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We propose a new cloud computing paradigm, data 
protection as a service (www.mydatacontrol.com). DPaaS 
is a suite of security primitives offered by a cloud platform, 
which enforces data security and privacy and offers evi-
dence of privacy to data owners, even in the presence of 
potentially compromised or malicious applications.

SECURITY AND PRIVACY CHALLENGES 
It’s impossible to develop a single data-protection so-

lution for the cloud because the term means too many 
different things. Any progress must first occur in a par-
ticular domain—accordingly, our work focuses on an 
important class of widely used applications that includes 
e-mail, personal financial management, social net-
works, and business tools such as word processors and 
spreadsheets. The following criteria define this class of 
applications: 

 • provide services to a large number of distinct end 
users, as opposed to bulk data processing or workflow 
management for a single entity; 

 • use a data model consisting mostly of sharable units, 
where all data objects have access control lists (ACLs) 
with one or more users; and

 • developers could run the applications on a separate 
computing platform that encompasses the physical 
infrastructure, job scheduling, user authentication, 
and the base software environment, rather than im-
plementing the platform themselves. 

Overly rigid security is as detrimental to cloud ser-
vice value as inadequate security. A primary challenge in 
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designing a platform-layer solution useful to many appli-
cations is ensuring that it enables rapid development and 
maintenance. To ensure a practical solution, we considered 
the following goals relating to data protection as well as 
ease of development and maintenance:

 • Integrity. The user’s stored data won’t be corrupted. 
 • Privacy. Private data won’t be leaked to any unauthor-

ized entity. 
 • Access transparency. Logs will clearly indicate who or 

what accessed any data. 
 • Ease of verification. Users will be able to easily verify 

what platform or application code is running, as well 
as whether the cloud has strictly enforced their data’s 
privacy policies. 

 • Rich computation. The platform will allow efficient, 
rich computations on sensitive user data. 

 • Development and maintenance support. Because 
they face a long list of challenges—bugs to find and 
fix, frequent software upgrades, continuous usage 
pattern changes, and user demand for high perfor-
mance—developers will receive both development 
and maintenance support. 

Any credible data protection approach must grapple 
with these issues, several of which are often overlooked 
in the literature. 

DATA PROTECTION AS A SERVICE 
Currently, users must rely primarily on legal agreements 

and implied economic and reputational harm as a proxy 
for application trustworthiness. As an alternative, a cloud 
platform could help achieve a robust technical solution by 

 • making it easy for developers to write maintain-
able applications that protect user data in the cloud, 
thereby providing the same economies of scale for 
security and privacy as for computation and storage; 
and

 • enabling independent verification both of the plat-
form’s operation and the runtime state of applications 
on it, so users can gain confidence that their data is 
being handled properly. 

Much as an operating system provides isolation be-
tween processes but allows substantial freedom inside a 

process, cloud platforms could offer transparently verifi-
able partitions for applications that compute on data units, 
while still allowing broad computational latitude within 
those partitions. 

DPaaS enforces fine-grained access control policies on 
data units through application confinement and informa-
tion flow checking. It employs cryptographic protections 
at rest and offers robust logging and auditing to provide 
accountability. Crucially, DPaaS also directly addresses the 
issues of rapid development and maintenance. 

To truly support this vision, cloud platform providers 
would have to offer DPaaS in addition to their existing 
hosting environment, which could be especially beneficial 
for small companies or developers who don’t have much 
in-house security expertise, helping them build user con-
fidence much more quickly than they otherwise might. 

WHAT ABOUT ENCRYPTION? 
In the realm of data protection, developers often view 

encryption as a kind of a silver bullet, but in reality, it’s 
just a tool—albeit a powerful one—to help achieve data 
protection properties. Although full-disk encryption (FDE) 
and computing on encrypted data have recently gained 
attention, these techniques have fallen short of answering 
all of the security and maintenance challenges mentioned 
earlier. 

FDE encrypts entire physical disks with a symmetric 
key, often in disk firmware, for simplicity and speed. Al-
though FDE is effective in protecting private data in certain 
scenarios such as stolen laptops and backup tapes, the 
concern is that it can’t fulfill data protection goals in the 
cloud, where physical theft isn’t the main threat. 

