
ibm.com/redbooks Redpaper

Front cover

A Deployment Guide for
IBM Spectrum Scale Object

Dean Hildebrand
Bill Owen

Simon Lorenz
Brian Nelson

Andreas Luengen
James Wormwell

Martha Burns
Larry Coyne

Learn why Spectrum Scale is an ideal
environment for OpenStack Object Storage

Plan an OpenStack Swift on Spectrum
Scale deployment

Follow quick-start
implementation steps

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

A Deployment Guide for IBM Spectrum Scale Object

March 2015

REDP-5113-02

© Copyright International Business Machines Corporation 2014, 2015. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Third Edition (March 2015)

This edition applies to Version 4, Release 1, of IBM General Parallel File System.

Note: Before using this information and the product it supports, read the information in “Notices” on page v.

Contents

Notices .v
Trademarks . vi

Preface . vii
Authors. vii
Now you can become a published author, too! .x
Comments welcome. .x
Stay connected to IBM Redbooks .x

Summary of changes . xi
September 2016, update . xi
March 2015, Third Edition . xi
December 2014, Second Edition . xi

Chapter 1. Spectrum Scale Object . 1
1.1 Introduction . 2
1.2 Assumptions . 3
1.3 Key concepts and terminology . 4
1.4 Introduction to Spectrum Scale Object . 7

1.4.1 Spectrum Scale features. 7
1.4.2 Use cases . 7
1.4.3 High-level architecture . 8
1.4.4 Benefits . 10
1.4.5 Detailed architecture . 10

Chapter 2. Planning for a Spectrum Scale Object deployment 13
2.1 Spectrum Scale architecture . 14

2.1.1 Networking . 14
2.1.2 Placement of Object Store components in Spectrum Scale 14
2.1.3 Authentication . 15
2.1.4 Data protection . 15
2.1.5 Performance . 15
2.1.6 High availability . 16
2.1.7 Spectrum Scale and Swift interaction . 17
2.1.8 Administration tools. 17

2.2 Tested configurations . 17

Chapter 3. Spectrum Scale Object configuration overview . 19
3.1 Swift replication . 20
3.2 Swift rings . 20
3.3 Swift services . 20

Chapter 4. Spectrum Scale Object installation. 23
4.1 Installation overview . 24
4.2 Installation prerequisites . 25
4.3 Spectrum Scale installation and configuration . 25
4.4 Object software installation and configuration. 27
4.5 Postinstallation . 33

4.5.1 Verifying the installation . 33
© Copyright IBM Corp. 2014, 2015. All rights reserved. iii

4.5.2 Tuning considerations. 33
4.6 Removing the installation . 33

Chapter 5. System administration considerations. 35
5.1 Managing Swift services . 36
5.2 Adding a GPFS Object Node . 36
5.3 Removing a GPFS Object Node . 37
5.4 Account and container data placement policies . 38
5.5 Process monitoring . 39
5.6 Security-Enhanced Linux considerations . 40
5.7 Port security considerations . 40
5.8 Configuring rsync to limit host access. 41
5.9 Virtual Network Computing port conflict . 41
5.10 Software maintenance . 41

Chapter 6. Swift feature overview . 43

Chapter 7. Backup and restore . 45
7.1 GPFS independent filesets . 46
7.2 Snapshots . 46
7.3 Backing up and restoring the object store. 46

7.3.1 Backup procedure. 47
7.3.2 Restore procedure . 49
7.3.3 Automating the backup and restore procedures . 52

Chapter 8. Summary . 55
8.1 Future investigation. 56
8.2 Conclusion . 56

Appendix A. Additional material . 57
Locating the web material . 57
Using the web material. 57

Downloading and extracting the web material . 57

Related publications . 59
IBM Redbooks . 59
Other publications . 59
Online resources and references . 59
Help from IBM . 62
iv A Deployment Guide for IBM Spectrum Scale Object

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2014, 2015. All rights reserved. v

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
GPFS™
IBM®
IBM Spectrum™

IBM Spectrum Protect™
IBM Spectrum Scale™
Redbooks®
Redpaper™

Redbooks (logo) ®
Storwize®
Tivoli®

The following terms are trademarks of other companies:

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
vi A Deployment Guide for IBM Spectrum Scale Object

http://www.ibm.com/legal/copytrade.shtml

Preface

Because of the explosion of unstructured data that is generated by individuals and
organizations, a new storage paradigm called “Object Storage” has been developed. Object
Storage stores data in a flat namespace that scales to trillions of objects. The design of object
storage also simplifies how users access data, supporting new types of applications and
allowing users to access data by various methods, including mobile devices and web
applications. Data distribution and management are also simplified, allowing greater
collaboration across the globe.

OpenStack Swift is an emerging open source object storage software platform that is widely
used for cloud storage. IBM® Spectrum Scale™ (based on IBM General Parallel File System
(GPFS™) technology, which also is known formerly as code name Elastic Storage) is a
high-performance and proven product that is used to store data for thousands of
mission-critical commercial installations worldwide. (Throughout this IBM Redpaper™
publication, Spectrum Scale is used to refer to GPFS V4.1.)

Spectrum Scale also automates common storage management tasks, such as tiering and
archiving at scale. Together, Spectrum Scale and OpenStack Swift provide an
enterprise-class object storage solution that efficiently stores, distributes, and retains critical
data.

This paper provides instructions about how to set up and configure Swift with Spectrum
Scale. It also provides an initial set of preferred practices to ensure optimal performance and
reliability.

The goal of this paper is to describe the benefits of using Spectrum Scale as the underlying
file system with OpenStack Swift, guide an administrator through the installation and
configuration of Spectrum Scale Object, and describe the general set of configurations and
scenarios that have been validated. It is intended for administrators who are familiar with
Spectrum Scale and OpenStack Swift components.

Authors

This paper was produced by a team of specialists from around the world working with the
International Technical Support Organization, Tucson Center.

Dean Hildebrand is a Master Inventor and the Manager of the Cloud Storage Software
Research group at the IBM Almaden Research Center and a recognized expert in the field of
distributed and parallel file systems. He has authored numerous scientific publications,
created over 24 patents, and chaired and sat on the program committee of numerous
conferences. Dr. Hildebrand pioneered pNFS, demonstrating the feasibility of providing
standard and scalable access to any parallel file system. He received a B.Sc. degree in
Computer Science from the University of British Columbia in 1998 and M.S. and PhD.
degrees in Computer Science from the University of Michigan in 2003 and 2007.
© Copyright IBM Corp. 2014, 2015. All rights reserved. vii

Bill Owen is a Senior Engineer with the IBM Spectrum™ Scale development team. He is
responsible for the integration of OpenStack with Spectrum Scale, focusing on the Swift
object, Cinder block, and Manila file storage components of OpenStack. He has worked in
various development roles within IBM for over 15 years. Before joining IBM, Bill developed
and deployed grid management systems for electric utilities. Bill holds B.Sc. and M.S.
degrees in Electrical Engineering from New Mexico State University.

Simon Lorenz is an IT Architect in IBM Research and Development in Mainz, Germany. He
joined IBM Germany in 1993 and worked on productivity and manufacturing quality
improvements within IBM Disk Drive Manufacturing Management software. During
international assignments, he helped to improve fully automated chip factories in the US and
Asia. Simon has held various positions within IBM Research and Development. Since 2009,
he has worked on Storage Systems Management software and has been responsible for
subcomponents, such as system health reporting, cluster configuration management, and
recovery. Simon joined the IBM General Parallel File System development team in 2014.

Brian Nelson is a Software Engineer with the IBM Spectrum Scale development team. He is
responsible for providing OpenStack Swift integration into Spectrum Scale and Elastic
Storage Server (ESS). He has worked within IBM for over 18 years on projects, such as IBM
AIX®, IBM Director, and PowerVC. Brian holds a B.Sc. in Computer Science from Trinity
University.

Andreas Luengen is a Master Certified IT specialist currently working in the Software
Defined Systems (SDS) development team in Mainz, Germany. He joined IBM in 1999 and
worked for over 10 years in Advanced Technical Support for mid-range Storage support
before joining the NAS development team that introduced SoFS, Scale Out Network Attached
Storage, IFS, and Elastic Storage. In his development role, he provided documentation for
service offerings and products such as SoFS and Scale Out Network Attached
Storage/V7000U before taking over component ownership responsibilities focusing on
backup/restore and space management (ILM/HSM) of SoNAS/V7000U. Andreas co-authored
Configuration and Tuning GPFS for Digital Media Environments, SG24-6700. He holds a
degree in Electrical Engineering from the University of Hannover, Germany.

James Wormwell is a Software Engineer with the IBM Spectrum Scale protocols
development team. He is responsible for automating the installation of Object and File
protocol software in a Spectrum Scale environment. He has worked within IBM for over 3
years. James previously held roles within the IBM Storwize® development, build, and test
teams. James holds a B.Sc degree in Computer Science from the University of Salford.

Martha Burns is an Information Development planner and writer for the IBM User
Technologies organization in Poughkeepsie, NY. She has been a technical writer,
programmer, and communications specialist for over 30 years. Martha has written customer
documentation for the IBM clustered-server and high-performance computing software
products since 1996, focusing on GPFS and Spectrum Scale since 2009. She holds a B.A.
degree in English Language and Literature from the College of William and Mary and an M.S.
degree in Technical Writing from Rensselaer Polytechnic Institute.

Larry Coyne is a Project Leader at the International Technical Support Organization (ITSO),
Tucson, Arizona, center. He has 33 years of IBM experience, with 23 years in IBM storage
software management. He holds degrees in Software Engineering from the University of
Texas at El Paso, and Project Management from George Washington University. His areas of
expertise include client relationship management, quality assurance, development
management, and support management for IBM Tivoli® Storage Software.
viii A Deployment Guide for IBM Spectrum Scale Object

Thanks to the following people for their contributions to this project:

Montserrat Ariday
Balderas Alba
Juergen Beicht
April Brown
Steve Buller
Ulrich Busch
Patrick Byrne
Doris Conti
Fiona Crowther
Steve Delillo
Mathias Dietz
John Dorfner
Steve Duersch
Tobias Fleming
Steven Frankl
Julian Cachua Fruchier
Sanjay Gandhi
Michael Garwood
Lyle Gayne
Deepak Ghuge
Imogen Gough
Zi Qiang (John) Gu
David Ibarra
Karsten Jancke
Radha Kandadai
Ross Keeping
Werner Kuehn
John Langlois
Christina Lara
Chen Lei
Kerry McLaughlin
Varun Mittal
John T. Olson
Sandeep Ramesh Patil
Jose Perez
Bonnie Pulver
Krystal Rothaupt
Gautam Shah
Joseph Taylor
Michael L. Taylor
IBM Systems

Renu Tewari
IBM Research - Parallel File Systems

Patrik Hysky
International Technical Support Organization, Poughkeepsie Center
 Preface ix

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our papers to be as helpful as possible. Send us your comments about this paper or
other IBM Redbooks® publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
x A Deployment Guide for IBM Spectrum Scale Object

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://twitter.com/ibmredbooks
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://www.linkedin.com/groups?home=&gid=2130806
http://www.redbooks.ibm.com/rss.html

Summary of changes

This section describes the technical changes that are made in this edition of the paper and in
previous editions. This edition might also include minor corrections and editorial changes that
are not identified.

Summary of Changes
for A Deployment Guide for IBM Spectrum Scale Object
as created or updated on September 13, 2016.

September 2016, update

Updated the Redpaper with the following note.

March 2015, Third Edition

This revision reflects the addition, deletion, or modification of new and changed information
that is described below.

Changed information

� Added the new IBM Spectrum Scale product name (based upon IBM General Parallel File
System (GPFS), which also is known formerly as code name Elastic Storage)

� Added the new IBM Spectrum Protect™ product name (based on IBM Tivoli Storage
Manager)

December 2014, Second Edition

This revision reflects the addition, deletion, or modification of new and changed information
that is described below.

New information
� Introduced a new automated installation procedure using the Chef configuration

management toolset

� Described in more detail the steps that are required to back up your object store
configuration and data to protect against disaster scenarios and how to recover from that
saved data

Note: The installation and maintenance procedures described in Chapter 4 and 5 of this
Redpaper are not compatible with the Spectrum Scale protocol installation toolkit, provided
in Spectrum Scale 4.1.1 and later versions.

The steps in this paper are valid, and should be only be executed on Spectrum Scale
nodes that are not designed as Cluster Export Service (CES) protocol nodes.
© Copyright IBM Corp. 2014, 2015. All rights reserved. xi

Changed information
� Added numerous clarifications and tips that we added based on our own and customer

experience using Swift in a GPFS environment

� Removed the installation appendixes and made installation information available for
download at the following website:

ftp://www.redbooks.ibm.com/redbooks/REDP5113

For more information about requirements for the download, see Appendix A, “Additional
material” on page 57.
xii A Deployment Guide for IBM Spectrum Scale Object

ftp://www.redbooks.ibm.com/redbooks/REDP5113

Chapter 1. Spectrum Scale Object

This chapter provides an introduction to Spectrum Scale Object, business problems that are
solved with Spectrum Scale, a high-level architecture, and the scope and intent of this paper.

1

© Copyright IBM Corp. 2014, 2015. All rights reserved. 1

1.1 Introduction

Data centers are currently struggling to efficiently and cost-effectively store and manage vast
amounts of data. The increasing number of application domains, such as analytics, online
transaction processing (OLTP), and high-performance computing (HPC), have created silos
of storage within data centers. With each new application, a new storage system can be
required, forcing system administrators to become experts in numerous storage management
tools.

In addition, the set of applications that includes mobile and web-based applications,
archiving, backup, and cloud storage has recently created yet another type of storage system
for the system administrator to manage: Object Storage. With Object Storage, data is
accessed by using a unique identifier over a simple RESTful HTTP interface, objects cannot
be updated after they are created (although they can be replaced, versioned, or removed),
and in many cases the objects are accessible in an eventually consistent manner. These
types of semantics are ideal for images, videos, text documents, virtual machine (VM)
images, and other similar files.

The OpenStack open source Object Storage project, which is known as OpenStack Swift,
uses the Swift API (and also provides Amazon Simple Storage Service [S3] API emulation) to
store data in a distributed storage system. For more information, see Amazon Simple Storage
Services (S3):

http://aws.amazon.com/documentation/s3/

OpenStack Swift is emerging as a dominant object storage solution due to its extreme
scalability, extensibility, and resilience. Despite its benefits, however, OpenStack Swift still
follows the model of deploying new storage systems for new application domains.

Spectrum Scale Object, the combination of Spectrum Scale and Swift, aims to change this
model by consolidating File and Object under a single shared storage infrastructure. The
global namespace eliminates the physical client-to-server mappings and makes this an ideal
platform to perform common storage management tasks, such as automated storage tiering
and user transparent data migration. Spectrum Scale Object simplifies data management
even further by creating a flat namespace and eliminating the hassle of organizing data in a
hierarchical namespace.

This new version of this paper introduces a new automated installation procedure that uses
the Chef configuration management toolset. This paper describes in more detail the steps
that are required to back up your object store configuration and data to protect against
disaster scenarios, and how to recover from that saved data. Finally, we have added
numerous clarifications and tips based on our own and customer experience using Swift in a
Spectrum Scale environment.

