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Abstract—In this paper we introduce new notions of k-type
anonymizations. Those notions achieve similar privacy goals
as those aimed by Sweenie and Samarati when proposing the
concept of k-anonymization: an adversary who knows the public
data of an individual cannot link that individual to less than
k records in the anonymized table. Every anonymized table
that satisfies k-anonymity complies also with the anonymity
constraints dictated by the new notions, but the converse is
not necessarily true. Thus, those new notions allow generalized
tables that may offer higher utility than k-anonymized tables,
while still preserving the required privacy constraints. We discuss
and compare the new anonymization concepts, which we call
(1, k)-, (k, k)- and global (1, k)-anonymizations, according to
several utility measures. We propose a collection of agglomerative
algorithms for the problem of finding such anonymizations with
high utility, and demonstrate the usefulness of our definitions
and our algorithms through extensive experimental evaluation
on real and synthetic datasets.

I. INTRODUCTION

As data mining algorithms are becoming ubiquitous and

as data are continuously collected and shared within orga-

nizations, privacy-preserving data mining [5], [20] has been

proposed as a paradigm of exercising data mining while

protecting the privacy of individuals.

One of the most well-studied methods of privacy-preserving

data mining is called k-anonymization [3], [6], [14], [16],
[19]. Consider an organization (e.g., a hospital) that holds

information on a set of individuals (e.g., hospitalized patients).

That information is kept in a database table where each record

holds the information of a single individual. The personal

information consists of several attributes, some of which are

private (e.g., illness) and some are public (e.g., name,

date of birth, zipcode) and can be found in public

databases such as the voter register. The organization, for the

purposes of data mining or other types of statistical research,

needs to publish the data, but at the same time it is committed

to protect the private information of the individuals. The

method of k-anonymization suggests to modify the values of
the public attributes of the data so that if the database table is

projected on the subset of the public attributes (a.k.a. quasi-

identifiers), each record of the table becomes identical with at

least k − 1 other records.
The values of the database table are modified via the

operations of generalization or suppression, and typically, a

cost function is used to measure the amount of information

lost by modifying the data. Clearly, by reducing the amount

of information lost in the process of k-anonymizing a table,
we increase the utility of the released table for the purposes of

data mining. Hence, the objective is to modify the table entries

so that the table becomes k-anonymized and the information
loss is minimized.

Our focus in this paper is to explore different notions of k-
type anonymizations that lead to anonymized data with higher

utility. To demonstrate the basic idea, consider first the case

where an adversary knows the public information of a single

individual. Then instead of obtaining a fully k-anonymized
table, we may generalize the table entries so that the public

data of every individual is consistent with the public data in at

least k records of the released table. We call such tables (1, k)-
anonymized. The notion of (1, k)-anonymity is a relaxation of
k-anonymity in the sense that every k-anonymized table is also
(1, k)-anonymized, but the converse is not necessarily true.
Thus, the optimal utility of any data that is (1, k)-anonymized
is at least as large as the optimal utility of the same data that

is k-anonymized.
Another notion that we introduce is that of (k, 1)-anonymity.
Any record in a (k, 1)-anonymized table is consistent with at
least k original records. Clearly, every k-anonymization is also
a (k, 1)-anonymization, and thus (k, 1)-anonymity may give
generalized tables with higher utility.

It turns out that (1, k)-anonymity and (k, 1)-anonymity are
too weak, as we demonstrate later. Hence, we proceed to

introduce the stronger notion of (k, k)-anonymity. A table is
(k, k)-anonymized if it is both (1, k)- and (k, 1)-anonymized.
Such tables seem to provide similar security to that of k-
anonymized tables, in the typical scenario where the adversary

has only full knowledge on some of the individuals. Since

(k, k)-anonymity is also a relaxation of k-anonymity, adopting
that notion as the security goal may be rewarded with higher

utility.

However, if the adversary knows the exact subset of the

population that is represented in the database, and she also

knows the public data of all of those individuals, (k, k)-
anonymity may offer lower security than k-anonymity. For
such scenarios we present the final notion of global (1, k)-
anonymity. Global (1, k)-anonymity offers the same security
as k-anonymity. Namely, even with complete knowledge of
all public data in the database it is not possible to link any

978-1-4244-1837-4/08/$25.00 © 2008 IEEE ICDE 2008744



individual to less than k records of the anonymized table. As
global (1, k)-anonymity is also a relaxation of k-anonymity,
it too may result with tables that have better utility than k-
anonymized tables.

While (k, k)-anonymity may be achieved with a reasonable
computational cost, global (1, k)-anonymity entails a larger
computational toll. However, the adversarial model that poses

a threat on (k, k)-anonymity and justifies the notion of global
(1, k)-anonymity seems to be unrealistic in typical scenarios.
Hence, we believe that in practice (k, k)-anonymity may serve
as a good alternative to both global (1, k)-anonymity and k-
anonymity.

In this paper we are making the following contributions.

• We introduce new notions of k-type anonymizations that
lead to anonymized tables with higher utility. We char-

acterize the relations among the new anonymity notions

and the original notion of k-anonymity, and discuss the
underlying security assumptions.

• We propose a collection of agglomerative algorithms for

the problem of finding high-utility anonymizations that

are consistent with our new anonymity concepts.

• We demonstrate the usefulness of our definitions and

our proposed algorithms through extensive experimental

evaluation on real and synthetic datasets.

The rest of the paper is organized as follows. In Section II

we discuss related work. In Section III we formally define

the basic concepts, and in Section IV we introduce the

new anonymity notions. In Section V we propose algorithms

for anonymizing data according to the standard k-anonymity
notion, as well as according to the new notions. In Section VI

we describe our experiments, and finally we conclude in

Section VII.

II. RELATED WORK

The objective of protecting the privacy of individuals rep-

resented in databases has been formulated by Dalenius [8]

already in 1977. Since then, many approaches have been

suggested for finding the right path between data hiding and

data disclosure. Such approaches include query auditing [13],

output perturbation [7], secure multi-party computation [4],

and data sanitization [5], [9].