At the other end of the spectrum, Craig Gentry re-
cently proposed the first realization of fully homomorphic 
encryption (FHE),2 which offers the promise of general 
computation on ciphertexts. Basically, any function in 
plaintext can be transformed into an equivalent function 
in ciphertext: the server does the real work, but it doesn’t 
know the data it’s computing. Naturally, this property gives 
strong privacy guarantees when computing on private 
data, but the question of its practicality for general cloud 
applications still remains. 

FDE versus FHE
A comparison of FDE and FHE in the cloud comput-

ing setting reveals how these encryption techniques fall 
short of addressing the aforementioned security and  
maintenance challenges simultaneously.

Key management and trust. With FDE, the keys reside 
with the cloud platform, generally on or close to the physi-
cal drive: the cloud application user isn’t involved in key 
management. While user data is encrypted on the physical 
disk, it is always accessible in the clear to any layer above 
it. Consequently, FDE doesn’t prevent online attacks from 

Currently, users must rely primarily on 
legal agreements and implied economic 
and reputational harm as a proxy for 
application trustworthiness.
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leaking the data to an unauthorized party, which is far more 
common in the cloud setting than physical attacks. 

With FHE, untrusted applications can’t easily learn or 
leak data. Users typically own and manage FHE encryp-
tion keys, while applications compute on encrypted forms 
of user data without actually “seeing” the data. This raises 
questions about how users can store their keys securely 
and reliably, especially in the presence of sharing. After 
all, the point of the cloud is to avoid maintaining local 
state. 

Sharing. Collaboration is often cited as a “killer feature” 
for cloud applications. Fine-grained access control is nec-
essary to let a data owner selectively share one or more 
data objects with other users. 

With FDE, users must fully trust the cloud provider to 
enforce correct access control because the key granularity 
(the whole disk) doesn’t line up with access control granu-
larity (a single data unit). 

With FHE, because the user—or a third-party cloud pro-
vider employed by the user—manages the encryption keys, 
the best way of providing access control isn’t clear yet. To 
offer fine-grained encryption-based access control, we 
might need to define key management on a per data object 
granularity basis or over collections of data objects. How-
ever, to support homomorphic operations across multiple 
encrypted objects, those objects must still be encrypted 
under the same public key. 

Aggregation. Many cloud applications require per-
forming data mining over multiple users’ data for tasks 
such as spam filtering or computing aggregate statistics. 
Because users fully trust the cloud provider, performing 
such data aggregation is relatively easy with FDE. 

Current FHE techniques don’t readily allow computing 
on multiple users’ data encrypted under different keys. 
Therefore, it isn’t clear yet how to support such data aggre-
gation applications with FHE; similarly, offline aggregation 
across users’ data isn’t possible. One solution might be to 
escrow keys to the cloud provider, but that would eliminate 
many of FHE’s benefits, making its cost harder to justify. 

Performance. According to a recent survey, 49 percent 
of users abandon a site or switch to a competitor after 
experiencing performance issues.3  And the need for speed 
is only increasing: in 2000, a typical user was willing to 
wait 8 seconds for a webpage to load before navigating 
away; by 2009, that number dropped to 3 seconds.

When FDE is implemented in disk firmware, its sym-
metric encryption can run at the disk’s full bandwidth, 
effectively avoiding a slowdown. Although researchers 
have made significant advances in improving FHE’s per-
formance since Gentry’s original proposal, it has a long 
way to go before becoming efficient enough to deploy at 
scale. In Gentry’s estimation, implementing something like 
a Google search with FHE would require roughly 1 trillion 
times more computation than the one without FHE.4 

Ease of development. Because FDE is hidden behind 
an abstraction of the physical disk, it typically has no 
impact on application development. In theory, FHE could 
also be relatively automatic: it works on an abstraction of 
the program as a circuit and transforms that circuit. In 
practice, however, performing this translation for arbitrary 
programs—especially when marshaling data—could be 
quite complex. At a minimum, programming tools would 
need to evolve dramatically. 

FHE doesn’t allow developers to input data-driven judg-
ments into the development cycle. Specifically, application 
developers can’t look at the data, making debugging, A/B 
testing, and application improvements more difficult. 

Maintenance. Bugs are inevitable. However, availabil-
ity is a primary cloud goal, so the need to debug quickly 
is a top priority. Systems often fail for some unforeseen 
reason, requiring someone to step in and manually take 
action. Determining the nature of the problem might 
require detecting unusual activity or understanding 
exactly what went wrong, which isn’t easy with FHE. If the 
application writer can’t inspect application state meaning-
fully, debugging could be a real challenge. 

