
In Proceedings of the International Conference on Advanced Robotics (ICAR 2003)
pages 317-323, Coimbra, Portugal, June 30 - July 3, 2003.

The Player/Stage Project:
Tools for Multi-Robot and Distributed Sensor Systems

Brian P. Gerkey Richard T. Vaughan Andrew Howard
Robotics Research Lab Information Sciences Lab Robotics Research Lab

University of Southern California HRL Labs University of Southern California
Los Angeles, California Malibu, California Los Angeles, California
gerkey@robotics.usc.edu vaughan@hrl.com ahoward@robotics.usc.edu

Abstract
This paper describes the Player/Stage software tools

applied to multi-robot, distributed-robot and sensor net-
work systems. Player is a robot device server that pro-
vides network transparent robot control. Player seeks to
constrain controller design as little as possible; it is device
independent, non-locking and language- and style-neutral.
Stage is a lightweight, highly con£gurable robot simulator
that supports large populations. Player/Stage is a commu-
nity Free Software project. Current usage of Player and
Stage is reviewed, and some interesting research opportu-
nities opened up by this infrastructure are identi£ed.

1 Introduction
Programming robots is complicated and time-

consuming. Working with multiple and distributed
robot systems is further complicated by (i) more robots
and (ii) the dif£culties of network programming. The
Player/Stage Project provides Open Source tools that
simplify controller development, particularly for multiple-
robot, distributed-robot, and sensor network systems
(hereafter referred to collectively as Multi-Robot Systems
(MRS)).

This paper provides an overview of the Player/Stage
tools and their application to MRS. We describe the tools
and review published MRS work using Player/Stage, as
well as describe some of the under-explored research op-
portunities opened up by this infrastructure.

The Player/Stage project began at the USC Robotics
Research Lab in 1999 to address an internal need for inter-
facing and simulation for MRS. It has since been adopted,
modi£ed and extended by researchers around the world.
We suggest that for many applications, particularly in
MRS, Player/Stage offers a combination of transparency,
¤exibility and speed that makes it the most useful robot
development environment available.

2 The software
The project provides the Player robot device server and

the Stage multiple robot simulator, plus supporting tools
and libraries.

Running on a robot, Player provides a clean and simple
interface to the robot’s sensors and actuators over a net-
work. Client control programs talk to Player over a Trans-
mission Control Protocol (TCP) socket [23], reading data
from sensors, writing commands to actuators, and con£g-
uring devices on the ¤y. Player supports a variety of robot
hardware and provides implementations of sophisticated
sensing and control algorithms, such as landmark tracking
and probabilistic localization.

Stage provides a population of simulated robots and
sensors operating in a two-dimensional bitmapped envi-
ronment. The devices are accessed through Player, as if
they were real hardware. Stage aims to be ef£cient and
con£gurable rather than highly accurate. In practice this
means that Stage can simulate tens or hundreds of robots
on a desktop PC, and that controllers commonly work sim-
ilarly on simulated and real robots.

Player and Stage run on many UNIX-like platforms,
are released as Free Software under the GNU General
Public License [6], and are maintained by the authors at:
http://playerstage.sf.net.

2.1 Player goals and design

The Player architecture was originally described in [9],
but much has changed since that time. In this section we
report on the current state of Player, focusing on those as-
pects of the design that facilitate the exploration of novel
distributed sensing and control algorithms.

2.1.1 Client interface. Player is a socket-based device
server that allows control of a wide variety of robotic sen-
sors and actuators. Player executes on a machine that is
physically connected to a collection of such devices and
offers a TCP socket interface to clients that wish to control
them. Clients connect to Player and communicate with
the devices by exchanging messages with Player over a
TCP socket. In this way, Player is similar to other device
servers, such as the standard UNIX printer daemon lpd.
Like those servers, Player can support multiple clients con-
currently, each on a different socket.

Because Player’s external interface is simply a TCP
socket, client programs can be written in any program-



Figure 1: Player can control many popular robot devices,
including the Pioneer 2-DX mobile robot and peripherals
pictured here.

ming language that provides socket support, and almost
every language does. Client libraries, which encapsulate
the details of the Player message protocol and facilitate
the development of control programs, are currently avail-
able in: C, C++, Tcl, Python, Java, and Common LISP.
With language neutrality comes platform neutrality; con-
trol programs written in Tcl, Python, and Java can run on
almost any modern system, even those running Windows.
In addition, the C++ client library has been ported to the
Win32 environment.