One of the recent approaches, proposed by Samarati

and Sweeney [18], [19], is k-anonymization. Meyerson and
Williams [16] introduced the problem of transforming a

database table using suppressions so that the k-anonymity
property is satisfied and the amount of information loss due

to the suppression operations is minimized. They showed that

this problem is NP-hard and they devised two approximation

algorithms: one with running time O(n2k) and approximation
ratio O(k ln k), and one with fully polynomial running time
and approximation ratio O(k ln n). Aggarwal et al. [2], [3]
extended the setting of suppressions-only by allowing more

general rules for generalizing data entries and they devised a

polynomial O(k)-approximation algorithm.
The information loss function proposed by Aggarwal et

al. [2], [3] is defined as a tree measure and it is a generalization

of the function considered by Meyerson and Williams [16].

In [10], three entropy-based functions are suggested for mea-

suring the information loss. Those measures are more general

than the tree measure, as they apply to any type of general-

ization, and they capture more accurately the information loss

due to anonymization. An O(ln k)-approximation algorithm is
presented in [10] for the problem of optimal k-anonymity with
respect to two of the entropy-based measures, as well as for

the tree measure. We review the basic entropy-based measure

in Section IV.

Other information loss measures were used in previous

studies. The LM measure [11], [17] is a more precise version

of the tree measure of Aggarwal et al. The CM measure [11]

and the DM measure [6] were also used as cost metric

measures. Our notions of k-type anonymity are independent of
the underlying cost measure. In our experiments, we use the

basic entropy measure of [10], as a representative of the three

entropy-based measures that were presented there, and the LM

measure, which seems to be the most accurate measure from

among the above mentioned measures.

Recently, Aggrawal et al. [1] proposed to anonymize data

by first clustering the data records and then publish cluster

centers and radii. Our new anonymity notions are independent

of the underlying clustering method and, consequently, they

may be applied also with these clustering techniques.

LeFevre et al. [14] suggested a k-anonymization algorithm
in the model of full-domain generalization, while Bayardo and

Agrawal [6] proposed an optimal algorithm in the model of

global recoding. Those algorithms are not directly comparable

to our present work since we consider the model of local

recoding, in order to optimize the utility of the anonymized

data. Consequently, in our experiments we compare our algo-

rithms to the algorithm of Aggarwal et al. [2], [3], since to the

best of our knowledge it is the leading practical algorithm for

k-anonymity in the local-recoding model. Our agglomerative
algorithm is similar in flavor to the bottom-up algorithm

presented by Xu et al. [22]. However, we also extend this

bottom-up algorithm by considering different utility measures

and exploring alternative merging strategies.

In a slightly different line of research, Machanavajjhala et

al. [15] proposed the concept of ℓ-diversity, as a necessary
enhancement to k-anonymity. We believe that ℓ-diversity fits
also in our framework, but we have left the investigation of

this topic for future research.

Similar to the spirit of our paper, but not directly compara-

ble, are the recent works of Kifer and Gehrke [12], and Xiao

and Tao [21]. Both works aim at improving the utility of the

anonymized data. Kifer and Gehrke [12] suggest publishing

many marginals of the data instead of a single k-anonymous
l-diverse table, in order to obtain better utility while respecting
similar privacy properties. Xiao and Tao [21] propose publish-

ing the table with all non-sensitive attributes unaltered, while

the sensitive attribute in each record is replaced by a label of

an ℓ-diverse group of sensitive attribute values. In addition,
they publish the distribution of the sensitive attribute values

within each such group.

745



III. PRELIMINARIES

Consider a database that holds information on individuals

in some population U = {u1, . . . , un}. Each individual is
described by a collection of r public attributes (also known
as quasi-identifiers), A1, . . . , Ar, and s private attributes,
Z1, . . . , Zs. Each of the attributes consists of several possible

values: Aj = {aj,ℓ : 1 ≤ ℓ ≤ mj}, 1 ≤ j ≤ r, and
Zj = {zj,ℓ : 1 ≤ ℓ ≤ nj}, 1 ≤ j ≤ s. For example, if
Aj is the attribute gender then Aj = {M,F}, while if Aj

is the attribute age, then it is a bounded nonnegative natural

number.

The public database D holds all publicly available informa-
tion on the individuals in U :

D = {R1, . . . , Rn}, with Ri ∈ A1 × · · · × Ar, 1 ≤ i ≤ n.
(1)

The corresponding private database D′ holds the private in-

formation,

D′ = {S1, . . . , Sn}, with Si ∈ Z1×· · ·×Zs, 1 ≤ i ≤ n. (2)

The complete database is the concatenation of those two

databases, D‖D′ = {R1‖S1, . . . , Rn‖Sn}. We refer here-
inafter to the tuples Ri and Si, 1 ≤ i ≤ n, as public and
private records, respectively. We denote the j-th component
of the record Ri by Ri(j). Also, for any set A we let P(A)
denote its power set.

Definition 3.1: Let Aj , 1 ≤ j ≤ r, be finite sets and let
Aj ⊆ P(Aj) be a collection of subsets of Aj . A mapping

g : A1 × · · · ×Ar → A1 × · · · ×Ar is called a generalization

if for every (b1, . . . , br) ∈ A1 × · · ·×Ar and (B1, . . . , Br) =
g(b1, . . . , br), it holds that bj ∈ Bj , 1 ≤ j ≤ r.

As an example consider a database D with two attributes,
age (A1) and zipcode (A2). A valid generalization of a

record Ri = (34, 68423) ∈ D can be g((34, 68423)) =
({30, . . . , 39}, {68400, . . . , 68499}).
Definition 3.1 refers to generalizations of single records. We

now define generalizations of an entire database.