Splitting the difference 
Although FDE offers excellent performance and ease of 

development, it does little to protect privacy at the required 
granularity. FHE, on the other hand, pushes the privacy 
envelope in the other direction by removing data visibility 
entirely from both the server and application developer. 
However, having a remote machine see and compute on 
sensitive data isn’t automatically a privacy violation. FHE’s 
guarantees go beyond what’s necessary to protect data, 
and in so doing, it incurs significant performance and de-
velopment costs. 

We believe the DPaaS approach is better suited for the 
target applications because it falls between the two. It 
keeps the “natural” granularity of FHE by keying on units 
of sharable data and maintains the performance of FDE 
by using symmetric encryption. It moves key manage-
ment and access control to a middle tier—the computing 
platform—to balance rapid development and easy main-
tenance with user-side verifiability. 

A WAY FORWARD 
In an OS, processes and files are the primary units of 

access control, and the OS provides suitable isolation for 

The DPaaS approach moves key 
management and access control to a 
middle tier—the computing platform—
to balance rapid development and easy 
maintenance with user-side verifiability. 
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them. Applications can do what they like within these 
boundaries. 

In a cloud setting, the unit of access control is typically 
a sharable piece of user data—for example, a document 
in a collaborative editor. Ideally, the system offers some 
analogous confinement of that data, restricting its visibility 
only to authorized users and applications while allowing 
broad latitude for what operations are done on it. This 
can make writing secure systems easier for programmers 
because confinement makes it more difficult for buggy 
code to leak data or for compromised code to grant unau-
thorized access to data. A malicious program might find 
different ways to exfiltrate data, such as employing a side 
channel or covert channel, but the priority here is to sup-
port benign developers, while making all applications and 
their actions on users’ sensitive data more easily auditable 
to catch improper usage. 

One of the main concerns people and organizations 
have about putting data in the cloud is that they don’t 
know what happens to it. Having a clear audit trail of 
when data is accessed—and by whom or what—bolsters 
confidence that data is being handled appropriately. Con-
finement can be effective for most normal user accesses, 
but administrative access that’s outside the normal flow 
of user access and involves human administrators (for  
example, for debugging and analysis) can especially ben-
efit from auditing. 

Verifiable platform support 
Bugs need to be fixed. Data needs to be updated and 

migrated as schemas change. Offline computation is 

valuable for data aggregation across users or for precom-
putation of expensive functions. To reduce the risk of 
unaudited backdoor access, all these functions should 
be subject to the same authorization flows and platform-
level checks as normal requests, albeit with a separate, 
appropriate policy. 

Platform providers should build support for confine-
ment and auditing into the platform in a verifiable way. This  
approval has many advantages: 

 • application developers don’t have to reinvent the 
wheel; 

 • application code is independent of ACL enforcement; 
 • third-party auditing and standards compliance are 

easier; and
 • the verifiable platform extends to virtualized environ-

ments built atop it. 

Finally, the cost of examining the platform is amortized 
across all its users, which means significant economies of 
scale for a large-scale platform provider. 

Design space and a sample architecture 
Figure 1 illustrates an example architecture for explor-

ing the DPaaS design space.5 Here, each server contains 
a trusted platform module (TPM) to provide secure and 
verifiable boot and dynamic root of trust. This example ar-
chitecture demonstrates at a high level how it’s potentially 
possible to combine various technologies such as applica-
tion confinement, encryption, logging, code attestation, 
and information flow checking to realize DPaaS. 
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Figure 1. Sample architecture for data protection as a service illustrates how it’s possible to integrate various technologies, 
such as application confinement, encryption, logging, code attestation, and information flow checking to realize DPaaS.



Because DPaaS mediates all data access, 
authenticates users, and runs binaries, 
it knows what data is accessed by what 
user, and with which application.

43JANUARY 2012

Confinement. A secure data capsule (SDC) is an 
encrypted data unit packaged with its security policy. 
For example, an SDC might encompass a sharable docu-
ment or a photo album along with its ACL. The platform 
can use confinement and information-flow controls to 
enforce capsules’ ACLs.  

To avoid unauthorized leakage of user data in the pres-
ence of potentially buggy or compromised applications, 
DPaaS confines the execution of applications to mutually 
isolated secure execution environments (SEEs). 