Note: For more information about this project and other OpenStack open source projects,
which allow an organization to deploy infrastructure as a service (IaaS) solutions, see this
website:

http://www.openstack.org

Note: The installation procedure and sample scripts that are provided with this paper are
valid for this paper only. Command names and functions do not reflect the command
names and functions that will be available in future product versions.
2 A Deployment Guide for IBM Spectrum Scale Object

http://aws.amazon.com/documentation/s3/
http://www.openstack.org

This paper describes the following topics:

� How to take advantage of the benefits of Spectrum Scale when building an object storage
solution

� How to install OpenStack Swift on Spectrum Scale, providing preferred practices for
configuring and tuning both Swift and Spectrum Scale

� The Swift and Spectrum Scale features that have been tested in our labs as part of
Spectrum Scale Object

1.2 Assumptions

The goal of this paper is to describe the benefits of using Spectrum Scale as the underlying
file system with OpenStack Swift, guide the administrator through the installation and
configuration of Spectrum Scale Object, and describe the general set of configurations and
scenarios that have been validated.

The following assumptions are made:

� The reader is already familiar with OpenStack Swift components. The paper covers
high-level concepts only to establish the required context for follow-on topics. For further
details, see the resources that are listed in “Related publications” on page 59 or the
respective product documentation.

� The reader is already familiar with Spectrum Scale because this paper is not intended to
serve as a comprehensive Spectrum Scale overview. For a comprehensive understanding
of Spectrum Scale, see “Related publications” on page 59.

� The paper focuses on the benefits of Spectrum Scale Object and does not attempt to
make any direct comparisons with using Swift with other underlying file systems, such as
XFS.

Note: When using Spectrum Scale Object in a production environment, it is important
to follow the instructions in this paper to maintain the integrity of the solution and the
data.

Questions and support: If you have questions or comments regarding the information in
this document, contact IBM at gpfs@us.ibm.com. For current Spectrum Scale (based on
General Parallel File System) product support information or to open a new service
request, contact IBM support at the following website:

http://www.ibm.com/support
Chapter 1. Spectrum Scale Object 3

mailto:gpfs@us.ibm.com
http://www.ibm.com/support

1.3 Key concepts and terminology

This section defines key concepts and terminology that are associated with Spectrum Scale
and OpenStack Swift as they relate to Spectrum Scale Object.

Spectrum Scale
The following terms relate to Spectrum Scale:

� Spectrum Scale software: The software that is used to mount and access GPFS file
systems. In this paper, it is assumed that this software is installed on every GPFS Object
Node and is used as the file system that underpins OpenStack Swift. For more
information, see “General Parallel File System” at this website:

http://www.ibm.com/support/knowledgecenter/SSFKCN/gpfs_welcome.html

� GPFS Object Node: The GPFS node where OpenStack object services are running. All
client requests to store and retrieve data are made to these nodes.

� Elastic Storage Server (ESS): The ESS combines the Spectrum Scale software with
storage enclosures, drives, and networking components to provide a high-capacity, highly
scalable storage solution. ESS includes the unique and innovative GPFS Native RAID
capability, which provides extreme data integrity and reduced latency with faster rebuild
times and enhanced data protection.

See Elastic Storage Server planning and service information at the following URLs:

http://www.ibm.com/support/knowledgecenter/POWER8/p8ehc/p8ehc_storage_landing.h
tm

http://www.ibm.com/common/ssi/cgi-bin/ssialias?subtype=SP&infotype=PM&appname=S
TGE_DC_ZQ_USEN&htmlfid=DCD12377USEN&attachment=DCD12377USEN.PDF#loaded

See GPFS Native RAID information at the following URLs:

http://www.ibm.com/support/knowledgecenter/SSYSP8_2.5.0/sts25_welcome.html

http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0/com.ibm.cluster.gpfs.v4
r1.gpfs200.doc/bl1adv_introduction.htm

� Network Shared Disk (NSD): A logical unit number (LUN) that is provided by a storage
subsystem (for example, ESS) for use in a GPFS file system.

� Storage pool: A collection of NSDs. GPFS storage pools in Spectrum Scale allow the
grouping of storage devices within a file system, based on performance, locality, or
reliability characteristics. Storage pools provide a method to partition file system storage to
offer several benefits, including improved price-performance, reduced contention on
premium resources, seamless archiving, and advanced failure containment.

For example, one pool can be an enterprise-class storage system that uses
high-performance flash devices, and another pool might consist of numerous disk
controllers that host a large set of economical Serial ATA (SATA) or Near-Line SAS disks.

There are two types of GPFS storage pools: internal and external. For internal storage
pools, Spectrum Scale manages the data storage. For external storage pools, however,
Spectrum Scale handles the policy processing but leaves data management to an external
application, such as Spectrum Protect (formerly IBM Tivoli Storage Manager).

Storage pools are declared as an attribute of the disk and file system.

Note: In GPFS 4.1 documentation, Elastic Storage Server (ESS) is referred to as
GPFS Storage Server (GSS).
4 A Deployment Guide for IBM Spectrum Scale Object

http://www.ibm.com/support/knowledgecenter/SSFKCN/gpfs_welcome.html
http://www.ibm.com/support/knowledgecenter/POWER8/p8ehc/p8ehc_storage_landing.htm
http://www.ibm.com/support/knowledgecenter/SSYSP8_2.5.0/sts25_welcome.html
http://www.ibm.com/common/ssi/cgi-bin/ssialias?subtype=SP&infotype=PM&appname=STGE_DC_ZQ_USEN&htmlfid=DCD12377USEN&attachment=DCD12377USEN.PDF#loaded
http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0/com.ibm.cluster.gpfs.v4r1.gpfs200.doc/bl1adv_introduction.htm

� Fileset: A subtree of a file system namespace. This document suggests placing the Swift
object store in an independent fileset to allow fileset-level administrative operations (for
example, snapshot or backup) to apply only to the files in the object store (rather than to
the entire file system). The fileset is identified as an attribute of each file and can be
specified in a policy to control the initial data placement, migration, and replication of the
file’s data.

� Replication: A feature of Spectrum Scale that enables multiple copies of data and
metadata for failure containment and disaster recovery. Spectrum Scale supports
replication of both metadata and data independently and provides fine-grained control of
the replication. Replication can incur costs in terms of disk capacity and performance and
therefore must be used carefully.

� GPFS quotas: The amount of disk space and the number of inodes that are assigned as
upper limits for a specified user, group of users, or fileset. With OpenStack Swift, GPFS
user quotas are not used; instead, the system relies on OpenStack Swift quotas to provide
a similar type of service. However, GPFS fileset quotas can still be defined (for example,
for inodes, to limit the resources that are consumed by the fileset).

� GPFS access control lists (ACLs): Fine-grained access control mechanisms. With
OpenStack Swift, GPFS ACLs are not used; instead, the system relies on OpenStack
Swift ACLs to set permissions.

OpenStack Swift
The following terms relate to OpenStack Swift:

� Account: The top-level element in the object storage system hierarchy. An account
contains a list of the containers in the account. In the OpenStack environment, the term
“account” is synonymous with the term “tenant” (as used by Keystone).

� Tenant: See Account.

� Container: The second-level element in the hierarchy (under accounts). A container
maintains a list of objects that belong to the container. The account and container provide
a namespace for objects, analogous to files in a directory path. Many features, such as
ACLs, versioning, and quotas, are controlled at the container level.

� Object: The third-level element in the hierarchy (under containers). An object stores actual
data content and metadata that describes the object. In Spectrum Scale, objects are
stored as files, and object metadata (shown in Example 1-1) is stored as file extended
attributes.

Example 1-1 Object metadata

Content-Length = 14540
name = /AUTH_39150cd50dfb47e7be85280735174691/bill/testobj
ETag = 2cd0ae668a585a14e07c2ea4f264d79b
X-Timestamp = 1402267969.60475
Content-Type = application/octet-stream

� Object metadata: Key-value pairs that are stored by Swift and by Swift clients on an
object through the POST command. These key-value pairs are stored as GPFS extended
attributes.

� Keystone: The OpenStack service that provides identity, token, catalog, and policy
services. In this document, Keystone is used as the Swift authentication service that
provides role-based management of Swift accounts and containers. Keystone can be
integrated with existing Lightweight Directory Access Protocol (LDAP) and Active
Directory (AD) systems, but we have not integrated this function into the automated
installer currently.
Chapter 1. Spectrum Scale Object 5

� Proxy service: The proxy service runs on the GPFS Object Nodes and accepts requests
from applications on accounts, containers, or objects, and directs the request to the
appropriate service within the cluster.

� Object service: The object service runs on the GPFS Object Nodes and accepts requests
from the local Swift Proxy service to store objects in Spectrum Scale.

� Virtual devices: In Swift, devices typically map to physical disks. In Spectrum Scale
Object, virtual devices map to a top-level directory in which the object store hierarchy is
created. There can be multiple virtual devices, and these are created and managed by
Swift services.

Changing the number of virtual devices must be done with care because this will require
rebalancing the Swift rings, resulting in data being copied between virtual devices.

� Partitions: Used to group and evenly distribute objects in the file system. The number of
partitions is specified during Swift configuration when the Swift rings are created and
determines the expected number of objects in each one.

The number of partitions must be chosen carefully because it cannot be easily changed
after it is specified.

� Pseudo-hierarchical folders and directories: Objects that are stored in a flat
namespace but whose names include one or more forward slash (/) characters to imply
levels in a hierarchy. Each forward slash (/) character creates another level in the
hierarchy. Pseudo-directories do not affect how objects are placed on disk, but they can be
useful when listing objects, for example, within a specific pseudo-directory.

� SQLite: A database in which account and container listings are stored. An account
database contains a list of its containers, and a container database contains a list of its
associated objects.

� Memcached: A distributed caching service that caches items in memory for fast retrieval.
Example items that are cached are account and container database information and
authentication tokens.

� Swift access control list (ACL): Controls access to an account or container. Swift
provides role-based authentication that is mixed with fine-grained ACLs. Swift ACLs apply
to accounts and containers, not to individual objects.

� Swift quotas: Allows specification of the amount of disk space or number of objects that
can be consumed by either an account (and then all of its containers) or to an individual
container. The interaction between Swift Quotas and GPFS quotas are described in more
detail in Chapter 6, “Swift feature overview” on page 43.

� Swift ring: Determines the partition in which accounts, containers, and objects will be
stored (one ring for each). For accounts and containers, each partition is mapped to a
specific GPFS Object Node. For objects, every partition is accessible by every GPFS
Object Node.

� Controller Node: The node on which the Keystone service is running. The Controller
Node can be one of the GPFS Object Nodes, or it can be a separate node.

� Eventual consistency: All Swift items, which include accounts, containers, and objects,
are ensured to eventually reach a consistent state, allowing applications to access the
most up-to-date versions.

Note: GPFS ACLs are not used with Swift.
6 A Deployment Guide for IBM Spectrum Scale Object

1.4 Introduction to Spectrum Scale Object

This section describes the product features of Spectrum Scale and the use cases, high-level
architecture, and benefits of Spectrum Scale Object.

1.4.1 Spectrum Scale features

Spectrum Scale enables virtualization, analytics, file, and object use cases to be unified into a
single scale-out data plane for the entire data center. As shown in Figure 1-1, Spectrum Scale
can provide a single namespace for all of this data, offering a single point of management.
Data can then be tiered in differentiated classes of storage and accessed around the globe,
ensuring that data is always available in the correct place at the correct time.

Figure 1-1 Spectrum Scale overview

1.4.2 Use cases

This section describes the types of use cases and the potential users who will benefit from
Spectrum Scale Object:

� Enterprise archiving
� Backup
� Hadoop analytics
� Content storage
� Content distribution
� Video production
� Worldwide collaboration
� An unstructured data landing zone for the output of sensors, devices, and applications

©

NFS

Map Reduce
Connector

Flash

Disk
Tape

POSIX

Spectrum Scale

Share Nothing
Cluster

Client workstations Users and
applicationsCompute

Farm

Site B

Site C

OpenStack
Swift Object

Storage

OpenStack
Cinder + Glance

Virtualization

Single name space

Site A

Hadoop
Chapter 1. Spectrum Scale Object 7

Although Spectrum Scale enables a single unified namespace for data storage, it allows the
different types of data to be physically placed onto different storage devices (GPFS storage
pools), which can range from solid-state drives (SSDs) and Flash devices to external disk
subsystems, internal disks within servers, and even tape.

Spectrum Scale Object is targeted toward two types of potential users:

� Sites that already use Spectrum Scale and are seeking to support Swift in the same data
plane as their existing data.

� Sites that are simply seeking an enterprise-ready, cost-efficient, and high-performing
object solution. For this use case, Spectrum Scale initially provides data management for
the object store only, but gives users the option to extend to further types of applications
as their requirements grow.

Spectrum Scale Object is initially targeting workloads that demand the following capabilities:

� Enterprise-ready features, such as snapshots and backups to prevent data loss
� High-throughput access to the objects
� High-capacity, dense storage
� Levels of data scaling that can be used in the future

1.4.3 High-level architecture

Spectrum Scale Object combines the benefits of Spectrum Scale with the most widely used
open source object store today, OpenStack Swift. Spectrum Scale provides enterprise
information lifecycle management (ILM) features. OpenStack Swift provides a robust object
layer with an active community that is continuously adding innovative new features. To ensure
compatibility with the Swift packages over time, no code changes are required to either
Spectrum Scale or Swift to build the solution.

An example of Spectrum Scale Object architecture is shown in Figure 1-2 on page 9. In this
example, applications perform RESTful operations (HTTP) to the object store through (at
least two, for high availability) Spectrum Scale Object Nodes (also referred to as GPFS Object
Nodes in this document). All objects are stored in an Elastic Storage Server (ESS).

See Elastic Storage Server planning and service information at the following URLs:

http://www.ibm.com/support/knowledgecenter/POWER8/p8ehc/p8ehc_storage_landing.htm

http://www.ibm.com/common/ssi/cgi-bin/ssialias?subtype=SP&infotype=PM&appname=STGE
_DC_ZQ_USEN&htmlfid=DCD12377USEN&attachment=DCD12377USEN.PDF#loaded

See GPFS Native RAID information at the following URLs:

http://www.ibm.com/support/knowledgecenter/SSYSP8_2.5.0/sts25_welcome.html

http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0/com.ibm.cluster.gpfs.v4r1.
gpfs200.doc/bl1adv_introduction.htm

Note: Spectrum Scale does not enforce a single namespace, and one GPFS cluster can
support up to 256 file systems or namespaces, each with different characteristics.

Note: In GPFS 4.1 documentation, Elastic Storage Server is referred to as GPFS Storage
Server (GSS).
8 A Deployment Guide for IBM Spectrum Scale Object

http://www.ibm.com/common/ssi/cgi-bin/ssialias?subtype=SP&infotype=PM&appname=STGE_DC_ZQ_USEN&htmlfid=DCD12377USEN&attachment=DCD12377USEN.PDF#loaded
http://www.ibm.com/support/knowledgecenter/POWER8/p8ehc/p8ehc_storage_landing.htm
http://www.ibm.com/support/knowledgecenter/SSYSP8_2.5.0/sts25_welcome.html
http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0/com.ibm.cluster.gpfs.v4r1.gpfs200.doc/bl1adv_introduction.htm
http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0/com.ibm.cluster.gpfs.v4r1.gpfs200.doc/bl1adv_introduction.htm

In this example configuration, the ESS Model GL6 solution has redundant servers and uses
GPFS Native RAID (8+2P) across 696 4 TB drives. This configuration offers 2 PB of
accessible storage capacity with 174 disks per server and 80% storage capacity efficiency.

Applications can access objects by using the full 40 Gbps of the available network bandwidth
(in fact with storage network bandwidth to spare).