Definition 3.2: Let D = {R1, . . . , Rn} be a database with
public attributes A1, . . . , Ar, A1, . . . , Ar be corresponding

collections of subsets, and gi : A1×· · ·×Ar → A1×· · ·×Ar

be corresponding generalization operators. Let Ri := gi(Ri)
be the generalization of the record Ri, 1 ≤ i ≤ n. Then
g(D) = {R1, . . . , Rn} is a generalization of D.

It is important to note that Definition 3.2 refers to local

recoding, in the sense that a different mapping gi may be

applied to different records. This is in contrast with global

recoding where the same mapping g must be applied to all
records. Local recoding is more flexible, hence it offers higher

utility. For example, assume that one of the attributes in the

database is age, and that there exist several records with the

value 34 under that attribute. Then it is allowed to leave that

value unchanged in some of those records, replace it with the

range {30, . . . , 39} in some other records, and replace it with

a different range, say {20, . . . , 49}, or even totally suppress it
in other records.

Finally, we define consistency between records of the orig-

inal and the generalized database.

Definition 3.3: Let Ri ∈ D be an original record and Rj ∈
g(D) be a generalized record. We say that Rj generalizes Ri,

or, equivalently, that they are consistent, if Ri(h) ∈ Rj(h) for
all 1 ≤ h ≤ r.

IV. k-ANONYMIZATION REVISITED

We begin this section by reviewing the notion of k-
anonymity as it is used in the recent literature [3], [6], [10],

[14], [16]. We then introduce the new notions of k-type
anonymity and discuss them and their interrelations. All of

those notions are relaxations of k-anonymity, hence they allow
greater utility. The commonly used notion of k-anonymity [3],
[6], [14], [16] is defined as follows:

Definition 4.1 (k-anonymity): A k-anonymization of a
database D = {R1, . . . , Rn} is a generalization g(D) =
{R1, . . . , Rn} where for all 1 ≤ i ≤ n, there exist indices
1 ≤ i1 < i2 < · · · < ik−1 ≤ n, all of which are different
from i, such that Ri = Ri1 = · · · = Rik−1

.

The objective in this context is to generalize a given

database until it becomes k-anonymized, while incurring a
minimal loss of information. Let Π be a measure of the amount
of information that is lost by replacing a database D with a
corresponding generalization g(D). Then the problem of k-
anonymization is as follows.

Definition 4.2 (k-anonymization problem): Let
D = {R1, . . . , Rn} be a database with public attributes
Aj , 1 ≤ j ≤ r. Given collections of attribute values,
Aj ⊆ P(Aj), and a measure of information loss Π, find
a corresponding k-anonymization, g(D) = {R1, . . . , Rn},
where Ri ∈ A1 × · · · × Ar, that minimizes Π(D, g(D)).

The measure of loss of information Π took several forms
in previous studies. Meyerson and Williams [16] considered

the case of generalization by suppression, and their measure

simply counted the number of suppressed entries. Aggarwal et

al. [2], [3] used a more general model, in which every single

value may be replaced by a node in a hierarchy tree, and the

corresponding cost is proportional to the level in the hierarchy

that was selected. In this paper, we consider a more general and

more accurate entropy-based measure of loss of information,

which was proposed and studied in [10]. We proceed to review

this measure.

The public database D = {R1, . . . , Rn} induces a prob-
ability distribution for each of the public attributes. Let Xj ,

1 ≤ j ≤ r, denote the value of the attribute Aj in a randomly

selected record from D. Then

Pr(Xj = a) =
#{1 ≤ i ≤ n : Ri(j) = a}

n
.
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Let Bj be a subset of Aj . The conditional entropy H(Xj |Bj)
is defined as

H(Xj |Bj) = −
∑

b∈Bj

Pr(b|Bj) log2 Pr(b|Bj) ,

where

Pr(b|Bj) =
#{1 ≤ i ≤ n : Ri(j) = b}
#{1 ≤ i ≤ n : Ri(j) ∈ Bj}

, b ∈ Bj .

The entropy-based information loss function for generalization

is now defined as follows.

Definition 4.3: Let D = {R1, . . . , Rn} be a database hav-
ing public attributes A1, . . . , Ar, and let Xj be the random

variable that equals the value of the j-th attribute Aj , 1 ≤
j ≤ r, in a randomly selected record from D. Then if
g(D) = {R1, . . . , Rn} is a generalization of D,

ΠE(D, g(D)) =
1

nr
·

n
∑

i=1

r
∑

j=1

H(Xj |Ri(j)) (3)

is the entropy measure of the loss of information caused by

generalizing D into g(D).

Another measure that we use in our experiments is the LM

measure [11], [17]. The cost per each table entry is a number

between 0 (no generalization at all) and 1 (total suppression)

that penalizes the generalization that was made in that entry,

and the overall cost is the average over the costs of all table

entries:

ΠLM(D, g(D)) =
1

nr
·

n
∑

i=1

r
∑

j=1

|Ri(j)| − 1

|Aj | − 1
(4)

We now proceed to introduce our novel notions of k-type
anonymity. Those notions rely on the concept of consistency,

that was defined in Definition 3.3.

Definition 4.4: Let D = {R1, . . . , Rn} be a table and
g(D) = {R1, . . . , Rn} be a corresponding generalization.
Then

• g(D) is a (1, k)-anonymization of D if each record in D
is consistent with at least k records in g(D).

• g(D) is a (k, 1)-anonymization of D if each record in
g(D) is consistent with at least k records in D.

• g(D) is a (k, k)-anonymization of D if it is both a (1, k)-
and a (k, 1)-anonymization of D.

Correspondingly, we define Ak
D, A

(1,k)
D , A(k,1)

D , and A(k,k)
D to

be the collections of all of the k-, (1, k)-, (k, 1)- and (k, k)-
anonymizations of the database D, respectively.

We proceed to state and prove the interrelations between

these four notions of k-type anonymity.

