbol>
 <businessName>{businessName}</businessName>
 <price>{price}</price>
 </stock>
 }

 override def toString =
 s"symbol: $symbol, businessName: $businessName, price: $price"

}

object Stock {

 // (b) convert XML to a Stock
 def fromXml(node: scala.xml.Node):Stock = {
 val symbol = (node \ "symbol").text
 val businessName = (node \ "businessName").text
 val price = (node \ "price").text.toDouble
 new Stock(symbol, businessName, price)
 }

}

The toXml method uses the variable substitution techniques shown in Recipe 1, and the
fromXml method uses XPath search techniques demonstrated in Recipes 4 through 6.
The toXml method is declared in the class because it needs to be unique to each instance,
but the fromXml method is declared in the object because it’s called as
Stock.fromXml(theXml), like a static method in Java.

8. Serializing and Deserializing XML | 31

The businessName field isn’t necessary here, but is kept to make sure
the stock symbols are understood.

These methods are demonstrated with the following driver class:
object TestToFromXml extends App {

 // (a) convert a Stock to its XML representation
 val aapl = new Stock("AAPL", "Apple", 600d)
 println(aapl.toXml)

 // (b) convert an XML representation to a Stock
 val googXml = <stock>
 <symbol>GOOG</symbol>
 <businessName>Google</businessName>
 <price>620.00</price>
 </stock>
 val goog = Stock.fromXml(googXml)
 println(goog)
}

Running the TestToFromXml object produces the following output:
<stock>
 <symbol>AAPL</symbol>
 <businessName>Apple</businessName>
 <price>600.0</price>
 </stock>

symbol: GOOG, businessName: Google, price: 620.0

This process is straightforward and uses techniques demonstrated in other recipes in
this chapter. The only thing new in this recipe is using the toDouble method in this line
of code:

val price = (node \ "price").text.toDouble

You can use toDouble and all the related to* methods, because the text method returns
a String, which you can manipulate in all the usual ways.

Although writing code like this is a manual process, the code can easily be generated
from the class specification or the database using a “CRUD generator.”
Using XStream

Another solution to this problem is to use a library such as XStream, a popular Java
library for serializing XML. Like other Java libraries, it works with Scala, though you’ll
need to provide a “converter” to handle special situations and collections.

For instance, you might start with the following simple class:

32 | Bonus Chapter: XML and XPath

http://xstream.codehaus.org/

// a "first attempt" example (has a few problems)

import scala.collection.mutable.ArrayBuffer
import com.thoughtworks.xstream._
import com.thoughtworks.xstream.io.xml.DomDriver

case class Topping (name: String)

case class Pizza(crustSize: Int, crustType: String) {
 val toppings = ArrayBuffer[Topping]()
 def addTopping(t: Topping) { toppings += t }
}

object Test extends App {

 val p = Pizza(14, "Thin")
 p.addTopping(Topping("cheese"))
 p.addTopping(Topping("sausage"))

 val xstream = new XStream(new DomDriver)
 val xml = xstream.toXML(p)
 println(xml)

}

After including the XStream JAR in the project, running the Test object results in the
following output, which has a few issues:

<Pizza>
 <crustSize>14</crustSize>
 <crustType>Thin</crustType>
 <toppings>
 <initialSize>16</initialSize>
 <array>
 <Topping>
 <name>cheese</name>
 </Topping>
 <Topping>
 <name>sausage</name>
 </Topping>
 <null/>
 <null/>
 <null/>
 ...
 (this goes on until 14 null fields are printed)
 ...
 <null/>
 <null/>
 <null/>
 </array>
 <size0>2</size0>
 </toppings>
</Pizza>

8. Serializing and Deserializing XML | 33

Issues in this output include:

• The Pizza and Topping tags are capitalized.
• All those <null/> tags generated from the ArrayBuffer[Topping].
• The extra <array> and <size> tags.

To solve these problems, you need to create aliases to handle the capitalization problems,
and write an XStream converter to handle the collection.

A converter class named net.mixedbits.tools.XStreamConversions provides a good
start toward solving the collections problem. At the time of this writing, it currently has
one “import” bug that’s easily fixed, plus some deprecation issues.

After copying and pasting the XStreamConversions class into my project and fixing its
import bug, the following program shows how to use it. In addition, the alias method
calls show to convert the strings Pizza and Topping to lowercase:

// improved example

import scala.collection.mutable.ArrayBuffer
import com.thoughtworks.xstream._
import com.thoughtworks.xstream.io.xml.DomDriver
import com.thoughtworks.xstream.io.xml.StaxDriver

// added
import net.mixedbits.tools.XStreamConversions

case class Topping (name: String)

case class Pizza(crustSize: Int, crustType: String) {
 val toppings = ArrayBuffer[Topping]()
 def addTopping(t: Topping) { toppings += t }
}

object Test extends App {

 val p = Pizza(14, "Thin")
 p.addTopping(Topping("cheese"))
 p.addTopping(Topping("pepperoni"))

 // pass XStream into XStreamConversions
 val xstream = XStreamConversions(new XStream(new DomDriver()))

34 | Bonus Chapter: XML and XPath

http://xstream.codehaus.org/

 // make Topping and Pizza lowercase
 xstream.alias("topping", classOf[Topping])
 xstream.alias("pizza", classOf[Pizza])

 val xml = xstream.toXML(p)
 println(xml)

}

Running this code results in the following (improved) output:
<pizza>
 <crustSize>14</crustSize>
 <crustType>Thin</crustType>
 <toppings>
 <topping>
 <name>cheese</name>
 </topping>
 <topping>
 <name>pepperoni</name>
 </topping>
 </toppings>
</pizza>

A library like XStream can really save time and effort if you need to serialize and dese‐
rialize a large number of classes.

See Also
• The XStream library is “a simple library to serialize objects to XML and back again”
• Information about tweaking XStream output
• Writing an XStream converter

9. Loading XML from a URL
Problem
You want to load XML from a URL, such as accessing a SOAP web service or down‐
loading an RSS feed.

Solution
For simple purposes, use the load method of the scala.xml.XML object directly:

val rss = scala.xml.XML.load("http://alvinalexander.com/rss.xml")

This is easily demonstrated in the Scala REPL:

9. Loading XML from a URL | 35

http://xstream.codehaus.org
http://xstream.codehaus.org/manual-tweaking-output.html
http://xstream.codehaus.org/converter-tutorial.html

scala> import scala.xml.XML
import scala.xml.XML

scala> val rss = XML.load("http://alvinalexander.com/rss.xml")
rss: scala.xml.Elem =
<rss xml:base="http://alvinalexander.com" version="2.0"↵
 xmlns:dc="http://purl.org/dc/elements/1.1/">
<channel>

(output goes on for a while ...)

Loading XML data from a URL is just like assigning an XML literal to a variable, with
the resulting variable being of type scala.xml.Elem. As a result, you can operate on it
as usual, such as determining the number of elements that match a search pattern, or
extracting the text value of an element:

scala> (rss \\ "item").length
res0: Int = 10

scala> val firstTitle = (rss \\ "channel" \ "title").text
firstTitle: String = alvinalexander.com

This approach is simple, but doesn’t let you control timeouts, a problem that will be
solved in the Discussion.

Discussion
As with any attempt to access an Internet resource, the load method can throw excep‐
tions, such as an UnknownHostException:

scala> val rss = XML.load("http://www.foo.bar/rss.xml")
java.net.UnknownHostException: www.foo.bar

If you dig into the Scala source code, you’ll find that the URL is read with the openStream
method of the java.net.URL class. The openStream method can throw an IO-
Exception, which you’ll want to account for.
Using a timeout

Though the Solution shows a “simple” solution to the problem, in most production
applications, you’ll want to control the timeout, in case the resource you’re trying to
access is unavailable. One way to manually control the timeout limit while downloading
a URL is to combine this recipe with Recipe 13.9, as shown in the following code:

import scala.concurrent.{Await, ExecutionContext, Future}
import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.duration._
import scala.language.postfixOps
import scala.xml.XML

// for the 'pool' approach
import java.util.concurrent.Executors

36 | Bonus Chapter: XML and XPath

object XmlTimeout extends App {

 val pool = Executors.newCachedThreadPool()
 implicit val ec = ExecutionContext.fromExecutorService(pool)

 try {
 val getXml = Future {
 XML.load("http://alvinalexander.com/rss.xml")
 }
 val rss = Await.result(getXml, 5 seconds)
 println(rss)
 } catch {
 case e: Exception => e.printStackTrace
 }

 pool.shutdown

}

The Scala Future lets you easily add a timeout to the operation. Scala Futures need
something called an “execution context” to work, and the pool variable and the implicit
value ec provide that for this application. The official Scala documentation describes
this need like this:

In order to execute callbacks and operations, Futures need something called
an ExecutionContext, which is very similar to a java.util.con-
current.Executor. If you have an ActorSystem in scope, it will use its default dis‐
patcher as the ExecutionContext, or you can use the factory methods provided by the
ExecutionContext companion object to wrap Executors and Executor-
Services, or even create your own.

The following code is almost identical to the previous code, except that an ActorSystem
is used to provide the ExecutionContext:

import scala.concurrent.{Await, ExecutionContext, Future}
import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.duration._
import scala.language.postfixOps
import scala.xml.XML

object XmlTimeout extends App {

 implicit val system = ActorSystem("FutureSystem")

 try {
 val getXml = Future {
 XML.load("http://alvinalexander.com/rss.xml")
 }
 val rss = Await.result(getXml, 5 seconds)
 println(rss)
 } catch {

9. Loading XML from a URL | 37

http://bit.ly/10YuIeb

 case e: Exception => e.printStackTrace
 }

 system.shutdown

}

Either approach yields the desired result of downloading XML content with a timeout.

In these examples, I catch a generic Exception, but the code can actually throw many
exceptions, including:

• java.net.UnknownHostException

• java.util.concurrent.TimeoutException

• org.xml.sax.SAXParseException

These are the most common exceptions I see, but because the specific exception types
don’t matter in my application, I just catch the top-level Exception.

If you prefer to use an HTTP client you’re already comfortable with, you can use it to
download the XML as a string, and then convert the string to an XML literal using the
scala.xml.XML.loadString method.

See Also
• The java.net.URL class
• The official Scala documentation on Futures and Promises

10. Loading XML from a File
Problem
You need to open and read an XML data file for your application, such as loading con‐
figuration or application data.

Solution
Use the loadFile method of the scala.xml.XML object:

scala> import scala.xml.XML
import scala.xml.XML

scala> val xml = XML.loadFile("portfolio.xml")
xml: scala.xml.Elem =
<portfolio>
 <stocks>

38 | Bonus Chapter: XML and XPath

http://bit.ly/12fh2ci
http://docs.scala-lang.org/overviews/core/futures.html

 <stock>AAPL</stock>
 <stock>AMZN</stock>
 <stock>GOOG</stock>
 </stocks>
 <reits>
 <reit>Super REIT 1</reit>
 </reits>
</portfolio>

When the file is loaded, the resulting variable is of type is scala.xml.Elem, which is the
same result you get when you assign an XML literal directly to a variable. Therefore,
you can operate on it using the methods shown in other recipes, including the \ and \\
methods:

scala> xml \ "stocks" \ "stock"
res0: scala.xml.NodeSeq =
NodeSeq(<stock>AAPL</stock>, <stock>AMZN</stock>, <stock>GOOG</stock>)

scala> (xml \ "stocks" \ "stock").map(_.text)
res1: scala.collection.immutable.Seq[String] = List(AAPL, AMZN, GOOG)

Be aware that, as with any file-opening/reading code, XML.loadFile can throw
exceptions:

scala> val xml = XML.loadFile("foo.xml")
java.io.FileNotFoundException: foo.xml (No such file or directory)

The process can also throw a SaxParseException like these:
org.xml.sax.SAXParseException: Premature end of file.
org.xml.sax.SAXParseException: Content is not allowed in prolog.

Therefore you’ll want to wrap the code in a try/catch block, or throw the exception
from your method.

Discussion
This approach is almost identical to Recipe 9, “Loading XML from a URL”, but uses
XML.loadFile instead of XML.load.

The load method is overloaded, and different instances let you load from a URL,
InputSource, Reader, and InputStream. An additional loadXML method lets you load
XML from an InputSource while also providing a parser. See the scala.xml.XML Sca‐
ladoc for more information.

See Also
The scala.xml.XML object includes a variety of “load” methods.

10. Loading XML from a File | 39

http://bit.ly/12T8tUs

11. Saving XML to a File
Problem
You want to write XML data to a file, such as saving application data or configuration
information to a file.

Solution
Use the scala.xml.XML.save method to write a Scala literal to a file. Given this XML
literal:

// create an XML variable
val portfolio =
 <portfolio>
 <stocks>
 <stock>AAPL</stock>
 <stock>AMZN</stock>
 <stock>GOOG</stock>
 </stocks>
 <reits>
 <reit>Super REIT 1</reit>
 </reits>
 </portfolio>

write the literal to file with the save method:
// save the XML to a file
scala.xml.XML.save("portfolio.xml", portfolio)

This creates a plain-text file named portfolio.xml in the current directory, containing
the XML literal shown.

As with any file-writing code, beware that XML.save can throw an exception:
scala> scala.xml.XML.save("/foo/bar/baz", portfolio)
java.io.FileNotFoundException: /foo/bar/baz (No such file or directory)

Additional save parameters

The save method lets you specify other parameters, including the encoding to use,
whether or not to write an XML declaration, and whether or not to write a DOCTYPE
declaration.

To write the data to a file with encoding information, use this approach:
XML.save("portfolio.xml", portfolio, "UTF-8", true, null)

This results in the following header being added to the file:
<?xml version='1.0' encoding='UTF-8'?>

To add a DOCTYPE to the file, first import the necessary classes:

40 | Bonus Chapter: XML and XPath

import scala.xml.dtd.{DocType, PublicID}

Then create a DocType instance, and save the file with that instance:
val doctype = DocType("html",
 PublicID("-//W3C//DTD XHTML 1.0 Strict//EN",
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"),
 Nil)

XML.save("portfolio.xml", portfolio, "UTF-8", true, doctype)

With this configuration, the following DOCTYPE line is added to the output file:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

The scala.xml package also includes a Utility object with a small collection of useful
methods that let you sort node attributes, trim elements, remove comments, and more.
Pretty printing

If it’s important that the XML can be easily read by a human being, it’s best to use the
PrettyPrinter class described in the next recipe to make sure the XML is “human
readable.” But because the PrettyPrinter returns a String, you’ll need to write it to a
file using another method. I have my own FileUtils class, so the process looks like
this:

val portfolio =
 <portfolio>
 <stocks>
 <stock>AAPL</stock><stock>AMZN</stock><stock>GOOG</stock>
 </stocks>
 <reits><reit>Super REIT 1</reit></reits>
 </portfolio>

// 80 characters wide, 2 character indentation
val prettyPrinter = new scala.xml.PrettyPrinter(80, 2)
val prettyXml = prettyPrinter.format(portfolio)
FileUtils.save("portfolio.xml", prettyXml)

See Also
My Java file utilities and my Scala file utilities

11. Saving XML to a File | 41

http://alvinalexander.com/java/java-file-utilities
https://github.com/alvinj/FileUtils

12. Displaying XML in a Human-Readable Format (Pretty
Printing)
Problem
You have some XML in a hard-to-read format and want to print it in a format that’s
easier to read, at least for humans.

Solution
Use the scala.xml.PrettyPrinter class. Imagine starting with a long, continuous
string of XML:

scala> val x = <pizza><topping>cheese</topping><topping>sausage</topping></pizza>
x: scala.xml.Elem =
 <pizza><topping>cheese</topping><topping>sausage</topping></pizza>

The toString method prints the XML just as it was received:
scala> x.toString
res0: String = <pizza><topping>cheese</topping><topping>sausage</topping></pizza>

To print the XML in a more human-readable format, import the sca-
la.xml.PrettyPrinter class, create a new instance of it, and format the XML as desired.

For instance, to improve the previous XML output, create a PrettyPrinter instance,
setting the row width and indentation level as desired, in this case 80 and 4, respectively:

scala> val p = new scala.xml.PrettyPrinter(80, 4)
p: scala.xml.PrettyPrinter = scala.xml.PrettyPrinter@4a3a08ea

Formatting the XML literal returns a String, formatted as specified:
scala> p.format(x)
res1: String =
<pizza>
 <topping>cheese</topping>
 <topping>sausage</topping>
</pizza>

As you might guess, the PrettyPrinter constructor looks like this:
PrettyPrinter(width: Int, step: Int)

The width is the maximum width of any row, and step is the indentation for each level
of the XML.

There are other formatting methods available that let you specify namespace informa‐
tion, and a StringBuffer to append to. See the PrettyPrinter Scaladoc for more
information.

42 | Bonus Chapter: XML and XPath

http://bit.ly/13MTcLn

See Also
The PrettyPrinter class

12. Displaying XML in a Human-Readable Format (Pretty Printing) | 43

http://bit.ly/13MTcLn

BONUS CHAPTER

Testing and Debugging

Introduction
When it comes to testing your code, the Scala community has come up with several
great testing choices, including ScalaTest and specs2. Because ScalaTest supports both
test-driven development (TDD) and behavior-driven development (BDD), is well doc‐
umented and supported, and also has an Eclipse plug-in, it is covered in this chapter.
But fear not, if you understand the BDD approach in ScalaTest, it’s a simple matter to
use another tool like specs2 for BDD testing. (A benefit of using specs2 is that it’s the
default testing tool in the Play Framework.)

In addition to covering ScalaTest, this chapter demonstrates several logging techniques,
and also shows how to use JUnit in Scala. This can help you introduce Scala into an
organization while letting everyone still use a comfortable tool.

1. Installing ScalaTest
Problem
You want to begin using ScalaTest to write TDD- or BDD-style unit tests for your Scala
applications.

Solution
The easiest way to use Scala and ScalaTest in production projects is to use the Simple
Build Tool (SBT) to manage your project, so the recipes in this chapter assume you’ll
be using SBT.

To use ScalaTest with SBT 0.10 or newer with Scala 2.10.0, just add a line like this to
your build.sbt file:

45

http://www.scalatest.org/
http://etorreborre.github.com/specs2/
http://junit.org/
https://github.com/harrah/xsbt/wiki
https://github.com/harrah/xsbt/wiki

libraryDependencies += "org.scalatest" %% "scalatest" % "1.9.1" % "test"

If you’re more comfortable using JAR files, download the latest file from the ScalaTest
download page.

Discussion
This recipe is intentionally short and simple, because your next step is to decide whether
you want to use a TDD or BDD style of testing.

When deciding whether you want to write tests in a TDD or BDD style, it’s important
to know that ScalaTest provides classes to support a number of testing “styles.” For
instance, a FunSuite is meant to feel comfortable for developers coming to ScalaTest
from JUnit/NUnit. It’s used in the TDD-style tests in this chapter.

A FlatSpec offers “a nice first step for teams wanting to move from JUnit to a BDD
style,” whereas FunSpec is for teams coming from the Ruby RSpec tool. FunSpec is used
in the BDD examples in this chapter.

Beyond these basic styles, there are still more. From the ScalaTest documentation:

WordSpec is meant “for teams coming from specs or specs2.”

FreeSpec “gives absolute freedom on how specification text should be written.”

PropSpec is “for teams that want to write tests exclusively in terms of property checks.”

FeatureSpec “is primarily intended for acceptance testing, including facilitating the
process of programmers working alongside non-programmers to define the acceptance
requirements.”

See the “Selecting a ScalaTest testing style” link in the See Also section for more details
on choosing a style.

See Also
• Selecting a ScalaTest testing style
• My “Basic SBT Project with ScalaTest” project on GitHub
• ScalaTest download page
• The specs2 testing library

2. Writing TDD Tests with ScalaTest
Problem
You want to use TDD-style tests in your Scala applications and need to see examples of
how to write them.

46 | Bonus Chapter: Testing and Debugging

http://www.scalatest.org/download
http://www.scalatest.org/download
http://www.scalatest.org/user_guide/selecting_a_style
https://github.com/alvinj/BasicScalaSbtProjectWithScalatest
http://www.scalatest.org/download
http://etorreborre.github.io/specs2/

Solution
Have your test classes extend the ScalaTest FunSuite, and then write your tests. Because
most tests involve a setup and teardown process, you’ll usually also want to add in the
BeforeAndAfter trait.