Inter-SEE isolation has different levels, but stronger iso-
lation generally exacts a greater performance cost due to 
context switching and data marshaling. At one end, a SEE 
could be a virtual machine with an output channel back 
to the requesting user. For performance reasons, it’s pos-
sible to have a pool of VMs or containers in which the data 
state is reset before being loaded with a new data unit—
similar to how a thread pool works in a traditional server. 
A more lightweight approach would be to use OS process 
isolation; an even lighter-weight approach would be to use 
language-based features such as information-flow controls6 
or capabilities.7 We can use mechanisms such as Caja for 
JavaScript to confine user data on the client side as well, al-
though we don’t include that option as part of the platform. 

In some cases, applications need to call outside services 
or APIs provided by third-party websites—for example, 
the Google Maps API. An application might need to export 
users’ data to outside services in this process. Users can 
explicitly define privacy policies to allow or disallow ex-
porting SDCs to such third-party services, and DPaaS can 
enforce these policies. Additionally, DPaaS can log all in-
stances where data is exported, and an auditor can later 
inspect these logs and detect any misuse a posteriori.

Because our target applications have a basic require-
ment of sharable data units, DPaaS supports ACLs on SDCs. 
The key to enforcing those ACLs is to control the I/O chan-
nels available to the SEEs. To confine data, the platform 
decrypts the SDC’s data only in a SEE in compliance with 
the SDC’s security policy. A SEE can funnel the output 
either directly to the user or to another SEE that provides 
a service; in either case, the platform mediates the channel. 
A buggy SEE only exposes a single SDC, an improvement 
over systems in which malicious input triggers a bug that 
allows access to all data. 

The platform also mediates ACL modifications, other-
wise known as sharing or unsharing. A simple policy that 
the platform can enforce without having to know too much 
about the application is transitive: only currently autho-
rized users can modify the ACL. For example, the creator 
is the first owner of a data unit, and at any time, any user 
with the owner status can add or revoke other authorized 
users. The support of anonymous sharing, in which pos-
session of, say, a secret URL grants access to data, is also 
straightforward. 

The platform itself doesn’t need to understand gran-
ular, application-specific permissions; a simple, binary 
access-versus-no-access distinction goes a long way. The 
application can, of course, enforce any additional restric-
tions it requires on top of those the platform provides. 
There are no particular requirements for the data unit’s 
underlying storage service. 

The DPaaS approach places two additional require-
ments on the platform: 

 • it must be able to perform user authentication, or at 
least have a trusted way to know who’s logged in and 
accessing the service; and

 • it must rely on encryption and authenticated data 
store techniques to remove the need to trust the stor-
age service.

DPaaS can accomplish user authentication either with 
a proprietary approach or using open standards such as 
OpenID and OAuth. Because the platform mediates all 
interactions, symmetric encryption suffices. With AES 
hardware units in commodity CPUs exceeding through-
put of 1 Gbyte/second/core, performance is unlikely to  
be a bottleneck for all but the most I/O-intensive applica-
tions. Once the system loads the data into the SEE, it doesn’t 
need to be encrypted or decrypted again until storage. 

In this model, the application can offload much of the 
basic work for identity and ACL enforcement to the plat-
form and get certain user-level guarantees for free. This 
alone makes it much easier for developers to reason about 
system security because, by default (without any autho-
rized user present), the data is simply unavailable. 

Audit trails. Because the platform mediates all data 
access, authenticates users, and runs binaries, it knows 
what data is accessed by what user, and with which appli-
cation. It can generate meaningful audit logs containing 
all these parameters and optionally incorporate additional 
information from the application layer. 

DPaaS can log four basic kinds of actions: 

 • ordinary online data accesses that occur in response 
to external user requests when a user is online and 
operating an application; 

 • access control modification by authorized users, the 
provenance of which can assist in forensics or prob-
lem diagnosis; 
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 • offline/batch access to handle requests while users 
are offline (for example, e-mail delivery) to com-
pute aggregates or to reorganize data such as during 
schema changes; and 

 • administrative access for maintenance operations 
such as debugging. 

Users or developers can decide how detailed the logs are 
on a case-by-case basis. 

Given its ability to perform different types of audit, 
DPaaS can also support third-party auditing services, 
thus helping users understand how their data has been 
accessed and manipulated, and which services to trust. We 
anticipate that auditors will provide personalized services 
to particular users, helping them determine how safe their 
data is with a particular service. 