Proposition 4.5: For a given table D, let the collections

Ak
D , A

(1,k)
D , A(k,1)

D , and A(k,k)
D be as in Definition 4.4. Then

Ak
D $ A(k,k)

D $ A(1,k)
D ,A(k,1)

D , (5)

and

A(1,k)
D \ A(k,1)

D 6= ∅, A(k,1)
D \ A(1,k)

D 6= ∅. (6)

A(k,1)
D

Ak
D

A(1,k)
D A(k,k)

D

AG,(1,k)
D

Fig. 1. Interrelations between the five classes of k-type anonymizations.

(See Figure 1.)

Proof: As all the inclusions in (5) are straightforward, it

remains only to exemplify the inequalities in (5) and (6). We

demonstrate those inequalities for the case k = 2, but those
examples may be easily extended to any k.

D 2-anon (1,2)-anon (2,1)-anon (2,2)-anon

1, 3 {1,2}, {3,4} 1, 3 1, {3,4} 1, {3,4}
1, 4 {1,2}, {3,4} {1,2}, {3,4} {1,2}, 4 {1,2}, {3,4}
2, 4 {1,2}, {3,4} {1,2}, 4 {1,2}, 4 {1,2}, 4

The above table D (having two attributes and three records)

is shown along with four anonymizations, from A2
D , A

(1,2)
D ,

A(2,1)
D , and A(2,2)

D , resp. The second generalization is in

A(1,2)
D but not in A(2,1)

D (and, hence, not in A(2,2)
D ). The third

generalization is in A(2,1)
D but not in A(1,2)

D (and, hence, not

in A(2,2)
D ). The last generalization is in A(2,2)

D but not in A2
D.

Our anonymity definitions can also be understood via graph

terminology, as follows: Let D = {R1, . . . , Rn} be a table
and g(D) = {R1, . . . , Rn} be a corresponding generalization.
This pair of tables defines a bipartite graph VD,g(D) on the set

of nodes D ∪ g(D) where an edge connects Ri ∈ D with
Rj ∈ g(D) if and only if the two records are consistent.

With this formulation, A(1,k)
D (respectively, A(k,1)

D , or A(k,k)
D )

is the collection of all generalizations g(D) for which every
node in D (respectively g(D), or D ∪ g(D)) in the graph
VD,g(D) has degree at least k. This formulation in terms of
the underlying bipartite graph, gives rise to yet another notion

of k-type anonymization.

Definition 4.6: Let D and g(D) be a table and its general-
ization, and let VD,g(D) be the corresponding bipartite graph.

A record R ∈ g(D) is called a match of R ∈ D if (R, R)
is an edge and it may be completed to a perfect matching in

VD,g(D). If all recordsR ∈ D have at least k matches in g(D),
then g(D) is called a global (1, k)-anonymization of D.

The relation between the new anonymization class and the

previous ones is given in the following Proposition.

Proposition 4.7: Let AG,(1,k)
D denote the collection of all

global (1, k)-anonymizations of D. Then the relation between

the five classes of anonymizations –Ak
D ,A

(1,k)
D ,A(k,1)

D ,A(k,k)
D

and AG,(1,k)
D , is as depicted in Figure 1.

A. Discussion

Here we discuss the security of these new notions of k-type
anonymity. To that end, we distinguish between two adver-

saries. The first one knows the public data of all individuals
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in the population and the identity of some individuals in the

database. The second one knows, in addition to that, what is

the subset of the entire population that is represented in the

database.

We begin by considering the security of (k, 1)- and (1, k)-
anonymity. Both are insecure. Consider a database D and

a generalization g(D) of D that satisfies (k, 1)-anonymity.
Namely, each record in g(D) is consistent with at least k
records in D. However, it is possible that a record R ∈ D is
consistent with only one record in g(D) – as for example is
the case for the first record in the database of the proof of

Proposition 4.5. Thus, even the first adversary might be able

to reveal the private information of an individual, based on his

public information.

Next, consider a (1, k)-anonymization g(D) of D. It is true
that every record in D is consistent with at least k records in
g(D), hence such anonymizations seem to satisfy our privacy
goal. However, the following example shows where this notion

fails. Assume that D = {R1, . . . , Rn} and that R
∗
is a

generalized record that is consistent with all records in D
(e.g., all entries in R

∗
are suppressed). Consider the following

generalization g(D) = {R1, . . . , Rn}, where Ri = Ri for all

1 ≤ i ≤ n − k and Ri = R
∗
for all n − k + 1 ≤ i ≤ n. It is

easy to see that g(D) ∈ A(1,k)
D . Moreover, since most of the

records in g(D) were not generalized at all, the information
loss Π(D, g(D)) is very small, for any measure Π. However,
such a generalization is completely unacceptable: The private

information of most of the individuals represented in D is

completely revealed.

The notion of (k, k)-anonymity combines the two previous
notions and it seems that it does not suffer from the above

mentioned shortcomings of those two notions. The first adver-

sary may link the public data of an individual to no less than k
records in the generalized database. Hence, this notion seems

to provide the same level of security as that of k-anonymity.
As it entails possibly smaller losses of information than k-
anonymity, it seems like the method of choice in practical

settings.

However, that notion may fail to provide the sought-after

level of privacy under the second adversarial assumption. In

the full version of this paper we describe an attack that the

second adversary may exercise on a (k, k)-anonymized table
in order to link the public information of an individual to

less than k generalized records. The attack works as follows:
Assume that the adversary wishes to find the private data that

corresponds to a record Ri ∈ D. The second adversary, who
knows both D and g(D), may construct the graph VD,g(D).