More importantly, the socket abstraction allows loca-
tion neutrality. Regardless of the physical location of a
collection of robotic devices, a client program can exert
control over them from any machine to which there is net-
work connectivity. When combined with Player’s ability
to support multiple clients concurrently, this location neu-
trality provides new opportunities for building distributed
sensing and control systems. We take up this idea further
in Section 3.

As a transport protocol, TCP is not without its draw-
backs. For example, in ad hoc networks and networks that
experience high-load conditions, the latency and overhead
in traf£c required by TCP can outweigh the reliability that
the protocol provides. For such environments, the User
Datagram Protocol (UDP) [22] is likely a better choice
than TCP, and multicast messaging [5] should be used in
place of broadcast messaging. We are currently working
to implement in Player support for alternative transports,
including UDP.

2.1.2 Device model. In order to provide a uniform ab-
straction for a variety of devices, we chose to follow the
UNIX model of treating devices as £les. Thus the famil-
iar £le semantics hold for Player devices. For example, to
begin receiving sensor readings, the client opens the appro-
priate device with read access; likewise, before control-

ling an actuator, the client must open the appropriate de-
vice with write access. In addition to the asynchronous
data and command streams, there is a request/reply mech-
anism, akin to ioctl(), that clients can use to get and
set con£guration information for Player devices. As this
model has served UNIX-like operating systems well for
decades, we expect that it will be suitable for Player de-
vices well into the future.

Player does not implement any device locking, so when
multiple clients are connected to a Player server, they can
simultaneously issue commands to the same device. In
general, there is no queuing of commands, and each new
command will overwrite the old one. We chose not to im-
plement locking in order to provide maximal power and
¤exibility to the client programs. In our view, if multiple
clients are concurrently controlling a single device, such
as a robot’s wheels, then those clients are probably coop-
erative, in which case they should implement their own
arbitration mechanism at a higher level than Player. If the
clients are not cooperative, then the subject of research is
presumably the interaction of competitive agents, in which
case device locking would be a hindrance.

We have borrowed further from classic operating sys-
tem design in the way that we have separated device in-
terfaces from device drivers. For example, in an oper-
ating system there is a joystick interface that de£nes the
API for interacting with joysticks, and there are joystick
drivers that allow the programmer to control various joy-
sticks through that same API. Similarly, in Player, a device
interface is a speci£cation of data, command, and con£g-
uration formats, and a device driver is a module that con-
trols a device and provides a standard interface to it.

For example, probably the most commonly used Player
interface is the position interface, which is used to con-
trol a mobile robot base. This interface speci£es a com-
mand format that includes velocity and/or position targets
and a data format that includes velocity and position sta-
tus. One implementation of the position interface is
Player’s p2os driver, which controls research robots made
by ActivMedia, including the popular Pioneer 2-DX (Fig-
ure 1). Other drivers that control other kinds of robots also
support the position interface, which means that they
all accept commands and return data in the same format.
In general, multiple drivers can support the same interface,
and a driver can support multiple interfaces. We discuss
some advantages of this design in Section 3.

2.2 Stage goals and design

Stage simulates a population of mobile robots, sensors
and environmental objects. It has two original purposes; (i)
to enable rapid development of controllers that will eventu-
ally drive real robots; and (ii) to enable robot experiments
without access to the real hardware and environments. In
the last year or so, we have been extending and general-
izing the sensor models beyond the limits of any available
hardware, adding another purpose: (iii) to enable “what



Figure 2: Stage screenshot showing two robots (solid rect-
angles) with visualization of the top robot’s laser range
scanner, sonar and color blob-£nder data. Stage’s modular
architecture allows multiple GUIs; this is GNOME2.

if?” experiments with novel devices that do not (yet) exist.
This path is developing with the help of DARPA, with the
goal of using Stage as a tool to determine the likely bene£ts
of developing one type of sensor over another. We return
to this idea when discussing opportunities for research, be-
low.