The ACL governs ordinary user access, but adminis-
trative access requires its own separate policy, which in 
turn can be audited to hold developers and administra-
tors accountable. Because each specific invocation of 
the administrative policy might entail human access to 
data, it should be logged and made available for auditing. 
The same kind of mechanism could handle batch access, 
perhaps with different logging granularity. To prevent 
misuse, the platform can restrict batch processes to only 
an approved set of programs, for example, requiring the 
programs to have controlled or quantifiable information 
release, such as differential privacy8 or quantitative infor-
mation flow.9 

Platform verifiability. The DPaaS approach provides 
logging and auditing at the platform level, sharing the 
benefits with all applications running on top. Offline, the 
auditor can verify that the platform implements each data 
protection feature as promised. At runtime, the platform 
provider can use trusted computing (TC) technologies to 
attest to the particular software that’s running. TC uses the 
tamperproof TPM as well as the virtualization and isolation 
features of modern processors, such as Intel VT or AMDV. 

TC also allows for a dynamic root of trust—while the 
system runs, the CPU can enter a clean state, and the TPM 
can verify, load, and execute a trusted computing base 
(TCB), which is responsible for security-critical function-
alities such as isolation enforcement, key management, 
access control, and logging. Moreover, a third-party auditor 
can verify the code of the TCB that has been loaded onto 

the cloud platform. In this way, users and developers can 
gain confidence that the applications are indeed running 
on the correct TCB, and consequently trust the security 
guarantees and the audit logs the TCB provides.

One challenge in code attestation is how to establish a 
set of acceptable binaries in the presence of rapid software 
updates such as bug fixes and new features. One potential 
way is to log the history of software updates and perform 
verification a posteriori. 

For the application itself, getting from verifiable to 
verified isn’t easy; in a system with a lot of users, doing all-
pairs verification is prohibitively expensive. This is where 
auditors come in. Certifications such as Statement on Au-
diting Standards Number 70 (SAS70) and others serve the 
important function of reducing the verification burden on 
both clients and service providers compared to pairwise 
examinations. Since applications have the data-protection 
piece in common from the platforms, the application veri-
fications in turn can be simpler than they otherwise would 
have been.

Achieving data protection goals 
We assume in the analysis that the platform behaves 

correctly with respect to code loading, authorization, and 
key management, and that the TPM facilitates a runtime 
attestation to this effect. 

DPaas uses a combination of encryption at rest, ap-
plication confinement, information flow checking, and 
auditing to ensure the security and privacy of users’ data. 
Application confinement isolates faults and compromises 
within each SEE, while information flow checking ensures 
that any information flowing among SEEs, data capsules, 
and users satisfies access-control policies. Controlling and 
auditing administrative accesses to data provides account-
ability. DPaaS can guarantee the integrity of the data at rest 
via cryptographic authentication of the data in storage and 
by auditing the application code at runtime. 

Access controls, authorization, and auditing capability 
are common challenges for application developers. Incor-
porating these features within the platform is a significant 
improvement in terms of ease of use, and it doesn’t con-
strain the types of computation that can be performed 
within a SEE. The platform logs common maintenance and 
batch processing tasks to provide accountability. These 
tasks too often require one-off work in the development 
process and can benefit from standardization. 

A s private data moves online, the need to secure it 
properly becomes increasingly urgent. The good 
news is that the same forces concentrating data 

in enormous datacenters will also aid in using collective 
security expertise more effectively. Adding protections to 
a single cloud platform can immediately benefit hundreds 
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of thousands of applications and, by extension, hundreds 
of millions of users. 

While we have focused here on a particular, albeit  
popular and privacy-sensitive, class of applications, many 
other applications also need solutions, and many practical 
questions still remain open: 

 • Can we standardize technology across platforms to 
facilitate switching among providers? 

 • How can we make migration to the DPaaS cloud as 
easy as possible for existing applications? 

 • How can we minimize the cost of application audits? 
 • What kinds of audits are most important for building 

user confidence? 
 • Can technologies such as TC and code attestation be 

made scalable in the presence of constantly evolving 
software? 

 • How can we generalize the ideas presented here to 
other classes of applications? 

In posing these questions, we hope to provoke thought 
and inspire future research and development in this im-
portant direction. 
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