Figure 1-2 An example Spectrum Scale Object architecture that uses the Elastic Storage Server

Consider the following key points in the example architecture:

� Data protection is handled by the ESS, with Swift writing a single instance of each object
in the file system.

� Additional GPFS Object Nodes provide both additional object access bandwidth and an
additional level of fault tolerance in case of GPFS Object Node failure.

� Each GPFS Object Node can independently access all objects. The Swift Proxy service
always accesses the Swift object service that is running on the same node, which means
that objects are not transferred between GPFS Object Nodes.

� The only logical networks that are required are an application network that applications
use to access the object store (typically IP-based) and a storage network (IP-based or
InfiniBand) that Spectrum Scale uses to store the data.

Note: This solution is just an example configuration, and both smaller and larger
configurations, different networking configurations and network types, and the use of
different storage controllers are possible depending on requirements.

2x10GigE 2x10GigE

..

Client
Applications

2x10GigE
each

348 drives
2 SSD

..

Spectrum Scale
Object

348 drives
2 SSD

ESS ESS ESS ESS

A

Spectrum Scale
Object
Chapter 1. Spectrum Scale Object 9

1.4.4 Benefits

As described in the example architecture in Figure 1-2 on page 9, Spectrum Scale Object can
provide an efficient storage solution for both cost and space, which is built upon commodity
parts that offers high throughput. The density and performance vary with each storage
solution.

The following summary lists the general benefits of Spectrum Scale Object:

� Use of Spectrum Scale data protection: Delegating the responsibility of protecting data
to Spectrum Scale (and not by using Swift three-way replication) increases both the
efficiency and performance of the system in the following ways:

– With GPFS Native RAID, storage efficiency rises from 33% to up to 80%.

– Disk failure recovery does not cause data to flow over the storage network. Recovery is
handled transparently and with minimal impact to applications. For more information,
see “GPFS-based implementation of a hyper-converged system for software defined
infrastructure” by Azagury, et al, in IBM Journal of Research and Development 58 (2),
1-12, 2014.

– Applications now realize the full bandwidth of the storage network because Spectrum
Scale writes only a single copy of each object to the storage servers.

– Increased maximum object size, up to 5 TB: With Spectrum Scale data striping, large
objects do not cause capacity imbalances or server hotspots, and they do not
inefficiently use available network bandwidth.

– No separate replication network is required to replicate data within a single cluster.

– Capacity growth is seamless because storage capacity can be increased without
requiring Swift to rebalance the objects.

– GPFS Object Node failure does not require any recovery or movement of data between
nodes or disks.

� Integration of file and object in a single system: As described in Spectrum Scale
features, applications can store a variety of application data in a single GPFS file system.
(Currently, we do not support file and object in the same data set.)

� Energy savings: High per-server storage density and efficient use of network resources
reduce energy costs.

� Enterprise storage management features: Spectrum Scale Object benefits from GPFS
features, such as global namespace, encryption, backup, disaster recovery, ILM
(auto-tiering), tape integration, and remote caching.

1.4.5 Detailed architecture

A more detailed view of the architecture is shown in Figure 1-3 on page 11. The GPFS Object
Nodes run all Swift services and the GPFS client. Swift clients (users or applications) first
obtain a token from the authorization service (Keystone, in our case). The token is included in
all requests to Swift, and the Swift proxy service verifies the token by comparing it with
cached tokens or by contacting the authorization service. See “Authentication” at this website:

http://docs.openstack.org/api/openstack-object-storage/1.0/content/authentication-
examples-curl.html
10 A Deployment Guide for IBM Spectrum Scale Object

http://docs.openstack.org/api/openstack-object-storage/1.0/content/authentication-examples-curl.html
http://docs.openstack.org/api/openstack-object-storage/1.0/content/authentication-examples-curl.html

Figure 1-3 Spectrum Scale Object Store architecture

As illustrated in Figure 1-3, the GPFS Object Nodes are both active and provide a front end
for the entire object store. The lines represent the I/O flow through the OpenStack Swift
components and the GPFS client. The Load Balancer, which distributes HTTP requests
across the GPFS Object Nodes, can be based on software or hardware.

After the applications are authenticated, they perform all object store operations (for example,
storing and retrieving objects and metadata, or listing account and container information)
through any of the proxy service daemons (possibly by using an HTTP Load Balancer as
shown in Figure 1-3). For object requests, the proxy service then contacts its local object
service, which in turn performs file system-related operations for the GPFS client. Account
and container information requests are currently handled a little differently; for more
information, see 2.1.6, “High availability” on page 16.

Note: Although this architecture likely works with GPFS File Placement Optimizer (FPO),
this configuration has not been tested. See GPFS 4.1.0.4: Advanced Administration Guide,
SC23-7032, at the following website:

http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0.4/com.ibm.cluster.gpfs.
v4r104.gpfs200.doc/bl1adv_fposettings.htm

This document focuses on the use of Spectrum Scale shared storage architectures, such
as the Elastic Storage Server (ESS) or the combination of GPFS Network Shared Disk
(NSD) servers with a storage controller.

Proxy
Service

HTTP Swift
Requests

GPFS Object
Nodes

Load Balancer

Storage
Network

..Object
Service

Spectrum
Scale

Geo-Distributed Spectrum Scale Object Store

SSD Fast
Disk

Slow
Disk

Tape

Keystone
Authentication

Service

Swift Services

Proxy
Service
Object
Service

Spectrum
Scale

Additional
Services in

Cluster

Memcached
Chapter 1. Spectrum Scale Object 11

http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0.4/com.ibm.cluster.gpfs.v4r104.gpfs200.doc/bl1adv_fposettings.htm

12 A Deployment Guide for IBM Spectrum Scale Object

Chapter 2. Planning for a Spectrum Scale
Object deployment

This chapter describes the key issues that need to be addressed when deploying Spectrum
Scale Object. Where Chapter 1, “Spectrum Scale Object” on page 1 described use cases and
an example configuration, this chapter digs deeper, with the goal of helping administrators
understand the best configuration for their environment. This chapter also lists the tested
software versions to consider when deploying Spectrum Scale Object.

2

Questions and support: If you have questions or comments regarding the information in
this paper, contact IBM at gpfs@us.ibm.com. For current Spectrum Scale (based on
General Parallel File System) product support information or to open a new service
request, contact IBM support at the following website:

http:///www.ibm.com/support
© Copyright IBM Corp. 2014, 2015. All rights reserved. 13

mailto:gpfs@us.ibm.com
http:///www.ibm.com/support

2.1 Spectrum Scale architecture

The configuration of Spectrum Scale is mostly independent of its use in Spectrum Scale
Object. For existing deployments of Spectrum Scale, the Swift software can be layered on top,
with its data stored in a new GPFS independent fileset. For new deployments, users need to
follow the general guidelines that are described in GPFS 4.1.0.4: Concepts, Planning, and
Installation, GA76-0441, at this website:

http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0.4/com.ibm.cluster.gpfs.v4r
104.gpfs300.doc/bl1ins_top.htm

In either case though, users need to follow the configuration and tuning suggestions in this
guide to help ensure the best experience.

The physical storage architecture is also largely independent, but it will affect the level of
efficiency, fault tolerance, and performance. Because the storage also constitutes the bulk of
storage costs, the choice of storage hardware also determines the cost/performance of the
system. The current storage architecture focuses on shared storage deployments, which can
be configured to cover a wide range of workload requirements (see Figure 1-2 on page 9).

2.1.1 Networking

Spectrum Scale Object simplifies the network configuration of typical Swift deployments, but
many of the same considerations must be made.

The client network that applications use to connect to GPFS Object Nodes is typically a 1 or
10 GigE network (with one or two network interface controllers (NICs)) installed on each
server. Because requests are balanced across the GPFS Object Nodes, typically every
server has the same network configuration. The network bandwidth of the client network can
scale with additional GPFS Object Nodes and the use of a network load balancer to balance
requests across the servers. Of course, scaling this network beyond the maximum bandwidth
of the storage subsystem might not yield substantial benefits unless a significant amount of
data is cached on the GPFS Object Nodes. This is the only network that is visible to
OpenStack, and it is therefore the only network that can be managed by OpenStack network
management tools.

The storage network connects the GPFS Object Nodes to the storage subsystem. This
network is typically 10 GigE or InfiniBand and is not visible to, and therefore not managed by,
the OpenStack environment. The storage network architecture layout needs to be carefully
planned based upon the available physical storage bandwidth and must follow the guidelines
of the chosen storage subsystem.

2.1.2 Placement of Object Store components in Spectrum Scale

Because Spectrum Scale can store data for many different applications, it is wise to place the
object store data in a separate Spectrum Scale management entity that is called an
“independent fileset.” By doing so, it allows Spectrum Scale information lifecycle management
(ILM) (including snapshots and backup) to uniquely identify and manage the object store
data.

Note: No additional “Swift Replication Network” is required because all object data
protection management is handled by Spectrum Scale.
14 A Deployment Guide for IBM Spectrum Scale Object

http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0.4/com.ibm.cluster.gpfs.v4r104.gpfs300.doc/bl1ins_top.htm

Objects
The location of the objects must be placed in the GPFS storage pool that stores most of the
data. Most Spectrum Scale deployments have a single storage pool for data, but the fileset
that contains the object data can be mapped to a separate storage pool to provide
performance isolation.

Account and container
Currently, we suggest storing the account and container information in the same fileset as the
object data, which will ease the management of the data by having all the data in a single
data management entity.

Snapshots and backup/restore
Snapshots and backup are critical tools to protect against software and user errors, and
catastrophic hardware failures, and they need to be used for any and all critical data sets. By
having all account, container, and object information in a single independent fileset, Spectrum
Scale can then snapshot the entire object store without affecting any other workloads that
might be running against data in other filesets or file systems. After a snapshot is created, it
can be backed up to an external storage pool, such as tape, and subsequently restored, if
required.

2.1.3 Authentication

The authentication mechanism that is confirmed to work with Spectrum Scale Object is the
official OpenStack authentication mechanism that is known as Keystone. See “The Auth
System” at this website:

http://docs.openstack.org/developer/swift/overview_auth.html#keystone-auth

2.1.4 Data protection

Spectrum Scale Object relies on the storage subsystem for data protection and realizes the
same level of protection against physical storage failures (for example, RAID 5 or RAID 6).
Spectrum Scale can provide an additional level of protection by replicating data within the
storage subsystem, but this protection is not required when the storage subsystem is
providing data protection itself. Spectrum Scale can also synchronously replicate I/O to a
separate storage cluster, but handling disaster recovery is not described at this time. For
more information, see “Configuring GPFS for Reliability” at this website:

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/General%20P
arallel%20File%20System%20(GPFS)/page/Configuring%20GPFS%20for%20Reliability

2.1.5 Performance

The system design must be crafted to ensure that it meets the requirements of one or more of
the following possible requirements:

� Individual object throughput: Each object is accessed through a single GPFS Object
Node only. Therefore, the robustness (maximum network throughput, number of CPUs,
and so on) of each node will generally determine the performance of reading and writing
objects (assuming that the storage subsystem is capable of at least saturating a single
node). In addition, for smaller objects, it is possible that an object is stored on a single
storage device, in which the latency of the storage device might be the limiting
performance factor.
Chapter 2. Planning for a Spectrum Scale Object deployment 15

http://docs.openstack.org/developer/swift/overview_auth.html#keystone-auth
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/General%20Parallel%20File%20System%20(GPFS)/page/Configuring%20GPFS%20for%20Reliability

� Aggregate object throughput: The overall performance is determined less by the
capability of a single node or individual storage device than by other factors, such as the
number of GPFS Object Nodes, the aggregate throughput of the storage subsystem, the
client network bandwidth, and the capacity of the SQLite database.

� Container/account access performance: Swift uses memcached to improve the
performance of retrieving account and container information by caching the data across
the memory of the GPFS Object Nodes. In addition, the SQLite database performs small
I/O accesses to Spectrum Scale to retrieve the information. Increasing the amount of
memory on the servers helps improve account/container access performance.

In addition, several other factors affect performance:

� Tuning of Spectrum Scale is important. Although more information about Spectrum Scale
tuning is provided in “Spectrum Scale installation and configuration” on page 25, a general
description of tuning is available in “Tuning Parameters” at this website:

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/General%
20Parallel%20File%20System%20(GPFS)/page/Tuning%20Parameters

� If performance is an issue, it is important to understand which other workloads are running
against the same disk subsystem that might be reducing performance.

2.1.6 High availability

To ensure the availability of Spectrum Scale Object, it is important to ensure a correct
configuration that accounts for the level of fault tolerance that you want.

For objects, the GPFS Object Nodes are independent, with each additional server increasing
performance and availability. Unfortunately, the same is not currently true for account and
container information. Because of issues that are related to inter-node locking, the
account/container information must continue to be replicated within Spectrum Scale. This
situation has little negative effect on performance or disk space usage (typically, this
information represents less than 1% of the total disk usage), but it does affect availability.

For a proof of concept deployment involving only a single node, high availability is not an
issue. The only requirement is that the number of Swift virtual devices is equal to or greater
than the replication factor chosen for the account/container rings.

For a production deployment, the number of GPFS Object Nodes must be two or more to
ensure an access route to the information if a node fails. The Swift account/container
replication must be set to 2 if there are two GPFS Object Nodes, or to 3 if there are a larger
number of nodes available. The number of virtual devices must then be at least as large as
the replication factor (we suggest 10 virtual devices per GPFS Object Node). When building
the account and container rings, the virtual devices are bound to unique GPFS Object Nodes.

Note: Because account/container replicas are in Spectrum Scale, it is not an issue of
protecting account/container data from failure. What is important is that the account and
container rings specify a path to access data following the loss of any node.
16 A Deployment Guide for IBM Spectrum Scale Object

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/General%20Parallel%20File%20System%20(GPFS)/page/Tuning%20Parameters

This paper does not describe how to configure an OpenStack environment for high
availability. There are some Swift services that run on a single node, and in a production
environment, these services need to be monitored and automatically restarted. For more
information about the high availability of OpenStack Swift, see Chapter 1. Introduction to
OpenStack High Availability on the OpenStack website:

http://docs.openstack.org/high-availability-guide/content/ch-intro.html

The availability of the GPFS cluster also needs to be considered in the system design. For
more information, see these resources:

� GPFS 4.1.0.4: Administration and Programming Reference, SA23-1452:

http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0.4/com.ibm.cluster.gpfs.
v4r104.gpfs100.doc/bl1adm_top.htm

� GPFS 4.1.0.4: Concepts, Planning, and Installation, GA76-0441:

http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0.4/com.ibm.cluster.gpfs.
v4r104.gpfs300.doc/bl1ins_top.htm

� “Configuring GPFS for Reliability” at this website:

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/General%
20Parallel%20File%20System%20(GPFS)/page/Configuring%20GPFS%20for%20Reliability

2.1.7 Spectrum Scale and Swift interaction

Swift accesses data in Spectrum Scale by using the POSIX interface, but it places limits on
the amount of time that it waits to store or retrieve information. Depending on the load of the
system, these timeouts might need to be increased in the Swift configuration files.