The following example demonstrates a simple set of TDD tests for a Pizza class:
package com.acme.pizza

import org.scalatest.FunSuite
import org.scalatest.BeforeAndAfter

class PizzaTests extends FunSuite with BeforeAndAfter {

 var pizza: Pizza = _

 before {
 pizza = new Pizza
 }

 test("new pizza has zero toppings") {
 assert(pizza.getToppings.size == 0)
 }

 test("adding one topping") {
 pizza.addTopping(Topping("green olives"))
 assert(pizza.getToppings.size === 1)
 }

 // mark that you want a test here in the future
 test ("test pizza pricing") (pending)

}

Assuming that you’re using SBT with the default directory structure, this file should be
named something like PizzaTests.scala, and should be placed under the src/test/scala
directory structure, preferably in a directory named src/test/scala/com/acme/pizza. (The
file can be placed anywhere under the src/test/scala directory, but I prefer to match
the package and directory names.)

The accompanying Pizza.scala and Topping.scala files should be placed in the
src/main/scala/com/acme/pizza directory. Here’s the source code for the Pizza class:

package com.acme.pizza

import scala.collection.mutable.ArrayBuffer

class Pizza {

 private val toppings = new ArrayBuffer[Topping]

2. Writing TDD Tests with ScalaTest | 47

 def addTopping (t: Topping) { toppings += t}
 def removeTopping (t: Topping) { toppings -= t}
 def getToppings = toppings.toList

 def boom { throw new Exception("Boom!") }
}

Here’s the Topping class:
package com.acme.pizza

case class Topping(name: String)

With these classes in place, run the tests with the SBT run test command from your
shell prompt, in your project’s root directory:

$ sbt test

Your output will look like this:
[info] Compiling 1 Scala source to
 /Users/Al/ScalaTests/target/scala-2.10/classes...
[info] Compiling 1 Scala source to
 /Users/Al/Scala/ScalaTests/target/scala-2.10/test-classes...
[info] PizzaTests:
[info] - new pizza has zero toppings
[info] - adding one topping
[info] - test pizza pricing (pending)
[info] Passed: : Total 3, Failed 0, Errors 0, Passed 2, Skipped 1

Although there are other ways to run your tests, I’m a believer in using the tools of a
language, so I recommend using SBT. See the ScalaTest guide to running your tests.

Discussion
The Scaladoc for the FunSuite class describes the class like this:

A suite of tests in which each test is represented as a function value. The “Fun” in FunSuite
stands for “function.”

The before method lets you do any setup work that needs to be performed before each
test is run. Similarly, the after method lets you perform any teardown work that should
be performed after each test.

If you’ve used JUnit or other testing frameworks, the tests look familiar. Just describe
your test with a unique string, and that string will be used in the printed output. (Make
sure your strings are unique, or an exception will be thrown.)

The basic assert method is familiar, but it also has more power, as you’ll see in other
recipes.

The pending feature shown in the last test is very helpful:

48 | Bonus Chapter: Testing and Debugging

http://www.scalatest.org/user_guide/running_your_tests
http://bit.ly/18jgXc6

test ("test pizza pricing") (pending)

This is a nice way of noting that you need to add a test in the future, but for one reason
or another you’re not adding that test right now. As you saw, this ends up in the printed
output like this:

 [info] - test pizza pricing (pending)

See Also
• The Scaladoc for the FunSuite class
• Different ways to run your tests, including the Scala interpreter, Ant, Maven,

Eclipse, IntelliJ IDEA, and more
• My “Basic SBT Project with ScalaTest” project on GitHub

3. Writing a First BDD Test with ScalaTest
Problem
You want to write your ScalaTest tests using a BDD style.

Solution
Extend the ScalaTest FunSpec trait, typically with the BeforeAndAfter trait. Then use
the approach shown in the following PizzaSpec test class.

A series of tests begins with the describe method, with individual tests declared in it
methods:

package com.acme.pizza

import org.scalatest.FunSpec
import org.scalatest.BeforeAndAfter

class PizzaSpec extends FunSpec with BeforeAndAfter {

 var pizza: Pizza = _

 before {
 pizza = new Pizza
 }

 describe("A Pizza") {

 it("should start with no toppings") {
 assert(pizza.getToppings.size == 0)
 }

3. Writing a First BDD Test with ScalaTest | 49

http://bit.ly/18jgXc6
http://www.scalatest.org/user_guide/running_your_tests
http://www.scalatest.org/user_guide/running_your_tests
https://github.com/alvinj/BasicScalaSbtProjectWithScalatest

 it("should allow addition of toppings") (pending)

 it("should allow removal of toppings") (pending)
 }

}

Notice how before, describe, and it seem more like operators than
methods. Scala gives developers the power to create their own do‐
main specific languages (DSLs) like this.

This class should be placed in a file named PizzaSpec.scala, in a directory named
src/test/scala/com/acme/pizza, under your root SBT folder. Assuming that you also have
the Pizza and Topping classes installed as described in Recipe 2, “Writing TDD Tests
with ScalaTest”, you’ll see the following output when you run the tests with sbt test:

[info] PizzaSpec:
[info] A Pizza
[info] - should start with no toppings
[info] - should allow addition of toppings (pending)
[info] - should allow removal of toppings (pending)
[info] Passed: : Total 1, Failed 0, Errors 0, Passed 1, Skipped 2

Discussion
As you can see, the output of a set of BDD-style tests reads like a software specification:
“A Pizza should,” followed by a series of statements about what the Pizza class should
do. You’ll see how this gets even better in subsequent recipes.

If you intentionally inject an error into your first test, setting the size to 1 (instead of
0), the sbt test output will look like this instead:

[info] PizzaSpec:
[info] A Pizza
[info] - should start with no toppings *** FAILED ***
[info] org.scalatest.exceptions.TestFailedException was thrown.
(PizzaSpec.scala:17)
[info] - should allow addition of toppings (pending)
[info] - should allow removal of toppings (pending)
[error] Failed: : Total 3, Failed 1, Errors 0, Passed 0, Skipped 2
[error] Failed tests:
[error] com.acme.pizza.PizzaSpec
[error] {file:/Users/Al/Tests/ScalaTest1/}default-d6b943/test:test:
Tests unsuccessful

50 | Bonus Chapter: Testing and Debugging

4. Adding Given/When/Then Behavior to BDD Tests
Problem
You want to make your tests more BDD-like by adding Given/When/Then behavior to
them.

Solution
Mix the GivenWhenThen trait into your FunSpec BDD test, then add the Given/When/
Then conditions, as shown in the following code:

package com.acme.pizza

import org.scalatest.FunSpec
import org.scalatest.BeforeAndAfter
import org.scalatest.GivenWhenThen

class PizzaSpec extends FunSpec with GivenWhenThen {

 var pizza: Pizza = _

 describe("A Pizza") {

 it ("should allow the addition of toppings") {
 Given("a new pizza")
 pizza = new Pizza

 When("a topping is added")
 pizza.addTopping(Topping("green olives"))

 Then("the topping count should be incremented")
 expectResult(1) {
 pizza.getToppings.size
 }

 And("the topping should be what was added")
 val t = pizza.getToppings(0)
 assert(t === new Topping("green olives"))
 }
 }

}

Assuming that you have the Pizza and Topping classes installed as described in Recipe 2,
“Writing TDD Tests with ScalaTest”, this class prints the following test output, which
provides more detail to anyone reviewing the output:

[info] Compiling 1 Scala source to
/Users/Al/Projects/Scala/Tests/ScalaTest1/target/scala-2.10.0/test-classes...
[info] PizzaSpec:

4. Adding Given/When/Then Behavior to BDD Tests | 51

[info] A Pizza
[info] - should allow the addition of toppings
[info] + Given a new pizza
[info] + When a topping is added
[info] + Then the topping count should be incremented
[info] + And the topping should be what was added
[info] Passed: : Total 2, Failed 0, Errors 0, Passed 2, Skipped 0

Discussion
Although Recipe 3, “Writing a First BDD Test with ScalaTest” got you started down the
road of the BDD-style of testing, adding the GivenWhenThen trait gives you the additional
features necessary to more fully implement the BDD style.

Dan North, the creator of the BDD style of testing, describes the Given/When/Then
approach on his website. He shows that the basic pattern looks like this:

• Given some initial context (the givens)
• When an event occurs
• Then ensure some outcomes

A simple example of this might look like this:

• Given a new pizza
• When a topping is added
• Then the pizza should have one topping

A more complicated example might look like this:

• Given a new pizza
• When new toppings are added
• And the size is set
• And the crust type is set
• Then the pizza should have all of those toppings
• And the crust size should be correct
• And the crust type should be correct
• And the price of the pizza should be X

Adding more tests

As you can see from the output, the Given method prints Given before your string; When
prints When before your string; and so on with Then and And.

52 | Bonus Chapter: Testing and Debugging

http://dannorth.net/introducing-bdd/

As you add more BDD-style tests to your class:
it("Should start with no toppings") {
 Given("a new pizza")
 pizza = new Pizza
 Then("the topping count should be zero")
 assert(pizza.getToppings.size == 0)
}

it("Should allow removal of toppings") {
 Given("a new pizza with one topping")
 pizza = new Pizza
 pizza.addTopping(Topping("green olives"))

 When("the topping is removed")
 pizza.removeTopping(Topping("green olives"))

 Then("the topping count should be zero")
 expectResult(0) {
 pizza.getToppings.size
 }
}

you end up with test results that read like a software specification:
[info] Compiling 1 Scala source to ↵
/Users/Al/Projects/Scala/Tests/ScalaTest1/target/scala-2.10.0/test-classes...
[info] PizzaSpec:
[info] A Pizza
[info] - Should start with no toppings
[info] + Given a new pizza
[info] + Then the topping count should be zero
[info] - Should allow the addition of toppings
[info] + Given a new pizza
[info] + When a topping is added
[info] + Then the topping count should be incremented
[info] + And the topping should be what was added
[info] - Should allow removal of toppings
[info] + Given a new pizza with one topping
[info] + When the topping is removed
[info] + Then the topping count should be zero
[info] Passed: : Total 3, Failed 0, Errors 0, Passed 3, Skipped 0

See Also
• A description of behavior-driven development on Wikipedia
• Dan North’s original “Introducing BDD” article
• ScalaTest’s given/when/then documentation

4. Adding Given/When/Then Behavior to BDD Tests | 53

http://en.wikipedia.org/wiki/Behavior-driven_development
http://dannorth.net/introducing-bdd/
http://www.scalatest.org/getting_started_with_feature_spec

5. Adding More Tests and Test Suites
Problem
You want to add more tests and a main test suite to your application.

Solution
To add more tests to your project, just create new test classes. For instance, to add a set
of TDD-style tests for the Topping class, just create a ToppingTests class in the
src/test/scala/com/acme/pizza directory:

package com.acme.pizza

import org.scalatest.FunSuite
import org.scalatest.BeforeAndAfter

class ToppingTests extends FunSuite with BeforeAndAfter {

 // add tests here ...
 test("test topping quantity") (pending)

}

Assuming that you have the Pizza, Topping, and PizzaTests classes installed as de‐
scribed in Recipe 2, “Writing TDD Tests with ScalaTest”, your test output will now look
like:

[info] PizzaTests:
[info] - new pizza has zero toppings
[info] - adding one topping
[info] - adding and removing topping
[info] - catching an exception
[info] - test pizza pricing (pending)
[info] ToppingTests:
[info] - test topping quantity (pending)

To continue adding more tests, just add more test classes. Other recipes demonstrate
how to control which tests are run.

See Also
ScalaTest does have a concept of “nested suites,” but they aren’t well documented
at this time.

54 | Bonus Chapter: Testing and Debugging

http://www.scalatest.org/user_guide/philosophy_and_design
http://www.scalatest.org/user_guide/philosophy_and_design

6. Printing Expected and Actual Values When a Test Fails
Problem
You’d like to have better output from your assert tests, output that shows the expected
and actual values.

Solution
One approach is to use the === method (three = symbols) instead of ==. When an assert
test fails, the === method output shows the two values from the test.

This can be demonstrated by putting an intentional error into a unit test while using
===. Here’s a modified version of a TDD test method with an intentional error:

test("new pizza has zero toppings (version 2)") {
 // intentional error here; size should be 0
 assert(pizza.getToppings.size === 1)
}

Adding this test to the TDD test class in Recipe 2 results in the following output:
[info] PizzaTests:
[info] - new pizza has zero toppings (version 2) *** FAILED ***
[info] 0 did not equal 1 (PizzaTests.scala:18)

Using === informs you that “0 did not equal 1,” and gives you the line number of the
failure.

Another approach is to use expectResult instead of assert:
test("new pizza has zero toppings (version 3)") {
 expectResult(1) {
 pizza.getToppings.size
 }
}

Although it’s a little more verbose, it gives more meaningful output, indicating what
value was expected and what was actually found:

[info] PizzaTests:
[info] - new pizza has zero toppings (version 3) *** FAILED ***
[info] Expected 1, but got 0 (PizzaTests.scala:19)

Both approaches are simple, and extremely helpful when debugging why a test failed.
Use whichever you prefer, or both.

6. Printing Expected and Actual Values When a Test Fails | 55

See Also
• Recipe 2, “Writing TDD Tests with ScalaTest”
• ScalaTest’s “Using Assertions” documentation

7. Marking a Test as Pending
Problem
You want to note that a test needs to be created, but you’re not ready to write it yet.

Solution
Instead of supplying the body of a test method, mark the test as pending. In the TDD
style, create a pending test like this:

test ("should allow removal of toppings") (pending)

In the BDD style, create a pending test like this:
it("should allow removal of toppings") (pending)

When your tests are run, pending tests will be printed like this:
[info] - should allow addition of toppings (pending)

Discussion
When tests are run at the command line with SBT, pending lines are printed in a yel‐
low(ish) color.

Marking tests as pending helps support the TDD style, and it’s a convenient way of
saying, “I need to write this test and implement the code behind it, but I haven’t gotten
there yet.”

See Also
• Recipe 2, “Writing TDD Tests with ScalaTest”
• Recipe 3, “Writing a First BDD Test with ScalaTest”

56 | Bonus Chapter: Testing and Debugging

http://www.scalatest.org/user_guide/using_assertions

8. Testing Expected Exceptions
Problem
You want to test a portion of your code that should throw an exception under certain
conditions.

Solution
Use the intercept method to verify that the exception occurs. In the following example,
the boom method will always throw an exception. The intercept method lets you catch
that exception, so you can verify that this portion of the method works as desired:

test ("catching an exception") {
 val thrown = intercept[Exception] {
 pizza.boom
 }
 assert(thrown.getMessage === "Boom!")
}

Here’s how this code works:

• If boom throws an exception, intercept will catch and return that exception. This
lets you assign it to a variable like thrown.

• If boom completes normally, or throws an exception you weren’t expecting,
intercept will complete abruptly with a TestFailedException.

As shown, you catch the exception in a value named thrown, and then test the message
from the exception inside an assert method.

Discussion
This example used intercept to catch the exception and assert to test the exception
message, but this isn’t necessary.

The following code shows that you don’t have to catch the exception as an object and
then test its message. Because intercept will end the test with a TestFailedException
if your code doesn’t throw an exception, your test can be as simple as this:

test ("catching an exception") {
 intercept[Exception] { pizza.boom }
}

If your code throws the exception, intercept catches it, and the test succeeds. (You
expected it to throw an exception, and it did.)

Conversely, if your method doesn’t throw an exception, intercept will make the test
fail. The output looks like this:

8. Testing Expected Exceptions | 57

[info] - catching an exception *** FAILED ***
[info] Expected exception java.lang.Exception to be thrown,
 but no exception was thrown. (Test.scala:27)

Of course, you can also use a try/catch block to test that the exception occurs under
the right situations, but intercept was created as a way to assist with this common
testing pattern.

See Also
• Recipe 2, “Writing TDD Tests with ScalaTest”
• The ScalaTest “Using Assertions” page provides more information on using
intercept.

9. Mark Your Tests with Tags So You Can Include or Exclude
Them
Problem
You want a way to label your individual tests, so you can easily choose to include or
exclude them when running your tests. For instance, you may want to tag long-running
tests like database or web service tests, because they take a long time to run, and you
don’t want to run them all the time.

Solution
Create one or more custom tags, and then include those tags in your test specifications.
When you run your tests, declare which tests you want to run or not run.

To demonstrate this, begin with the Pizza and Topping classes shown in Recipe 2 and
the BDD test class defined in Recipe 3.

Next, add a new class in the src/test/scala/com/acme/pizza directory named Tags.scala,
and add this content:

package com.acme.pizza

import org.scalatest.Tag

object DatabaseTest extends Tag("DatabaseTest")

This defines a tag named DatabaseTest that you can use in your tests.

Next, add the tag to your database tests. This is how you add a tag to an it BDD-style
test:

58 | Bonus Chapter: Testing and Debugging

http://www.scalatest.org/user_guide/using_assertions

// add the 'DatabaseTest' tag to the 'it' method
it("Should start with no toppings", DatabaseTest) {
 Given("a new pizza")
 pizza = new Pizza
 Then("the topping count should be zero")
 assert(pizza.getToppings.size == 0)
}

Now when you run your tests, you can specify which tests you want to include. To
include tests with the DatabaseTest tag in the list of tests to be run, start SBT, and then
issue the following test-only command from within the SBT shell:

$ sbt

sbt> test-only -- -n DatabaseTest

To exclude tests with the DatabaseTest tag from being run, use this approach:
sbt> test-only -- -l DatabaseTest

(The second example uses a lowercase letter “L.”)

Notice that this uses a different version of the it method than was used
in previous recipes. This example calls the two-argument version of
the it method, whereas previous examples used the one-argument
version. More on this shortly.

Discussion
Some software developers like to write long-running tests, such as database and web
service tests, and others don’t. The ability to tag tests in this manner lets everyone have
their way. Database and web service tests can be run when desired and also excluded
when desired. Just tag the database and web service tests with tags like DatabaseTest
and WsTest, then include and exclude them when running your tests.

More generally, thinking beyond terms of long-running tests and short-running tests,
this approach lets you test segments of your applications, in any way you want to define
those segments. For instance, you can tag tests as Model, View, or Controller tests, or
in any other way that makes sense for your application.

To add multiple tags to one BDD-style it test, add them as additional parameters:
it("Should start with no toppings", DatabaseTest, WsTest) {
 // test code here
}

To add tags to TDD-style tests, add the tags to your test method declarations:
test("new pizza has zero toppings", DatabaseTest, WsTest) {
 //assert(pizza.getToppings.size === 1)

9. Mark Your Tests with Tags So You Can Include or Exclude Them | 59

 expectResult(0) {
 pizza.getToppings.size
 }
}

There are additional ways to tag tests. For instance, the ScalaTest documentation shows
how to use taggedAs with an it test in a class that extends FlatSpec:

it must "subtract correctly" taggedAs(SlowTest, DbTest) in {
 val diff = 4 - 1
 assert(diff === 3)
}

See the links in the See Also section for more details.

To run tests that have both tags DatabaseTest and WsTest, separate their names by
blank spaces inside quotes with the -n flag:

sbt> test-only -- -n "DatabaseTest WsTest"

Or to exclude those tests, do the same thing with the -l flag:
sbt> test-only -- -l "DatabaseTest WsTest"

For information on controlling which tags to include or exclude using other tools, such
as running ScalaTest from the command line or Ant, see the ScalaTest filtering tests
doc, and the Ant task filtering doc.

See Also
• Recipe 2, “Writing TDD Tests with ScalaTest”
• Recipe 3, “Writing a First BDD Test with ScalaTest”
• Additional ways to tag your tests
• Running tests in SBT
• Specifying tags to include and exclude
• Using the ScalaTest Ant task
• The FlatSpec trait

10. Temporarily Disabling a Test
Problem
You want to temporarily disable one or more tests, presumably until you can get them
working again.