In that graph, the node that corresponds to Ri is connected

to at least k nodes in g(D). The adversary may test each
of the neighbors of Ri to see which of them is a match. The

generalized record that corresponds to Ri must be one of those

matches. But the number of matches, as opposed to the number

of neighbors, may be smaller than k. This motivates our
definition of global (1, k)-anonymity, which is the most secure
notion from among the four novel notions of k-type anonymity
that we presented here. It is as secure as the original notion of

k-anonymity under the second adversarial assumption. Indeed,
even the second adversary may not link any individual to less

than k records in the generalized database, because there are
always at least k possible different matches for the record of
that individual, each of which is equally probable. In the next

section we show how to convert a (k, k)-anonymized database
into a global (1, k)-anonymized one.
In many scenarios, the second adversarial model seems

unrealistic. Consider, for example, the case of a hospital that

publishes a (k, k)-anonymized database of its patients. Even
if the adversary knows that a particular individual has been

treated in that hospital, and she knows the public information

of all individuals in the entire population, she still might not

know the exact subset of the population that has been treated in

the hospital. Furthermore, in the typical case where the pub-

lished database represents the unified population of patients

in several hospitals, such an adversarial model becomes even

less reasonable. Hence, it seems that in most scenarios (k, k)-
anonymity provides the same level of security as that aimed

by k-anonymity.
In the full version of this paper we discuss an even stronger

adversary – one that also has auxiliary knowledge such as

the private data of some of the individuals in the database.

Herein, we omit further discussion of that adversarial model.

To the best of our knowledge, none of the previous studies of

k-anonymity addresses the issue of adversarial assumptions.
In our opinion, as k-anonymity is a solution to a problem of
privacy, a discussion of adversarial assumptions is in order.

V. ALGORITHMS

In this section we describe various algorithms for k-,
(k, k)- and global (1, k)-anonymization, and compare their
performance. The best practical k-anonymization algorithm
with a provable approximation guarantee is the one due to

Aggarwal et al. [2], [3]. That algorithm, which we call herein

the forest algorithm, guarantees an approximation ratio of

3k−3. In practice, however, better results may be obtained by
heuristic algorithms. In Section V-A we describe such heuristic

algorithms that, as demonstrated later, outperform the forest

algorithm. Then, in Section V-B, we describe an algorithm

for (k, k)-anonymization, and in Section V-C we describe
an algorithm for transforming a (k, k)-anonymization into a
global (1, k)-anonymization.

A. k-Anonymization

In this section we describe heuristic algorithms for the k-
anonymization problem. In Section V-A.1 we present our main

algorithm, the agglomerative algorithm, and then describe

another variant of it, to which we refer as the modified agglom-

erative algorithm. Both algorithms depend upon a definition

of distance between subsets of records. In Section V-A.2 we

describe four choices of distance functions.

1) The basic agglomerative algorithm: Given a database

D = {R1, . . . , Rn} and an integer k > 1, we compute a
clustering of D, γ = {S1, . . . , Sm}, (namely, Si ⊂ D, Si ∩
Sj = ∅ and ⋃

1≤i≤m Si = D) such that |Si| ≥ k for all 1 ≤

748



i ≤ m. The algorithm assumes a distance function, dist(·, ·),
between subsets of D, i.e., dist: P(D) × P(D) → R.

Algorithm 1 Basic algorithm for k-anonymization

Input: Table D, integer k.
Output: Table g(D) that satisfies k-anonymity.
1: For each record Ri ∈ D create a singleton cluster Ŝi =

{Ri} and let γ̂ = {Ŝ1, . . . , Ŝn}
2: Initialize the output clustering γ to ∅.
3: while |γ̂| > 1 do
4: Find the “closest” two clusters in γ̂, namely, the two

clusters Ŝi, Ŝj ∈ γ̂ that minimize dist(Ŝi, Ŝj).
5: Set Ŝ = Ŝi ∪ Ŝj .

6: Remove Ŝi and Ŝj from γ̂.
7: If |Ŝ| < k add Ŝ to γ̂.
8: Else add Ŝ to γ.
9: end while

(At this stage, γ̂ has at most one cluster, Ŝ =
{Ri1 , . . . , Riℓ

}, the size of which is ℓ < k)
10: For each record Rij

, 1 ≤ j ≤ ℓ, add that record to the
cluster S in γ that minimizes dist({Rij

}, S).

Our basic agglomerative algorithm, Algorithm 1, starts with

singleton clusters and then keeps unifying the two closest

clusters until they mature into clusters of size at least k.
As it may produce clusters of size greater than k, while
it is preferable to have clusters of size k or close to k in
order to reduce the clustering anonymization cost, we propose

an improved version of the above described algorithm—the

modified agglomerative algorithm. Algorithm 2 describes how

to replace line 8 of Algorithm 1 in order to achieve that

goal. Essentially, before moving a “ripe” cluster Ŝ to the final
clustering γ, we shrink it to a sub-cluster of size k.

Algorithm 2 Modification of line 8 of Algorithm 1

Input: Ŝ = {R̂1, . . . , R̂ℓ} where ℓ > k.
1: while Ŝ has size greater than k do
2: For all 1 ≤ i ≤ ℓ, compute di = dist(Ŝ, Ŝ \ {R̂i}).
3: Find the record R̂i that maximizes di.

4: Remove R̂i from Ŝ and add the corresponding singleton
cluster {R̂i} to γ̂.

5: end while

6: Place the shrunk cluster Ŝ (of size k) in γ.

Finally, the clustering of D that is produced by either

of the above agglomerative algorithms is translated into a

corresponding generalization g(D) as follows: Every record
Ri ∈ D is replaced by the closure of the cluster to which Ri

belongs, where a closure of a subset of records is the minimal

generalized record that is consistent with all of them. Since

all of the clusters are of size at least k, every generalized
record in g(D) is indistinguishable from at least k − 1 other
generalized records. The running time of the agglomerative

algorithm is O(n2).

2) The distance function: A key ingredient in the agglomer-

ative algorithms is the definition of distance between clusters.