Stage was speci£cally designed to support research into
multi-robot systems. When programming and experiment-
ing with many robots the bene£ts of rapid development are
multiplied, and Stage enables experiments with large pop-
ulations of robots that would be prohibitively expensive to
buy and maintain. There are several aspects of Stage’s de-
sign that make it suitable for multi-robot systems:

• Good enough £delity: Stage provides fairly sim-
ple, computationally cheap models of lots of devices
rather than attempting to emulate any device with
great £delity. Low £delity simulation can actually be
an advantage when designing robot controllers that
must run on real robots, as it encourages the use of ro-
bust control techniques [14]. Low computational de-
mands mean we can simulate many devices on com-
modity hardware.

• Linear scaling with population: All sensor mod-
els use algorithms that are independent of population
size. Thus Stage’s computational requirements grow
linearly with population1.

• Con£gurable, composable device models: Various
sensors and actuators are provided, including sonars,
scanning laser range£nders, visual color segmenters,
£ducial detectors, and a versatile mobile robot base

1Some future devices may not follow this rule, as some algorithms
that scale as a power of the population size can be convenient to imple-
ment and will perform well with small populations.

with odometry. The models are often more general
and ¤exible than any speci£c piece of hardware, so
each model is con£gured to approximate the (real or
imagined) target device. See the manual [28] for a
complete list of devices and their properties.

• Player interface: All sensor and actuator models are
available through Player’s standard interfaces. Typ-
ically, clients cannot tell the difference between the
real robot devices and their simulated Stage equiva-
lents (unless they try very hard). Thus Stage inherits
the ¤exibility of Player’s non-locking, platform- and
language-neutral interface for all its devices.

2.2.1 Devices, populations and performance. De-
vices can be composed in tree structures to build up com-
plex robots. For example, most users base their robots
on the position model with a selection of sensor mod-
els on top. Several users [12, 15, 18, 29] have simu-
lated the Pioneer 2DX pictured in Figure 1 with a posi-
tion model carrying a sonar array and laser scan-
ning range£nder. The Stage distribution includes some
commonly-used con£gurations, such as the geometry of
the Pioneer’s sixteen sonar transducers.

By default, Stage attempts to run in real-time. Models
are updated at a £xed (con£gurable) interval. If the up-
date takes longer than the suggested interval, simulations
will run slower than real time. Device models vary greatly
in computational demands; the author’s 600MHz Pentium
III Linux PC runs 200 sonar-guided robots (position &
sonar models) or 15 laser-guided robots (position &
laser models) in real time at spatial and temporal reso-
lutions of 0.02m and 100ms, respectively.

In the optional “fast mode”, Stage does not wait for the
real-time clock. Simple simulations will run much faster
than real time, which is useful for long or batch experi-
ments (e.g., [4]). Time-sensitive clients use Player’s inter-
nal clock to avoid time-warping issues.

2.2.2 Validity. There is no guarantee that experiments
in Stage are directly comparable with those using real-
world robots. However, users have found that clients de-
veloped using Stage will work with little or no modi£ca-
tion with the real robots and vice versa [15, 18, 29]. As
the number of transfers between Stage and real robots in-
creases, users have an increasingly powerful argument to
support the real-world validity of Stage-only experiments.
This is a major advantage of using a well-known simu-
lator instead of home-grown, project-speci£c code. Also,
Stage’s Open Source license allows peer review of the sim-
ulation code, and encourages sharing of models, con£gu-
rations and environments. Just as Player facilitates code
re-use and sharing, Stage enables experiment sharing. We
hope to see standard test scenarios emerge, in which users
can compare their controllers. Already simulation experi-
ments are routinely carried out with one of Stage’s exam-
ple worlds, such as “cave” and “hospital.”



3 Opportunities for research

Player makes it very easy for clients to read data from
and send commands to any device on the network, as well
as send arbitrary messages to one another. Stage allows for
convenient and rapid evaluation of many clients. Both pro-
grams constrain the design of clients very little; they aim
to provide transparent infrastructure for MRS research. In
this section we describe some of the research opportunities
enabled by the design decisions described above.