60 | Bonus Chapter: Testing and Debugging

http://www.scalatest.org/user_guide/tagging_your_tests
http://www.scalatest.org/user_guide/using_the_runner#filtering
http://www.scalatest.org/user_guide/using_the_runner#filtering
http://www.scalatest.org/user_guide/using_the_scalatest_ant_task#filtering
http://bit.ly/18jhomS
http://bit.ly/18jhpah
http://bit.ly/17iPHcE
http://bit.ly/15j10jG
http://bit.ly/15KQZhl

Solution
When using BDD-style tests, change it method calls to ignore:

ignore ("A new pizza has zero toppings", DatabaseTest) {
 Given("a new pizza")
 pizza = new Pizza
 Then("the topping count should be zero")
 assert(pizza.getToppings.size == 0)
}

With TDD-style tests, change test method calls to ignore:
ignore("A new pizza has zero toppings", DatabaseTest) {
 //assert(pizza.getToppings.size === 1)
 expectResult(0) {
 pizza.getToppings.size
 }
}

When your tests are run, the tests you changed to ignore will result in output similar
to the following:

[info] - A new pizza has zero toppings !!! IGNORED !!!

When run from the command line using SBT, this output is displayed in a yellow font.

Discussion
Many times when testing your code, you’ll need to temporarily disable some tests until
you can get them working again. Changing it and test to ignore is a simple way to
change the tests so they’ll be skipped over. The output is a hard-to-miss reminder that
the tests are being ignored.

See Also
• Recipe 2
• Recipe 3, “Writing a First BDD Test with ScalaTest”
• More information on tagging your tests with ignore

11. Using Mock Objects with ScalaTest
Problem
You want to use a mock object framework in your ScalaTest tests, such as Mockito.

11. Using Mock Objects with ScalaTest | 61

http://www.scalatest.org/user_guide/tagging_your_tests

Solution
ScalaTest offers support for the following mock testing frameworks:

• ScalaMock
• EasyMock
• JMock
• Mockito

Because the support for each framework is similar, let’s take a look at using Mockito.

Before starting, imagine that you have a login web service for your application, and
rather than call the real web service during your tests, you just want to mock one up.

In your application, you have “login service” code in a file named src/main/
scala/tests/LoginService.scala, which looks like this:

package tests

// a very simple User class
case class User(name: String)

// a LoginService must have a 'login' method
trait LoginService {
 def login(name: String, password: String): Option[User]
}

// the code for our real/live LoginService
class RealLoginService extends LoginService {
 // implementation here ...
}

Notice that there’s a LoginService trait, and the RealLoginService implements that
trait. By following this pattern, you can use Mockito to “mock” your LoginService trait
in your unit tests.

The following code shows how to create and use a mock LoginService using Mockito
and ScalaTest:

package tests

import org.scalatest.FunSuite
import org.scalatest.BeforeAndAfter
import org.scalatest.mock.MockitoSugar
import org.mockito.Mockito._

class LoginServiceTests extends FunSuite with BeforeAndAfter with MockitoSugar {

 test ("test login service") {

62 | Bonus Chapter: Testing and Debugging

 // (1) init
 val service = mock[LoginService]

 // (2) setup: when someone logs in as "johndoe", the service should work;
 // when they try to log in as "joehacker", it should fail.
 when(service.login("johndoe", "secret")).thenReturn(Some(User("johndoe")))
 when(service.login("joehacker", "secret")).thenReturn(None)

 // (3) access the service
 val johndoe = service.login("johndoe", "secret")
 val joehacker = service.login("joehacker", "secret")

 // (4) verify the results
 assert(johndoe.get == User("johndoe"))
 assert(joehacker == None)

 }

}

Here’s a quick description of the code:

1. In the “init” step, you create a mock version of the LoginService. Notice that this
mocks a trait that doesn’t have an implementation. Because you can do this, you
don’t have to write a separate MockLoginService class, which is nice. (You also don’t
have to access Test or Production versions of the “real” login service, which would
slow down your unit tests.)

2. In the setup portion of the code, you work with Mockito to define how the mock
LoginService should respond when it’s given two sets of data. When “johndoe”
logs in, the mock login service should return a Some(User("johndoe")) instance,
and when “joehacker” attempts to log in, it should return a None.

3. In the “access” portion of the code, you write the code just like you would normally
in your application. You call the LoginService instance with some data, and get
objects in return.

4. In the “verify” portion of the code, you verify that you received the data you expected
from your login service.

In more real-world tests, you’d do things slightly differently. First, you’d use a more
robust User class. Second, you’d take the objects that are received from the
LoginService and attempt to do more things with them. There isn’t much value in
testing a mock LoginService by itself, but because this mock service lets you test the
next steps in your application, a mock service becomes a very useful thing.

This example is just intended to get you started in the right direction. The important
part of the test is that you got a User object back from the LoginService, just as though
you had called a real, live, production login service.

11. Using Mock Objects with ScalaTest | 63

Steps to using Mockito

To use Mockito like this in a ScalaTest project, the first step is to include the Mockito
JAR file in your project. Assuming you’re using SBT, either add the Mockito JAR file to
your project’s lib directory, or add Mockito as a dependency in your build.sbt file. With
ScalaTest 1.9.1, this is the correct line to add to your build.sbt file:

libraryDependencies += "org.mockito" % "mockito-all" % "1.8.4"

The next step is to add the necessary imports to your unit test classes. These were shown
in the example, and are repeated here:

import org.scalatest.mock.MockitoSugar
import org.mockito.Mockito._

Next, mix the MockitoSugar trait into your test class:
class PizzaTests extends FunSuite with BeforeAndAfter with MockitoSugar {

Once you have these configuration steps out of the way, you can begin creating mock
objects in your ScalaTest tests with Mockito.

See Also
There are many more ways to use Mockito and other mock object frameworks in your
ScalaTest tests. These links will help you get started:

• The ScalaTest website shows many ScalaMock, EasyMock, JMock, and Mockito
examples.

• The Mockito website has many more examples.

12. Java-Style Logging with SLF4J
Problem
You want to add Java-style logging to your Scala application, and you’re comfortable
with the Java SLF4J library.

Solution
Assuming you’re using SBT, include the necessary SLF4J dependencies in your build.sbt
file:

name := "SLF4JTest"

version := "1.0"

scalaVersion := "2.10.0"

64 | Bonus Chapter: Testing and Debugging

http://www.scalatest.org/user_guide/testing_with_mock_objects
https://code.google.com/p/mockito/

libraryDependencies ++= Seq("org.slf4j" % "slf4j-api" % "1.7.5",
 "org.slf4j" % "slf4j-simple" % "1.7.5")

Alternatively, download the SLF4J libraries and put them in your lib folder.

You can then use SLF4J as you would with Java, as shown in this example, creating a
logger instance, and then using it in your code:

import org.slf4j.Logger
import org.slf4j.LoggerFactory

class Pizza {
 val logger = LoggerFactory.getLogger(classOf[Pizza])
 logger.info("Hello from the Pizza class")
}

object Main extends App {
 val p = new Pizza
}

Running that file with sbt run prints several lines of output, including this line from
logger.info:

[run-main] INFO Pizza - Hello from the Pizza class

Discussion
SLF4J is a popular Java logging solution, and as you can see from this example, it can
be used the same way in a Scala application.

Although this is a nice approach, it can be improved by making it a little more “Scala
like.” To that end, see the next recipe, “Scala-Style Logging with Grizzled-SLF4J”, which
demonstrates how to use the Grizzled-SLF4J library to improve on this approach.

See Also
The SLF4J library

13. Scala-Style Logging with Grizzled-SLF4J
Problem
You want to add logging to an application in a more Scala-specific way than simply using
SLF4J.

13. Scala-Style Logging with Grizzled-SLF4J | 65

http://www.slf4j.org

Solution
Grizzled-SLF4J is a thin wrapper around SLF4J that gives you logging in a more Scala-
like way.

To get started with Grizzled-SLF4J, create a simple SBT project as shown in Recipe 18.1.
Then edit your build.sbt file so it has the dependencies you’ll need:

name := "Grizzled"

version := "1.0"

scalaVersion := "2.10.0"

libraryDependencies ++= Seq("org.slf4j" % "slf4j-api" % "1.7.5",
 "org.slf4j" % "slf4j-simple" % "1.7.5",
 "org.clapper" %% "grizzled-slf4j" % "1.0.1")

Then create a simple test class to use Grizzled-SLF4J. Put the following code in a file
named Main.scala in the root directory of your SBT project:

import grizzled.slf4j.Logger

object Main extends App {

 // create a logger manually using one of these approaches
 //val logger = Logger("com.alvinalexander.test.Main")
 //val logger = Logger(classOf[Main])
 val logger = Logger[this.type]

 logger.info("Hello, world")

}

As you can see from that example, you can import the Grizzled-SLF4J Logger class, then
manually create a Logger instance in several different ways in a class or object. Running
this object with sbt run prints the following output to STDOUT:

[run-main] INFO Main$ - Hello, world

As a second approach, instead of manually creating a logger instance, you can mix in
the Grizzled-SLF4J Logging trait, which creates the logger instance for you:

import grizzled.slf4j.Logging

object Main extends App with Logging {

 logger.info("Hello, world")

}

66 | Bonus Chapter: Testing and Debugging

Running your object with this approach yields the same output as before:
[run-main] INFO Main$ - Hello, world

Discussion
Grizzled-SLF4J is a simple Scala wrapper around the well-known SLF4J library, has good
documentation, and has recently been updated. Other libraries take a similar approach,
but Grizzled-SLF4J currently has the best documentation and most recent updates.

A nice feature of Grizzled-SLF4J is that parameters to method calls like log.info() and
log.debug() are call-by-name parameters. For instance, the Grizzled-SLF4J documen‐
tation shows that the debug method is defined like this:

@inline final def debug(message: => Any) =
 if (debugIsEnabled) log(message)

The documentation states:

“Thus, debug() isn’t a method taking a string; instead, it’s a method taking a function
that returns a string ... However, because message is a function that returns a string, it
isn’t evaluated until it is called—which is after the test that determines whether it should
be logged.”

Because message is a call-by-name parameter, it isn’t evaluated until after the
debugIsEnabled check, and if debugIsEnabled is false, it won’t be evaluated at all. This
is another benefit of using Grizzled-SLF4J.

See Also
• A discussion of how Grizzled-SLF4J uses the call-by-name approach
• The Grizzled-SLF4J library
• The SLF4J library

14. Using JUnit with Scala
Problem
You want to test your Scala code using JUnit.

Solution
Include the JUnit library in your project, and use it in the same way you’ve used it in
Java projects, with a few minor changes.

14. Using JUnit with Scala | 67

http://bit.ly/1aqh6va
http://software.clapper.org/grizzled-scala/
http://www.slf4j.org
http://www.junit.org/

Assuming you’re using SBT on your project, include JUnit into the project by adding
this dependency line to your build.sbt file:

libraryDependencies += "com.novocode" % "junit-interface" % "0.8" % ↵
"test->default"

According to the SBT testing documentation, “support for JUnit is provided by junit-
interface,” so you add it as a dependency here.

Next, if you’re also using Eclipse, generate your Eclipse project files:
$ sbt eclipse

Then start Eclipse and import your project as usual.

In your project, create these simple model classes in a file named Pizza.scala under the
src/main/scala directory:

package com.acme.pizza

import scala.collection.mutable.ArrayBuffer

case class Topping(name: String)

class Pizza {

 private var toppings = new ArrayBuffer[Topping]

 def addTopping (t: Topping) { toppings += t}
 def removeTopping (t: Topping) { toppings -= t}
 def getToppings = toppings.toList

}

(Any directory under src/main/scala is fine. Unlike Java, Scala package names don’t have
to match the directory structure.)

Next, create a JUnit test class as usual. Put the following code in a file named
PizzaTests.scala under the src/test/scala directory:

package com.acme.pizza

import org.junit.Test
import junit.framework.TestCase
import org.junit.Assert._

class PizzaTests extends TestCase {

 var pizza: Pizza = _

 override def setUp {
 pizza = new Pizza
 }

68 | Bonus Chapter: Testing and Debugging

http://bit.ly/18jhpah

 def testOneTopping {
 pizza.addTopping(Topping("green olives"))
 assertEquals(pizza.getToppings.size, 1)
 }

 def testAddingAndRemovingToppings {
 pizza.addTopping(Topping("green olives"))
 pizza.removeTopping(Topping("green olives"))
 assertEquals(pizza.getToppings.size, 0)
 }

}

If you’re using Eclipse, run the tests from the Eclipse menu system. Choose Run → Run
As → JUnit Test, and you should see your tests run successfully.

To run the tests using SBT, run the sbt test command from your operating system’s
command line, in the root directory of your SBT project:

$ sbt test

The output shows that the tests passed:
[info] Passed: : Total 2, Failed 0, Errors 0, Passed 2, Skipped 0
[success] Total time: 1 s

Discussion
Beyond running a single, simple JUnit test class, you can also create additional test
classes, and then a TestSuite. To demonstrate this, first create a new test class named
ToppingTests.scala in the src/test/scala directory:

package com.acme.pizza

import org.junit.Test
import junit.framework.TestCase
import org.junit.Assert._

class ToppingTests {

 @Test
 def foo {
 val t1 = Topping("cheese")
 val t2 = Topping("cheese")
 assertEquals(t1, t2)
 }

}

Then create a TestSuite class named PizzaTestSuite and save it in a file named
PizzaTestSuite.scala in the src/test/scala directory:

14. Using JUnit with Scala | 69

package com.acme.pizza

import org.junit.runner.RunWith
import org.junit.runners.Suite

@RunWith(classOf[Suite])
@Suite.SuiteClasses(Array(classOf[PizzaTests], classOf[ToppingTests]))
class PizzaTestSuite

If you’re using Eclipse, with this class in the editor, choose Run → Run As → JUnit Test,
and you should see both your PizzaTests and ToppingTests run successfully.

If you’re using SBT, just run sbt test again.

As you’ve seen in these examples, it’s simple to use Scala with JUnit. The following lines
show the major differences between using Scala instead of Java:

@RunWith(classOf[Suite])
@Suite.SuiteClasses(Array(classOf[PizzaTests], classOf[ToppingTests]))

In the first line, classOf[Suite] is used because Scala uses this syntax instead of
Suite.class, which is the syntax Java uses. You do the same thing in the second line,
and also replace the Java curly brackets array syntax with an Array declaration. Every‐
thing else is a straightforward port from Java to Scala.

JUnit has some advantages compared to ScalaTest or specs2. One advantage is that test
execution is generally faster with JUnit. Also, you can use JUnit if you want to, and
import the ScalaTest or the specs2 matchers inside your test cases if you want more
expressivity for your assertions.

That being said, if you’re going to code in Scala, I recommend using ScalaTest or specs2
for testing. As a friend likes to say, when we moved from C to Java, we didn’t attempt to
bring make along with us; we switched to Ant or Maven, so I’m a firm believer in using
native Scala tools like SBT, ScalaTest, and specs2.

See Also
The SBT “testing” documentation

70 | Bonus Chapter: Testing and Debugging

http://bit.ly/18jhpah

BONUS CHAPTER

The Play Framework

Introduction
There are several good frameworks for developing web applications in Scala, including
the Lift Framework and Play Framework (Play). This chapter provides a collection of
recipes for Play.

If you’ve used other web frameworks like Ruby on Rails or CakePHP, the Play approach
will seem familiar. Like those frameworks, Play uses “convention over configuration” as
much as possible, and even the directory layout is similar.

Play has many great features, including support for popular web development technol‐
ogies like CoffeeScript and LESS. A really terrific feature is that Play uses templates, and
those templates compile to normal Scala functions. As a result, it’s easy to accomplish
many tasks that are difficult in other frameworks, including creating one or more “mas‐
ter” templates to provide a common look and feel across a website, and the ability to
easily include one template into another as a reusable widget.

Off the shelf, Play includes a database library named Anorm, which stands for “Anorm
is Not an Object Relational Mapper.” As its name implies, Anorm lets you write your
data access objects (DAOs) using plain SQL. It’s straightforward to use, and provides a
DSL for its tasks. However, if Anorm isn’t your cup of tea, Play makes it easy to plug in
other database access technologies, such as Hibernate, JPA, and others.

Finally, you can deploy your Play application in several different ways, including the
dist method, which lets you package your applications and all dependencies into a ZIP
file, and only requires a JVM on the production server. This lets you easily deploy Play
applications to application server environments from Amazon, Google, Heroku, and
many others.

71

http://liftweb.net/
http://www.playframework.org/
http://coffeescript.org/
http://lesscss.org/

1. Creating a “Hello, World” Project
Problem
You want to create a new Play project, and understand the basics of the Play architecture.

Solution
Download and install the Play Framework distribution per the instructions on the Play
website. Once it’s installed, move to a directory where you normally create your projects,
and then issue the play new command followed by your project name to create a new
project. When prompted, choose the option to create a Scala application.

For instance, I keep my projects in a directory named /Users/Al/Projects, so I follow
these steps to create a new project named Hello:

$ cd /Users/Al/Projects

$ play new Hello

 _ _
 _ __ | | __ _ _ _| |
| '_ \| |/ _' | || |_|
| __/|_|____|__ (_)
|_| |__/

play! 2.1.1

The new application will be created in /Users/Al/Projects/Hello

What is the application name? [Hello]
> [Enter]

Which template do you want to use for this new application?

 1 - Create a simple Scala application
 2 - Create a simple Java application

> 1
OK, application Hello is created.

Have fun!

With the project directory created, cd into that directory, and then start the Play
command-line tool:

$ cd Hello

$ play

72 | Bonus Chapter: The Play Framework

[info] Loading global plugins from /Users/Al/.sbt/plugins
[info] Updating {file:/Users/Al/.sbt/plugins/}default-6315be...
[info] Resolving org.scala-sbt#precompiled-2_10_0;0.12.2 ...
[info] downloading
[info] Done updating.
[info] Loading project definition from Hello/project
[info] Set current project to Hello
 _ _
 _ __ | | __ _ _ _| |
| '_ \| |/ _' | || |_|
| __/|_|____|__ (_)
|_| |__/

play! 2.1.1

> Type "help play" or "license" for more information.
> Type "exit" or use Ctrl+D to leave this console.

[Hello] $ _

This is the Play command-line prompt. From here, you can start the Play server. Just
type run to start the server on port 9000, but if that port is already taken by another
application (such as Eclipse), specify a different port for it to run on:

[Hello] $ run 8080

--- (Running the application from SBT, auto-reloading is enabled) ---

[info] play - Listening for HTTP on /0.0.0.0:8080

(Server started, use Ctrl+D to stop and go back to the console...)

When you see the “Server started” message, the Play server is running, and you can now
access your application from a browser. Because I started the server on port 8080, I
access the http://localhost:8080/ URL in my browser, and after a few moments, I see the
result shown in Figure 1.

There was probably a slight pause before this content was displayed in your browser.
Looking back at the Play console, you’ll see why. Play automatically compiled the source
code for your application when you accessed that URL:

(Server started, use Ctrl+D to stop and go back to the console...)

[info] Compiling 5 Scala sources and 1 Java source to
 target/scala-2.10/classes...
[info] play - Application started (Dev)

Congratulations, your first Play application is now up and running.

1. Creating a “Hello, World” Project | 73

Figure 1. The Play “Welcome” message

If you prefer to start Play on port 8080 from your operating sys‐
tem command line (rather than the Play shell), use this command:

$ play "run 8080"

If you want to run in debug mode using port 8080, use this com‐
mand:

$ play debug "run 8080"

This starts a JPDA debug port you can connect to with a Java
debugger.

Discussion
A Play application consists of the following components:

• Controllers that are placed in an app/controllers folder.
• Templates that are placed in an app/views folder.

74 | Bonus Chapter: The Play Framework

• Models in an app/models folder. (This folder is not automatically created.)
• A mapping of application URIs to controller actions in the conf/routes file.

Other important files include:

• Application configuration information in the conf/application.conf file.
• Database scripts in the conf/evolutions folder. (Optional.)
• Frontend, design assets in the public/images, public/javascripts, and

public/stylesheets folders.

If you’re an Eclipse user, you can load the Hello project into Eclipse. If your Hello
application is still running, press Ctrl-D at the Play command line. This brings you back
to Play’s [Hello] prompt:

[Hello] $

Type eclipse to have Play generate the .project and .classpath files for Eclipse:

[Hello] $ eclipse
[info] About to create Eclipse project files for your project(s).
[info] Successfully created Eclipse project files for project(s):
[info] Hello

Now import your project into Eclipse. From the Eclipse menu, select File → Import...
→ Existing Projects Into Workplace, click Next, and then navigate your filesystem and
choose the Hello project you just created. When you open the project folders, your view
should look like Figure 2.