It is natural to define the distance so that it best fits the cost

function of the k-anonymization. We used in our experiments
two measures – the entropy measure, (3), and the LM measure,

(4). Both take the form Π(D, g(D)) = 1
n

∑n
i=1 c(Ri), where

c(Ri) is the corresponding generalization cost of the gener-
alized record Ri. (I.e., c(Ri) = 1

r

∑r
j=1 H(Xj |Ri(j)) in the

case of the entropy measure, and c(Ri) = 1
r

∑r
j=1

|Ri(j)|−1
|Aj |−1

in the case of the LM measure.) Since all records in a given

cluster are replaced by the same generalized record, we have

Π(D, g(D)) =
∑

S∈γ

|S| · d(S) , where d(S) = c(S) . (7)

We use hereinafter the above definition of the function d(·) as
the generalization cost of any subset of records. Given such

a subset S, its generalization cost d(S) is the generalization
cost c(·) of its closure S.
We briefly describe below four choices of distance functions

that can be used in the basic agglomerative algorithm. A

detailed discussion of those distance functions is postponed

for the full version of the paper.

Distance function 1. Our first definition of distance between

two clusters A and B is:

dist(A, B) = |A∪B| ·d(A∪B)−|A| ·d(A)−|B| ·d(B). (8)

A property of this distance function is that it usually favors

the unification of smaller clusters, thus resulting in a balanced

growth of cluster sizes.

Distance function 2. The second function we use is

dist(A, B) = d(A ∪ B) − d(A) − d(B). (9)

This function may attain negative values, hence, it is not a

genuine distance function. However, it still serves our goal

as the measure for the price that we pay in terms of loss

of information when choosing to unify the clusters A and B.
Using function (9) gives rise to unbalanced cluster sizes during

the merging process. Namely, a typical behavior is that one

cluster grows and evolves to its full size and only then another

small cluster starts to evolve to its full size.

Distance function 3. The experimental comparison between

the two previous distance functions indicated that an unbal-

anced formation of clusters is preferable to a balanced one.

Using the distance definition

dist(A, B) =
d(A ∪ B) − d(A) − d(B)

log (|A ∪ B|) , (10)

takes that idea one step further. The division by log (|A ∪ B|)
gives priority to adding a record to a larger cluster. Our

experiments show that it performs slightly better than the

function (9).

Distance function 4. The final variant of a distance function

that we use is

dist(A, B) =
d(A ∪ B)

d(A) + d(B) + ε
. (11)
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Given two subsets, A and B, this function returns the factor
by which the generalization cost of the union A∪B increases
the sum of the generalization costs of A and B. The additive
constant in the denominator is needed for the cases where both

A and B are singletons and hence have a zero generalization
cost. In our experiments we used ε = 0.1.
We conclude this section by noting that, recently, Nergiz

and Clifton [17] devised also an agglomerative clustering

algorithm that is similar to our basic algorithm. The distance

function that they used is dist(A, B) = d(A∪B)−d(B), which
is an asymmetric version of our second distance function, (9).

B. (k, k)-Anonymization

In this section we describe algorithms for (k, k)-
anonymizing a given database D. First, we present in Sec-
tion V-B.1 algorithms for (k, 1)-anonymization. Then, in Sec-
tion V-B.2, we describe an algorithm for transforming a (k, 1)-
anonymization into a (k, k)-anonymization.

1) Algorithms for (k, 1)-anonymization: Given D =
{R1, . . . , Rn}, we may find its optimal (k, 1)-anonymization
as follows. For each record Ri ∈ D, we look for the subset of
k−1 records {Ri1 , . . . , Rik−1

} ⊂ D\{Ri} that minimizes the
generalization cost d({Ri, Ri1 , . . . , Rik−1

}), and then define
Ri to be the closure of {Ri, Ri1 , . . . , Rik−1

}. As the run time
of that algorithm is impractical, O(n ·

(

n−1
k−1

)

) = O(nk), we
proceed to describe two approximation algorithms for that

problem.

The first one, Algorithm 3, joins each record with the k−1
nearest records.

Algorithm 3 (k, 1)-anonymization by nearest neighbors

Input: Table D, integer k.
Output: Table g(D) that satisfies (k, 1)-anonymity.
1: For all 1 ≤ i < j ≤ n compute di,j = dj,i = d({Ri, Rj}).
2: for all 1 ≤ i ≤ n do
3: Find k − 1 indices {i1, . . . , ik−1} ⊂ {1, . . . , n} \ {i}

that minimize di,j .

4: Define Ri to be the closure of {Ri, Ri1 , . . . , Rik−1
}.

5: end for

Proposition 5.1: Algorithm 3 produces a table g(D) =
{R1, . . . , Rn} that is a (k, 1)-anonymization of D and it

approximates optimal (k, 1)-anonymization to within a factor
of k − 1.
While Algorithm 3 offers a guaranteed approximation fac-

tor, our second algorithm, Algorithm 4, which constructs the

clusters by greedily selecting at each stage the next closest

record, performed much better in our experiments. The run-

time of both algorithms is O(kn2).

2) From (k, 1)- to (k, k)-anonymization: Let D =
{R1, . . . , Rn} be a database and g(D) = {R1, . . . , Rn} be
any generalization of D. Algorithm 5 further generalizes the
records of g(D) until it becomes a (1, k)-anonymization of D.
By applying this algorithm to a generalization that is already a

Algorithm 4 (k, 1)-anonymization by expansion

Input: Table D, integer k.
Output: Table g(D) that satisfies (k, 1)-anonymity.
1: for all 1 ≤ i ≤ n do
2: Set Si = {Ri}
3: while |Si| < k do
4: Find the record Rj /∈ Si that minimizes

dist(Si, Rj) = d(Si ∪ {Rj}) − d(Si).
5: Set Si = Si ∪ {Rj}.
6: end while

7: Define Ri to be the closure of Si.

8: end for

(k, 1)-anonymization, we get a (k, k)-anonymization. (For any
Ri ∈ D and Rj ∈ g(D) we let Ri + Rj denote the minimal

generalized record that generalizes both Ri and Rj .)