3.1 Embedded systems

The design of Player has been guided in part by our
desire to maximize its utility and applicability by keeping
it small and fast. Thus the server core, which provides
sophisticated client services, is actually quite simple and
has become more so over time as, for example, we have
collapsed most of its functionality into a single thread of
execution. The device driver system is modular, allowing
the system designer to include only those drivers that are
necessary for a particular application.2 Because it is small
and fast, Player is equally well-suited to run on low-power
embedded systems and high-power workstations. Player is
currently in use on embedded PPC/Linux and ARM/Linux
systems. As part of the DARPA Software for Distributed
Robotics (SDR) program, the £rst-ever (to the authors’
knowledge) 100-robot experiments will comprise a net-
work of such embedded computers, each running Player
and controlling a small mobile robot.

3.2 Sophisticated devices

In addition to “regular” device drivers that provide an
almost transparent control interface to a piece of hard-
ware, Player’s extensible device model allows sophis-
ticated sensing and control algorithms to be encapsu-
lated in drivers. These “abstract” drivers can perform
arbitrary computation, ranging from signal processing to
closed-loop control. For example, Player includes both
a waveaudio driver that delivers raw audio data and a
fixedtones driver that performs a Fast Fourier Trans-
form on the raw data and reports the frequencies and am-
plitudes of the highest peaks in the frequency domain.
Similarly, Player contains a collection of fiducial de-
tectors, each designed to £nd a different kind of landmark
by processing data from various sensors. One such de-
tector fuses information from a laser range-£nder and a
camera image and incorporates control of a pan-tilt-zoom
unit to £nd landmarks. Recently, we have added drivers
that implement different forms of the widely-used Monte
Carlo localization scheme. When included as drivers in the
server, these algorithms become standard services that any
client can exploit, even without knowledge of how they
work.

2Without any device drivers, the Player server binary, as of version
1.3, is about 64KB.

3.3 Common device interfaces

As mentioned in Section 2.1.2, Player’s device model
permits drivers that control different hardware or imple-
ment different algorithms to present the same interface to
the client. As a result, control programs can largely ignore
the details of the underlying hardware or algorithm, treat-
ing the system as a collection of generic devices. For ex-
ample, the Player drivers that control mobile robot bases
made by ActivMedia, RWI, and K-Team all present the
same position interface. Thus a Player client program
can control any of those robots, with little or no changes
required to move between platforms. Several IMU drivers
also present the position interface and so appear to be
immobile bases. Similarly, the landmark detectors men-
tioned above all present the fiducial interface, so, for
example, a client program that builds a landmark-based
map can employ the £ducials that are most appropriate to
a given environment but largely ignore which detector is in
use.

3.4 Novel sensing & control systems

As a result of its innovative network-centric architec-
ture, Player permits any client, located anywhere on the
network, to access any device; a robot can effectively “see”
through its teammates’ eyes. Using Player as a substrate,
novel distributed sensing and control systems that were
previously unrealizable can now be constructed quite eas-
ily. This feature was exploited in recent work on concur-
rent control [8], in which approximately £fty independent
agents were simultaneously controlling a single robot’s
motors through Player. Similarly, Player allowed a team
of robots engaged in cooperative localization [12] to di-
rectly access each others’ sensors, thereby facilitating sen-
sor fusion. In building such systems, the designer is free
to choose the most appropriate programming language and
computing platform to implement each component.

A recent addition to the server is the “passthrough”
driver. Executing within the context of a Player server,
this driver acts as a client to another Player server. The
passthrough driver connects to a remote server and pro-
vides a local proxy for a remote device by forwarding com-
mands and data. In this way, remote resources can be made
to appear as local resources, which offers interesting av-
enues for future research.

Consider the encapsulation of sophisticated algorithms
into Player drivers described in Section 3.2. When algo-
rithms are made into drivers, they must run within Player
on the server side, which is often a robot. If the robot has
only modest computational facilities, then it may not be
well-suited to run, for example, an expensive probabilis-
tic localization algorithm. In this case, another instance
of Player can run off-board, on a more powerful desk-
top machine, with passthroughs providing data from and
control of the remote devices. An expensive algorithm
can then run in the off-board instance of Player. Using
the passthrough driver, the computational load of a sens-



ing and control system can be distributed and arbitrarily
located around a network, so as to best exploit available
resources. Also, when working with systems composed
of many robots, a single instance of Player that contains
passthroughs for all of the robots’ sensors and actuators
can act as a mechanism to aggregate data (e.g., for visu-
alization or logging) and/or distribute commands (e.g., for
an operator console).