To examine the files in the project, first look at the conf/routes file. In Play 2.1.1, this file
contains the following default contents:

Routes
This file defines all application routes (Higher priority routes first)
~~~~

Home page
GET / controllers.Application.index

Map static resources from the /public folder to the /assets URL path
GET /assets/*file controllers.Assets.at(path="/public", file)

For the purposes of understanding how the welcome page was displayed, this is the
important line in that file:

GET / controllers.Application.index

This line can be read as, “When the HTTP GET method is called on the / URI, call the
index method defined in the Application object in the controllers package.” If you’ve
used other frameworks like Ruby on Rails and CakePHP, you’ve seen this sort of thing

1. Creating a “Hello, World” Project | 75

Figure 2. The directory structure of a new Play project, shown in Eclipse

before. It binds a specific HTTP method (such as GET or POST) and a URI to a method
in an object.

Next, open the app/controllers/Application.scala file and look at the index method:

package controllers

import play.api._
import play.api.mvc._

object Application extends Controller {

 def index = Action {
 Ok(views.html.index("Your new application is ready."))
 }

}

This is a normal Scala source code file, with one method named index. This method
implements a Play Action by calling a method named Ok, and passing in the content
shown. The code views.html.index is the Play way of referring to the views/
index.scala.html template file. A terrific thing about the Play architecture is that Play
templates are compiled to Scala functions, so what you’re actually seeing in this code is
a normal function call:

views.html.index("Your new application is ready.")

76 | Bonus Chapter: The Play Framework

This code essentially calls a function named index and passes it the string, “Your new
application is ready.”

Knowing that a template compiles to a normal Scala function, open the
app/views/index.scala.html template file. You’ll see the following contents:

@(message: String)

@main("Welcome to Play 2.1") {

 @play20.welcome(message)

}

Notice the first line of code:
@(message: String)

If you think of the template as a function, this is the parameter list of the function. This
declares that the function takes one parameter, a String with the variable name
message.

The @ symbol in this file is a special character in a Play template file. It indicates that
what follows is a Scala expression. For instance, in the line of code shown, the @ character
precedes the function parameter list. In the third line of code, the @ character precedes
a call to a function named main. Notice in that line of code, the string “Welcome to Play
2.1” is passed to the main method.

As you might have guessed, though main looks like a function, it’s also a template file.
When the code calls main, it actually invokes the app/views/main.scala.html template.
Here’s the source code for main.scala.html:

@(title: String)(content: Html)

<!DOCTYPE html>

<html>
 <head>
 <title>@title</title>
 <link rel="stylesheet" media="screen"
 href="@routes.Assets.at("stylesheets/main.css")">
 <link rel="shortcut icon" type="image/png"
 href="@routes.Assets.at("images/favicon.png")">
 <script src="@routes.Assets.at("javascripts/jquery-1.9.0.min.js")"
 type="text/javascript"></script>
 </head>
 <body>
 @content
 </body>
</html>

1. Creating a “Hello, World” Project | 77

This file is the default “wrapper” template file for the project. If every other template
file calls main in the same way the index.scala.html file calls main, you can be assured
that those templates will be wrapped with this same HTML, and as a result, all of your
pages will have the same look and feel.

Notice the first line of this file:
@(title: String)(content: Html)

This template file (again, a function) takes two parameter lists. The first parameter list
contains a variable named title of type String. It’s used in the template between the
<title> tags.

The variable in the second parameter list is named content and is of type Html. Near
the end of this file, you’ll see that this variable is emitted inside of <body> tags like this:

<body>
 @content
</body>

When you access the / URI in your browser, this is where the content from the
index.scala.html file is emitted. Looking back at the main method call in the
index.scala.html file, you can see how this works:

@main("Welcome to Play 2.1") {

 @play20.welcome(message)

}

The string “Welcome to Play 2.1” is passed as the first parameter to the main function
(where it becomes the title parameter). The rest of the template is created as a block
inside curly braces, and that block is passed in the second parameter list to the main
function. Because the main function is actually the template main.scala.html, this block
becomes the variable named content in that template, and the block is emitted inside
the <body> tags in that file.

The following line of code in the index.scala.html file is what generates all the content
you see in the browser:

@play20.welcome(message)

You can delete this code and replace it with something else, for instance, the usual “Hello,
world” greeting. While you’re at it, add a comment to the code using Play’s @* ... *@
comment syntax:

@(message: String)

@* this is a comment *@
@* ignoring the 'message' that's passed in *@
@main("Welcome to Play 2.1") {

78 | Bonus Chapter: The Play Framework

 <h1>Hello, world</h1>

}

Save this file, then go back to the Play console and restart the server, if necessary:
[Hello] $ run 8080

Now refresh your browser and after a few moments, you’ll see the “Hello, world” mes‐
sage. Congratulations, you’ve now seen all the basics of the Play Framework.
The Play console

Under the covers, the Play console is a normal SBT console, so you can run the usual
SBT commands, such as doc, to generate Scaladoc:

[Stocks] $ doc

If you think there’s a problem with SBT (the cache is corrupted), use the clean
command:

[Stocks] $ clean

You can also run the Play clean-all command from your operating system command
line:

$ play clean-all
[info] Done!

The Play console command opens a REPL session with your code loaded, so you can
test it. To demonstrate this, the examples in this chapter use a Stock class in the models
package, and you can create an instance of a Stock from the console:

[Stocks] $ console
[info] Updating
more output here ...
[info] Compiling 12 Scala sources and 1 Java source to
 target/scala-2.10/classes...
[info] Starting scala interpreter...
[info]
Welcome to Scala version 2.10.0.

scala> import models._
import models._

scala> val s = Stock(0, "NFLX", Some("Netflix"))
s: models.Stock = Stock(0,NFLX,Some(Netflix))

You can access other project classes and objects in the same way.

When you’re finished, press Ctrl-D to exit the scala> prompt and return to the Play
console.

1. Creating a “Hello, World” Project | 79

As shown in the examples in this chapter, use the run command to run
your application in development mode. However, don’t use this com‐
mand to run an application in production. The Play documentation
states that for each request that’s made when using the run com‐
mand, a complete check is handled by SBT—definitely not some‐
thing you want in production. Recipe 16 shows how to deploy a Play
Framework project to production.

Summary

Here’s a quick summary of what was demonstrated.

A Play application consists of the following components:

• The conf/routes file maps URIs and HTTP methods to controller methods.
• Controller classes are placed in the app/controllers folder.
• Controllers have methods, like the index method. These methods typically perform

some business logic and then display a template, passing data to the template as
needed.

• Templates are placed in the app/views folder.
• Template files are compiled to functions and can be called like functions.
• An application will usually have one or more master or “wrapper” template files,

like the main.scala.html template that’s automatically created for you. Other tem‐
plate files call these master template files so your application will have a consistent
look and feel.

• Although this example didn’t show it, model files (like a Person, User, Order, etc.)
are placed in the app/models folder.

Other important files include:

• Application configuration information in the conf/application.conf file. This in‐
cludes information on how to access a database.

• Database scripts in the conf/evolutions folder. (Optional.)
• Frontend, design assets in the public/images, public/javascripts, and public/

stylesheets folders. The main.scala.html demonstrates the syntax for referring to
these files.

80 | Bonus Chapter: The Play Framework

See Also
• The Play Console page has more information on console commands.
• Starting your application in production mode.

2. Adding a Route, Model, and Controller Method to a Play
Application
Problem
You need to see how to add a new route, controller method, and model to create new
content at a new URI in a Play application.

Solution
Follow these steps to create new content at a new URI:

1. Create a new route in the conf/routes file.
2. The new route points to a controller method, so create that controller method.
3. The controller method typically forwards to a new template, so create that template.
4. The controller method may also require a model class, so create that class as needed.

To demonstrate this process, you’ll add on to the code created in Recipe 1. You’ll create
new code to handle a GET request at /people. This URI will return a list of Person
instances in an HTML format.
Create a new route

To begin, you know you want to handle a new URI at /people, so add a new route to the
conf/routes file. This will be an HTTP GET request, so map the URI by adding this line
to the end of the file:

GET /people controllers.Users.people

This can be read as, “When a GET request is made at the /people URI, invoke the people
method of the Users class in the controllers package.”

Create a new controller method

Next, create the Users object in a Users.scala file in the app/controllers directory. Add
the following code to that class:

2. Adding a Route, Model, and Controller Method to a Play Application | 81

http://bit.ly/191leEa
http://bit.ly/12uDr5r

package controllers

import play.api._
import play.api.mvc._
import models.Person

object Users extends Controller {

 def people = Action {
 val people = Person.getAll
 Ok(views.html.people(people))
 }

}

When the people method in this class is invoked, it gets a List of Person instances from
the Person object by calling the getAll method. It then passes that List to a new tem‐
plate named people.scala.html. Neither the Person class (and object) nor the template
exist yet, so you’ll create them next.
Create a new model

To create the Person code, first create a models directory under the app directory. It
should be at the same level as the controllers and views folders. Then create a new file
named Person.scala under the models directory. Place these contents into that file:

package models

case class Person(name: String)

object Person {

 def getAll = List(Person("Al"), Person("Darren"), Person("Rich"))

}

This file consists of a case class named Person, and its companion object with a method
named getAll. Although this example is simple, if you can imagine that the companion
object is accessing a database, this approach follows the database access pattern shown
in Play’s Anorm documentation (and that I use personally): the model class and com‐
panion object are created in the same file, and the companion object has the code that
accesses the database; i.e., it is the data access object (DAO).
Create a new template

Next, create a people.scala.html template file in the views directory. Add the following
code to this file:

@(people: List[Person])

@main("Our List of People") {

82 | Bonus Chapter: The Play Framework

 <h1>People</h1>

 @people.map { person =>

 @person.name

 }

}

This template takes one parameter, a List[Person] named people. As shown in
Recipe 1, the @main line invokes the main.scala.html wrapper template, passing it the
string “Our List of People” as its first parameter list. It then passes it the block of code
shown as its second parameter list. (Technically, these are two separate parameter lists,
but you can think of them as two parameters, if you prefer.) Because people is a
List[Person], the map method is used to print the names from the Person instances in
an unordered list using and .

With all the code in place, go back to the Play console and restart the server, if necessary:
[Hello] $ run 8080

(If the server is already running, there’s no need to restart it; another great Play feature.)

Then go to your browser and enter the URL http://localhost:8080/people, and you should
see the result shown in Figure 3.

Figure 3. The output from the people.scala.html template displayed at the /people URI

Looking back at the Play console, you should see some output like this:
 [Hello] $ run 8080

[info] play - Listening for HTTP on port 8080...

(Server started, use Ctrl+D to stop and go back to the console...)

[info] Compiling 5 Scala sources and 1 Java source to
 target/scala-2.10.0/classes...
[info] play - Application started (Dev)

2. Adding a Route, Model, and Controller Method to a Play Application | 83

If your page wasn’t displayed, and you don’t see this output, press Ctrl-D to get back to
the Play prompt, and restart the server with the run command:

 [Hello] $ run 8080

(I haven’t seen this happen too often, but if Play fails to recompile your application, this
solves the problem.)

Discussion
As demonstrated, creating content at a new URI is typically a four-step process. The
example followed these steps to emit the new content at the /people URI:

1. You created a new route for the /people URI in the conf/routes file.
2. That new route mapped to a method named people in a controller named Users,

so you created that controller and method.
3. The controller method forwards to the people.scala.html template file, so you cre‐

ated that template.
4. The controller got its information from the Person model, so you created that class

and its companion object.

There are a few other points worth mentioning. First, you didn’t have to create a new
controller; you could have just added the people method to the existing Application
controller. However, this approach is beneficial because it shows the steps required to
add a new controller, and it’s representative of what you’d do in the real world.
Importing members into templates

Also, you may have noticed that you didn’t have to import the Person class into the
people.scala.html template file. Template files automatically import the controllers._
and models._ members, so an import statement isn’t needed. You’ll see in future recipes
how to work with imports, but as a quick preview, all you have to do is add the import
statements after the first line of the template:

@(people: List[Person])

import com.foo.Foo
import org.bar.Bar

<!-- more code here ... -->

84 | Bonus Chapter: The Play Framework

3. Using Multiple Template Wrappers
Problem
The previous recipes demonstrated how to use one master (or wrapper) template that
you can use to wrap all your template files to give your application a consistent look and
feel, but in a production application you want to use multiple templates. For instance,
you may want to have one template for the home page, one for a shopping cart area of
a website, another for a blog, etc.

Solution
The Play Framework template approach makes this very easy. Just create a new wrapper
template for each area of the website, and then call the desired wrapper template from
within your other templates, just like the main template is called in Recipes 1 and 2.

For instance, create three wrapper template files with the following names in the
app/views folder:

• main.scala.html
• cart.scala.html
• blog.scala.html

For the purposes of this recipe, you can create the last two files by copying and pasting
the main.scala.html template file that Play generates for you. Then modify each template
file slightly so you’ll be able to see the difference between them in a browser. For instance,
add a different <h1> tag to each template.

Now, inside your other template files, instead of calling the main function, call main,
cart, or blog, as needed. For instance, if you have a template named post.scala.html for
your blog posts, that template file can call the blog function to use blog.scala.html as a
wrapper, as shown here:

@(title: String, blogPostContent: String)

@* call the blog.scala.html 'wrapper' template *@
@blog(title) {

 @blogPostContent

}

A product page in an ecommerce store might invoke the cart.scala.html wrapper tem‐
plate, as shown here:

3. Using Multiple Template Wrappers | 85

@(title: String, product: Product)

@cart(title) {

 <!-- add code here to display the Product ... -->

}

Because Scala template files are compiled to functions, wrapping a template with boil‐
erplate code for a particular section of a website is very simple.
A quick example

If you followed the steps in Recipe 2, you can test this approach by following these steps:

1. Create a blog.scala.html template file as described in this recipe. Modify its <title>
tag, or add an <h1> tag so you can differentiate its output from the main.scala.html
file.

2. Edit the people.scala.html template created in Recipe 2, and change @main to @blog
in that file.

3. Assuming you still have the Play server running, reload the http://localhost:8080/
people URL. You should see the wrapper output from your blog.scala.html wrapper
in the <h1> or <title> tags you added.

4. Creating Reusable Code Blocks in Templates
Problem
You have repetitive code in a template and want to create a function in the template to
keep from having to repeat the code, i.e., to keep it DRY (“Don’t Repeat Yourself ”).

Solution
Play lets you create reusable code blocks in a template. These code blocks work like
functions to help keep your code DRY.

As an example, the following template file named links.scala.html has a reusable code
block named displayLiLink. It takes two parameters, a URL and a description, and
outputs those parameters inside an anchor tag inside an tag:

@()

@displayLiLink(url: String, description: String) = {
 @description
}

86 | Bonus Chapter: The Play Framework

@main("Websites") {

 <h1>Websites</h1>

 @displayLiLink("http://google.com", "Google")
 @displayLiLink("http://yahoo.com", "Yahoo")
 @displayLiLink("http://alvinalexander.com", "My Website")

}

The displayLiLink function is called three times within the section shown. Ig‐
noring extra whitespace, this results in the following code being output to the browser:

Google
Yahoo
My Website

If you’ve been following along with the previous recipes, you can demonstrate this by
making a few additions to your project. First, create a new file named links.scala.html
in the views directory with the contents shown.

Then add this new route to your conf/routes file:

GET /links controllers.Application.links

Then add this method to the controllers/Application.scala file:

def links = Action {
 Ok(views.html.links())
}

Now, when you access the http://localhost:8080/links URL in your browser, you should
see the list of links from the links.scala.html template.

Discussion
Reusable code blocks like this are easy to create and use in Play templates. The hardest
part about creating and using them can be knowing when to use the special @ symbol.

As the Play templates documentation indicates, the @ character marks the beginning of
a Scala statement. For simple expressions, Play is able to determine the end of your code
block, so there is no need for a closing symbol. This was shown in the lines where the
displayLiLink block was called:

@displayLiLink("http://google.com", "Google")

4. Creating Reusable Code Blocks in Templates | 87

The reusable code block showed that you may need to use the @ character in multiple
places. In the example, the @ character is used to define the code block, and then used
to identify the variables inside the code block:

@displayLiLink(url: String, description: String) = {
 @description
}

As the Play templates documentation states, “Because the template engine automatically
detects the end of your code block by analyzing your code, this syntax only supports
simple statements. If you want to insert a multi-token statement, explicitly mark it using
brackets.” The documentation demonstrates this in the following example:

Hello @(customer.firstName + customer.lastName)!

I’ve found this approach useful in many situations, such as when you want to return a
simple text string from a reusable code block, as shown in the @title code block in the
following example:

@(items: List[String])

@title = @{ "Your Shopping Cart" }

@cart(title) {

 <h1>@title</h1>

 @items.map { item =>
 @item
 }

}

Though that’s a trivial example, it demonstrates how to properly return a string literal
from a reusable code block. Attempting to define the code block as follows results in an
error:

@* intentional error *@

@title = "Your Shopping Cart"

On a related note, if you need to display an @ character in your HTML output, just enter
it twice. This is necessary when you need to print an email address:

<p>al@@example.com</p>

You can also call functions in regular Scala classes from templates. This is shown in the
next recipe.

88 | Bonus Chapter: The Play Framework

5. Calling Scala Functions from Templates
Problem
You want to call a function in a Scala class from a template.

Solution
You can easily call Scala functions from Play templates. For instance, given a class named
HtmlUtils in the controllers package:

package controllers

object HtmlUtils {

 def li(string: String) = {string}
 def anchor(url: String, description: String) =
 {description}

}

you call the anchor method from a Play template like this:
<p>Here's a link to @HtmlUtils.anchor("http://google.com", "Google")</p>

Discussion
Notice that no import statement was required in the template because the HtmlUtils
class was defined in the controllers package. If the HtmlUtils class was defined in a
different package, like this:

package com.alvinalexander.htmlutils

object HtmlUtils {

 def li(string: String) = {string}
 def anchor(url: String, description: String) =
 {description}

}

you would need an import statement in the template, like this:
@* just after the first line of your template *@
@import com.alvinalexander.htmlutils.HtmlUtils

@* somewhere later in the code ... *@
<p>Here's a link to @HtmlUtils.anchor("http://google.com", "Google")</p>

5. Calling Scala Functions from Templates | 89

Because HtmlUtils is an object, you can change the import statement to import its
methods into scope, and then just call the anchor method (without prefixing it with the
HtmlUtils object name), as shown here:

@* import HtmlUtils._ *@
@import com.alvinalexander.htmlutils.HtmlUtils._

@* just call 'anchor' *@
<p>Here's a link to @anchor("http://google.com", "Google")</p>

Passing functions into templates

Although this recipe demonstrates how to call functions on an object, it’s worth men‐
tioning that you can also pass functions into your templates as template parameters.

For instance, in the Application controller you can define the following methods:
def sayHello = <p>Hello, via a function</p>

def functionDemo = Action {
 Ok(views.html.function(sayHello))
}

The function named functionDemo calls a Play template named function.scala.html, and
passes the sayHello method to it as a variable. Because sayHello returns output of type
scala.xml.Elem, the function.scala.html template should be defined like this:

@(callback: => scala.xml.Elem)

@main("Hello") {

 @callback

}

If you’re not familiar with Scala’s functional programming (FP) support, the parameter
that’s passed into the template is defined like this:

callback: => scala.xml.Elem

This means that this is a function (or method) that takes no arguments, and returns a
scala.xml.Elem.

If you created the example shown in Recipe 1, you can demonstrate this by adding the
following route to the conf/routes file:

GET /function controllers.Application.functionDemo

After creating the app/views/function.scala.html template, adding the code to the
app/controllers/Application.scala and the conf/routes files, when you access the http://
localhost:8080/function URL in your browser, you’ll see the “Hello, via a function”
output.

90 | Bonus Chapter: The Play Framework

See Also
Recipe 1, “Creating a “Hello, World” Project”

6. Creating a Widget and Including It in Pages
Problem
You want to create one or more “widgets” (components) and include those in your web
pages. This might include a shopping cart widget in an online store, a list of recent blog
posts in a blog, or any other reusable content you want to display.

Solution
This solution is similar to the previous recipe on calling methods in a Scala object from
a template. You can use that approach to emit HTML code from a function, or you can
place your widget code in another template file. The latter approach is shown in this
recipe.

To demonstrate this approach, imagine that you’re creating a “product detail” page for
a shopping cart. As a result, you’ll have a template file named product.scala.html. For
this simple example, the template will include two main components, (a) the informa‐
tion you want to output about the current product and (b) a shopping cart widget that
will be shown at the side of the page:

@(product: (String, String), items: List[String])

@* product.scala.html *@

@main(product._1) {

 <!-- include the shopping cart widget -->
 @cartWidget(items)

 <!-- a description of the current product -->
 <div style="padding:10px; margin:10px;">
 <h1>@product._1</h1>
 <div id="product_info">
 <p>@product._2</p>
 </div>
 </div>

}

In this case the @cartWidget(items) code refers to another template file named
cartWidget.scala.html. Its code looks like this:

6. Creating a Widget and Including It in Pages | 91

@(items: List[String])

<div style="background-color:#eee; padding:10px; margin:10px; float:left">
 <h2>Your Shopping Cart</h2>

 @items.map { item =>
 @item
 }

</div>

This template takes a List[String] that represents the items in the current shopping
cart, and items was passed to @cartWidget in the product.scala.html file.

Assuming that you add this code to your project as described in the Discussion, the
combination of these templates will result in the output shown in Figure 4.

Figure 4. The cart widget is included with the product content

Discussion
An important concept to remember about Play is that template files are compiled down
to Scala functions. As a result, calling them—and therefore including their output in
another template—is a simple process.

If you followed along with the steps in Recipe 1, you can add this code to that same
project to demonstrate and experiment with it. First, create the product.scala.html and
cartWidget.scala.html template files in the app/views directory.

Next, add this method to the Application.scala file in the app/controllers directory:

def product = Action {
 val grapes = ("Grapes", "Grapes are nutritious and delicious")
 val cart = List("apples", "bananas", "carrots")
 Ok(views.html.product(grapes, cart))
}

Then add this route to the conf/routes file:

GET /product controllers.Application.product

92 | Bonus Chapter: The Play Framework

With these files in place, go back to your browser and access the http://localhost:8080/
product URL, and you should see the results shown in Figure 4.

See Also
You can clone the source code for this recipe from GitHub.

7. Using CoffeeScript and LESS
Problem
You want to use popular web technologies like CoffeeScript and LESS CSS in your Play
application.

Solution
CoffeeScript is a popular replacement for JavaScript, and LESS is a popular replacement
for writing CSS. It’s easy to use both technologies in your Play applications, as shown
in the following sections.
Using CoffeeScript

To use CoffeeScript in a Play application, follow these steps:

1. If your application doesn’t already have an app/assets folder, create it.
2. Inside the assets folder, create a scripts folder for your CoffeeScript files.
3. Place your custom CoffeeScript files inside the new scripts folder.
4. Assuming you created a file named main.coffee in the scripts folder, Play will auto‐

matically compile your CoffeeScript file to JavaScript, and you can then include the
JavaScript file in your templates (such as main.scala.html) like this:

<script src="@routes.Assets.at("scripts/main.js")" /></script>

Notice that the file main.js is generated from your main.coffee file.

That’s all you have to do. You can test this by following those steps, then placing this
code in the main.coffee file:

alert "Hello, world"

If you add the <script> line shown to the <head> section of your main.scala.html
template file, just access one of your URLs in your browser that uses this template. When
you reload the page, you should see a JavaScript alert dialog displayed.

7. Using CoffeeScript and LESS | 93

https://github.com/alvinj/PlaySimpleTemplates

Using LESS

Using LESS is also easy. Just follow these steps to begin using it:

1. If your application doesn’t already have an app/assets folder, create it.
2. Inside the assets folder, create a folder named stylesheets.
3. Inside that folder, create your custom LESS files. For instance, create a file named

myapp.less.
4. Play will compile your LESS source code to regular CSS. Assuming you named your

file myapp.less, a corresponding file named myapp.css will be generated, and you
can including it in your Play templates like this:

<link rel="stylesheet" media="screen"
 href="@routes.Assets.at("stylesheets/myapp.css")">

To test this, put the following code into a file named myapp.less in the
app/assets/stylesheets folder:

@color: red;

h1 {
 color: @color;
}

Then add this <link> tag into the <head> section of your main template wrapper file,
i.e., app/views/main.scala.html:

<link rel="stylesheet" media="screen"
 href="@routes.Assets.at("stylesheets/myapp.css")">

When you add an <H1> tag to a template that includes this CSS file, your <H1> tags will
be displayed in a red color.

See Also
• The CoffeeScript website
• The LESS CSS website

8. Creating a Simple Form
Problem
You want to get started creating forms in a Play Framework application.

94 | Bonus Chapter: The Play Framework

http://coffeescript.org/
http://lesscss.org/

Solution
Creating a new Play form is roughly a seven-step process:

1. Add new routes to app/conf/routes.
2. Create a template for your form.
3. Add a form mapping to your controller.
4. Add a form to your controller.
5. Create a controller action to display the form.
6. Create a second controller action to handle the form submission.
7. Create any model code necessary to work with the form, including classes to model

the domain (Person, Address, Stock, etc.), and data access objects.

I’ll demonstrate these steps by creating a form to add a new Stock in a sample Play
application. A Stock consists of a stock market symbol and company name, such as
Stock("GOOG", "Google, Inc."). When completed, the form will look like Figure 5.

You can follow the steps in this recipe, or clone my Play “Form Vali‐
dations” Project.

Figure 5. The form to add a new stock

To get started, first create a new Play application with the play new command:
$ play new Stocks

8. Creating a Simple Form | 95

https://github.com/alvinj/PlayFormValidations
https://github.com/alvinj/PlayFormValidations

Answer Play’s questions, and then move into the directory it creates for you.
Add a route to app/conf/routes

Next, edit the app/conf/routes file and add two entries to the end of the file. The add
entry will be used to display the new form at the URL http://localhost:8080/stocks/add.
When this form is submitted, it will submit its contents using the POST method to the
save action:

stocks
GET /stocks/add controllers.Stocks.add
POST /stocks/save controllers.Stocks.save

Create a template for your form

Next, create a Play template for the form. Save the following code to a file named
form.scala.html in a new directory named app/views/stock:

@(stockForm: Form[Stock])

@import helper._
@import helper.twitterBootstrap._

@main("Add Stock") {

 <h2>Add a Stock</h2>

 @helper.form(action = routes.Stocks.save, 'class->"form-inline") {

 @inputText(
 stockForm("symbol"),
 '_label -> "Symbol",
 'class -> "control-label"
)

 @inputText(
 stockForm("company"),
 '_label -> "Company",
 'class -> "control-label"
)

 <div class="form-actions">
 <input type="submit" class="btn btn-primary" value="Add Stock">
 Cancel
 </div>

 }

}

This is a basic Play form template, with a bit of CSS added to make the form look a little
better. Values like '_label and 'class are described in Table 4 in Recipe 10, but as you
might guess, they represent the label and CSS class for each field.

96 | Bonus Chapter: The Play Framework

Add a form mapping in your controller

Now it’s time to start creating a Stocks controller. Create a file named Stocks.scala in
the app/controllers directory with the following stub code:

package controllers

import play.api._
import play.api.mvc._
import play.api.data._
import play.api.data.Forms._
import models.Stock

object Stocks extends Controller {

}

(If you want to skip ahead, the complete code for this class is shown in the Discussion.)

Now, when the form in the form.scala.html template is submitted, the form data will be
sent to the save method in the Stocks class. When this happens, the two fields in the
form will be represented by a Map. For instance, if the user types in the information for
Google’s stock, the Map will look like this:

Map("symbol" -> "GOOG",
 "company" -> "Google")

The approach to handling this form data in Play is to create a form mapping as a field
in the Stocks controller class. The following mapping declares that the symbol field
can’t be empty—it’s a required field—but the company field is optional:

object Stocks extends Controller {

 // the new form mapping field
 val formMapping = mapping(
 "symbol" -> nonEmptyText,
 "company" -> optional(text)
)
 (Stock.apply)(Stock.unapply)

}

The type of the formMapping field is play.api.data.Mapping[models.Stock].

The Stock.apply method is used to construct a new Stock instance from the mapping,
such as when a new Stock instance is created. The Stock.unapply method is used in
the opposite case, when you want to create a mapping from an existing Stock object,
such as when editing an existing object.
Add a form in your controller

Next, create a Form instance from the mapping. Add the following line of code just below
the formMapping:

8. Creating a Simple Form | 97

val stockForm: Form[Stock] = Form(formMapping)

The code for the Mapping and Form are often included in one statement, but I’ve sepa‐
rated them here to demonstrate the steps and types.
Create a controller action to display the form

Next, create an action in the controller to display the form. This action was referred to
as controller.Stocks.add in the conf/routes files, so name it add:

def add = Action {
 Ok(views.html.stock.form(stockForm))
}

This is a normal Play method that implements an Action. It simply displays the template
named app/views/stock/form.scala.html, passing the stockForm to the template.

Create a second controller action to handle the form submission

Next, you need a controller action to handle the form submission. The following code
shows the pattern to handle a form submission:

def save = Action { implicit request =>
 stockForm.bindFromRequest.fold(

 // (1) on a validation error go back to the form
 errors => BadRequest(views.html.stock.form(errors)),

 // (2) on success create the stock, go to another page
 stock => {
 Stock.save(stock)
 Redirect(routes.Stocks.add)
 }
)
}

The save method receives the HTTP request from the form, and the bindFromRequest
method binds the stockForm to the data received in the request. This process is called
binding the request to the form.

Because the logic of evaluating a form results in two possible branches—failure or suc‐
cess—the fold method is a good choice to handle this. In the failure case (#1), when
the form validation process results in an error, call the BadRequest function, giving it a
reference to the form so it can redisplayed.

In the success case (#2), a new Stock object is created, so save it to the database, and
then forward the user to whatever page you want to display next. To keep this example
small, the code redirects users to the same Add a Stock page, but you can forward them
to any template you define.

98 | Bonus Chapter: The Play Framework

Create any model code necessary to work with the form

For this form, create a case class named Stock and a corresponding companion object.
To do this, first create a models folder under the app folder, and then create a Stock.scala
file in the models folder.

Rather than creating a full DAO at this time, just create a simple Stock object with a
save method that provides a little debugging output. Put this code in the Stock.scala
file:

package models

case class Stock(symbol: String, company: Option[String])

object Stock {

 def save(stock: Stock) {
 println(s"Would have created stock: $stock")
 }

}

In your real-world code, you would implement this save method as shown in Recipe 11,
“Selecting from a Database with Anorm”, but to keep this example relatively simple, I
avoided that extra code.
One extra step

I followed one extra step in my example to create a decent-looking form. As described
in the Discussion, I added some “Twitter Bootstrap” code to my form to make it look a
little better. If you follow this additional step, your “Add a Stock” form should look like
Figure 6.
Testing

To test all of the new code, start the Play console from the root directory of your project:
$ play

and then start the Play server:
[Stocks] $ run 8080

You should now be able to access the form at the http://localhost:8080/stocks/add URL.

When your form is running, you should be able to successfully submit it as long as you
supply text for the symbol field. The company field is optional, but if you don’t supply
text for the symbol field when you submit the form, you should see the “This field is
required” error message shown in Figure 6.

8. Creating a Simple Form | 99

Figure 6. When the form is submitted without a Symbol value, an error message is
displayed

Discussion
The complete code for the Stocks controller class is shown here for your convenience:

package controllers

import play.api._
import play.api.mvc._
import play.api.data._
import play.api.data.Forms._
import models.Stock

object Stocks extends Controller {

 val formMapping = mapping(
 "symbol" -> nonEmptyText,
 "company" -> optional(text)
)(Stock.apply)(Stock.unapply)

 val stockForm: Form[Stock] = Form(formMapping)

 def add = Action {
 Ok(views.html.stock.form(stockForm))
 }

 /**
* Handle the 'add' form submission.
*/
 def save = Action { implicit request =>
 stockForm.bindFromRequest.fold(
 // (1) on a validation error go back to the form
 errors => BadRequest(views.html.stock.form(errors)),

100 | Bonus Chapter: The Play Framework

 // (2) on success create the stock, go to another page
 stock => {
 Stock.save(stock)
 Redirect(routes.Stocks.add)
 }
)
 }

}

As mentioned in the Solution, the Form and Mapping are often combined in one step,
like this:

val stockForm: Form[Stock] = Form(
 mapping(
 "symbol" -> nonEmptyText,
 "company" -> optional(text)
)(Stock.apply)(Stock.unapply)
)

Defining the form mapping is typically the most difficult part of creating a new form.
As you’ll see in Recipe 9, “Validating a Form”, form field validations are added to this
code as well, so in real-world code, the mapping can get more complex.

When you define a Mapping, Play provides a number of data manipulation helpers that
you can use to define form fields. These helpers are defined in the play.api.data.Forms
object. Table 1 in the next recipe shows many of the helpers that are available in
Play 2.1.1.
Generating Play forms fast

Years ago I realized that most initial form development is driven by your database design.
For instance, most of the code shown in these Anorm recipes can be generated from
stocks database table. Realizing this, I created a “CRUD Generator” tool named Cato
to generate the initial “CRUD” (Create-Read-Update-Delete) source code for my ap‐
plications. Because Cato is language-independent and template-driven, I was able to
create Cato templates for the Play Framework that let me rapidly create Play forms. See
this video demonstration of how I can create a complete initial set of Play CRUD forms
for a real-world database table in just over seven minutes.
Using Twitter Bootstrap

Twitter Bootstrap is a frontend framework to help make cross-platform web develop‐
ment easier. If you ever started a new web development project and wished there was a
standard set of CSS definitions for web forms (and a few other tools), Bootstrap may be
what you’re looking for.

At the time of this writing, Play’s support for Bootstrap is in flux. The latest release of
Bootstrap is version 2.3.2, but Play 2.1.1 supports Bootstrap 1.4.x, so using that version
is demonstrated here.

8. Creating a Simple Form | 101

http://bit.ly/10YIayS
http://www.catocrudgenerator.com/
http://bit.ly/17j4qob

Probably the easiest way to use the Twitter Bootstrap 1.4.x release is to copy the files
that are needed from the “forms” sample project that ships with Play. You’ll find the
forms project folder under the samples directory of your Play installation folder. There
are both Scala and Java versions of this project, so use the Scala version.

Within the forms project, switch to the public/stylesheets folder. From that folder, copy
the bootstrap.css and main.css files, then paste them into the same directory in your Play
project. If you already have files with these names, be careful about overwriting them.

Once you’ve copied those files into your project, add these lines of code to the <head>
section of your template wrapper file, e.g., the default main.scala.html. The line to in‐
clude the main.css file may already exist:

<link rel="stylesheet" media="screen"
 href="@routes.Assets.at("stylesheets/bootstrap.css")">
<link rel="stylesheet" media="screen"
 href="@routes.Assets.at("stylesheets/main.css")">

As shown in the form.scala.html template in this recipe, you’ll also need to include this
line of code in your form template files:

@import helper.twitterBootstrap._

Now, when you develop your forms, they should be styled with the Twitter Bootstrap
CSS. Some of this styling is shown in Figure 7.

9. Validating a Form
Problem
You want to validate the fields in a form in a controller method to make sure the data
matches your constraints before attempting to save the form data to a database.

Solution
When you define a Mapping, Play provides a number of data manipulation helpers that
you can use to define form fields. These helpers come from the play.api.data.Forms
object. Table 1 shows many of the helpers that are available in Play 2.1.1.

102 | Bonus Chapter: The Play Framework

http://bit.ly/10YIayS

Figure 7. A sample form styled with Twitter Bootstrap (and a little additional CSS)

Table 1. Common Play data manipulation helpers
Data manipulation helper Description

boolean A mapping for a Boolean field, such as a checkbox.

date A mapping for a date field.

email A mapping for an email field.

ignored A field in your form that should be ignored for validation purposes.

list A repeated mapping, such as when you prompt a user with an email field and a “verify email
address” field.

longNumber A mapping for a numeric field. Uses a Long type.

nonEmptyText A mapping for a required text field.

number A mapping for a numeric field (Int).

optional Makes the mapping optional.

single A mapping for a single value.

sqlDate A mapping for a date field, mapped as a sql.Date.

text A mapping for a text field.

9. Validating a Form | 103

See the play.api.data.Forms object documentation for additional mappings.

The following list of example form fields shows different ways that these helpers can be
used:

"readEula" -> boolean,
"date" -> date("yyyy-MM-dd"),
"email" -> email,
"id" -> ignored(1234),
"stocks" -> list(text),
"addresses" -> list(email),
"username" -> nonEmptyText,
"username" -> nonEmptyText(5), // requires a minimum of five characters
"count" -> number,
"company" -> optional(text),
"number" -> optional(number),
"notes" -> text,
"password" -> text(minLength = 10),

More examples of these constraints are demonstrated in this recipe.

As described in Table 2, the Play Framework also defines constraints in the
play.api.data.validation.Constraints object.

Table 2. Constraints from the play.api.data.validation.Constraints object
Constraints’ method Description

min(minValue: Int): Constraint[Int] A constraint to specify a minimum value for an Int.