Algorithm 5 (1, k)-anonymizer

Input: Table D = {R1, . . . , Rn}, generalized table g(D) =
{R1, . . . , Rn}, integer k.

Output: Table g′(D) that generalizes g(D) and satisfies
(1, k)-anonymity.

1: for all 1 ≤ i ≤ n do
2: Let ℓ be the number of records Rj that are consistent

with Ri.

3: if ℓ < k then
4: Scan all records Rj that are not consistent with Ri

and find the k − ℓ ones that minimize c(Ri + Rj)−
c(Rj).

5: Replace each of those k−ℓ records,Rj , with Ri+Rj .

6: end if

7: end for

The runtime of Algorithm 5 is O(kn2). Consequently, so
is the runtime of the coupling of that algorithm with either of

the (k, 1)-anonymizers, Algorithm 3 or Algorithm 4 (such a
coupling is a (k, k)-anonymizer).

C. Global (1, k)-Anonymization

Next, we describe Algorithm 6 that transforms a (k, k)-
anonymization g(D) of D into a global (1, k)-anonymization.
The algorithm works as follows: For each Ri ∈ D, it computes
the subset P of its set of neighborsQ, consisting of all matches
of Ri. Since g(D) is a (k, k)-anonymization of D, then |Q| ≥
k, but |P | could be less than k. In order to achieve global
(1, k)-anonymity, we increase |P | so that it becomes at least
k. To that end, if |P | < k, we select the non-match neighbor
Rjh
of Ri that minimizes the quantity dh = c(Rjh

+ Ri) −
c(Ri). Then, we further general the record Ri to be consistent

also with Rjh
. The reader may verify that this update of Ri

“upgrades” Rjh
from a neighbor of Ri to a match of Ri. We

then keep repeating this procedure until |P | becomes at least k.
(It is interesting to note that in almost all of our experiments,

one such step was sufficient to increase |P | to become at least
k, even if the initial deficiency was greater than 1.)
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Algorithm 6 (k, k)- to global (1, k)-anonymization

Input: Table D = {R1, . . . , Rn}, generalized table g(D) =
{R1, . . . , Rn} that satisfies (k, k)-anonymity, integer k.
(It is assumed that for all 1 ≤ i ≤ n, Ri is a generalization

of Ri.)

Output: Table g(D) that satisfies global (1, k)-anonymity
1: for all 1 ≤ i ≤ n do
2: Set Q = {Rj1 , . . . , Rjq

} to be the set of q ≥ k
neighbors of Ri.

3: Compute P – the subset of Q consisting of all matches
of Ri.

4: If |P | ≥ k, skip to next i.
5: For all 1 ≤ h ≤ q such that Rjh

∈ Q \ P , compute
dh = c(Rjh

+ Ri) − c(Ri).
6: Select the index 1 ≤ h ≤ q where Rjh

∈ Q \ P , for
which dh is minimal.

7: Set Ri = Rjh
+ Ri.

8: Return to Step 3.

9: end for

Algorithm 6 needs to determine for every edge of the

original graph, (Ri, Rj), whether it may be completed to a
perfect matching in the graph. One way of doing so is by

removing the nodes Ri and Rj from the graph, and checking

whether the remaining graph has a perfect matching. This may

be done by invoking the Hopcroft-Karp algorithm, the run time

of which is O(
√

nm), where n is the number of nodes in the
graph and m is the number of edges. Since, in the worst case,
we need to apply that procedure for every edge, the overall

running time of Algorithm 6 is O(
√

nm2).
In all of the graphs VD,g(D) that corresponded to our (k, k)-
anonymizations of both real and artificial data, the degree of

each original record was between k and 2k. Therefore, m ≤
2nk, and, consequently, the running time of Algorithm 6 for
our bipartite graphs is O(n2.5k2). Albeit polynomial in n and
k, this runtime may be too large in practice.

VI. EXPERIMENT RESULTS

In this section we discuss the experiments that we performed

in order to evaluate the new anonymity concepts and our

proposed algorithms. We tested all algorithms for k- and
(k, k)-anonymization on both artificial and real data.

Artificial data. For a given value of n, we randomly generated
tables of n records over a set of six attributes A1, . . . , A6.

Each of those six attributes consisted of finitely many values

that were selected according to the following probability

distributions:

A1 : {0.7, 0.3}
A2 : {0.3, 0.3, 0.2, 0.2}
A3 : {0.25, 0.25, 0.4, 0.1}
A4 : {6 × 0.07, 10× 0.04, 9× 0.02}
A5 : {10 × 0.1}
A6 : {0.05, 0.05, 0.5, 0.3, 0.1}
For each of the above attributes, A = {a1, . . . , am}, the
collection of permissable generalized subsets, A, is described

below. As all of those collections include all singleton subsets,

{ai}, 1 ≤ i ≤ m, as well as the entire set A, we list below
only the non-trivial subsets in A.

A1 : None (other than{a1}, {a2} and {a1, a2})
A2 : {a1, a2}, {a3, a4}
A3 : {a1, a2}, {a3, a4}
A4 : {a1, . . . , a6}, {a7, . . . , a12}, {a13, . . . , a18},

{a19, . . . , a25}, {a1, . . . , a12}, {a13, . . . , a25}
A5 : {a1, a2}, {a3, a4}, {a6, a7}, {a8, a9},

{a1, a2, a3, a4, a5}, {a6, a7, a8, a9, a10}
A6 : {a1, a2}, {a4, a5}, {a3, a4, a5}

Real-life data. We used two real-life datasets, Adult and

Contraceptive Method Choice (or CMC), from the

UCI Machine Learning Repository.1

Adult: This dataset was extracted from the US Census

Bureau Data Extraction System. It contains demographic in-

formation of a small sample of US population. The public

attributes are: age, work-class, education-level, marital-status,

occupation, family-relationship, race, sex and native-country.