3.5 Comparing controllers and performance metrics
As a result of their ¤exibility and the Open Source

development model, both Player and Stage are becom-
ing widely adopted. This provides the potential for an
open standard test platform which would encourage ob-
jective evaluation and comparison of robot control algo-
rithms. There are currently very few practical metrics or
other characterizations of robot behavior, yet there is a lot
of interest in this area. Such evaluation will be required for
the £eld to transition from a primarily ad hoc experimental
science to a more principled discipline.

3.6 Fantastic sensors
Stage is normally used to simulate existing robot de-

vices, as users test the feasibility of their ideas for control-
ling real robots. But Stage can be used as a “what if” tool,
to explore robot controllers that use devices that do not
exist. This is useful as a conventional design tool, allow-
ing investigations such as: ‘How would my localization
algorithm perform with a device that performs half-way
between a sonar and a laser?’, or ‘What are the trade-offs
between robot speed and battery life, or sensor update rates
and resolution?’, ‘What novel algorithms could exploit an
ultra-wide-band radar that could detect walls and the ob-
jects behind them?’. Robotics projects that are developing
a new sensor can experiment with controllers in simulation
before their hardware is ready.

Stage’s modular architecture makes it easy to add en-
tirely new models in order to explore less common ground:
’What could I do if my robots could change color at will,
or visually express some internal states to their colleagues,
or quickly recognize and categorize each other [30]?’. Ex-
ploring the use of devices that are not currently feasible
opens up a new £eld of study; robotics as it could be. Free-
dom from practical constraints distinguishes science from
engineering; having a means to perform experiments dis-
tinguishes science from science £ction.

3.7 Challenges in scaling sensor-based simulation
Stage simulates multiple devices and scales to a few

hundred devices, but is not currently useful for simulat-
ing massive populations, say on the scale of an ant colony,
which would be of great interest for MRS researchers. It
would be interesting to distribute Stage’s compute load
over a cluster of computers to support very large popula-
tions (tens of thousands) in real time. This is a signi£cant
technical challenge that poses unsolved problems in rep-
resentation and synchronization. Stage would also bene£t

from advanced spatial representation to improve speed and
memory ef£ciency in large and/or sparsely populated en-
vironments.

4 Usage

In 2002, software from the Player/Stage project was
downloaded over 2000 times. Player and Stage are cur-
rently in use in more than twenty major academic and in-
dustrial research labs around the world, and are also used
in teaching undergraduate and graduate classes. Given
the modest size of the target audience (i.e., robotics re-
searchers and students), we consider the project to be a
signi£cant success. An important factor in that success
has been the Open Source model, which encourages in-
clusive, collaborative software development. As the devel-
oper team and user base have grown, major enhancements
have been made to the software. Because of their modu-
lar designs, Player and Stage are easily extended by, for
example, encapsulating a sophisticated control algorithm
into the server or adding a model of an unavailable but in-
teresting sensor to the simulator.

Since it is the collective experience of the users that
drives development, we now brie¤y review a few projects
in which Player and/or Stage have been used. One such
project is concerned with robotic sensor networks [24],
which are characterized by extremely large collections of
inexpensive mobile robots. Given the practical limitations
on £elding even tens of physical robots, the ability to simu-
late hundreds or thousands of robots in Stage is invaluable
to researchers wishing to test communication and coordi-
nation algorithms on large-scale systems. A similar project
[10] aims to extend the scalability and modularity of the
Decentralized Data Fusion (DDF) architecture to active
sensor networks in which some or all of the network com-
ponents have actuators. The practical implementation will
be able to utilize the resources of a heterogeneous and dy-
namic team of sensing platforms to £nd and track station-
ary and moving features in an indoor environment. Player
is used as a common hardware abstraction layer through-
out the diverse set of software modules and Stage is used
extensively for code validation and initial performance as-
sessment.