max(maxValue: Int): Constraint[Int] Specify a maximum value for an Int.

minLength(length: Int): Constraint[String] Specify a minimum length constraint for a String.

maxLength(length: Int): Constraint[String] Specify a maximum length constraint for String.

nonEmpty: Constraint[String] Create a “required” constraint for a String.

pattern(

regex: Regex,

name: String,

error: String): Constraint[String]

Create a regular expression constraint for a String.

Although you can use the min, max, minLength, and maxLength methods, the Play classes
offer some conveniences, so you can just put the min and max values in parentheses of
the data manipulation helpers, as shown in these examples:

"username" -> nonEmptyText(5, 20), // 5 to 20 characters
"password" -> nonEmptyText(8), // at least eight characters

The following example Form demonstrates most of the built-in validations, including
how to specify a pattern while validating a text field:

 val mongoForm = Form(
 mapping(
 "username" -> nonEmptyText(5, 20),

104 | Bonus Chapter: The Play Framework

http://bit.ly/10YIayS

 "firstName" -> text(5, 20),
 "middleInitial" -> optional(text),
 "email" -> email,
 "number" -> number(1, 5),
 "host" ->
 text.verifying(pattern("[a-z]*".r, "Lowercase chars only", "Error")),
 "age" -> optional(number),
 "longNumber" -> longNumber,
 "optionalNumber" -> optional(number),
 "date" -> date("yyyy-MM-dd"), // java.util.Date
 "password" -> nonEmptyText(8),
 "readEula" -> checked("Please accept the terms of the EULA"),
 "yesNoSelect" -> text, // treat select/option as 'text'
 "yesNoRadio" -> text, // treat radio buttons as 'text'
 "stocks" -> list(text),
 "notes" -> optional(text),
 "ignored" -> ignored("foo") // static value
)(Mongo.apply)(Mongo.unapply)
)
)

When the built-in validators aren’t enough, you can define your own constraints using
the verifying method, both on individual fields (as shown on the host field) and at
the form level.

For instance, in my Finance application, I check to see whether a stock is already in the
database before I attempt to add it. I can make that check either at the field level or at
the form level. The following code demonstrates how to use verifying at the field
level to test whether the stock is already in the database:

val stockForm: Form[Stock] = Form(
 mapping(
 "symbol" -> nonEmptyText.verifying(
 "D'oh - Stock already exists!",
 Stock.findBySymbol(_) == 0),
 "company" -> optional(text))
 (Stock.apply)(Stock.unapply)
)

In this case the validation is at the field level, so this field will be validated at the same
time as all other fields in the form. The downside of this approach is that the
Stock.findBySymbol method will be called every time the form is submitted, and the
upside is that if the stock is already in the database, I can tell the user about this at the
same time as I tell him about any other field errors. (This is trivial in this example, but
can be important in a larger form or on a busy website.)

The following code demonstrates how to perform the same verification test at the form
level:

val stockForm: Form[Stock] = Form(
 mapping(

9. Validating a Form | 105

 "symbol" -> nonEmptyText,
 "company" -> optional(text))
 (Stock.apply)(Stock.unapply)
 verifying("D'oh - Stock already exists!", fields => fields match {
 // this block creates a 'form' error.
 // this only gets called if all field validations are okay.
 case Stock(i, s, c) => Stock.findBySymbol(s) == 0
 })
)

As the comments mention, a verifying method included here will only be called when
all of the field-level validations pass. Therefore, this hit on the database will only happen
when the form has otherwise been filled out properly.

As you probably suspected, the Stock.findBySymbol method that is invoked in these
verifying calls returns the count of the number of records found in the stocks database
table that has the same symbol. Using Anorm, that method looks like this:

def findBySymbol(symbol: String): Long = {
 if (symbol.trim.equals("")) return 0
 DB.withConnection { implicit c =>
 val firstRow =
 SQL("SELECT COUNT(*) AS c FROM stocks WHERE symbol = {symbol}")
 .on('symbol -> symbol.toUpperCase)
 .apply
 .head
 firstRow[Long]("c") // returns the count
 }
}

Discussion
The best way to demonstrate these validations is with an example form. To that end,
I’ve created a PlayFormValidations project that you can clone from GitHub. This project
creates the form shown in Figure 8. It demonstrates common validations, and how you
can control the form appearance with the template file and form mappings.

The form in Figure 8 was created by putting the following code in conf/routes:
home page
GET / controllers.Application.index

validation examples
GET /validations/add controllers.ValidationsController.add
POST /validations/save controllers.ValidationsController.save

map static resources from the /public folder to the /assets URL path
GET /assets/*file controllers.Assets.at(path="/public", file)

106 | Bonus Chapter: The Play Framework

https://github.com/alvinj/PlayFormValidations

Figure 8. An example form that demonstrates common form field validations

The template file for the form is app/views/validationsform.scala.html:
@(validationsForm: Form[Validations])

@import helper._
@import helper.twitterBootstrap._

@main("Sample Form Validations") {

 @* this block of code will display form-level errors *@
 @if(validationsForm.hasErrors) {
 <div class="alert-message">
 <p>There were one or more errors with the form:</p>

 @validationsForm.errors.map { error =>
 @error.message
 }

 </div>
 }

9. Validating a Form | 107

 @helper.form(action = routes.ValidationsController.save) {

 @* demonstrates a textfield, label, and placeholder text *@
 @inputText(validationsForm("username"), '_label -> "Username",
 'placeholder -> "Username")

 @* you can use placeholders on these fields as well *@
 @inputText(validationsForm("firstName"), '_label -> "First Name")
 @inputText(validationsForm("number"), '_label -> "Number")
 @inputText(validationsForm("score"), '_label -> "Score",
 '_help -> "The score, from 1 to 100")
 @inputText(validationsForm("host"), '_label -> "Host")
 @inputText(validationsForm("age"), '_label -> "Age",
 '_help -> "Enter your age, if you'd like")
 @textarea(validationsForm("notes"), '_label -> "Notes",
 '_help -> "Any notes you want to add")

 <div class="form-actions actions">
 <input type="submit" class="btn btn-primary" value="Save">
 Cancel
 </div>

 }

}

The template demonstrates several different useful techniques, including setting place‐
holder text on the Username field, and supplying help text for several other fields. Refer
to Figure 8 to see the help text that Play automatically generates for the fields I haven’t
manually supplied, including the First Name, Number, and Host fields.

The form validation code is in app/controllers/ValidationsController.scala:

package controllers

import play.api._
import play.api.mvc._
import play.api.data._
import play.api.data.Forms._
import models.Validations
import play.api.data.validation.Constraints._
import scala.util.matching.Regex

object ValidationsController extends Controller {

 val x = pattern("".r, "", "")

 val validationsForm = Form(
 mapping(
 "username" -> nonEmptyText(5, 20),
 "firstName" -> text(1, 20),
 "number" -> number(1, 5),

108 | Bonus Chapter: The Play Framework

 "score" -> number.verifying(min(1), max(100)),
 "host" -> nonEmptyText.verifying(pattern("[a-z]+".r,
 "One or more lowercase characters", "Error")),
 "age" -> optional(number),
 "notes" -> optional(text)
)(Validations.apply)(Validations.unapply)
 verifying("If age is given, it must be greater than zero", model =>
 model.age match {
 case Some(age) => age < 0
 case None => true
 }
)
)

 def add = Action {
 Ok(views.html.validationsform(validationsForm))
 }

 /**
* Handle the 'add' form submission.
*/
 def save = Action { implicit request =>
 validationsForm.bindFromRequest.fold(
 errors => BadRequest(views.html.validationsform(errors)),
 stock => {
 // would normally do a 'save' here
 Redirect(routes.ValidationsController.add)
 }
)
 }

}

Finally, the corresponding model is in app/models/Validations.scala:

package models

case class Validations (
 username: String,
 firstName: String,
 number: Int,
 score: Int,
 host: String,
 age: Option[Int],
 notes: Option[String]
)

9. Validating a Form | 109

Once you have all the files in place, start the Play server as usual. I run it on port 8080:
$ play

[PlayFormValidations] $ run 8080

Then access the form at the http://localhost:8080/validations/add URL.

Field-level validations will result in error messages right next to the field where the error
occurred, and because of the way the template is defined, form-level errors will be dis‐
played above the form. For instance, the following verifying code on the form mapping
is a form-level validation:

verifying("If age is given, it must be greater than zero", model =>
 model.age match {
 case Some(age) => age < 0
 case None => true
 }
)

As the text implies, it checks to see if an age is given, and if the age is given, it must be
greater than zero. When this validation error is triggered, the error message that’s dis‐
played above the form looks like Figure 9.

Figure 9. A form-level validation error message

This error message is displayed due to the following block of code, which is included
in the template, above the form:

@* this block of code will display form-level errors *@
@if(validationsForm.hasErrors) {
 <div class="alert-message">
 <p>There were one or more errors with the form:</p>

110 | Bonus Chapter: The Play Framework

 @validationsForm.errors.map { error =>
 @error.message
 }

 </div>
}

This recipe demonstrates a number of different methods to validate a form. To experi‐
ment with this code on your own system, clone my GitHub project.

10. Displaying and Validating Common Play Form
Elements
Problem
You want to use common HTML elements in a Play Framework form, such as a text
field, textarea, drop-down list, checkbox, buttons, etc., and it would be helpful to see
examples of how they are created and used.

Solution
The easiest way to demonstrate the common Play form widgets is to create a form that
has at least one of each widget type. The “mongo” form shown in Figure 10 shows all
the built-in widgets types.

As discussed in previous recipes, you create this form by adding the following compo‐
nents to your project:

• A form template
• A form controller class
• A model class

The easiest way to use this code is to clone my “Mongo Form” project.

I created the form template with the filename app/views/mongoform.scala.html. Its con‐
tents are:

10. Displaying and Validating Common Play Form Elements | 111

https://github.com/alvinj/PlayFormValidations
https://github.com/alvinj/PlayMongoForm

Figure 10. This large form demonstrates common form widgets

@(mongoForm: Form[Mongo])

@import helper._
@import helper.twitterBootstrap._

@main("Sample Form Widgets") {

112 | Bonus Chapter: The Play Framework

 @helper.form(action = routes.MongoController.save) {

 @* demonstrates a textfield, label, and placeholder text *@
 @inputText(mongoForm("username"), '_label -> "First Name",
 'placeholder -> "First Name")

 @inputText(mongoForm("middleInitial"),
 '_label -> "Middle Initial",
 '_help -> "Enter your middle initial (not required)")

 @* email and number fields *@
 @inputText(mongoForm("email"), '_label -> "Email")
 @inputText(mongoForm("number"), '_label -> "Number")
 @inputText(mongoForm("longNumber"), '_label -> "Long Number")
 @inputText(mongoForm("optionalNumber"), '_label -> "Optional Number")

 @* checkbox *@
 @checkbox(mongoForm("readEula"), '_label -> "Confirm:",
 '_text -> "Sure, I read the EULA")

 @* date *@
 @inputDate(mongoForm("date"), '_label -> "Date")

 @* password *@
 @inputPassword(mongoForm("password"), '_label -> "Password")

 @* select/option field *@
 @select(mongoForm("yesNoSelect"), options("yes"->"Yes", "no"->"No"),
 '_label -> "Yes or No:")

 @* radio buttons *@
 @inputRadioGroup(mongoForm("yesNoRadio"), options("yes"->"Yes", "no"->"No"),
 '_label -> "Yes/No:")

 @* request user enter multiple words *@
 @helper.repeat(mongoForm("stocks"), min = 2) { stockField =>
 @inputText(stockField, '_label -> "Stocks")
 }

 @textarea(mongoForm("notes"))

 @* 'ignored' field (static content) *@
 @inputText(mongoForm("ignored"), '_label -> "Ignored")

 <div class="form-actions actions">
 <input type="submit" class="btn btn-primary" value="Save">
 Cancel
 </div>

 }

}

10. Displaying and Validating Common Play Form Elements | 113

This template refers to a main.scala.html wrapper template file:

@(title: String)(content: Html)

<!DOCTYPE html>

<html>
 <head>
 <title>@title</title>
 <link rel="stylesheet" media="screen"
 href="@routes.Assets.at("stylesheets/bootstrap.css")">
 <link rel="stylesheet" media="screen"
 href="@routes.Assets.at("stylesheets/main.css")">
 <link rel="shortcut icon" type="image/png"
 href="@routes.Assets.at("images/favicon.png")">
 <script src="@routes.Assets.at("javascripts/jquery-1.7.1.min.js")"
 type="text/javascript"></script>
 </head>

 <body>
 <div class="container">

 <div class="content">

 <div class="page-header">
 <h1>@title</h1>
 </div>

 <div class="row">
 <div class="span14">
 @content
 </div>
 </div>

 </div>

 <footer>
 <p>
 </p>
 </footer>

 </div>
 </body>

</html>

To validate and process the form, I created a file named app/controllers/
MongoController.scala:

package controllers

import play.api._
import play.api.mvc._

114 | Bonus Chapter: The Play Framework

import play.api.data._
import play.api.data.Forms._
import models.Mongo

object MongoController extends Controller {

 val mongoForm = Form(
 mapping(
 "username" -> nonEmptyText(5, 20),
 "middleInitial" -> optional(text),
 "email" -> email,
 "number" -> number,
 "longNumber" -> longNumber,
 "optionalNumber" -> optional(number),
 "date" -> date("yyyy-MM-dd"), // java.util.Date
 "password" -> nonEmptyText(8),
 "readEula" -> checked("Please accept the terms of the EULA"),
 "yesNoSelect" -> text, // treat select/option as 'text'
 "yesNoRadio" -> text, // treat radio buttons as 'text'
 "stocks" -> list(text),
 "notes" -> optional(text),
 "ignored" -> ignored("foo") // static value
)(Mongo.apply)(Mongo.unapply)
)

 def add = Action {
 Ok(views.html.mongoform(mongoForm))
 }

 /**
* Handle the 'add' form submission.
*/
 def save = Action { implicit request =>
 mongoForm.bindFromRequest.fold(
 errors => BadRequest(views.html.mongoform(errors)),
 stock => {
 // would normally do a 'save' here
 Redirect(routes.MongoController.add)
 }
)
 }

}

The Mongo form class is at app/models/Mongo.scala, and is defined like this:

package models

import java.util.Date

case class Mongo (
 username: String,
 middleInitial: Option[String],

10. Displaying and Validating Common Play Form Elements | 115

 email: String,
 number: Int,
 longNumber: Long,
 optionalNumber: Option[Int],
 date: Date,
 password: String,
 readEula: Boolean,
 yesNoSelect: String,
 yesNoRadio: String,
 stocks: List[String],
 notes: Option[String],
 ignored: String
)

Once you have all the files in place, start the Play server as usual. I run it on port 8080:
$ play

[MongoForm] $ run 8080

You can now access the form at the http://localhost:8080/mongo/add URL.

Discussion
The code in this recipe demonstrates three essential things related to Play forms:

• How to create each widget in a template file using Play’s predefined helpers.
• How to map and validate each widget.
• How to create a model to match the mapping.

An important part of this recipe is understanding how to configure the proper mapping
for each widget. I included some extra rows in the template to demonstrate many of the
common form mappings, including text, nonEmptyText, optional(text), and more
difficult mappings like checkboxes, the select/option control, and radio buttons. For
those more difficult controls, the examples show the following:

• An @checkbox widget maps to a checked validation.
• The @select widget maps to a text validation.
• The @inputRadioGroup maps to a text validation.

The input helpers are defined in the package object of Play’s views.html.helper package.
Table 3 provides a brief description of the common helper objects.

116 | Bonus Chapter: The Play Framework

Table 3. Common Play helper objects
Play helper object Description

checkbox An HTML input checkbox.

form Creates an HTML form.

input A generic HTML input.

inputDate An HTML5 date input.

inputFile An HTML file input.

inputPassword An HTML password input field.

inputRadioGroup An HTML radio group.

inputText An HTML text input field.

select An HTML select/option field.

textarea An HTML textarea.

As shown in the examples, you can set “input helper” options on the fields, using an
object known as a FieldConstructor. Options you can set are shown in Table 4.

Table 4. Play input helper options
Field constructor option Description

_error -> "Error, error!" Use a custom error message for the field.

_help -> "(mm-dd-yyyy)" Show custom help text.

_id -> "stock-form" Create a CSS ID for the top <DL> element.

_label -> "Symbol:" Use a custom label for the field. (This is very common.)

_showConstraints -> true Set to true to show the field constraints, or false to hide them.

_showErrors -> true Set to false to hide errors on the field.

As mentioned, this example uses some custom CSS that’s based on the Twitter Bootstrap
project. The templates use two CSS files that I copied from the Play samples/form project,
and then modified. See Recipe 8 for a discussion about using Twitter Bootstrap 1.4 with
Play 2.1.1.

See Also
• The easiest way to use all of this code is to clone my GitHub project
• Play’s predefined helpers

10. Displaying and Validating Common Play Form Elements | 117

http://bit.ly/11UnDhC
http://twitter.github.io/bootstrap/index.html
http://twitter.github.io/bootstrap/index.html
https://github.com/alvinj/PlayMongoForm
http://bit.ly/13h6tsv

11. Selecting from a Database with Anorm
Problem
You want to select data from a database using the Play’s built-in Anorm library.

Solution
There are several different ways to write SQL SELECT methods using Anorm, and each
approach will be shown here. When you’ve finished this recipe, you’ll have all of the
code needed to display a list of stocks at a URL, as shown in Figure 11.

Figure 11. The result of selecting all the stocks from the database

To make it easy to learn Anorm, I created a project you can clone from GitHub. It
includes the code from all of the Anorm recipes in this chapter.
One-time configuration

The first thing you’ll need for this recipe is a MySQL database table named stocks with
this definition:

create table stocks (
 id int auto_increment not null,
 symbol varchar(10) not null,
 company varchar(32),
 primary key (id),
 constraint unique index idx_stock_unique (symbol)
);

You’ll also need some sample data, so insert a few records into the table:
INSERT INTO stocks (symbol, company) VALUES ('AAPL', 'Apple');
INSERT INTO stocks (symbol, company) VALUES ('GOOG', null);

Next, create a new Play application, as shown in Recipe 1. (Use the play new command.)

Now you need to connect your Play application to the MySQL database. To do this, edit
the conf/application.conf file, and add these lines to the “Database configuration” section
of that file:

118 | Bonus Chapter: The Play Framework

https://github.com/alvinj/PlayStocksProject

db.default.url="jdbc:mysql://localhost:8889/stocks"
db.default.driver=com.mysql.jdbc.Driver
db.default.user=root
db.default.pass=root

My database is named stocks, and I use MAMP, which runs MySQL on port 8889 by
default. Change these settings as needed for your server.

You also need to add MySQL as a dependency to your project. To do this, edit the
project/Build.scala file in your project, and add MySQL as a dependency to the
appDependencies variable:

val appDependencies = Seq(
 // Add your project dependencies here,
 jdbc,
 anorm,
 "mysql" % "mysql-connector-java" % "5.1.25"
)

Now that your Play application is ready to connect to your MySQL database, it’s time
to write the code to display the results of a SQL SELECT statement.
Steps to displaying the results of a SQL SELECT statement

The steps required to display the results of a SQL SELECT query at a new URL are:

1. Create a template to show the results.
2. Add an entry to the conf/routes file to bind the template to a controller method.
3. Create a Stocks controller.
4. Create a Stock model class and a corresponding Stock object (a companion object).

Create a template to show the results

To create the view shown in Figure 11, first create a stock folder under the app/views
folder. Then create a list.scala.html file under the stock folder with these contents:

@(stocks: List[Stock])

@main("Stocks") {

 <h1>You have @stocks.size Stock(s)</h1>

 <div>

 @stocks.map { stock =>

 @stock.symbol

 }

11. Selecting from a Database with Anorm | 119

 </div>

}

This template receives a List[Stock] and calls the main wrapper template to display
the Stock symbols in a bulleted list.
Configure the route

To list the stocks at the /stocks URI, create this entry in the conf/routes file:

GET /stocks controllers.Stocks.list

Create a Stocks controller class

Now create a Stocks controller with a list method to match the route:
package controllers

import play.api._
import play.api.mvc._
import views._
import models._

object Stocks extends Controller {

 def list = Action {
 Ok(html.stock.list(Stock.selectAll()))
 }

}

The list method gets a List of Stock objects from the selectAll method of a Stock
object, and passes that list to the list.scala.html template file in the app/views/stock folder.

Create a Stock model class and companion object

For the SELECT query (and all other SQL queries), you’ll need a Stock model class, which
you can define as a simple case class.

The Anorm standard is to create database methods in the companion object of the model
class, so create a Stock object in the same file. To select records from the database, you
need a “select all” method, which I named selectAll.

To implement this code, create the app/models folder, then create a file in the models
folder named Stock.scala, with this source code:

package models

case class Stock (val id: Long,
 var symbol: String,
 var company: Option[String])

120 | Bonus Chapter: The Play Framework

object Stock {

 import play.api.db._
 import play.api.Play.current

 // create a SqlQuery for all of the "select all" methods