For our experiments we used a subset of the dataset of size

n = 5000. The collection of permissable generalized subsets
in each of the attributes was selected by grouping together

values that are semantically close. (For example, the attribute

education-level was divided into three groups: high-school,

college, and advanced-degrees.) Such generalized databases

have more value to the data miner. A complete description

of those collections is postponed for the full version of this

paper.

CMC: This dataset is a subset of the 1987 National Indone-

sia Contraceptive Prevalence Survey. Its purpose is to help

predicting the contraceptive method choice (no use, long-term

methods, or short-term methods) of a woman, based on her

demographic and socio-economic characteristics. This dataset

has n = 1500 records. In the full version of the paper we
provide more details on this dataset.

A. Results

The algorithms that we compared were: (a) The two ag-

glomerative algorithms for k-anonymization (Algorithm 1 and
its modified version, Algorithm 2); each of them was executed

with each of the four distance functions that were described

in Section V-A.2. (b) The forest Algorithm, [2]. (c) The

two (k, k)-anonymization algorithms that were described in
Section V-B (namely, either of Algorithms 3 and 4, coupled

with Algorithm 5).

We tested the performance of those algorithms on each

of the datasets described above – artificial, adult or CMC

(denoted hereinafter as ART, ADT, and CMC, respectively)

– and measured the information loss by either the entropy

measure (EM) or the LM measure. (In the full version of this

paper we used additional measures.)

1http://mlearn.ics.uci.edu/MLSummary.html
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TABLE I

SUMMARY OF RESULTS

k 5 10 15 20

ART

EM

best k-anon 0.65 0.98 1.13 1.22
forest 0.89 1.25 1.42 1.51

(k, k)-anon 0.53 0.83 0.99 1.08

ADT

EM

best k-anon 0.66 0.93 1.08 1.18
forest 1.02 1.45 1.63 1.73

(k, k)-anon 0.50 0.75 0.90 1.00

CMC

EM

best k-anon 0.67 0.95 1.08 1.20
forest 0.99 1.31 1.46 1.53

(k, k)-anon 0.54 0.80 0.98 1.10

ART

LM

best k-anon 0.12 0.19 0.23 0.25
forest 0.15 0.24 0.28 0.31

(k, k)-anon 0.10 0.16 0.19 0.22

ADT

LM

best k-anon 0.14 0.20 0.24 0.26
forest 0.22 0.37 0.46 0.53

(k, k)-anon 0.09 0.13 0.16 0.18

CMC

LM

best k-anon 0.14 0.21 0.25 0.28
forest 0.19 0.31 0.40 0.44

(k, k)-anon 0.11 0.17 0.20 0.23

Our results are summarized in Table I. They are partitioned

into six sets of experiments according to the choice of dataset

and measure. In each set, the first row (“best k-anon”) shows
the results of the agglomerative k-anonymization algorithm
that minimized the sum of information loss over four experi-

ments with k = 5, 10, 15, 20. The second row shows the result
of the forest algorithm, and the third one shows the result of

the better (k, k)-anonymization. Figures 2 and 3 illustrate the
results for the adult database. (The graphs for the other two

databases are similar.)

The main conclusions of our experimental results are:

• All of the suggested agglomerative k-anonymity algorithms
yield better anonymizations than the forest algorithm; infor-

mation loss is reduced by 20%–50%.

• The improvement offered by (k, k)-anonymity over the best
k-anonymity algorithm, ranges between 10% and 30%.
Additional conclusions that arise from our experiments are

as follows (more details will be provided in the full version

of this paper):

• Among the different variants of the k-anonymity agglomer-
ative algorithms, the two distance functions that consistently

bring the best results are (10) and (11).

• In all of the experiments, the coupling of Algorithms 4 and
5 produced better (k, k)-anonymizations than the coupling of
Algorithms 3 and 5.

• The corrections made in the modified agglomerative al-
gorithm usually reduce the information loss, as expected.

However, those improvements are negligible for the two

distance functions mentioned above, because these functions

were designed so that the resulting clusters have the required

size, thus leaving only little room for improvement.

Another interesting finding from Table I is that the average

information loss per entry remains roughly the same for each

of our algorithms, regardless of the dataset. For example,

the best k-anonymization algorithm loses about 0.66 bits of
information per entry, and about 0.13 LM-”information units”

per entry, in all datasets.
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Fig. 3. Comparison of algorithms by the LM measure

VII. CONCLUSIONS

In this paper we proposed new notions of k-type anonymiza-
tions. Our goal has been to ensure anonymization of a

dataset while minimizing the amount of information lost

during the anonymization process. The anonymity concepts we

defined are called (1, k)-, (k, 1)-, (k, k)-, and global (1, k)-
anonymizations, all of which are relaxations of the original

k-anonymity notion, hence they offer solutions with higher
utility. As (1, k)- and (k, 1)-anonymity were exemplified to
be weak, we proposed (k, k)-anonymity and global (1, k)-
anonymity as more secure notions. (k, k)-anonymizations are
secure if we assume that the adversary has access to a limited

amount of records in the dataset, but can be insecure against

a powerful adversary that has full knowledge of all public

records. On the other hand, global (1, k)-anonymity is as
secure as k-anonymity, even against such powerful adversaries.

We described algorithms for k-anonymity and for the new k-
type anonymity notions. Our experiments showed that our new

agglomerative k-anonymity algorithms perform in practice
better than algorithms previously proposed in the literature

for the same problem (for the local recoding model). Also,
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we verified that (k, k)-anonymization yields indeed solutions
that have smaller amount of information loss than solutions

obtained by k-anonymization.
Many interesting problems remain for future work. One is

to find more scalable algorithms or algorithms with better

approximation guarantees. Experimentally, we would like to

explore the relation between (k, k)-anonymity and global
(1, k)-anonymity. For instance, for real-life datasets, it might
be true that (k, k)-anonymization (or perhaps a ((1+ε)k, (1+
ε)k)-anonymization for a suitably chosen ε) yields solutions
that satisfy also global (1, k)-anonymity.
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