2.1.8 Administration tools

It is highly advised to manage Swift by using the Swift command-line interface rather than the
OpenStack Horizon GUI management tool, which requires the installation of the OpenStack
Nova and Glance components. See “Chapter 9. Object Storage command-line client” on the
OpenStack website:

http://docs.openstack.org/cli-reference/content/swiftclient_commands.html

2.2 Tested configurations

The following list shows configurations and software that have been tested and shown to
work:

� GPFS Standard Edition Version 4.1.0.5

� RHEL7 on x86 and ppc platforms

� Security-Enhanced Linux (SELinux) disabled

� OpenStack Juno with Swift Version 2.2

� Keystone authentication

� Maximum object size: 5 TB

� Shared storage configurations only, including ESS, NSD servers, or traditional block
controllers

� Single GPFS cluster (no data distribution to remote clusters or sites)
Chapter 2. Planning for a Spectrum Scale Object deployment 17

http://docs.openstack.org/high-availability-guide/content/ch-intro.html
http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0.4/com.ibm.cluster.gpfs.v4r104.gpfs100.doc/bl1adm_top.htm
http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0.4/com.ibm.cluster.gpfs.v4r104.gpfs300.doc/bl1ins_top.htm
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/General%20Parallel%20File%20System%20(GPFS)/page/Configuring%20GPFS%20for%20Reliability
http://docs.openstack.org/cli-reference/content/swiftclient_commands.html

18 A Deployment Guide for IBM Spectrum Scale Object

Chapter 3. Spectrum Scale Object
configuration overview

This section summarizes the configuration settings to optimize Swift while taking advantage
of Spectrum Scale features wherever appropriate.

The setup requires no changes to Swift software. Optimization is provided through
configuration settings that are made when creating Swift rings and also in Swift configuration
files.

3

© Copyright IBM Corp. 2014, 2015. All rights reserved. 19

3.1 Swift replication

Spectrum Scale gives every node in the Swift cluster access to every object. If any single
node fails, object data is still available from all of the remaining nodes. For objects, there is no
need to use Swift replication to make data available from other nodes.

To achieve this, the Swift object ring is built with a replication factor of 1 and there is one copy
of each object that is maintained by Swift. (See 2.1.6, “High availability” on page 16.) There is
no need to copy objects between servers as part of replication or rebalance operations.
Spectrum Scale provides data protection through General Parallel File System (GPFS) Native
RAID, storage controller RAID, or GPFS replication.

In this paper, we use Swift replication for account and container data because of the way that
Swift locks container and account information while it is updated. The Swift locking module is
not supported by Spectrum Scale.

3.2 Swift rings

Every GPFS Object Node can access the shared file system, so all of the rings are
constructed using virtual devices rather than physical devices. The virtual devices are
subdirectories in the GPFS fileset that is created for Swift data. When constructing the object
ring, virtual devices are added to the “localhost” node. This has the effect of giving every
proxy service local access to every virtual device.

The account and container rings are created with virtual devices evenly distributed to all of
the GPFS Object Nodes. This is done by assigning virtual devices for these rings to the
external IP addresses of the nodes, rather than using the localhost IP address.

3.3 Swift services

Every GPFS Object Node can access every virtual device in the shared file system, and
some Swift object services can be optimized to take advantage of this by running from a
single GPFS Object Node:

� Even though objects are not replicated by Swift, the swift-object-replicator runs to
periodically clean up tombstone files from deleted objects. It is run on a single GPFS
Object Node and manages cleanup for all of the virtual devices.

� The swift-object-updater is responsible for updating container listings with objects that
were not successfully added to the container when they were initially created, updated, or
deleted. Like the object replicator, it is run on a single GPFS Object Node.

Note: Do not use a single virtual device to contain all object data due to access contention
between nodes. Currently, we advise scaling the number of virtual devices. One approach
is to create a reasonable number of virtual devices (for example, 10) for each GPFS Object
Node that currently exists, or is expected to exist, in the configuration.
20 A Deployment Guide for IBM Spectrum Scale Object

Table 3-1 lists each of the Swift services and the set of GPFS Object Nodes on which they
need to be run.

Table 3-1 Swift services that are mapped to GPFS Object Nodes

Note: The swift-object-auditor is responsible for comparing the checksum in the object
file’s extended attributes with the checksum of the object data on disk. If a discrepancy
is discovered, the object file is moved to Swift’s quarantine directory, with the
expectation that the object-replicator will eventually replace the quarantined object with
a replica object instance.

With Spectrum Scale Object, it is better to use storage controller capabilities, such as
GPFS Native RAID checksums and disk scrubbing/auditing capabilities. For this
reason, the swift-object-auditor service is not run on any node.

Service name Runs on GPFS Object Nodes

openstack-swift-account All

openstack-swift-account-auditor All

openstack-swift-account-reaper All

openstack-swift-account-replicator All

openstack-swift-container All

openstack-swift-container-auditor All

openstack-swift-container-updater All

openstack-swift-container-replicator All

openstack-swift-object All

openstack-swift-object-auditor None

openstack-swift-object-expirer All (started only if object expiration is enabled)

openstack-swift-object-replicator Single

openstack-swift-object-updater Single

openstack-swift-proxy All
Chapter 3. Spectrum Scale Object configuration overview 21

22 A Deployment Guide for IBM Spectrum Scale Object

Chapter 4. Spectrum Scale Object
installation

This chapter provides detailed instructions for the Spectrum Scale Object installation process
by using the automated installation tool that is provided in the additional material (see
Appendix A, “Additional material” on page 57) that is associated with this paper.

4

Note: The installation and maintenance procedures described in Chapter 4 and 5 of this
Redpaper are not compatible with the Spectrum Scale protocol installation toolkit, provided
in Spectrum Scale 4.1.1 and later versions.

The steps in this paper are valid, and should be only be executed on Spectrum Scale
nodes that are not designed as Cluster Export Service (CES) protocol nodes.
© Copyright IBM Corp. 2014, 2015. All rights reserved. 23

4.1 Installation overview

This paper includes automated installation tools for installing and configuring OpenStack
Swift in an existing Spectrum Scale environment. It generally follows the OpenStack Juno
installation procedure that is described at the following website:

http://docs.openstack.org/juno/install-guide/install/yum/content/

In this paper, we modify the configuration to optimize Swift to run in a Spectrum Scale
environment. Those changes are described in more detail in this paper.

You can use the installation tool to accomplish the following tasks:

� Specify an existing GPFS file system

� Create an independent fileset that is linked to that file system

� Install and configure the Juno version of OpenStack Swift software on a set of GPFS
Object Nodes

� Install and configure the Juno version of OpenStack Keystone software on a selected
GPFS Object Node, or link to an existing Keystone server

The code for the installation tool can be downloaded from the IBM Redbooks website. To
access this code, go to http://www.redbooks.ibm.com/, follow the “Additional Materials” link,
and find REDP5113 directory (ftp://www.redbooks.ibm.com/redbooks/REDP5113/). All of the
materials should be downloaded and reviewed.

Installation flow
The steps in the installation process are listed here to provide an overview. The details of
each step are described in detail in 4.4, “Object software installation and configuration” on
page 27:

1. Ensure that the prerequisites that are defined in 4.2, “Installation prerequisites” on
page 25 are satisfied.

2. Download the installation and sample code from
ftp://www.redbooks.ibm.com/redbooks/REDP5113/ and place it in a node that will be used
for the installation. The node can be part of your GPFS cluster or a separate system.

3. Extract the contents of the compressed file on to the selected installation system.

4. Run the installer and complete the following steps from the command line or from the
installer menu:

a. Specify the GPFS Object Nodes that will be configured.
b. Specify the passwords.
c. Specify the GPFS configuration.
d. Run the installation.

5. Perform postinstallation checking steps.

Note: The installer can also be used to add or remove Object Nodes. This process is
described in 5.2, “Adding a GPFS Object Node” on page 36 and 5.3, “Removing a GPFS
Object Node” on page 37.
24 A Deployment Guide for IBM Spectrum Scale Object

http://docs.openstack.org/juno/install-guide/install/yum/content/
http://www.redbooks.ibm.com/
ftp://www.redbooks.ibm.com/redbooks/REDP5113/
ftp://www.redbooks.ibm.com/redbooks/REDP5113/

4.2 Installation prerequisites

This section describes the installation prerequisites that must be met to use the installation
tool.

SSH and network setup
The installer node and all of the GPFS Object Nodes require external internet access during
the installation process. They also require SSH keys to be set up so that the installer can run
remote commands without password authentication.

The installer uses port 8889 for communicating with the Chef server. This port must be
reachable from all GPFS Object Nodes. The installer does not change any SELinux settings;
the user must make those settings, if required. For more information about these settings, see
5.6, “Security-Enhanced Linux considerations” on page 40.

Repository setup
The following software repositories must be enabled through the Red Hat Satellite Service by
the user:

� RHEL Server Extras
� Red Hat OpenStack 5 for Server 7.0

If it is not possible to enable these repositories, you can manually install the following two
packages on each GPFS Object Node:

� python-greenlet v0.3.2 or higher
� python-webob v1.2.3.8 or higher

NTP setup
Network Time Protocol (NTP) must be configured on all nodes in your system to ensure that
all of the nodes’ clocks are synchronized. For more information about installing NTP, see the
“Network Time Protocol (NTP)” topic in OpenStack Installation Guide for Red Hat Enterprise
Linux 7, CentOS 7, and Fedora 20, found at this website:

http://docs.openstack.org/juno/install-guide/install/yum/content/ch_basic_environm
ent.html#basics_ntp

4.3 Spectrum Scale installation and configuration

General Parallel File System (GPFS) must be installed on every GPFS Object Node in your
system. For more information, see GPFS 4.1.0.4: Concepts, Planning, and Installation,
GA76-0441, found at the following website:

http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0.4/com.ibm.cluster.gpfs.v4r
104.gpfs300.doc/bl1ins_top.htm

Note: The Spectrum Scale software is not required on the controller node that hosts the
Keystone identity service if it is deployed on a separate node from the GPFS Object
Nodes.
Chapter 4. Spectrum Scale Object installation 25

http://docs.openstack.org/juno/install-guide/install/yum/content/ch_basic_environment.html#basics_ntp
http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0.4/com.ibm.cluster.gpfs.v4r104.gpfs300.doc/bl1ins_top.htm

A GPFS cluster and file system are required. If this infrastructure does not exist, you must
install the Spectrum Scale software and create a GPFS cluster. Next, create a GPFS file
system and mount the GPFS file system on all GPFS Object Nodes. The installer creates an
independent fileset in the GPFS file system that you name. This independent fileset is used
only for Swift object storage.

GPFS tuning for Swift data
This section describes general GPFS tuning and also includes commands that are related to
tuning. A comprehensive description of GPFS tuning can be found at this website:

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/General%20P
arallel%20File%20System%20(GPFS)/page/Tuning%20Parameters

Setting the number of inodes
The GPFS default maximum number of inodes is acceptable for most configurations, but for
large systems that expect hundreds of millions of objects or more, the maximum number of
inodes to set at fileset creation time might need to be increased. The maximum number of
inodes must be larger than the sum of the maximum number of expected objects and the
inodes that are required by the Swift directory structure.

The maximum number of inodes must be set to at least twice the maximum number of
expected objects. So, for example, if the expected number of objects is 100 million, the
maximum number of inodes must be set to 200 million.

The installer sets the maximum number of inodes to 8 million by default, and all of them are
preallocated.

To modify the maximum inode limit for a fileset, run the following command:

mmchfileset FileSystem Fileset --inode-limit MaxNumInodes[:NumInodesToPreallocate]

GPFS file system cache
The GPFS pagepool caches file system information in memory for fast access (similar to the
Linux Page Cache). Use mmchconfig to set this GPFS pagepool to be at least 30% - 50% of
memory on each GPFS Object Node.

maxFilesToCache
This parameter limits the total number of different files that can be cached at one time. This
needs to be set by using mmchconfig to be large enough to handle the number of concurrently
open files (objects), plus allow caching of recently used files.

maxStatCache
This parameter sets aside additional pageable memory to cache attributes of files that are not
currently in the regular file cache. Increasing this value can improve the performance of
background Swift services that scan directories.

Note: Specifying a relatively large number of pre-allocated inodes will also help improve
ingest performance, and it needs to be at least as large as the number of inodes that are
created by an application or benchmark.

Note: If you change the maxFilesToCache value but not the maxStatCache value, the
maxStatCache value will default to 4 x the maxFilesToCache value.
26 A Deployment Guide for IBM Spectrum Scale Object

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/General%20Parallel%20File%20System%20(GPFS)/page/Tuning%20Parameters

seqDiscardThreshold
The default for this value is 1 MB, which means that if you have a file that is sequentially read
and is greater than 1 MB, Spectrum Scale does not keep the data in cache after consumption.
Because everything in Swift is read sequentially, unless this value is increased, Spectrum
Scale does not cache anything, so this value must be increased to the largest expected object
size that must be cached in memory.

tokenMemLimit
This parameter sets the size of the memory that is available for manager nodes to use for
caching tokens; it controls the allocation of memory that is separate from the pagepool. With
many objects, or if high periods of activity are expected, increase the amount of memory to
cache tokens to 2 GB or larger.

worker1Threads
This parameter represents the total number of concurrent application requests that can be
processed at one time (including Swift operations). To support periods of high activity,
increase this value to 1024. The work1threads parameter can be reduced without having to
restart the GPFS daemon. Increasing the value of worker1threads requires a restart of the
GPFS daemon.

4.4 Object software installation and configuration

After you have ensured that all of the prerequisites that are described in 4.2, “Installation
prerequisites” on page 25 and 4.3, “Spectrum Scale installation and configuration” on
page 25 are met, you can begin the installation. Follow the instructions in the following
sections to start the installation.

Downloading and unpacking the installer software
First, download the Spectrum Scale Object installer from the IBM Redbooks FTP site by
running the following command:

wget ftp://www.redbooks.ibm.com/redbooks/REDP5113/*

The following two files are downloaded:

� disclaimer.txt
� esobject-installer-1.1.x.tgz

The esobject-installer tar file containers all of the needed installation recipes and scripts,
and Version 11.12.8 of the Chef client for both x86_64 and ppc64 architectures. The Chef
client automatically is installed on the installer node and all of the installation target nodes.
Move the files to a suitable directory on the installer node, and extract the files from the
compressed file by running the following command

tar -xvf esobject-installer-1.1.x.tgz

Review the disclaimer.txt and license.txt files that are in the top-level directory of the
extracted files. Also, review the readme file, as it contains a more detailed description of the
esobject commands.

Note: x represents the level of the code that is available at the IBM Redbooks web
server. Update the x to match the current level in the REDP5113 folder.
Chapter 4. Spectrum Scale Object installation 27

Using the installer
The esobject file is the installer driver. You can view the help page for the installer by adding
the -h parameter to esobject:

./esobject -h

To view more detailed information for any command, use the -v parameter (verbose) with any
command. For example:

./esobject -v <command parameter>

You can enter a text-based menu mode by using the menu parameter with esobject:

./esobject menu

The sequence of commands is the same for the menu mode and for the command-line
interface (CLI). For simplicity, we describe the CLI mode.