 import anorm.SQL
 val sqlQuery = SQL("select * from stocks order by symbol asc")

 def selectAll(): List[Stock] = DB.withConnection { implicit connection =>
 sqlQuery().map (row =>
 Stock(row[Long]("id"),
 row[String]("symbol"),
 row[Option[String]]("company"))
).toList
 }

}

If you’ve written JDBC code before, this code is somewhat similar to using a
ResultSet. The selectAll method executes the sqlQuery (which is an instance of
anorm.SqlQuery), calls the map method on the sqlQuery, creates a new Stock object
from each Row in the results, and returns the result as a List[Stock].

Notice that the company field is declared as an Option[String] in the case class, and is
used similarly in the selectAll method. This is how you handle optional fields, which
may be null in the database.
Access the URI

When you access the /stocks URI in your browser, such as http://localhost:8080/stocks,
you should see the result shown in Figure 11, a list of stocks in the stocks database
table.

Discussion
There are several other ways to write SELECT queries with Anorm. A second approach
uses Scala’s pattern-matching capability to create Stock instances based on each row:

import anorm.Row

def selectAll() : List[Stock] = {
 DB.withConnection { implicit connection =>
 sqlQuery().collect {
 case Row(id: Int, symbol: String, Some(company: String)) =>
 Stock(id, symbol, Some(company))
 case Row(id: Int, symbol: String, None) =>
 Stock(id, symbol, None)
 }.toList
 }
}

11. Selecting from a Database with Anorm | 121

Two case statements are needed because the company field may be null. If a company
name is found, the first case statement is matched, but if it’s null, the second statement
is matched.

A third approach uses the Anorm Parser API, which gives you a DSL that you can use
to define a RowParser to build a Stock object from each row:

import anorm._
import anorm.SqlParser._

// uses the Parser API
// stock is an instance of anorm.RowParser[models.Stock]
val stock = {
 get[Long]("id") ~
 get[String]("symbol") ~
 get[Option[String]]("company") map {
 case id~symbol~company => Stock(id, symbol, company)
 }
}

import play.api.db._
import play.api.Play.current

def selectAll(): List[Stock] = DB.withConnection { implicit c =>
 sqlQuery.as(stock *)
}

All three of these approaches return the same result, a List[Stock], so they can be used
interchangeably.

Here’s the complete source code for an app/models/Stock.scala file that shows all three
approaches, including all the necessary import statements:

package models

case class Stock (val id: Long,
 var symbol: String,
 var company: Option[String])

object Stock {

 import play.api.db._
 import play.api.Play.current

 // create a SqlQuery for all of the "select all" methods
 import anorm.SQL
 import anorm.SqlQuery
 val sqlQuery = SQL("select * from stocks order by symbol asc")

 /**
* SELECT * (VERSION 1)
* ---

122 | Bonus Chapter: The Play Framework

*/
 import play.api.Play.current
 import play.api.db.DB
 def selectAll1(): List[Stock] = DB.withConnection { implicit connection =>
 sqlQuery().map (row =>
 Stock(row[Long]("id"),
 row[String]("symbol"),
 row[Option[String]]("company"))
).toList
 }

 /**
* SELECT * (VERSION 2)
* ---
*/
 import anorm.Row
 def selectAll2() : List[Stock] = {
 DB.withConnection { implicit connection =>
 sqlQuery().collect {
 case Row(id: Int, symbol: String, Some(company: String)) =>
 Stock(id, symbol, Some(company))
 case Row(id: Int, symbol: String, None) =>
 Stock(id, symbol, None)
 case foo => println(foo)
 Stock(1, "FOO", Some("BAR"))
 }.toList
 }
 }

 /**
* SELECT * (VERSION 3)
* ---
*/
 import anorm._
 import anorm.SqlParser._

 // a parser that will transform a JDBC ResultSet row to a Stock value
 // uses the Parser API
 // http://www.playframework.org/documentation/2.0/ScalaAnorm
 val stock = {
 get[Long]("id") ~
 get[String]("symbol") ~
 get[Option[String]]("company") map {
 case id~symbol~company => Stock(id, symbol, company)
 }
 }

 import play.api.db._
 import play.api.Play.current
 // method requires 'val stock' to be defined
 def selectAll3(): List[Stock] = DB.withConnection { implicit c =>
 sqlQuery.as(stock *)

11. Selecting from a Database with Anorm | 123

 }

}

You can experiment with this code by cloning my Play Stocks project from GitHub.

See Also
• The Play Framework “Accessing an SQL Database” page
• The Play Anorm page
• My Play Stocks project

12. Inserting Data into a Database with Anorm
Problem
You want to save data to a database using the built-in Play Framework “Anorm” library.

Solution
Follow the “One-time configuration” steps from Recipe 11 to create a MySQL stocks
database and connect your Play project to it. You’ll also need the app/
controllers/Stocks.scala and app/models/Stock.scala files from that project. Then follow
these steps:

1. Create a data entry form (template) to let a user add a new stock.
2. Add the necessary entries to the conf/routes file.
3. Create a Form in the Stocks controller to match the template.
4. Create methods in the Stocks controller to (a) display the form, and (b) validate

and accept it when it’s submitted.
5. Create an insert method in the Stock object in app/models/Stock.scala.

Create a data entry form

The data entry form for a Stock is simple, and is shown in Figure 12.

124 | Bonus Chapter: The Play Framework

https://github.com/alvinj/PlayStocksProject
http://www.playframework.com/documentation/2.1.1/ScalaDatabase
http://www.playframework.com/documentation/2.1.1/ScalaAnorm
https://github.com/alvinj/PlayStocksProject

Figure 12. The “Add Stock” form created in this recipe

To create the template, create the app/views/stock folder if it doesn’t already exist. Then
create a form.scala.html template file in that folder with these contents:

@(stockForm: Form[Stock])

@import helper._

@main("Stocks") {

 @helper.form(action = routes.Stocks.submit) {

 <h1>Stock information</h1>

 @inputText(
 stockForm("symbol"),
 '_label -> "Symbol"
)

 @inputText(
 stockForm("company"),
 '_label -> "Company"
)

 <div class="actions">
 <input type="submit" class="btn primary" value="Insert">
 Cancel
 </div>

 }

}

This template (which compiles to a function) takes a Form[Stock] as a parameter. The
template calls the main wrapper template, as usual. The @helper.form and @inputText
fields are described in Recipes 8 through 10, but if you’ve used a templating system
before, they probably look familiar. @helper.form creates an HTML <form> element,
and the @inputText fields render HTML <input type="text"> fields.

12. Inserting Data into a Database with Anorm | 125

When the form is submitted, the form action shows that it will be submitted to the
submit method in the Stocks controller class.
Add two entries to the routes file

Next, when creating an “add” form like this, you need to add two entries to the
conf/routes file. Assuming you created the “list” action in Recipe 11, add the two new
lines at the end of this file:

GET /stocks controllers.Stocks.list

new
GET /stocks/add controllers.Stocks.add
POST /stocks controllers.Stocks.submit

With this configuration, the “add” form will appear at the /stocks/add URI, and will be
displayed by the add method of the Stocks controller. When the form is submitted, it
will be submitted with the POST method to the submit method of the Stocks controller.
Create the Form in the controller

Next, you need a Play Form that maps to the fields in the form.scala.html template:

// defines a mapping that will handle Stock values
val stockForm: Form[Stock] = Form(
 mapping(
 "symbol" -> nonEmptyText,
 "company" -> optional(text))
 ((symbol, company) => Stock(0, symbol, company))
 ((s: Stock) => Some((s.symbol, s.company)))
)

As mentioned in Recipe 11, the symbol field is required, so it’s defined as nonEmptyText
here. (Data for this field will be a String like AAPL.)

The two lines of code at the end of the form define apply and unapply methods that
are used to create a new Stock object from the form data, or convert an existing Stock
into use by a form, respectively:

((symbol, company) => Stock(0, symbol, company))
((s: Stock) => Some((s.symbol, s.company)))

Create the necessary controller class actions

With the Form in place, two actions are needed in the controller: an add method to
display the template, and a submit method to handle the form submission.

Here’s the complete code for the Stocks controller (app/controllers/Stocks.scala), which
includes these methods and the stockForm:

package controllers

import play.api._

126 | Bonus Chapter: The Play Framework

import play.api.mvc._
import play.api.data._
import play.api.data.Forms._
import play.api.data.validation.Constraints._
import views._
import models._

object Stocks extends Controller {

 // defines a mapping that will handle Stock values
 val stockForm: Form[Stock] = Form(
 mapping(
 "symbol" -> nonEmptyText,
 "company" -> optional(text))
 ((symbol, company) => Stock(0, symbol, company))
 ((s: Stock) => Some((s.symbol, s.company)))
)

 def list = Action {
 Ok(html.stock.list(Stock.selectAll3()))
 }

 /**
* Display the 'add' form.
*/
 def add = Action {
 Ok(html.stock.form(stockForm))
 }

 /**
* Handle form submission.
*/
 def submit = Action { implicit request =>
 stockForm.bindFromRequest.fold(
 errors => BadRequest(html.stock.form(errors)), // back to form
 stock => {
 // todo: this code assumes that Stock.save always succeeds
 val result = Stock.save(stock)
 println(s"INSERT succeeded, id = $result")
 Redirect(routes.Stocks.list)
 }
)
 }

}

Displaying the form with the add method is simple: just pass the stockForm to the
form.scala.html template in the app/views/stock folder while calling the Ok method to
display the template.

The submit method is also a Play Action. It takes an implicit request variable, then
attempts to bind the data the user submitted to the stockForm. If this initial binding

12. Inserting Data into a Database with Anorm | 127

process succeeds—the user input passes the form validations—the flow of control passes
to the stock match in the fold method, where the Stock.save method is called. As‐
suming that succeeds, the browser is redirected to the list.scala.html template created
in Recipe 11 by calling the list method of the Stocks controller. If you didn’t copy the
code from that recipe, redirect the user back to the form.scala.html template instead by
calling the controller’s add method.

If the binding process fails, the errors case in the fold method is invoked, and
form.scala.html is redisplayed using Play’s BadRequest method. Any errors—such as
not providing a stock symbol—are displayed on the data entry form.

Notice that neither the stockForm nor the submit method attempt to determine whether
the given stock is already in the database. More robust validation code is included in
my GitHub project, which checks to see if a stock exists in the database before attempting
to insert it.
Create a Stock companion object

The final piece of the puzzle that’s needed is an Anorm save method in the Stock
companion object in the app/models/Stock.scala file:

object Stock {

 def save(stock: Stock): Option[Long] = {
 val id: Option[Long] = DB.withConnection { implicit c =>
 SQL("insert into stocks (symbol, company) values ({symbol}, {company})")
 .on('symbol -> stock.symbol.toUpperCase,
 'company -> stock.company
).executeInsert()
 }
 id
 }

}

Note that this is a normal SQL INSERT query, with some Anorm code wrapped around
it. If you’ve used a library like Spring JDBC, this may seem familiar.

The syntax in the on method refers to field names as 'symbol and 'company is just one
way to write this query. You can enclose the field names in double quotes, if you prefer:

.on("symbol" -> stock.symbol.toUpperCase,
 "company" -> stock.company

Preceding a variable name with a single quote creates an instance of a
Symbol. See the Scala Symbol Scaladoc for more information.

128 | Bonus Chapter: The Play Framework

http://bit.ly/12TrtCp

If, as in this example, you’re inserting data into a table that has an autogenerated Long
primary key (an auto_increment field in MySQL), executeInsert returns the value of
the id field. You can also use executeUpdate here. It returns an Int indicating the
number of fields affected, which is hopefully always 1 for an INSERT. This is good for
SQL UPDATE queries, but I prefer to use executeInsert, if possible.

Note that this code does not include a try/catch block. As a result, it can throw a MySQL
integrity constraint violation if you attempt to insert a stock symbol that already exists.
You can see this in your browser by attempting to insert the same stock symbol more
than once.
Test the form

With all of this code in place, go to your browser and access the /stocks/add URI, e.g.
http://localhost:8080/stocks/add. Once your code is compiled, you should see the form
shown in Figure 12. When you enter valid data, the form submission process should
succeed, and redirect you to the /stocks URI, which was implemented in Recipe 11. If
you skipped that recipe, just redirect the form back to itself.

If you leave the Symbol field blank and submit the form, the form submission process
will fail, and the form will be redisplayed, showing the error that the Symbol field is a
required field.

See Also
My Play Stocks project

13. Deleting Records in a Database Table with Anorm
Problem
You want to delete records in a database table using Anorm.

Solution
Assuming you followed the “One-time configuration” steps from Recipe 11 to create a
MySQL stocks database and connect your Play project to it, you can use the following
delete method in a Stock object in app/models/Stock.scala to delete a record, given the
primary key (id) of the stock to be deleted:

object Stock {
 def delete(id: Long): Int = {
 DB.withConnection { implicit c =>
 val numRowsDeleted = SQL("DELETE FROM stocks WHERE id = {id}")
 .on('id -> id)
 .executeUpdate()

13. Deleting Records in a Database Table with Anorm | 129

https://github.com/alvinj/PlayStocksProject

 numRowsDeleted
 }
 }
}

In this example, a maximum of one record should be deleted, so numRowsDeleted should
be 1 (it succeeded) or 0 (it failed).

Ignoring error handling, this method can be called from a Stocks controller
(app/controllers/Stocks.scala) method like this:

def delete(id: Long) = Action {
 Stock.delete(id)
 Redirect(routes.Stocks.list)
}

In that example, the code ignores the Int that is returned, but it can also be handled:
def delete(id: Long) = Action {
 val numRowsDeleted = Stock.delete(id)
 // add logic based on numRowsDeleted ...
}

See Also
My Play Stocks project includes all of the code needed to implement a complete
“delete” solution, including the route, template, controller, and model code
needed.

14. Updating Records in a Database Table with Anorm
Problem
You want to update records in a database table using Anorm.

Solution
Assuming you followed the “One-time configuration” steps from Recipe 11 to create a
MySQL stocks database and connect your Play project to it, write an update method
in your Stock object (the companion object in the app/models/Stock.scala file). You can
use the following update method to update records, given the primary key (id) field
and a new Stock object to replace the old one:

object Stock {
 def update(id: Long, stock: Stock): Boolean = {
 DB.withConnection { implicit c =>
 SQL("update stocks set symbol={symbol}, company={company} where id={id})")
 .on('symbol -> stock.symbol,
 'company -> stock.company,

130 | Bonus Chapter: The Play Framework

https://github.com/alvinj/PlayStocksProject

 'id -> id
).executeUpdate() == 1
 }
 }
}

The syntax that refers to the field names as 'symbol, 'company, and 'id in the on method
call is just one way to write this query. You can enclose the field names in double quotes,
if you prefer:

.on("symbol" -> stock.symbol,
 "company" -> stock.company,
 "id" -> id

Preceding a variable name with a single quote creates an instance of a
Symbol. See the Scala Symbol Scaladoc for more information.

The executeUpdate method returns the number of rows affected by the query, so in
this case, it should return a value of 1. If the result is 1, the method returns true, other‐
wise it returns false.

See Also
My Play Stocks project includes all of the code needed to implement a complete
“update” solution, including the route, template, controller, and model code.

15. Testing Queries Outside of Play
Problem
You want a simple, convenient way to test your Anorm SQL queries.

Solution
At least two developers have created approaches to let you test Anorm queries outside
of a full-blown Play application:

• Timothy Klim’s anorm-without-play project
• HendraWijaya’s anorm-examples project

Both projects are normal SBT projects, so they’re easy to use. I cloned Timothy Klim’s
project, added the MySQL dependency to the libraryDependencies field in the
build.sbt file:

15. Testing Queries Outside of Play | 131

http://bit.ly/12TrtCp
https://github.com/alvinj/PlayStocksProject
https://github.com/TimothyKlim/anorm-without-play
https://github.com/HendraWijaya/anorm-examples

"mysql" % "mysql-connector-java" % "5.1.25"

deleted the Main.scala file that comes with the project:

$ rm src/main/scala/Main.scala

and then created a file named StockQueriesTests.scala in the root directory of the SBT
project with these contents:

import java.sql.Connection
import scalikejdbc.ConnectionPool
import java.util.Date
import anorm._
import anorm.SqlParser._

object StockQueryTests extends App {

 Class.forName("com.mysql.jdbc.Driver")
 ConnectionPool.singleton("jdbc:mysql://localhost:8889/stocks",
 "root", "root")

 object DB {
 def withConnection[A](block: Connection => A): A = {
 val connection: Connection = ConnectionPool.borrow()
 try {
 block(connection)
 } finally {
 connection.close()
 }
 }
 }

 case class Stock (
 val id: Long,
 var symbol: String,
 var company: Option[String]
)

 // the DAO
 object Stock {

 // SELECT
 def selectAll() : List[Stock] = {
 DB.withConnection { implicit connection =>
 SQL("select * from stocks")().collect {
 case Row(id: Int, symbol: String, Some(company: String)) =>
 Stock(id, symbol, Some(company))
 case Row(id: Int, symbol: String, None) =>
 Stock(id, symbol, None)
 case foo => println("selectAll Error: Found something else: "
 + foo)
 Stock(1, "FOO", Some("BAR"))
 }.toList

132 | Bonus Chapter: The Play Framework

 }
 }

 // INSERT
 def save(stock: Stock) {
 DB.withConnection { implicit c =>
 SQL("insert into stocks (symbol, company) values ({symbol}, {company})")
 .on('symbol -> stock.symbol,
 'company -> stock.company
).executeUpdate()
 }
 }

 // DELETE
 def delete(symbol: String): Int = {
 DB.withConnection { implicit c =>
 val nRowsDeleted = SQL("DELETE FROM stocks WHERE symbol = {symbol}")
 .on('symbol -> symbol)
 .executeUpdate()
 nRowsDeleted
 }
 }

 } // Stock

 // INSERT
 println("ADD NETFLIX:")
 Stock.save(Stock(0, "NFLX", Some("Netflix")))
 println(Stock.selectAll())

 // DELETE
 println("DELETE NETFLIX:")
 println(Stock.delete("NFLX"))
 println(Stock.selectAll())

}

Running this object with the sbt run command verifies that all of the queries work as
expected.

To make this more convenient, you can also run the sbt eclipse command to generate
the files needed for Eclipse, and then run your code through Eclipse.

Discussion
You can add SQL debugging to your project by adding the following configuration lines
to your project’s conf/application.conf file:

db.default.logStatements=true
logger.com.jolbox=DEBUG

15. Testing Queries Outside of Play | 133

Those lines tell Play to print the actual SQL statements that are executed when a URL
is accessed to the Play console.

16. Deploying a Play Framework Project
Problem
You want to deploy your Play Framework project to a production environment.

Solution
There are several ways to deploy your Play application to a production server:

• Use the Play dist command to create a ZIP file with everything needed to run your
application.

• Get your project’s source code onto your production server, and “stage” it.

Both approaches are shown here.
Use the Play dist command

You can build a complete binary version of your application with the Play dist com‐
mand. To do this, start the Play command-line tool in the root directory of your project,
and then run the dist command:

[Finance] $ dist

(output omitted ...)
Your application is ready in dist/dist/finance-1.0-SNAPSHOT.zip

[success]

This creates a ZIP file that contains everything you need, including a start command,
README file, and all the JAR files needed to run the application.

To run your application on a production server, copy the ZIP file to the server, unzip it,
make the start command executable, and then run it. For example, once you have a
ZIP file, such as finance-1.0-SNAPSHOT.zip on a production server, the process looks
like this:

$ unzip finance-1.0-SNAPSHOT.zip

Archive: finance-1.0-SNAPSHOT.zip
 creating: finance-1.0-SNAPSHOT/
 creating: finance-1.0-SNAPSHOT/lib/
 inflating: finance-1.0-SNAPSHOT/lib/org.scala-lang.scala-library-2.10.0.jar
 inflating: finance-1.0-SNAPSHOT/lib/play.play_2.10-2.1.1.jar

 many lines of output skipped here ...

134 | Bonus Chapter: The Play Framework

 inflating: finance-1.0-SNAPSHOT/lib/finance_2.10-1.0-SNAPSHOT.jar
 inflating: finance-1.0-SNAPSHOT/start
 inflating: finance-1.0-SNAPSHOT/README

$ cd finance-1.0-SNAPSHOT

$ ls -al
total 16
drwxr-xr-x 5 Al staff 170 May 16 12:28 .
drwxr-xr-x 4 Al staff 136 May 16 12:30 ..
-rw-r--r-- 1 Al staff 151 Apr 2 20:25 README
drwxr-xr-x 56 Al staff 1904 May 16 12:28 lib
-rw-r--r-- 1 Al staff 3000 May 16 12:28 start

$ chmod +x start

$./start
Play server process ID is 14124
[info] play - database [default] connected at jdbc:mysql://localhost:8889/stocks
[info] play - Application started (Prod)
[info] play - Listening for HTTP on /0.0.0.0:9000

The start script is a simple shell script that executes a java command:
#!/usr/bin/env sh

exec java $* -cp "`dirname $0`/lib/*" play.core.server.NettyServer↵
 `dirname $0`

As you can see from the script, you don’t even need Scala installed on your production
server, just Java. This makes it easy to deploy your application to all sorts of application
server environments, including your own servers as well as servers from Heroku, Am‐
azon, Google, and many more.
Stage the application

A second way to deploy your application to a production environment is to copy your
Play application’s source code to a production server, where you can run the application
by “staging” it. This lets you start the application from the operating system command