Another project [15] studies resource allocation for
target-tracking in sensor-actuator networks, using a
region-based approach to control deployment of mobile
robots. A multi-resolution task assignment architecture al-
lows the system to handle signi£cant environmental oc-
clusion. Because the same Player interface is used with
both physical and simulated devices, the tracking system
that was developed in Stage was trivially transitioned to
real robots. Resource allocation is also investigated from a
learning perspective [4], with the goal of developing gen-
eral adaptive capabilities in robots and multi-robot sys-
tems. Focusing on spatio-temporal adaptivity, this project
uses reinforcement learning to allow robots to dynamically
adjust their behavior to any given environment while per-



forming a set task. Of particular use in this project was
Stage’s ability to run simulation trials faster than real time,
and thereby generate the substantial amount of data re-
quired to determine the run-time characteristics and per-
formance impact of the learning system.

Player is also used in an investigation of novel multi-
robot task allocation algorithms [7], providing a uni£ed
interface to a group of heterogeneous robots. In this case,
an economically-inspired task auctioning system is devel-
oped and validated on multi-robot teams, ranging in size
from 3 to 7 robots, engaged in a variety of tasks. The re-
sulting task allocation system, MURDOCH, is also used in
a broader study of large-scale human-system interaction
[25]. The coordination infrastructure was originally devel-
oped and tested in Stage with a large group of simulated
robots and was then validated on a smaller team of physi-
cal robots. This simulate-validate approach has also been
successfully employed in many other projects, including
recent work on multi-robot resource transportation [29].

5 Related work

Lack of space precludes a detailed comparison of Player
and Stage with their alternatives; that is another paper.
The distinguishing features of tools developed by the
Player/Stage project are (i) they seek to constrain the de-
sign of the controlling client program as little as possible;
and (ii) they are ef£ciently implemented around a custom
network server.

By minimizing constraints on the control program,
Player and Stage offer a uniquely ¤exible robot devel-
opment environment compared to others such as Saphira
[16], Mission Lab [17], TeamBots [2], Ayllu [32], DCA
[21], ARIA [1], and CARMEN [26]. As a tradeoff for pro-
viding support for a particular control or coordination phi-
losophy, these systems all restrict the end-user’s choice of
programming language and/or structure. While such con-
straints can be very useful in guiding the user in a particu-
lar paradigm, we believe that such low level constraints are
unsuitable for a general-purpose system; the programmer
should have the choice to build any kind of control sys-
tem while still enjoying device abstraction and encapsula-
tion. Thus in Player we make a clear distinction between
the programming interface and the control structure, opt-
ing for a highly general programming interface, allowing
users to develop their own tools, including sophisticated
architectures like those mentioned above.

Because it is designed explicitly for robotic device con-
trol, Player is ef£cient for this purpose; the primary lim-
itation on its performance is currently the speed and £-
delity and the underlying operating system’s scheduler. By
building a custom protocol and server instead of adhering
to a “generic” communications standard, such as CORBA
[19] or Jini [31], we are free from the computational and
programmatic overhead that is generally associated with
the practical application of such a standard. Robot in-
terfaces that do rely on these standards, such as Mobil-

ity [13], OROCOS [20], and others [3, 11], bene£t from
readily-available client-side libraries that hide many of the
communication details. However, as demonstrated by the
proliferation of similar client-side libraries for Player (cur-
rently available in 6 languages), our custom message pro-
tocol is simple and easy to implement.

6 Summary and future work

The goal of the Player/Stage project is to provide Open
Source software infrastructure to support experimental re-
search with multi-robot systems (MRS). To this end the
project has developed the robot device server Player and
the multiple robot simulator Stage. In addition to facili-
tating ongoing MRS research, Player and Stage offer new
opportunities for research in emerging areas, including dis-
tributed sensing and control systems. We expect these op-
portunities to improve and multiply as the software is used
and developed by more roboticists.

Player and Stage are actively developed and we have
numerous enhancements planned for the near future. Re-
garding Player, we plan to incorporate as standard services
more sensing and control algorithms, initially focusing on
enabling technologies such as localization and mapping.
To support the construction and control of complex MRS,
we are investigating methods for resource discovery, as
discussed in [27]. We will also add device drivers that sup-
port research with embedded systems, including monitor-
ing facilities for ad hoc networks and sophisticated com-
munication services. In order to allow the simulation of ex-
tremely large populations of such systems, Stage will soon
be distributible across networks of workstations or cluster
computers. One of our near-term goals is to deploy such a
cluster as a public “Stage server” that would simulate large
worlds over long periods of time, allowing the potential for
comparison and evaluation of proposed control algorithms
in both cooperative and competitive settings. Simultane-
ously, we are improving Stage’s performance by making
the world representation more ef£cient for sensor model-
ing.