Initializing the installer environment
Use the setup parameter to install the Chef client software on the installer node and load the
required components. This step can take up to 10 minutes to complete:

./esobject setup

<output omitted>

Initialize the Chef server by using the IP address of the installer node:

./esobject server -s <Installer IP Address>

For example, if the installer IP address is 10.10.10.1, use the following command (the
resulting output is shown):

./esobject server -s 10.10.10.1
[INFO] Starting chef zero
[INFO] Vendoring and uploading cookbooks...
[INFO] Done
[INFO] Uploading roles and data bags...
[INFO] Done

Adding GPFS Object Nodes
Specify the nodes that will be part of the GPFS Object deployment. Again, these nodes must
be part of a GPFS cluster and all have the same GPFS file system mounted. Add each node
by using the add parameter:

./esobject add <GPFS Object Node>

One node must be designated as the Keystone node by using the -k parameter:

./esobject add -k <GPFS Object Node>

For example, if you have four GPFS Object Nodes with IP addresses 10.10.10.1 - 10.10.10.4,
and the node at 10.10.10.4 will host the Keystone server, enter the following commands:

./esobject add 10.10.10.1
[INFO] Added node with fqdn '10.10.10.1' and ip 10.10.10.1.
[INFO] Added role swift_non_master to node 10.10.10.1
[INFO] Saved configuration to configuration/nodes.json.
./esobject add 10.10.10.2
[INFO] Added node with fqdn '10.10.10.2' and ip 10.10.10.2.
28 A Deployment Guide for IBM Spectrum Scale Object

[INFO] Added role swift_non_master to node 10.10.10.2
[INFO] Saved configuration to configuration/nodes.json.
./esobject add 10.10.10.3
[INFO] Added node with fqdn '10.10.10.3' and ip 10.10.10.3.
[INFO] Added role swift_non_master to node 10.10.10.3
[INFO] Saved configuration to configuration/nodes.json.
./esobject add 10.10.10.4
[INFO] Added node with fqdn '10.10.10.4' and ip 10.10.10.4.
[INFO] Added role swift_non_master to node 10.10.10.4
[INFO] Saved configuration to configuration/nodes.json.
./esobject add -k 10.10.10.4
[INFO] Added role keystone to node 10.10.10.4
[INFO] Saved configuration to configuration/nodes.json.

You can view the list of defined GPFS Object Nodes by using the list parameter as follows:

./esobject list

With our example nodes, the output look like the following output:

./esobject list
[INFO] List of nodes in current configuration:
[INFO] 10.10.10.1 [swift_non_master]
[INFO] 10.10.10.3 [swift_non_master]
[INFO] 10.10.10.2 [swift_non_master]
[INFO] 10.10.10.4 [swift_non_master, keystone]

If you want to link to an existing Keystone server, use the --existing parameter. In this case,
the installer updates the Swift proxy server configuration files to use that server. No changes
are made on that server.

For example, remove the local Keystone server from the configuration and add an existing
external Keystone server by running the following commands:

[root@boneknapper-vm1 esobject_sw]# ./esobject delete 10.10.10.4
[INFO] Removed node with fqdn of 10.10.10.4
[INFO] Saved configuration to configuration/nodes.json.

[root@boneknapper-vm1 esobject_sw]# ./esobject add -k --existing 10.10.20.1
[INFO] Added node with fqdn '10.10.20.1' and ip 10.10.20.1.
[INFO] Added role keystone to node 10.10.20.1
[INFO] Saved configuration to configuration/nodes.json.

[root@boneknapper-vm1 esobject_sw]# ./esobject list
[INFO] List of nodes in current configuration:
[INFO] 10.10.10.1 [swift_non_master]
[INFO] 10.10.10.3 [swift_non_master]
[INFO] 10.10.10.2 [swift_non_master]
[INFO] 10.10.20.1 [keystone] (keystone will not be installed)

Setting passwords
Specify the password that is used for Keystone, and optionally, a second password that is
used for the database manager by using the swiftpw parameter:

./esobject swiftpw
Chapter 4. Spectrum Scale Object installation 29

Here is the output of the command. In this case, we are using a unique password for the
database:

./esobject swiftpw
[INFO] Please provide the admin password:
Password:
[INFO] Please reenter the admin password:
Password:
Do you want to use the same password for database root user? Enter "Yes" to
confirm,
anything else not to:no
[INFO] Please provide the database root password:
Password:
[INFO] Please reenter the database root password:
Password:
[INFO] Created secret key encrypted_data_bag_secret
[INFO] Creating data bags with password...
[INFO] Created encrypted data bags

Defining the GPFS configuration
The values for the GPFS device name, GPFS mount point, and object-independent fileset
name can be entered by using the gpfsconfig parameter. They can be entered and updated
individually or in a single command. For example:

./esobject gpfsconfig -d <gpfs_device_name> -g <gpfs_mount_point> \
-o <object_fileset> -i <inode_allocation>

The object base parameter is the independent fileset name where all object data is stored.

For example:

./esobject gpfsconfig -d gpfs -g /gpfs0 -o objectfs
[INFO] Setting GPFS Device Name to gpfs
[INFO] Setting GPFS Mount Point to /gpfs0
[INFO] Setting GPFS Fileset for Object Base to objectfs
[INFO] Configuration saved

The object fileset is created when you run the install command. At that time, the fileset is
linked to the file system by using the mount point as the junction. By default, the object fileset
is created with 8 million inodes allocated. For more information about this parameter, see
“Setting the number of inodes” on page 26. To modify that value (for example, to 10 million),
set a new inode setting by using the -i parameter:

./esobject gpfsconfig -i 10000000
[INFO] Setting GPFS Fileset inode allocation to 10000000
[INFO] Configuration saved

To view the GPFS configuration settings, use the gpfsconfig parameter with no additional
parameters:

[root@boneknapper-vm1 esobject_sw]# ./esobject gpfsconfig
[INFO] No changes made. Current settings are as follows:
[INFO] GPFS Device Name is gpfs
[INFO] GPFS Mount Point is /gpfs0
[INFO] GPFS Fileset for Object Base is objectfs
[INFO] GPFS Fileset inode allocation is 10000000
30 A Deployment Guide for IBM Spectrum Scale Object

Installation precheck
Before beginning the installation, optionally run the installation precheck. These checks are
also run during the installation, but it can be useful to run them before starting the installation.
Run the following command:

./esobject precheck
[INFO] Running environment checks
[INFO] ChefDK - Detected
[INFO] chef-zero path configuration - Confirmed
[INFO] Nodes - Configured
[INFO] Passwordless SSH - Enabled
[INFO] GPFS configuration - Checked
[INFO]
[INFO] Configuration checks complete
[INFO]
[INFO] RESULT: System ready for install.

Running the installation
The configuration is defined and you are ready to start the installation by using the install
parameter (for details, see “Installation details”):

./esobject install
<output omitted>

Installation postcheck
After completing the installation, optionally run the installation postcheck to verify that the
environment is successfully installed. These checks are also run during the installation phase,
but it can be useful to run them separately following the installation.

./esobject postcheck
[INFO] Running post-install checks
[INFO] Checks finished: Installation completed successfully

All the required services are started and you can begin using the Spectrum Scale Object
environment.

Installation details
The installer runs the steps that are described in the OpenStack Juno Installation Guide,
which can be found at the following website:

http://docs.openstack.org/juno/install-guide/install/yum/content/

Here are the specific sections that describe the installation steps:

� 2. Basic environment
� 3. Add the Identity service
� 9. Add Object Storage

Note: Summary messages are shown on the screen unless verbose output is requested.
All messages are always logged in to chef_output.log.
Chapter 4. Spectrum Scale Object installation 31

http://docs.openstack.org/juno/install-guide/install/yum/content/

There are several configuration changes that are made to optimize operation in the Spectrum
Scale environment, which are listed here:

� The replication factor for the object ring is set to 1 so that object data is not replicated by
Swift. Spectrum Scale is responsible for protecting object data.

� All virtual devices are assigned to localhost in the object ring. The bind_ip setting in
object-server.conf is set to localhost on all GPFS Object Nodes. This allows all proxy
to object communication to be local to the GPFS Object Node on which the request is
received.

� Account and container replication factor are set to 2 by default. The bind_ip setting is
defined as the external IP address for the GPFS Object Node, which is typical for an
OpenStack Swift deployment.

� The partition_power setting for all rings is set to 14 by default. This setting is increased
from the original recommendation of 8 in the first edition of this paper, based on additional
performance work. Having a broader directory tree reduces directory contention for larger
numbers of container and objects.

� The account and container data is in a different directory path from object data. This
facilitates GPFS placement policies to allow account and container data to be stored in a
faster storage pool than objects. For more information, see 5.4, “Account and container
data placement policies” on page 38.

� Ten virtual devices are added for each GPFS Object Node to the account, container, and
object rings. As additional GPFS Object Nodes are added to or removed from the system,
the virtual devices may be reassigned to maintain a balanced number of virtual devices
across all nodes. For more information, see 5.2, “Adding a GPFS Object Node” on
page 36 and 5.3, “Removing a GPFS Object Node” on page 37.

� An openrc file is created in the $HOME directory of each GPFS Object Node for the admin,
user, and tenant. For information about how to add additional users and tenants, see the
following website:

http://docs.openstack.org/juno/install-guide/install/apt/content/keystone-users
.html

� Sample scripts are placed in the $HOME/eso_samples directory. These scripts are provided
to help automate administrative tasks and are explained in Chapter 5, “System
administration considerations” on page 35.

References for additional installation information: For general information about tuning
Swift components, see “General System Tuning” at the following website:

http://swift.openstack.org/deployment_guide.html#general-system-tuning
32 A Deployment Guide for IBM Spectrum Scale Object

http://swift.openstack.org/deployment_guide.html#general-system-tuning
http://docs.openstack.org/juno/install-guide/install/apt/content/keystone-users.html
http://docs.openstack.org/juno/install-guide/install/apt/content/keystone-users.html

4.5 Postinstallation

After installation, you must verify the installation, and you might need to tune the
configuration.

4.5.1 Verifying the installation

For one or more GPFS Object Nodes, run the following example Swift commands to verify
your installation. If the installation completed successfully, you can list all containers, upload a
sample object to a container, and list that container and see the object.

� source ~/openrc

� swift list

� date > object1.txt
swift upload test_container object1.txt

� object1.txt

� swift list test_container

� object1.txt

4.5.2 Tuning considerations

You might need to modify the value for the workers parameter in Swift server configurations.
This parameter is set to auto for a proxy server. With the auto setting, the worker count is
automatically set to the number of cores that are detected on the node where the proxy server
is running. In our example, we set the workers parameter to 8 in the object server and 2 in the
account and container server configuration files. Depending on the memory and number of
cores in your GPFS Object Nodes, you might be able to increase these settings.

To increase these settings, modify the account, container, and object server configuration files
in /etc/swift and restart the Swift services on each GPFS Object Node. For instructions
about restarting the Swift services, see 5.1, “Managing Swift services” on page 36.

The installer sets two important Swift timeout values in the proxy server configuration file.
Both node_timeout and conn_timeout are set to 120 seconds to minimize timeouts during
periods of heavy load.

4.6 Removing the installation

To remove the installation, run uninstall as follows:

./esobject uninstall

This command removes all OpenStack software, and removes the object fileset and all data
that it contains.

You can remove individual GPFS Object Nodes by using the rmnode parameter as follows:

./esobject rmnode <GPFS Object Node>
Chapter 4. Spectrum Scale Object installation 33

This command removes the OpenStack software from that node, but leaves the object data
unchanged. For the details of this operation, see 5.3, “Removing a GPFS Object Node” on
page 37.

For example, to remove node 10.10.10.3 from the configuration, run the following command:

./esobject rmnode 10.10.10.3
34 A Deployment Guide for IBM Spectrum Scale Object

Chapter 5. System administration
considerations

This chapter describes Swift administrative actions that behave differently in a Spectrum
Scale Object environment, and the operational considerations that we encountered during
our testing.

One of the benefits of using a clustered file system for Swift storage is simplified
maintenance. Nodes can be added or replaced with minimal effort and with no need for the
rebalancing or movement of data. This chapter describes the process for adding and
removing a GPFS Object Node in your system.

For performance reasons, it is preferable to place account and container data into a higher
performing storage pool. This chapter describes the procedure for this placement by using
GPFS ILM placement policies.

Finally, this chapter provides suggestions for several other system administration areas.

5

Note: The installation and maintenance procedures described in Chapter 4 and 5 of this
Redpaper are not compatible with the Spectrum Scale protocol installation toolkit, provided
in Spectrum Scale 4.1.1 and later versions.

The steps in this paper are valid, and should be only be executed on Spectrum Scale
nodes that are not designed as Cluster Export Service (CES) protocol nodes.
© Copyright IBM Corp. 2014, 2015. All rights reserved. 35

5.1 Managing Swift services

We provide a utility script, manage_swift_services.sh, to help manage Swift services running
on GPFS Object Nodes. This script uses systemctl for starting, stopping, and displaying the
status for the required Swift services.

The installer places the manage_swift_services.sh script in the $HOME/eso_samples/utils
directory of each GPFS Object Node. Here is the exact location:

$HOME/eso_samples/utils/manage_swift_services.sh

To start all required object services, run the following command on each GPFS Object Node:

./manage_swift_services.sh start

To stop all required object services, run the following command on each GPFS Object Node:

./manage_swift_services.sh stop

To check the status of all required object services, run the following command on each GPFS
Object Node:

./manage_swift_services.sh status

5.2 Adding a GPFS Object Node

To add a node, you must first install the prerequisite software and GPFS software. Then, you
add the node to your GPFS cluster. Finally, use the esobject installer to install the required
software and configure the new node. The installer adds the required object software,
updates the account, container, and object rings, and redistributes the rings to all nodes.

Rebalancing or data movement is not required because all virtual devices can be accessed
from every GPFS Object Node.

After the new node is added to the GPFS cluster and the file system is mounted, the Swift
services are started automatically and the new node can begin handling object requests.

Note: The use of the swift-init command is discouraged in the RHEL environment. All
Swift services should be started by using only the systemctl command. This provides
consistency with other system services, and proper behavior for Swift services in
environments where SELinux is enabled.

Note: To simplify the running of this script, you might want to include the path to the utils
directory in your PATH variable on each GPFS Object node. For example:

PATH=$PATH:$HOME/eso_samples/utils/

Note: Your load balancer configuration might need to be updated to recognize the new
node.
36 A Deployment Guide for IBM Spectrum Scale Object

To add a node to your configuration, run the following commands from your installation server
to list the set of GPFS Object Nodes, add a node, and then update the configuration to
complete the installation on that node:

./esobject add <ip>

./esobject list

./esobject update

For example, to add node 10.10.10.5 to our example configuration, run the following
commands:

./esobject add 10.10.10.5
[INFO] Added node with fqdn '10.10.10.5' and ip 10.10.10.5.
[INFO] Saved configuration to configuration/nodes.json.

./esobject list
[INFO] List of nodes in current configuration:
[INFO] 10.10.10.1 [swift_non_master]
[INFO] 10.10.10.3 [swift_non_master]
[INFO] 10.10.10.2 [swift_non_master]
[INFO] 10.10.10.4 [swift_non_master, keystone]
[INFO] 10.10.10.5 [swift_non_master]

./esobject update
#<output omitted>

5.3 Removing a GPFS Object Node

To remove a node from your configuration, remove the node by using the rmnode parameter:

./esobject rmnode <ip>

The installer removes all of the object software from the node, updates the account,
container, and object rings, and redistributes the rings to all nodes.

Rebalancing or data movement is not required because all virtual devices can be accessed
from every GPFS Object node.

For example, to remove node 10.10.10.5 from our example configuration, run the following
commands:

./esobject rmnode 10.10.10.5
<output omitted>

./esobject list
[INFO] List of nodes in current configuration:
[INFO] 10.10.10.1 [swift_non_master]
[INFO] 10.10.10.3 [swift_non_master]
[INFO] 10.10.10.2 [swift_non_master]
[INFO] 10.10.10.4 [swift_non_master, keystone]

Note: With the current installer version, you must add one node and then run an update
before adding more nodes. Adding two or more nodes followed by a single update is not
supported currently.
Chapter 5. System administration considerations 37

5.4 Account and container data placement policies

For performance reasons, it might be preferable to place account and container data into a
separate storage pool that is backed by faster solid-state device (SSD) storage. This can be
easily accomplished by using GPFS placement policies.