line, which also lets you automate the starting of the application.

As a simple example, imagine that you’ve used Git or another tool to get your applica‐
tion’s source code onto your production server. Once you’ve done that, run the following
play command from your operating system command line to stage your application:

$ play clean compile stage

[info] Loading global plugins from /Users/Al/.sbt/plugins
[info] Loading project definition from project
[info] Updating
[info] Done updating.

16. Deploying a Play Framework Project | 135

[info] Compiling 9 Scala sources and 1 Java source to target/scala-2.10/↵
classes...
[success] Total time: 19 s
[info] Packaging target/scala-2.10/finance_2.10-1.0-SNAPSHOT-sources.jar ...
[info] Done packaging.
[info] Wrote scala-2.10/finance_2.10-1.0-SNAPSHOT.pom
[info] Generating Scala API documentation for main sources to
 target/scala-2.10/api...
[info] Packaging target/scala-2.10/finance_2.10-1.0-SNAPSHOT.jar ...
[info] Done packaging.
[info] Scala API documentation generation successful.
[info] Packaging target/scala-2.10/finance_2.10-1.0-SNAPSHOT-javadoc.jar ...
[info] Done packaging.
[info]
[info] Your application is ready to be run in place: target/start
[info]
[success] Total time: 6 s, completed May 16, 2013 12:36:52 PM

As one of the last output lines indicates, you can now run your application from the
command line as target/start:

$ target/start

Play server process ID is 14365
[info] play - database [default] connected at jdbc:mysql://localhost:8889/stocks
[info] play - Application started (Prod)
[info] play - Listening for HTTP on /0.0.0.0:9000

I prefer using the dist approach, but staging the application can also be useful.

Discussion
If you want to run your application in production mode in your development or test
environments, you can run the application by using the start command from the Play
console prompt (instead of the run command):

[MyApp] $ start

(Starting server. Type Ctrl+D to exit logs, the server will remain in background)

Play server process ID is 45566
[info] play - Application started (Prod)
[info] play - Listening for HTTP on port 9000...

According to the Play Production documentation, this is what happens when you run
the start command:

136 | Bonus Chapter: The Play Framework

When you run the start command, Play forks a new JVM and runs the default Netty
HTTP server. The standard output stream is redirected to the Play console, so you can
monitor its status. If you type Ctrl-D, the Play console will quit, but the created server
process will continue running in background. The forked JVM’s standard output stream
is then closed, and logging can be read from the logs/application.log file. If you type Ctrl-
C, you will kill both JVMs: the Play console and the forked Play server.

Start command options

You can specify command-line options when issuing the start command. For example,
the following command starts the server on port 8080, while adjusting the minimum
and maximum JVM heap size:

$ start -Dhttp.port=8080 -Xms512M -Xmx1G

There are also several ways to specify which configuration file to use. By default, Play
uses the application.conf file it finds on the classpath, which by default is the
conf/application.conf file from your application. You can specify a file on the local file‐
system instead:

$ start -Dconfig.file=/myapp/conf/production.conf

The following command lets you load a production.conf file from the classpath:

$ start -Dconfig.resource=production.conf

If you keep that file in your application’s conf directory, the Play start command will
find it. Otherwise, place it on your application’s classpath.

You can also load a configuration file from a URL:
$ start -Dconfig.url=http://foo.com/conf/production.conf

See the Play Configuration link in the See Also section for more options.

As noted in Recipe 1, you should never use the run command in production. According
to the Play website, for each server request, a complete check is handled by SBT—not
something you want to have happen in a production environment.

See Also
• Creating a standalone version of your application with dist
• Starting your application in production mode
• The Play Configuration page

16. Deploying a Play Framework Project | 137

http://bit.ly/1aMLaEW
http://bit.ly/12uDr5r
http://bit.ly/12TrK8q

17. Handling 404 and 500 Errors
Problem
You need to handle HTTP 404 and 500 errors in your application.

Solution
To handle 404 and 500 errors, create an object that extends the GlobalSettings trait,
and override the necessary methods. To do this, create a file named Global.scala in your
application’s app directory with these contents:

import play.api._
import play.api.mvc._
import play.api.mvc.Results._

object Global extends GlobalSettings {

 // called when a route is found, but it was not possible to bind
 // the request parameters
 override def onBadRequest(request: RequestHeader, error: String) = {
 BadRequest("Bad Request: " + error)
 }

 // 500 - internal server error
 override def onError(request: RequestHeader, throwable: Throwable) = {
 InternalServerError(views.html.errors.onError(throwable))
 }

 // 404 - page not found error
 override def onHandlerNotFound(request: RequestHeader): Result = {
 NotFound(views.html.errors.onHandlerNotFound(request))
 }

}

The method views.html.errors.onError(throwable) refers to a Play template file I
named onError.scala.html and placed in my app/views/errors folder:

@(throwable: Throwable)

@main("500 - Internal Server Error") {

 <h1>500 - Internal Server Error</h1>
 <p>@throwable.getMessage</p>

}

(Create the app/views/errors folder if it doesn’t already exist.)

You can customize that code as desired, just like any other Play template.

138 | Bonus Chapter: The Play Framework

The method views.html.errors.onHandlerNotFound(request) refers to a Play tem‐
plate file named onHandlerNotFound.scala.html, which is also in the app/views/errors
folder. A simple version of that file looks like this:

@(request: RequestHeader)

@main("404 - Not Found") {

 <h1>404 - Not Found</h1>
 <p>You requested: @request.path</p>

}

Again, you can customize this template file as desired.

Discussion
As shown in the Application global settings page on the Play website, you can use this
Global object for other purposes. For instance, the page demonstrates how to override
the onStart and onStop methods of the GlobalSettings class to get a notice of when
the application starts and stops:

import play.api._

object Global extends GlobalSettings {

 override def onStart(app: Application) {
 Logger.info("Application has started")
 }

 override def onStop(app: Application) {
 Logger.info("Application shutdown...")
 }

}

The Zentasks application that ships as a sample program with the Play distribution uses
the onStart method to populate sample data for an application. You can find that ap‐
plication in the samples/scala directory of the Play distribution.

See Also
• Play application global settings
• The GlobalSettings trait

17. Handling 404 and 500 Errors | 139

http://bit.ly/15Di04b
http://bit.ly/15Di04b
http://bit.ly/18lU0bL

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
= (equals sign)

=== method, using to put intentional error
into test, 55

@ (at sign)
@* ... *@ comment syntax in Play, 78
before XML element attribute names, 19
in Play code blocks file, 87
in Play template file, 77
using in match expressions, 26

\ and \\ methods
basic XPath searching with, 15–19

using \ method, 15
using \\ method, 17
using _ wildcard with, 18

deeper XML parsing with, 19
extracting subelements with, 11
using \\ instead of \, 20

_ (underscore), using with \ and \\ methods, 18
{ } (curly braces), surrounding Scala code in

XML tags, 8

A
ActorSystem, providing ExecutionContext, 37
Anorm, 71

deleting records in database table, 129
inserting data into database with, 124–129
selecting from a database with, 118–124

SQL queries, testing outside of Play, 131–134
updating records in database table, 130

arrays
of XML elements, 27

extracting data from, 22–24
assert method

expected and actual values when test fails, 55
testing exception message, 57

attribute or attributes method, Elem class, 11

B
BDD (behavior-driven development), 45, 49,

51–54, 56
BeforeAndAfter trait, 47, 49
blog.scala.html template file, 85

C
cart.scala.html template file, 85
cartWidget.scala.html template file, 91
case statements

problems with match expressions used with
XML, 28

using @ to access XML node attributes, 26
case statements, getting around problem of

matching XML node attributes, 30
child method, Elem class, 12, 14
code blocks, in Play Framework, 87

141

CoffeeScript, 71
using in Play application, 93

comments in Play, 78
conf/routes file, 75, 80

mapping of application URIs to controller
actions, 75

constraints, 104
defining your own, 105

controllers (Play Framework), 74, 76
adding Form in, 97
adding form mapping in controller, 97
complete code for Stocks controller (exam‐

ple), 100
creating add stocks form, 126
creating controller action to display form, 98
creating controller action to handle form

submission, 98
creating necessary actions for adding stocks

form, 126
creating new controller method, 81, 87
form controller class, 114
Stocks controller with list method, 120

CSS
LESS replacement for, 94
Twitter Bootstrap for web forms, 101

D
data access objects (DAOs), 71, 82
data entry form to add stock to database, 124
data manipulation helpers in Play, 102
database tests, marking with tags, 58
databases

Anorm database library, 71
deleting records in table with Play’s Anorm,

129
inserting data into, using Play’s Anorm, 124–

129
selecting from, using Play’s Anorm library,

118–124
updating records with Play’s Anorm, 130

dependencies
adding MySQL to Play Framework project,

119
DOCTYPE declaration, 40

E
EasyMock, 62

Eclipse
loading Play project into, 75
using for JUnit testing project, 68

Elem class, 6, 7
commonly used methods, 10–14
description of, 7

exceptions
downloading XML from URL, 38
testing expected exceptions, 57

execution context, for futures, 37
expected and actual values when test fails, 55

F
FeatureSpec (ScalaTest), 46
files

loading XML from, 38
saving XML to, 40

FlatSpec and FunSpec (ScalaTest), 46
forms

creating in Play Framework application, 94–
102
adding Form in controller, 97
adding form mapping in controller, 97
adding route to app/conf/routes, 96
code for Stocks controller, 100
crating new template for form, 96
creating controller action to display

form, 98
creating controller action to handle form

submission, 98
example form, 95
generating forms fast, 101
model code to work with form, 99
testing the form, 99
using Twitter Bootstrap, 101

displaying and validating common Play
form elements, 111–118
form controller class, 114
form template, 111
input helpers, 116
model class, 115

validating in Play, 102–111
built-in validations, 104
constraints, 104
data manipulation helpers, 102
error messages, field and form level, 110
example form with common form field

validations, 106
form validation code, 108

142 | Index

model for form validation, 109
template for example form with valida‐

tion, 107
FreeSpec (ScalaTest), 46
functions

Scala, calling from Play templates, 89–91, 90
Scala, passing functions into templates, 90

FunSpec trait, 49
FunSuite (ScalaTest), 46, 47
FunSuite class, 48
futures, controlling timeout limit for download‐

ing URLs, 36

G
Given/When/Then behavior, 51

examples of pattern, 52
GivenWhenThen trait, 51
GlobalSettings trait, 138

onStart and onStop methods, 139
Grizzled-SLF4J library, 65

H
helper objects in Play, 116
HTMLCleaner library, 5
HTTP 404 and 500 errors, handling in Play ap‐

plication, 138

I
ignore method, 61
input helpers in Play, 117
intercept method, 57
it tests

BDD-style test, adding tag to, 58
changing to ignore in BDD-style tests, 61
using taggedAs with, in class extending Flat‐

Spec, 60

J
Java, HTMLCleaner library, 5
JMock, 62
JUnit, using with Scala, 67–70

L
label method, Elem class, 11, 14
LESS, 71

using in Play application, 94

links.scala.html template file, 86
load method, XML object, 35
load* methods, XML object, 39
loadFile method, XML object, 38
logging

Java-style, with SLF4J, 64
Scala-style, with Grizzled-SLF4J library, 65

LoginService trait, 62

M
main.scala.html template file, 85
MAMP, 119
match expressions

using with XML, 25–30
handling array of elements, 27
handling unexpected tags, 28
inability to match attributes, getting

around, 30
pitfalls to be aware of, 27
using @ to access node attributes, 26

MatchError, 28
mock object frameworks, using with ScalaTest,

61–64
Mockito, 62–64

steps to using, 64
MockitoSugar trait, 64
models in Play applications, 75, 80

creating code necessary to work with form,
99

creating new model, 82
form validation model, 109
Mongo form class, 115
Stock.scala (example), 120

MySQL
Play application using, 118
testing Anorm SQL queries outside of Play,

131
updating records with Play’s Anorm, 130

MySQL, deleting records with Play’s Anorm,
129

N
Node class, 7

description of, 7
NodeBuffer class, 10
NodeSeq, 7, 16, 20

description of, 7

Index | 143

P
pending tests, 56
Play Framework, 71–139

adding route, model, and controller method
to application, 81
controller method, 81
creating content at new URI, 84
creating new model, 82
creating new route, 81
creating new template, 82
importing members into templates, 84
output from people.scala.html template,

83
output on Play console, 83
steps to creating new content at URI, 81

calling Scala functions from templates, 89–
91

creating a widget and including it in pages,
91–93

creating forms, 94–102
creating reusable code blocks in templates,

86
creating “Hello, World” project, 72–81

components of Play applications, 74
creating project directory, 72
loading project into Eclipse, 75
main.scala.html file, 77
other important files, 75
Play console, 79
Play Welcome message, 73, 78
starting command-line tool, 72
starting Play from OS command line, 73
starting Play server, 73
summary of process, 80

deleting records in database table with
Anorm, 129

deploying a project, 134–138
staging the application, 135
start command options, 137
using dist command, 134

displaying and validating common form ele‐
ments, 111–118

handling HTTP 404 and 500 errors, 138
inserting data into database with Anorm,

124–129
selecting from a database with Anorm, 118–

124
testing Anorm SQL queries outside of Play,

131–134

updating records in database with Anorm,
130

using CoffeeScript and LESS, 93
using multiple templates as wrappers, 85
validating a form, 102–111

play.api.data.Forms object, 102
play.api.data.validation.Constraints, 104
pretty printing

displaying XML in human-readable format,
42

XML saved to file, 41
PrettyPrinter class, 42
PropSpec (ScalaTest), 46

R
REPL (Read-Eval-Print-Loop)

memory errors from large data sets, 14
Play console command opening a session, 79

routes in Play applications, 75, 80
adding new route to conf/routes file, 87
adding routes for new form at URL, 96
creating new route in route/conf file, 81
data entry add form, 126
listing /stocks at stocks URI, 120

S
SAXParseException, 6
SBT (Simple Build Tool), 45

Play console as SBT console, 79
using in JUnit testing project, 68

running the tests, 69
scala.xml.XML object, 35
ScalaMock, 62
ScalaTest, 45

adding Given/When/Then behavior to Fun‐
Spec BDD tests, 51–54

adding more tests and test suites, 54
guide for running your tests, 48
installing, 45
JUnit versus, 70
support for number of testing styles, 46
tagging tests, 60
using mock objects with, 61–64
writing BDD test with, 49
writing TDD test with, 46

serialization, serializing and deserializing XML,
30–35

shopping cart widget, creating in Play, 91

144 | Index

specs2, 45, 70
SQL DELETE queries, 129
SQL INSERT queries, 128
SQL queries with Anorm, testing outside of

Play, 131–134
SQL SELECT queries, 118

steps to displaying results of, 119
Stock model class for, 120
writing with Anorm, 121

SQL UPDATE queries, 130
staging Play Framework application, 135
start command (Play console), 136

command-line options, 137
strings

downloading XML as, 38
returning XML structure as, 13
XML block as, converting to XML literal, 6

T
taggedAs method, 60
tagging tests, 58–60
TDD (test-driven development), 45

creating pending test, 56
writing TDD tests with ScalaTest, 46

templates
calling Scala functions from Play templates,

89–91
passing functions into templates, 90

creating for Play application form, 96
creating in Play, 82
creating in Play to show SQL SELECT re‐

sults, 119
creating reusable code blocks in Play tem‐

plates, 86
data entry form to add stock in Play, 125
form validation in Play, 107
importing members into Play templates, 84
in app/view folder in Play, 80
in Play Framework applications, 74
linking LESS stylesheet to main template

wrapper file in Play, 94
Play application, handling HTTP errors, 138
Play form template, 111
Play templates compiled down to Scala func‐

tions, 92
product detail page for shopping cart in Play,

91
using multiple templates as wrappers in Play,

85

test method
changing to ignore in TDD-style tests, 61
TDD test with intentional error, 55

TestFailedException, 57
testing and debugging, 45–70

adding more tests and test suites, 54
installing ScalaTest, 45
Java-style logging with SLF4J, 64
marking test as pending, 56
marking tests with tags so you can include or

exclude them, 58–60
printing expected and actual values when

test fails, 55
Scala-style logging with Grizzled-SLF4J, 65
temporarily disabling a test, 60
testing expected exceptions, 57
using Given/When/Then behavior in BDD

tests, 51–54
using JUnit with Scala, 67–70
using mock objects with ScalaTest, 61–64
writing BDD test with ScalaTest, 49
writing TDD tests with ScalaTest, 46

text method
Elem class, 11, 13
extracting data from XML nodes, 16

timeouts when downloading a URL, 36
toString method, Elem class, 13
Twitter Bootstrap, 101

U
URL class (Java), openStream method, 36
URLs, loading XML from, 35–38
Utility object, scala.xml package, 41

V
variables, assigning XML expressions to, 5

W
web service tests, tagging, 59
WordSpec (ScalaTest), 46
wrapper templates

for form template, 114
using multiple, 85

wrapper templates in Play, 80

Index | 145

X
XML, 5–15

creating XML literals, 5
deeper parsing and extracting tag attributes,

19–22
descriptions of most commonly used Scala

XML classes, 7
displaying in human-readable format (pretty

printing), 42
extracting data from array of elements, 22–

25
extracting data from nodes, 10

example data sets and REPL memory er‐
rors, 14

loading from a file, 38
loading from a URL, 35–38
main classes in Scala XML class hierarchy, 7
mixing Scala and XML, 8–10

dynamically generating XML from Scala
code, 8

nesting of Scala and XML, 9
using NodeBuffer class, 10

other Scala XML classes, 8
saving to a file, 40
serializing and deserializing, 30–35
using match expressions with, 25–30

XML object
load method, 35
loadFile method, 38
loadString method, 6, 38
save method, 40

XPath
basic searching with \ and \\ methods, 15–19
search expressions, demonstration of, 20

XStream library, 32–35

146 | Index

	Copyright
	Table of Contents
	XML and XPath
	Introduction
	1. Creating XML Literals
	Problem
	Solution
	Discussion
	See Also

	2. Mixing Scala and XML
	Problem
	Solution
	Discussion

	3. Extracting Data from XML Nodes
	Problem
	Solution

	4. Basic XPath Searching with \ and \\
	Problem
	Solution
	Discussion
	See Also

	5. Deeper XML Parsing and Extracting Tag Attributes
	Problem
	Solution
	Discussion

	6. Extracting Data from an Array of XML Elements
	Problem
	Solution
	Discussion
	See Also

	7. Using Match Expressions with XML
	Problem
	Solution
	Discussion
	See Also

	8. Serializing and Deserializing XML
	Problem
	Solution
	See Also

	9. Loading XML from a URL
	Problem
	Solution
	Discussion
	See Also

	10. Loading XML from a File
	Problem
	Solution
	Discussion
	See Also

	11. Saving XML to a File
	Problem
	Solution
	See Also

	12. Displaying XML in a Human-Readable Format (Pretty Printing)
	Problem
	Solution
	See Also

	Testing and Debugging
	Introduction
	1. Installing ScalaTest
	Problem
	Solution
	Discussion
	See Also

	2. Writing TDD Tests with ScalaTest
	Problem
	Solution
	Discussion
	See Also

	3. Writing a First BDD Test with ScalaTest
	Problem
	Solution
	Discussion

	4. Adding Given/When/Then Behavior to BDD Tests
	Problem
	Solution
	Discussion
	See Also

	5. Adding More Tests and Test Suites
	Problem
	Solution
	See Also

	6. Printing Expected and Actual Values When a Test Fails
	Problem
	Solution
	See Also

	7. Marking a Test as Pending
	Problem
	Solution
	Discussion
	See Also

	8. Testing Expected Exceptions
	Problem
	Solution
	Discussion
	See Also

	9. Mark Your Tests with Tags So You Can Include or Exclude
 Them
	Problem
	Solution
	Discussion
	See Also

	10. Temporarily Disabling a Test
	Problem
	Solution
	Discussion
	See Also

	11. Using Mock Objects with ScalaTest
	Problem
	Solution
	See Also

	12. Java-Style Logging with SLF4J
	Problem
	Solution
	Discussion
	See Also

	13. Scala-Style Logging with Grizzled-SLF4J
	Problem
	Solution
	Discussion
	See Also

	14. Using JUnit with Scala
	Problem
	Solution
	Discussion
	See Also

	The Play Framework
	Introduction
	1. Creating a “Hello, World” Project
	Problem
	Solution
	Discussion
	See Also

	2. Adding a Route, Model, and Controller Method to a Play
 Application
	Problem
	Solution
	Discussion

	3. Using Multiple Template Wrappers
	Problem
	Solution

	4. Creating Reusable Code Blocks in Templates
	Problem
	Solution
	Discussion

	5. Calling Scala Functions from Templates
	Problem
	Solution
	Discussion
	See Also

	6. Creating a Widget and Including It in Pages
	Problem
	Solution
	Discussion
	See Also

	7. Using CoffeeScript and LESS
	Problem
	Solution
	See Also

	8. Creating a Simple Form
	Problem
	Solution
	Discussion

	9. Validating a Form
	Problem
	Solution
	Discussion

	10. Displaying and Validating Common Play Form Elements
	Problem
	Solution
	Discussion
	See Also

	11. Selecting from a Database with Anorm
	Problem
	Solution
	Discussion
	See Also

	12. Inserting Data into a Database with Anorm
	Problem
	Solution
	See Also

	13. Deleting Records in a Database Table with Anorm
	Problem
	Solution
	See Also

	14. Updating Records in a Database Table with Anorm
	Problem
	Solution
	See Also

	15. Testing Queries Outside of Play
	Problem
	Solution
	Discussion

	16. Deploying a Play Framework Project
	Problem
	Solution
	Discussion
	See Also

	17. Handling 404 and 500 Errors
	Problem
	Solution
	Discussion
	See Also

	Index