Finally, we are well advanced in the development
of another Open Source multi-robot simulator: Gazebo.
Whereas Stage is designed to simulate very large num-
bers of robots in 2D indoor environments, Gazebo is a
full 3D dynamic simulation designed for the simulation of
small numbers of robots in outdoor environments. Like
Stage, Gazebo is fully compatible with Player, and client
programs can switch between the two simulations without
code modi£cation. An early version of Gazebo should be
available in August 2003.

Acknowledgments
We thank the many developers and users who have con-

tributed so much to the success of the project, especially:
Maxim Batalin, Josh Bers, Brendan Burns, Jason Dou-
glas, Jakob Fredslund, Kim Jinsuck, Boyoon Jung, Alex
Makarenko, Andy Martignoni III, Nik Melchior, Dave



Naf£n, Esben Østergªard, Gabe Sibley, Kasper Støy, John
Sweeney and Doug Vail.

Thanks also to SourceForge.net for project hosting, and
to Doug Gage at DARPA IPTO for his valuable support.
This work is supported in part by DARPA grant DABT63-
99-1-0015 (MARS) at USC and contract N66001-99-C-
8514 (SDR) at HRL.

References
[1] ActivMedia Robotics, Inc. Aria Reference Manual 1.1.10,

November 2002.
[2] Tucker Balch. Behavioral Diversity in Learning Robot

Teams. PhD thesis, College of Computing, Georgia Insti-
tute of Technology, 1998.

[3] Ross L. Burchard and John T. Feddema. Generic robotic
and motion control API based on GISC-Kit technology and
CORBA communications. In Proc. of the IEEE Intl. Conf.
on Robotics and Automation (ICRA), pages 712–717, Min-
neapolis, Minnesota, April 1997.

[4] T. S. Dahl, M. J. Matarić, and G. S. Sukhatme. Adap-
tive spatio-temporal organization in groups of robots. In
Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), pages 1044–1049, Lausanne, Switzerland,
October 2002.

[5] S. E. Deering. RFC 1112: Host extensions for IP multicas-
ting, August 1989.

[6] Free Software Foundation. GNU General Public License,
June 1991. Version 2.

[7] Brian P. Gerkey and Maja J Matarić. Sold!: Auction meth-
ods for multi-robot coordination. IEEE Transactions on
Robotics and Autonomous Systems, 18(5):758–768, Octo-
ber 2002.

[8] Brian P. Gerkey, Maja J Matarić, and Gaurav S Sukhatme.
Exploiting physical dynamics for concurrent control of a
mobile robot. In Proc. of the IEEE Intl. Conf. on Robotics
and Automation (ICRA), pages 3467–3472, Washington
D.C., May 2002.

[9] Brian P. Gerkey, Richard T. Vaughan, Kasper Støy, Andrew
Howard, Gaurav S Sukhtame, and Maja J Matarić. Most
Valuable Player: A Robot Device Server for Distributed
Control. In Proc. of the IEEE/RSJ Intl. Conf. on Intelli-
gent Robots and Systems (IROS), pages 1226–1231, Wailea,
Hawaii, October 2001.

[10] Ben Grocholsky, Alexei Makarenko, and Hugh F. Durrant-
Whyte. Information-Theoretic Coordinated Control of
Multiple Sensor Platforms. In Proc. of the IEEE Intl.
Conf. on Robotics and Automation (ICRA), Taipei, Taiwan,
September 2003. To appear.

[11] Gary Holness, Deepak Karuppiah, Subramanya Uppala,
and Roderic Grupen. A Service Paradigm for Recon£g-
urable Agents. In Proceedings of the Second International
Workshop on Infrastructure for Agents, MAS, and Scalable
MAS at Autonomous Agents 2001, Montreal, Canada, May
2001.

[12] Andrew Howard, Maja J Matarić, and Gaurav S Sukhatme.
Putting the ‘I’ in ‘Team’: An Ego-Centric Approach to Co-
operative Localization. In Proc. of the IEEE Intl. Conf. on
Robotics and Automation (ICRA), Taipei, Taiwan, Septem-
ber 2003. To appear.