To implement the placement policies, a new dependent fileset must be created to hold all
account and container data. A storage pool is then created that is backed by the preferred
storage. A file placement policy must then be written and deployed so that all files that are
created in the new dependent fileset automatically are placed into the new storage pool. The
installer sets the devices parameter in both account server and container server configuration
files to use a directory named ac under the object fileset. The devices parameter in the object
server configuration file is set to use a directory that is named o under the object fileset. This
allows the account and container-dependent fileset to be easily linked to the ac directory.

Currently, however, the installer does not automatically configure the account and container
fileset or create the placement policies. This task must be performed by the user, but an
example is provided below.

In the following example, the GPFS file system device name is gpfs, the file system mount
point is /gpfs0, and the object independent fileset is objectfs.

To configure the account and container filesets, complete the following steps:

1. Create a stanza file that is named nsd_file to define the SSD devices that are used in the
new storage pool. In this example, the pool is called poolAC and there are two devices:

%nsd:
 device=/dev/dm100
 usage=dataOnly
 pool=poolAC

%nsd:
 device=/dev/dm101
 usage=dataOnly
 pool=poolAC

2. Create the NSDs by running the following command:

mmcrnsd -F nsd_file -v no

3. Add the NSDs to your GPFS file system by running the following command:

mmadddisk gpfs -F nsd_file

4. Create the object_acfs dependent fileset for account and container data by running the
following command:

mmcrfileset gpfs object_acfs --inode-space objectfs
Fileset object_acfs created with id 3 root inode 1085441.

5. Link the new dependent fileset as ac under the objectfs independent fileset by running
the following command:

mmlinkfileset gpfs object_acfs -J /gpfs0/objectfs/ac
Fileset object_acfs linked at /gpfs0/objectfs/ac

Note: Delete the ac directory before you start this process. If you already have account
and container data in the ac directory, copy this data to a temporary location and then
delete the ac directory.
38 A Deployment Guide for IBM Spectrum Scale Object

6. Create a placement.policy file. Here is an example:

/* policy rules to place account and container files into poolAC */

/* PLACEMENT policy 1 - put account and container files in poolAC
poolAC is previously created storage pool and object_acfs is previously created
dependent fileset */

RULE 'db files' SET POOL 'poolAC' FOR FILESET('object_acfs')

/* Default placement policy rule */
RULE 'default' SET POOL 'system'

7. To test the policy, run the following command:

mmchpolicy gpfs placement.policy -I test
Validated policy 'placement.policy': Parsed 2 policy rules.

8. If no errors were detected, apply the policy by running the following command:

mmchpolicy gpfs placement.policy -I yes
Validated policy 'placement.policy': Parsed 2 policy rules.
Policy 'placement.policy' installed and broadcast to all nodes.

5.5 Process monitoring

In the context of this paper, no process monitoring is provided. We suggest that you consider
the monitoring approaches suggested by OpenStack, which are available at the OpenStack
website:

http://docs.openstack.org/openstack-ops/content/logging_monitoring.html

Swift services rely on the GPFS file system that is mounted and available on all GPFS Object
Nodes. If Spectrum Scale is stopped for some reason while Swift is running, certain Swift
services might exit abnormally. In this case, you must restart all Swift services when
Spectrum Scale is restored, either individually or by using the manage_swift_services.sh
sample script that is provided with the additional materials (see Appendix A, “Additional
material” on page 57). For more information about this script, see 5.1, “Managing Swift
services” on page 36.

Note: If you copied any existing account and container data to a temporary location, copy it
back to the new ac directory.

Note: Logging is not meant to be turned on in a production system or on a continual basis.
Chapter 5. System administration considerations 39

http://docs.openstack.org/openstack-ops/content/logging_monitoring.html

5.6 Security-Enhanced Linux considerations

If Security-Enhanced Linux (SELinux) is enabled in your environment, you must perform the
following tasks.

1. Install the OpenStack SELinux package, which configures Swift services for SELinux, by
running the following command. This task must be done on each GPFS Object Node.

yum install openstack-selinux

2. Set the Swift data type on the GPFS directory on any one of the GPFS Object Nodes by
completing the following steps. This task must be done any time that the fileset is
re-created:

a. Create a file context to associate the swift_data_t to your swift path by running the
following command:

semanage fcontext -a -t swift_data_t '<gpfs_object_base>(/.*)?'

b. Update the SELinux security context for the fileset by running the following command:

restorecon -R <gpfs_object_base>

For example, if your GPFS mount point is /gpfs0 and the object independent fileset is
objectfs, the commands are the following ones:

semanage fcontext -a -t swift_data_t '/gpfs0/objecfs(/.*)?'

restorecon -R /gpfs0/objectfs

3. Swift uses rsync for replication, which depends on the file context being correct on the
fileset. You must verify that each node can successfully run rsync after making these
changes. Run rsync to copy a test file to each node before using Swift to ensure that the
permissions are correct. To do so, run the following commands that are shown in this
example:

rm -f <gpfs_object_base>/testfile
rsync /etc/motd hostname::object/testfile
ls -l <gpfs_object_base>/testfile

5.7 Port security considerations

The Swift object, container, and account servers are configured to use ports 6200, 6201, and
6202. These ports must be reachable by the proxy server on each GPFS Object Node. In a
production deployment, these ports must be blocked so that they cannot be accessed from
non- GPFS Object Nodes.

Note: Enabling Spectrum Scale with SELinux affects the backup operations.

Note: You can ignore any “Operation not permitted” errors for the fileset .snapshots
directory that follow the restorecon command.

Note: The Swift object, container, and account servers do not authenticate requests that
they receive. For this reason, it is critical to ensure that firewall policies are set up to protect
these ports from outside access in a production deployment.
40 A Deployment Guide for IBM Spectrum Scale Object

For a listing of OpenStack default ports, see the “Firewalls and default ports” topic at the
OpenStack website:

http://docs.openstack.org/juno/config-reference/content/firewalls-default-ports.ht
ml

5.8 Configuring rsync to limit host access

To limit the hosts that can interact with your rsync environment, add the list of all the GPFS
Object Nodes to the hosts allow configuration parameter in the /etc/rsyncd.conf file. This
task must be done on each node and updated any time that a node is added to or deleted
from the environment. Here is an example:

hosts allow = 192.167.11.10, 192.167.11.11

This line allows the two specified hosts to connect to rsync, and all others are rejected. For
more information about configuring rsync, see the “rsyncd.conf” topic at the OpenStack
website:

http://rsync.samba.org/ftp/rsync/rsyncd.conf.html

5.9 Virtual Network Computing port conflict

In our test environment, we observed cases where a Virtual Network Computing (VNC)
server created a conflict with the object, container, and account servers when using the
default port values of 6000, 6001, and 6002.

If you see port conflict issues when starting your Swift services, a VNC server might be the
cause. The installer uses ports 6200, 6201, and 6202 instead of the Swift defaults, so it is
unlikely that you will see this problem.

5.10 Software maintenance

After you install and configure Spectrum Scale Object, it is a preferred practice to keep both
Spectrum Scale and OpenStack software at the latest levels. Information about the Spectrum
Scale updates can be found at the GPFS frequently asked questions (FAQ) website:

http://www.ibm.com/support/knowledgecenter/SSFKCN/com.ibm.cluster.gpfs.doc/gpfs_fa
qs/gpfsclustersfaq.html

OpenStack updates are listed on the OpenStack website:

https://wiki.openstack.org/wiki/Releases
Chapter 5. System administration considerations 41

http://www.ibm.com/support/knowledgecenter/SSFKCN/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html
https://wiki.openstack.org/wiki/Releases
http://docs.openstack.org/juno/config-reference/content/firewalls-default-ports.html
http://rsync.samba.org/ftp/rsync/rsyncd.conf.html

42 A Deployment Guide for IBM Spectrum Scale Object

Chapter 6. Swift feature overview

An advantage of Swift over other object stores is its rich set of features and its extensible
design, which allows users to easily add new middleware for their applications. For more
information, see the “Middleware and Metadata” topic on the OpenStack website:

http://docs.openstack.org/developer/swift/development_middleware.html

There are far too many features and middleware to fully test, and more are added regularly,
so this chapter describes the set of features that are currently tested to help ensure their
general stability and correctness. For more information, see the “Middleware” topic on the
OpenStack website:

http://docs.openstack.org/developer/swift/middleware.html

This paper describes the following Swift features that have been tested:

� Quotas: Swift quotas allow a specific amount of disk capacity to be allocated to either
containers or accounts by using Swift quotas. They also allow a limit on the maximum
number of objects to be specified for containers or accounts.

� Access control lists (ACLs): Swift ACLs and the Keystone authentication server enable
user-based and role-based access to be configured for accounts, containers, and
individual objects.

6

Note:

� Due to Swift eventual consistency semantics, these limits might be exceeded in
certain circumstances.

� Although GPFS quotas do not explicitly interact with Swift quotas, it still might be
useful to employ GPFS quotas to limit the amount of space or the number of inodes
that is consumed by the object store. To do this task, define GPFS quotas on the
top-level independent fileset by specifying the maximum size or maximum inode
usage that the object store can consume.

For more information about GPFS quotas, see the following website:

http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0.4/com.ibm.cluster.gp
fs.v4r104.gpfs100.doc/bl1adm_edquot.htm
© Copyright IBM Corp. 2014, 2015. All rights reserved. 43

http://docs.openstack.org/developer/swift/development_middleware.html
http://docs.openstack.org/developer/swift/middleware.html
http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0.4/com.ibm.cluster.gpfs.v4r104.gpfs100.doc/bl1adm_edquot.htm

� Very large object support: The maximum single object size that has been tested is
5 TB. This is much larger than the typical Swift object size limit (5 GB) and is possible
because of the following conditions:

– Load balancing across GPFS Object Nodes to increase throughput is no longer
necessary because each GPFS Object Node can read and write by using the full
storage network bandwidth (instead of needing to share the bandwidth with the
creation of one or more object replicas).

– Object placement imbalance is not an issue with Spectrum Scale because of its shared
storage architecture.

� Swift object segmentation can be used to store arbitrarily large objects in the object
store. For more information, see the “Large Object Support” topic on the OpenStack
website:

http://docs.openstack.org/developer/swift/overview_large_objects.html

� Versioning: Normally, when an object is updated, the new object replaces the existing
object in the object store. Swift versioning can be used to retain multiple versions of an
object, which are automatically created upon object update. For more information, see the
“Object Versioning” topic on the OpenStack website:

http://docs.openstack.org/developer/swift/overview_object_versioning.html

� Swift3 (S3 compatibility) middleware can be used to allow your object store to
interoperate with applications that use the S3 protocol. For information about on how to
configure this middleware, see the “Configure Object Storage with the S3 API” topic on the
OpenStack website:

http://docs.openstack.org/juno/config-reference/content/configuring-openstack-o
bject-storage-with-s3_api.html

For a list of the supported S3 operations, see the “Swift/APIFeatureComparison” topic at
the following website:

https://wiki.openstack.org/wiki/Swift/APIFeatureComparison

Note: Do not use GPFS ACLs in the Object independent fileset.
44 A Deployment Guide for IBM Spectrum Scale Object

http://docs.openstack.org/developer/swift/overview_object_versioning.html
http://docs.openstack.org/developer/swift/overview_large_objects.html
http://docs.openstack.org/juno/config-reference/content/configuring-openstack-object-storage-with-s3_api.html
https://wiki.openstack.org/wiki/Swift/APIFeatureComparison

Chapter 7. Backup and restore

Enterprise data requires proven and robust data management tools to ensure that data is not
lost due to user errors, software errors, or even hardware failures and errors. Generic
OpenStack Swift replication protects against hardware failures, but it is not an end-to-end
solution allowing recovery of data that has been incorrectly modified by a user, software
application, or in specific cases, hardware corruption. Object versioning can assist with this
situation, but it was not designed for this purpose. For example, there is no way to instantly
create a version of the entire object store; older versions cannot be deleted without deleting
the latest version; and it does not include account or container database information.

You can use Spectrum Scale Object to create consistent point-in-time copies of the object
store to protect against data loss or corruption. These copies can be either created and
stored instantly within Spectrum Scale by using snapshots, or stored in an external mass
capacity storage system by using backups.

7

© Copyright IBM Corp. 2014, 2015. All rights reserved. 45

7.1 GPFS independent filesets

Storing the account, container, and object data in a single GPFS independent fileset is
required because it provides a way to manage the entire object store. The object store
independent fileset might contain one or more dependent filesets. For more information, see
“Information Lifecycle Management for GPFS - Filesets” in the GPFS 4.1.0.4: Advanced
Administration Guide, SC23-7032, found at the following website:

http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0.4/com.ibm.cluster.gpfs.v4r
104.gpfs200.doc/bl1adv_filesets.htm

A fileset assigns a unique identifier to the entire object store, allowing Information Lifecycle
Management operations, such as snapshots, tiering, backup, and user policies, to operate on
the entire object store.

7.2 Snapshots

GPFS fileset snapshots provide a method of creating instant point-in-time copies of the entire
object store, including the account and container databases. By using fileset snapshots
instead of file system snapshots, the impact of the snapshot (which requires dirty data to be
flushed to disk) does not affect applications that use files that are not in the fileset. Snapshot
data can be accessed through the .snapshots directory in the fileset.

Fileset snapshots can be used for quickly capturing periodic object store contents. For
information about saving data outside of the object cluster to protect it against disaster
scenarios, see 7.3, “Backing up and restoring the object store” on page 46.

For more information about snapshots, see the mmcrsnapshot command in the GPFS 4.1.0.4:
Administration and Programming Reference, SA23-1452, found at the following website:

http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0/com.ibm.cluster.gpfs.v4r1.
gpfs100.doc/bl1adm_mmcrsnapshot.htm

7.3 Backing up and restoring the object store

Snapshots are a good way to protect data from various errors and failures. Moving them to a
separate backup storage system can provide better protection against catastrophic failures of
the entire storage system and might even allow the data to be stored at a lower cost.

This section describes the manual steps that are needed to back up the object store and its
configuration information.

To improve usability, we also provide two sample scripts to help automate the backup and
recovery process:

� eso_backup.sh
� eso_restore.sh

Note: In our example, we do not back up the Keystone configuration files and database.
This task is the responsibility of the user. You can use OpenStack backup procedures for
this task. For more information, go to the following OpenStack website:

http://docs.openstack.org/openstack-ops/content/backup_and_recovery.html
46 A Deployment Guide for IBM Spectrum Scale Object

http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0.4/com.ibm.cluster.gpfs.v4r104.gpfs200.doc/bl1adv_filesets.htm
http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0/com.ibm.cluster.gpfs.v4r1.gpfs100.doc/bl1adm_mmcrsnapshot.htm
http://docs.openstack.org/openstack-ops/content/backup_and_recovery.html

The scripts are also described in this section.

7.3.1 Backup procedure

The backup procedure consists of the following steps:

1. Storing all relevant configuration data in a safe location outside of your GPFS cluster. This
data is essential to restoring your object store quickly, so you might want to store it in a site
in a different geographical location for added safety.

2. Creating a file system (global) snapshot

3. Creating a snapshot-based backup by running mmbackup.

All GPFS Object Nodes and Spectrum Protect client nodes must be available with the object
file system mounted on each one when the backup is being created. The Spectrum Protect
server also must be available.

A global or file system snapshot is used in this procedure because the mmbackup command's
smallest granularity currently is a file system snapshot.

Saving configuration data
To recover the object store in a disaster recovery case, the following configuration data must
be backed up:

� Swift-related configuration files and content
� The GPFS fileset configuration that is used by the object store
� Spectrum Protect client configuration files

This configuration information should be stored in a safe location that is outside of your GPFS
cluster environment. This configuration data is needed for the recovery of the GPFS
independent fileset that is used for object data and Spectrum Protect client configuration. By
having the configuration data readily re-created, the object store contents can be restored
quickly from the Spectrum Protect server.

Manual backup procedure
To perform the backup procedure manually, complete the following steps:

1. Run the following command to extract the GPFS file system and fileset configuration and
store the output file in a safe location outside of your GPFS cluster:

mmbackupconfig <file system device> -o <output file>

Note: The Spectrum Protect backup-archive client must be installed, at the same version,
on all of the nodes that are running the mmbackup command. For more information about
Spectrum Protect requirements for the mmbackup command, see “Tivoli Storage Manager
requirements” in GPFS: Administration and Programming Reference, SA23-1452, which
can be found at the following website:

http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0.4/com.ibm.cluster.gpfs.
v4r104.gpfs100.doc/bl1adm_tsmreqs.htm

Note: Make sure to preserve the permissions or ACLs of the configuration files that are
backed up or copied. This is essential to restoring from a disaster and starting the system
without issues. Also, make sure that all Swift nodes are accessible during backup.
Chapter 7. Backup and restore 47

http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0.4/com.ibm.cluster.gpfs.v4r104.gpfs100.doc/bl1adm_tsmreqs.htm

Here is an example of using this command with a device name of gpfs and an output file
name of gpfs_object.cfg:

mmbackupconfig gpfs -o gpfs_object.cfg

2. Save the following Spectrum Protect configuration files for each Spectrum Protect client
node in the same safe location that is used in step 1 on page 47:

a. /etc/adsm/TSM.PWD

Contains the client password that is required to access the Spectrum Protect. Depends
on the Spectrum Protect server setting of authentication. This file is present only when
authentication is set to “on”.

b. /opt/tivoli/tsm/client/ba/bin/dsm.sys and
/opt/tivoli/tsm/client/ba/bin/dsm.opt:

These are the Spectrum Protect client configuration files.

3. Save the Swift configuration files for each GPFS Object Node in the same safe location
that is used in step 1 on page 47:

a. /etc/swift

This directory tree contains the Swift configuration files, the ring builder files
(account.builder, container.builder, and object.builder) and ring files
(account.ring.gz, container.ring.gz, and object.ring.gz). The contents of this
directory and all subdirectories must be saved. The ring information is the same on
each GPFS Object Node, but the Swift server configuration files have different settings.

b. /root/openrc

This file contains OpenStack account credentials that are stored for convenience. This
file can be easily re-created, but for convenience, save it.

4. Back up the object store content to a Spectrum Protect server by running mmbackup (based
on a snapshot):

a. Create a global snapshot by running the following command:

mmcrsnapshot <file system device> <snapshot name>

For example, create a snapshot that is named objects_globalsnap1 by running the
following command:

mmcrsnapshot gpfs objects_globalsnap1

b. Create global and local work directories by running, for example, the following
commands:

mkdir -p /gpfs0/.es/mmbackupglobal
mkdir -p /gpfs0/.es/mmbackuplocal

c. Start the snapshot-based backup job by running the following command (the line wrap
is indicated by '\'):

mmbackup <file system device> -t incremental -N <TSM client nodes> \
-g <global work directory> \
-s <local work directory> \
-S <global snapshot name> --tsm-servers <tsm server> --noquote

For example:

mmbackup gpfs -t incremental -N 10.10.10.1,10.10.10.2 \
-g /gpfs0/.es/mmbackupglobal \
-s /gpfs0/.es/mmbackuplocal \
-S objects_globalsnap1 -–tsm-servers tsm1 --noquote
48 A Deployment Guide for IBM Spectrum Scale Object

Where:

• -N specifies the nodes that are involved in the backup process. These nodes must
be configured for the Spectrum Protect server that is being used.

• -S specifies the global snapshot name to be used for the backup. In our example,
we use the same snapshot that was created in step a on page 48.

• --tsm-servers specifies which Spectrum Protect server is used as the backup
target, which refers to the Spectrum Protect server name that is used in the
Spectrum Protect client configuration dsm.sys file.

There are several other options that are available that can influence the backup
process and its velocity or system load. For example, you can increase the number of
backup threads per node by using the -m parameter. Check the man page of the
mmbackup command for the full list of available parameters.

d. Remove the snapshot that was previously created in step a on page 48 by running the
following command:

mmdelsnapshot <file system device> <snapshot name>

For example:

mmdelsnapshot gpfs objects_globalsnap1

7.3.2 Restore procedure

After you have performed the prerequisite procedures, you can begin the recovery procedure.

Prerequisites
You must meet the following prerequisites to being the recovery procedure:

1. Restore the GPFS cluster with the same node names that were used previously.

2. Re-create the file system that was used for Swift.

3. Restore your OpenStack Keystone server and make sure that it is operational.

4. Install Swift software on all GPFS Object Nodes. You can accomplish this task by using
the esobject installer that is described in Chapter 4, “Spectrum Scale Object installation”
on page 23 and Chapter 5, “System administration considerations” on page 35.

5. Install the Spectrum Protect backup-archive client software on the GPFS Object Nodes
that were clients previously.

6. All GPFS Object Nodes and Spectrum Protect client nodes must be available when the
object store configuration and content are being restored.

Recovery procedure
To perform the recovery procedure, complete the following steps:

1. Stop the Swift services on all GPFS Object Nodes. The Swift service management script,
which is described in 5.1, “Managing Swift services” on page 36, can be used for this task:

manage_swift_services.sh stop

Note: Do not unlink any fileset that is part of the file system while the backup is
occurring.
Chapter 7. Backup and restore 49

2. Unmount the object file system on all GPFS Object Nodes.

– For example, using the file system that is named gpfs, run the following command:

mmunmount <file system device> -a

– For example, using the file system that is named gpfs, run the following command:

mmunmount gpfs -a

3. Restore the GPFS configuration by running the mmrestoreconfig command. The input to
the mmrestoreconfig command is the file that was created previously by the
mmbackupconfig command.

mmrestoreconfig <file system device> -i <output_file> -I yes -Q no

For example, reusing the gpfs_object.cfg output file that is created above, run the
following command:

mmrestoreconfig gpfs -i gpfs_object.cfg -I yes -Q no

You can create a report of the expected configuration to review before restoring by running
the following example command:

mmrestoreconfig gpfs -i gfps_object.cfg -F report.out

4. Mount the object file system on all nodes by running the following command:

mmmount <file system device> -a

For example, using the file system that is named gpfs, run the following command:

mmmount gpfs -a

5. Restore the configuration of the Spectrum Protect client nodes by copying the saved
configuration files from their saved location to each Spectrum Protect client node.

a. The Spectrum Protect client config files dsm.opt and dsm.sys should be restored to
/opt/tivoli/tsm/client/ba/bin/.

b. The Spectrum Protect client password file, TSM.PWD, if saved during the backup
procedure, should be restored to /etc/adsm/.

c. Verify that each Spectrum Protect client node can communicate with the Spectrum
Protect server without prompting for a password by running the following command:

dsmc q sess

6. Restore the Swift configuration files by copying them from their location to /etc/swift on
each GPFS Object Node.

Ensure that the ownership and permission settings of these configuration files are correct
by running the cp -a command or by explicitly setting the ownership after the copy is
completed by running the following command:

chown -R swift:swift /etc/swift

7. Restore the object store data from the Spectrum Protect server.

a. On a Spectrum Protect client node, start a no-query restore by running the dsmc
restore command:

dsmc restore <GPFS Object path> -subdir=yes -disablenqr=no \
-servername=<tsm server> -errorlogname=<error log path>

For example:

dsmc restore /gpfs0/objectfs/ -subdir=yes -disablenqr=no \
-servername=tsm1 -errorlogname=/tmp/object_restore.log

b. When all restore jobs are completed, check the error logs. If any errors are found,
correct them until all restore operations complete successfully.
50 A Deployment Guide for IBM Spectrum Scale Object

8. On each GPFS Object Node, start the Swift services by running the following command:

manage_swift_services.sh start

9. Verify that basic Swift commands (swift stat and swift list) return without error, in the
same manner that is described in 4.5.1, “Verifying the installation” on page 33. Also, verify
that the number of containers and the number of objects within those containers are as
expected.

Improving recovery time
The command that is shown in step 7a on page 50 starts a single restore job on a single
node. This job might require a long period to restore all of your object data. To improve the
restore performance, you can start separate restore jobs on different Spectrum Protect client
nodes. To do this task, you must split the overall restore task into several smaller ones. One
way to do this task is to specify your restore path for object data that is deeper in the GPFS
object path.

For example, instead of starting the restore with the root of the GPFS Object path, start the
object restore at the virtual devices level. If you have 40 virtual devices that are configured,
you might start 40 independent restore jobs to restore the object data, and distribute the jobs
to the different Spectrum Protect client nodes. Additionally, you start a single restore job for all
of the files under the account and container path.

With this approach, care must be taken to not overload the Spectrum Protect client nodes or
the Spectrum Protect server. You might want to experiment to determine the best mix of jobs.

For example, if there are four GPFS Object Nodes, each with the Spectrum Protect client
installed and configured, you might use the following types of commands.

1. On the first GPFS Object Node, run a restore job for each of the first 10 virtual devices by
running the following commands:

dsmc restore /gpfs0/objectfs/o/z1device0 -subdir=yes -disablenqr=no \
-servername=tsm1
dsmc restore /gpfs0/objectfs/o/z1device1 -subdir=yes -disablenqr=no \
-servername=tsm1

#<repeat for z1device2 - z1device9>

2. On the second node, run a restore job for each of the next 10 virtual devices. Continue the
pattern on the remaining GPFS Object Nodes so that all of the virtual devices under the o
subdirectory are restored. Also, start a single restore job for all of the account and
container data under the ac subdirectory by running the following command:

dsmc restore /gpfs0/objectfs/ac -subdir=yes -disablenqr=no -servername=tsm1

The most efficient restore approach depends on many factors, including the number of tape
drives, Spectrum Protect client configuration, and network bandwidth. You might need to
experiment with your configuration to determine the optimal restore strategy.
Chapter 7. Backup and restore 51

7.3.3 Automating the backup and restore procedures

This section describes two sample scripts that are provided for automating the backup and
restore procedures. The installer places these scripts in the $HOME/eso_samples/backup
directory on each GPFS Object Node. The exact location is shown here:

$HOME/eso_samples/backup/eso_backup.sh
$HOME/eso_samples/backup/eso_restore.sh

Setup and notes
Here are some considerations for automating the procedures:

� All GPFS Object Nodes and Spectrum Protect client nodes must be available with the
object fileset mounted during both the backup and restore operations. The Spectrum
Protect server must also be available.

� The eso_backup.sh and eso_restore scripts depend on the manage_services.sh script to
control the Swift services.

� Log files for each script invocation are stored here:

/var/log/eso-backup-restore/

Automating the backup procedure
Run the automated backup procedure by using the eso_backup.sh script as follows:

./eso_backup.sh <fs dev> <tsm server stanza> <object_base_path>

The <fs dev> parameter specifies the file system device that is backed up.

The <tsm server stanza> parameter specifies which Spectrum Protect server is used as the
backup target.

The <object_base_path> parameter specifies the root location (usually an independent
fileset) of the object store, for example, /gpfs0/objectfs.

An example invocation is shown here:

./eso_backup.sh gpfs tsm1 /gpfs0/objectfs

The script initiates a backup of the object store configuration and data to the specified
Spectrum Protect server.

The script collects the required configuration information and stores it as a compress file in
two places:

1. /tmp/eso_config_dump/eso_config_<timestamp>.tgz on the node where the script is run.
For example:

/tmp/eso_config_dump/eso_config_20141112-115012.tgz

2. <FS mountpoint>/.eso_config_dump/eso_config_<timestamp>.tgz in the shared file
system hosting the object store. For example:

/gpfs0/.eso_config_dump/eso_config_20141112-115012.tgz

This file serves as input for the corresponding recovery script if there is a disaster, and should
be stored in a safe and easy accessible location.

When the script completes, carefully review the log file output. If any issues are found, these
must be resolved and, if necessary, you must run the backup script again.
52 A Deployment Guide for IBM Spectrum Scale Object

Automating the restore procedure
Before running eso_restore.sh, you must unmount the object store file system from all GPFS
Object Nodes by running the mmunmount command:

mmunmount <fs device> -a

For example:

mmunmount gpfs0 -a

Run the automated restore procedure by running the eso_restore.sh script as follows:

./eso_restore.sh <eso_backup_set> [-nr]

The <eso_backup_set> parameter is the configuration file of a previously taken backup, for
example, eso_config_20141112-115012.tgz.

An example single node invocation is shown here:

./eso_restore.sh eso_config_20141112-115012.tgz

This invocation restores the previous object store configuration to all GPFS Object Nodes and
also restores the Spectrum Protect client configuration. Use that configuration to restore the
object store content with a single restore job.

The [-nr] (no restore) parameter can be specified to display the restore command but not
run that command. The administrator can then manually split up the single restore job into
multiple jobs that can be started in parallel on all Spectrum Protect client nodes for improved
restore performance, as described in “Improving recovery time” on page 51.

Note: Log files and the saved configuration files that are generated by this script are
uniquely named, including the execution time. It is the user’s responsibility to manage
these files by deleting older files that are no longer needed.

Note: Log files that are generated by this script are uniquely named, including the
execution time. It is the user’s responsibility to manage these files by deleting older files
that are no longer needed.
Chapter 7. Backup and restore 53

54 A Deployment Guide for IBM Spectrum Scale Object

Chapter 8. Summary

This chapter summarizes further areas of investigation and concludes with how Spectrum
Scale Object solves business problems by providing a new type of cloud storage.

8

© Copyright IBM Corp. 2014, 2015. All rights reserved. 55

8.1 Future investigation

This paper focuses on the general architecture and setup of Spectrum Scale Object. To
realize the vision that was described earlier in this paper, several further steps are needed,
which include development and test validation.

Investigation includes the following information:

� Integration of external tape pools to further decrease the cost per gigabyte.

� Suggestions for preferred practice use of Swift global clusters, Swift container
synchronization, and Spectrum Scale Active File Management for disaster recovery and
data distribution.

� Integration of file and object access to a single data set. This investigation includes many
challenges due to the stark difference between POSIX and Swift object semantics, but the
goal is to work with the community to provide a coherent and easy-to-use system for file
and object access. See “SwiftOnFile” at this website:

https://github.com/swiftonfile/swiftonfile

� Performance optimizations through the DiskFile pluggable on-disk back end. See
“Pluggable On-Disk Back-end APIs” at this website:

http://docs.openstack.org/developer/swift/development_ondisk_backends.html

� Removing the requirement to replicate account and container information by ensuring the
correct update of account and container database information from multiple nodes.

� The ability to search for objects in a container or account that have specific metadata
values.

� The ability to designate objects as immutable for a time duration, so that they cannot be
updated or deleted during that time.

� Quality assurance of the following areas:

– Swift expiration
– Spectrum Scale encryption
– File access gateways:

• See Cyberduck at this website:

http://cyberduck.io

• See Maldivica at this website:

http://www.maldivica.com/

8.2 Conclusion

IBM Spectrum Scale is a proven, enterprise-class file system, and OpenStack Swift is a
best-of-breed object-based storage system. Spectrum Scale Object combines these
technologies to provide a new type of cloud storage that includes efficient data protection and
recovery, proven scalability, and performance, snapshot and backup and recovery support,
and information lifecycle management. Through these features, Spectrum Scale Object can
help simplify data management and allow enterprises to realize the full value of their data.