[13] iRobot Corporation. Mobility Software. www.irobot.com.

[14] Nick Jakobi. Evolutionary robotics and the radical enve-
lope of noise hypothesis. Adaptive Behavior, 6(2):325–368,
1997.

[15] Boyoon Jung and Gaurav S. Sukhatme. Tracking Targets
using Multiple Robots: The Effect of Environment Occlu-
sion. Autonomous Robots, 13(3):191–205, 2002.

[16] Kurt Konolige. COLBERT: A Language for Reactive Con-
trol in Saphira. In Proceedings of the German Conf. on Ar-
ti£cial Intellgence, pages 31–52, Freiburg, Germany, 1997.

[17] Douglas C. MacKenzie, Ronald Arkin, and Jonathan M.
Cameron. Multiagent Mission Speci£cation and Execution.
Autonomous Robots, 4(1):29–52, March 1997.

[18] Alexei Makarenko, Stefan Williams, Frederic Bourgault,
and Hugh F. Durrant-Whyte. An Experiment in Integrated
Exploration. In Proc. of the IEEE/RSJ Intl. Conf. on In-
telligent Robots and Systems (IROS), pages 534–539, Lau-
sanne, Switzerland, October 2002.

[19] Object Management Group, Inc. The Common Object Re-
quest Broker: Architecture and Speci£cation, Version 3.0,
July 2002.

[20] The OROCOS project. http://www.orocos.org.

[21] Lars Petersson, David Austin, and Henrik Christensen.
DCA: A Distributed Control Architecture for Robotics. In
Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), pages 2361–2368, Wailea, Hawaii, Octo-
ber 2001.

[22] Jon Postel. RFC 768: User Datagram Protocol, August
1980.

[23] Jon Postel. RFC 793: Transmission Control Protocol,
September 1981.

[24] Gabriel T. Sibley, Mohammad H. Rahimi, and Gaurav S.
Sukhatme. Robomote: A Tiny Mobile Robot Platform
for Large-Scale Ad-hoc Sensor Networks. In Proc. of the
IEEE Intl. Conf. on Robotics and Automation (ICRA), pages
1143–1148, Washington D.C., May 2002.

[25] Ashley Tews, Maja J Matarić, and Gaurav S Sukhatme. A
Scalable Approach to Human-Robot Interaction. In Proc.
of the IEEE Intl. Conf. on Robotics and Automation (ICRA),
Taipei, Taiwan, September 2003. To appear.

[26] Sebastian Thrun, Dieter Fox, Wolfram Burgard, and Frank
Dellaert. Robust Monte Carlo Localization for Mobile
Robots. Arti£cial Intelligence, 128(1–2):99–141, 2001.

[27] Richard T. Vaughan, Brian P. Gerkey, and Andrew Howard.
On device abstractions for portable, reusable robot code.
Technical Report CRES-03-009, Center for Robotics and
Embedded Systems, School of Engineering, University of
Southern California, Los Angeles, California, April 2003.

[28] Richard T. Vaughan, Andrew Howard, and Brian P.
Gerkey. Stage User Manual 1.3. Player/Stage Project,
http://playerstage.sourceforge.net, November 2002.

[29] Richard T. Vaughan, Kasper Støy, Andrew Howard, Gaurav
Sukhatme, and Maja J. Matarić. Lost: Localization-space
trails for robot teams. IEEE Transactions on Robotics and
Autonomous Systems, 18(5):796–812, October 2002.

[30] Richard T. Vaughan, Kasper Støy, Gaurav S Sukhatme, and
Maja J Matarić. Go ahead, make my day: Robot con-
¤ict resolution by aggressive competition. In Proc. of the
Intl. Conf. on Simulation of Adaptive Behavior (SAB), pages
491–500, Paris, France, September 2000.

[31] Jim Waldo. The Jini Architecture for Network-Centric
Computing. Communications of the ACM, 42(7):76–82,
July 1999.

[32] Barry Brian Werger. Ayllu: Distributed port-arbitrated
behavior-based control. In Lynne E. Parker, George Bekey,
and Jacob Barhen, editors, Distributed Autonomous Robotic
Systems 4, pages 25–34. Springer-Verlag, Knoxville, Ten-
nessee, October 2000.