Note: Any references to future investigation are for planning purposes only. IBM reserves
the right to change those plans at its discretion. Any reliance on such a disclosure is solely
at your own risk. IBM makes no commitment to provide additional information in the future.
56 A Deployment Guide for IBM Spectrum Scale Object

https://github.com/swiftonfile/swiftonfile
http://docs.openstack.org/developer/swift/development_ondisk_backends.html
http://cyberduck.io
http://www.maldivica.com/

Appendix A. Additional material

This paper refers to additional material that can be downloaded from the Internet as
described in the following sections.

Locating the web material

The web material that is associated with this paper is available in softcopy on the Internet
from the IBM Redbooks web server. Point your web browser at:

ftp://www.redbooks.ibm.com/redbooks/REDP5113

Alternatively, you can go to the IBM Redbooks website at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with the IBM
Redpaper form number, REDP5113.

Using the web material

The additional web material that accompanies this paper includes the following files:

File name Description
disclaimer.txt Disclaimer information
esobject-installer-1.1.x.tgz Installation tool

Downloading and extracting the web material

Create a subdirectory (folder) on your workstation, and extract the contents of the web
material esobject-installer-1.1.x.tgz file into this folder.

A

Note: x represents the level of the code that is available at the IBM Redbooks web server.
Update the x to match the current level in the REDP5113 folder.
© Copyright IBM Corp. 2014, 2015. All rights reserved. 57

ftp://www.redbooks.ibm.com/redbooks/REDP5113
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

58 A Deployment Guide for IBM Spectrum Scale Object

Related publications

The publications that are listed in this section are considered suitable for a more detailed
discussion of the topics that are covered in this paper.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Some publications referenced in this list might be available in softcopy only.

� Adding an IBM LTFS EE Tape Tier to an IBM SCSA Managed Storage Cloud, TIPS1129
� IBM Private, Public, and Hybrid Cloud Storage Solutions, REDP-4873

You can search for, view, download, or order these documents and other Redbooks,
Redpapers, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Other publications

These publications are also relevant as further information sources:

� GPFS: Administration and Programming Reference, SA23-1452
� GPFS: Advanced Administration Guide, SC23-7032
� GPFS: Problem Determination Guide, GA76-0443

Online resources and references

� “GPFS-based implementation of a hyper-converged system for software defined
infrastructure” by Azagury, et al, in IBM Journal of Research and Development 58 (2),
1-12, 2014

� IBM Spectrum Scale

http://www.ibm.com/systems/storage/spectrum/scale/index.html

� IBM GPFS Storage Server (Elastic Storage Server) Announcement

http://www.ibm.com/common/ssi/rep_ca/9/897/ENUS114-149/ENUS114-149.PDF

IBM Knowledge Center topics:

� “General Parallel File System”

http://www.ibm.com/support/knowledgecenter/SSFKCN/gpfs_welcome.html

� GPFS 4.1.0.4: Administration and Programming Reference, SA23-1452

http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0.4/com.ibm.cluster.gpfs.
v4r104.gpfs100.doc/bl1adm_top.htm
© Copyright IBM Corp. 2014, 2015. All rights reserved. 59

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www-01.ibm.com/common/ssi/rep_ca/9/897/ENUS114-149/ENUS114-149.PDF
http://www.ibm.com/support/knowledgecenter/SSFKCN/gpfs_welcome.html
http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0.4/com.ibm.cluster.gpfs.v4r104.gpfs100.doc/bl1adm_top.htm
http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0.4/com.ibm.cluster.gpfs.v4r104.gpfs100.doc/bl1adm_top.htm
http://www.ibm.com/common/ssi/rep_ca/9/897/ENUS114-149/ENUS114-149.PDF
http://www.ibm.com/common/ssi/rep_ca/9/897/ENUS114-149/ENUS114-149.PDF
http://www.ibm.com/systems/storage/spectrum/scale/index.html

� GPFS 4.1.04: Concepts, Planning, and Installation, GA76-0441

http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0.4/com.ibm.cluster.gpfs.
v4r104.gpfs300.doc/bl1ins_top.htm

� “GPFS File Placement Optimizer” in GPFS 4.1.0.4: Advanced Administration Guide,
SC23-7032

http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0.4/com.ibm.cluster.gpfs.
v4r104.gpfs200.doc/bl1adv_fposettings.htm

� GPFS Frequently Asked Questions (FAQ)

http://www.ibm.com/support/knowledgecenter/SSFKCN/gpfs4104/gpfsclustersfaq.html

� Elastic Storage Server planning and service information

http://www.ibm.com/support/knowledgecenter/POWER8/p8ehc/p8ehc_storage_landing.h
tm

http://www.ibm.com/common/ssi/cgi-bin/ssialias?subtype=SP&infotype=PM&appname=S
TGE_DC_ZQ_USEN&htmlfid=DCD12377USEN&attachment=DCD12377USEN.PDF#loaded

� GPFS Native RAID information

http://www.ibm.com/support/knowledgecenter/SSYSP8_2.5.0/sts25_welcome.html

http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0/com.ibm.cluster.gpfs.v4
r1.gpfs200.doc/bl1adv_introduction.htm

IBM developerWorks topics:

� “Configuring GPFS for Reliability”

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/General%
20Parallel%20File%20System%20(GPFS)/page/Configuring%20GPFS%20for%20Reliability

� “File System Planning”

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/General%
20Parallel%20File%20System%20(GPFS)/page/File%20System%20Planning

� “Tuning Parameters”

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/General%
20Parallel%20File%20System%20(GPFS)/page/Tuning%20Parameters

OpenStack topics:

� “Authentication”

http://docs.openstack.org/api/openstack-object-storage/1.0/content/authenticati
on-examples-curl.html

� “The Auth System”

http://docs.openstack.org/developer/swift/overview_auth.html#keystone-auth

� “Firewalls and default ports”

http://docs.openstack.org/juno/config-reference/content/firewalls-default-ports
.html

� Chapter 1. Introduction to OpenStack High Availability

http://docs.openstack.org/high-availability-guide/content/ch-intro.html

� Chapter 9. Object Storage command-line client

http://docs.openstack.org/cli-reference/content/swiftclient_commands.html
60 A Deployment Guide for IBM Spectrum Scale Object

http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0.4/com.ibm.cluster.gpfs.v4r104.gpfs300.doc/bl1ins_top.htm
http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0.4/com.ibm.cluster.gpfs.v4r104.gpfs200.doc/bl1adv_fposettings.htm
http://www.ibm.com/support/knowledgecenter/SSFKCN/gpfs4104/gpfsclustersfaq.html
http://www.ibm.com/support/knowledgecenter/SSYSP8_2.5.0/sts25_welcome.html
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/General%20Parallel%20File%20System%20(GPFS)/page/Configuring%20GPFS%20for%20Reliability
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/General%20Parallel%20File%20System%20(GPFS)/page/File%20System%20Planning
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/General%20Parallel%20File%20System%20(GPFS)/page/Tuning%20Parameters
http://docs.openstack.org/juno/config-reference/content/firewalls-default-ports.html
http://docs.openstack.org/juno/config-reference/content/firewalls-default-ports.html
http://docs.openstack.org/high-availability-guide/content/ch-intro.html
http://docs.openstack.org/cli-reference/content/swiftclient_commands.html
http://docs.openstack.org/api/openstack-object-storage/1.0/content/authentication-examples-curl.html
http://docs.openstack.org/juno/config-reference/content/firewalls-default-ports.html
http://docs.openstack.org/juno/config-reference/content/firewalls-default-ports.html
http://www.ibm.com/support/knowledgecenter/POWER8/p8ehc/p8ehc_storage_landing.htm
http://www.ibm.com/support/knowledgecenter/SSFKCN_4.1.0/com.ibm.cluster.gpfs.v4r1.gpfs200.doc/bl1adv_introduction.htm
http://docs.openstack.org/developer/swift/overview_auth.html#keystone-auth
http://www.ibm.com/common/ssi/cgi-bin/ssialias?subtype=SP&infotype=PM&appname=STGE_DC_ZQ_USEN&htmlfid=DCD12377USEN&attachment=DCD12377USEN.PDF#loaded

� “Cluster Telemetry and Monitoring”

http://docs.openstack.org/developer/swift/admin_guide.html#cluster-telemetry-an
d-monitoring

� “Controller Setup”

http://docs.openstack.org/juno/install-guide/install/yum/content/ch_basic_envir
onment.html#basics-database

� “General System Tuning”

http://swift.openstack.org/deployment_guide.html#general-system-tuning

� “Middleware”

http://docs.openstack.org/developer/swift/middleware.html

� “Middleware and Metadata”

http://docs.openstack.org/developer/swift/development_middleware.html

� “Network Time Protocol (NTP)”

http://docs.openstack.org/icehouse/install-guide/install/yum/content/basics-ntp
.html

� “Object Versioning”

http://docs.openstack.org/developer/swift/overview_object_versioning.html

� “OpenStack Installation Guide for Red Hat Enterprise Linux 7, CentOS 7, and Fedora 20”

http://docs.openstack.org/juno/install-guide/install/yum/content/

� “OpenStack Packages”

http://docs.openstack.org/juno/install-guide/install/yum/content/ch_basic_envir
onment.html#basics-packages

� “Pluggable On-Disk Back-end APIs”

http://docs.openstack.org/developer/swift/development_ondisk_backends.html

� “Verify the Identity Service installation”

http://docs.openstack.org/juno/install-guide/install/yum/content/keystone-verif
y.html

� “Verify the installation”

http://docs.openstack.org/juno/install-guide/install/yum/content/verify-object-
storage-installation.html

Other websites:

� Amazon Simple Storage Services (S3)

http://aws.amazon.com/documentation/s3/

� Cyberduck

http://cyberduck.io

� Maldivica

http://www.maldivica.com/

� rsyncd.conf

http://rsync.samba.org/ftp/rsync/rsyncd.conf.html

� SwiftOnFile

https://launchpad.net/gluster-swift
 Related publications 61

http://docs.openstack.org/juno/install-guide/install/yum/content/ch_basic_environment.html#basics-packages
http://docs.openstack.org/developer/swift/admin_guide.html#cluster-telemetry-and-monitoring
http://docs.openstack.org/juno/install-guide/install/yum/content/ch_basic_environment.html#basics-database
http://swift.openstack.org/deployment_guide.html#general-system-tuning
http://docs.openstack.org/developer/swift/middleware.html
http://docs.openstack.org/developer/swift/development_middleware.html
http://docs.openstack.org/icehouse/install-guide/install/yum/content/basics-ntp.html
http://docs.openstack.org/developer/swift/overview_object_versioning.html
http://docs.openstack.org/juno/install-guide/install/yum/content/
http://docs.openstack.org/developer/swift/development_ondisk_backends.html
http://docs.openstack.org/juno/install-guide/install/yum/content/keystone-verify.html
http://docs.openstack.org/juno/install-guide/install/yum/content/verify-object-storage-installation.html
http://cyberduck.io
http://www.maldivica.com/
http://rsync.samba.org/ftp/rsync/rsyncd.conf.html
https://launchpad.net/gluster-swift
http://aws.amazon.com/documentation/s3/

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
62 A Deployment Guide for IBM Spectrum Scale Object

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

®

REDP-5113-02

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

Redpaper™

A Deployment Guide for
IBM Spectrum Scale Object

Learn why Spectrum
Scale is an ideal
environment for
OpenStack Object
Storage

Plan an OpenStack
Swift on Spectrum
Scale deployment

Follow quick-start
implementation steps

Because of the explosion of unstructured data that is generated by individuals
and organizations, a new storage paradigm called “Object Storage” has been
developed. Object Storage stores data in a flat namespace that scales to
trillions of objects. The design of object storage also simplifies how users
access data, supporting new types of applications and allowing users to
access data by various methods, including mobile devices and web
applications. Data distribution and management are also simplified, allowing
greater collaboration across the globe.

OpenStack Swift is an emerging open source object storage software platform
that is widely used for cloud storage. IBM Spectrum Scale (based on IBM
General Parallel File System (GPFS) technology, which also is known formerly
as code name Elastic Storage) is a high-performance and proven product that
is used to store data for thousands of mission-critical commercial installations
worldwide. (Throughout this IBM Redpaper publication, Spectrum Scale is used
to refer to GPFS V4.1.)

Spectrum Scale also automates common storage management tasks, such as
tiering and archiving at scale. Together, Spectrum Scale and OpenStack Swift
provide an enterprise-class object storage solution that efficiently stores,
distributes, and retains critical data.

This paper provides instructions about how to set up and configure Swift with
Spectrum Scale. It also provides an initial set of preferred practices to ensure
optimal performance and reliability.

The goal of this paper is to describe the benefits of using Spectrum Scale as
the underlying file system with OpenStack Swift, guide an administrator
through the installation and configuration of Spectrum Scale Object, and
describe the general set of configurations and scenarios that have been
validated. It is intended for administrators who are familiar with Spectrum
Scale and OpenStack Swift components.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Summary of changes
	September 2016, update
	March 2015, Third Edition
	December 2014, Second Edition

	Chapter 1. Spectrum Scale Object
	1.1 Introduction
	1.2 Assumptions
	1.3 Key concepts and terminology
	1.4 Introduction to Spectrum Scale Object
	1.4.1 Spectrum Scale features
	1.4.2 Use cases
	1.4.3 High-level architecture
	1.4.4 Benefits
	1.4.5 Detailed architecture

	Chapter 2. Planning for a Spectrum Scale Object deployment
	2.1 Spectrum Scale architecture
	2.1.1 Networking
	2.1.2 Placement of Object Store components in Spectrum Scale
	2.1.3 Authentication
	2.1.4 Data protection
	2.1.5 Performance
	2.1.6 High availability
	2.1.7 Spectrum Scale and Swift interaction
	2.1.8 Administration tools

	2.2 Tested configurations

	Chapter 3. Spectrum Scale Object configuration overview
	3.1 Swift replication
	3.2 Swift rings
	3.3 Swift services

	Chapter 4. Spectrum Scale Object installation
	4.1 Installation overview
	4.2 Installation prerequisites
	4.3 Spectrum Scale installation and configuration
	4.4 Object software installation and configuration
	4.5 Postinstallation
	4.5.1 Verifying the installation
	4.5.2 Tuning considerations

	4.6 Removing the installation

	Chapter 5. System administration considerations
	5.1 Managing Swift services
	5.2 Adding a GPFS Object Node
	5.3 Removing a GPFS Object Node
	5.4 Account and container data placement policies
	5.5 Process monitoring
	5.6 Security-Enhanced Linux considerations
	5.7 Port security considerations
	5.8 Configuring rsync to limit host access
	5.9 Virtual Network Computing port conflict
	5.10 Software maintenance

	Chapter 6. Swift feature overview
	Chapter 7. Backup and restore
	7.1 GPFS independent filesets
	7.2 Snapshots
	7.3 Backing up and restoring the object store
	7.3.1 Backup procedure
	7.3.2 Restore procedure
	7.3.3 Automating the backup and restore procedures

	Chapter 8. Summary
	8.1 Future investigation
	8.2 Conclusion

	Appendix A. Additional material
	Locating the web material
	Using the web material
	Downloading and extracting the web material

	Related publications
	IBM Redbooks
	Other publications
	Online resources and references
	Help from IBM

	Back cover

