Chapter

Architectural Design to Meet Stakeholder
Requirements

L. Chung, D. Gross' & E. Yu"
Computer Science Program, University of Texas, Dallas, USA' & Faculty of Information
Sudies, University of Toronto, Toronto, Ontario, Canada"

Key words. software achitedure, rationale, stakeholders, organizaion modeling,
requirements, quality attributes, architecural properties, non-functional
requirements, processoriented, softgoal, satisficing, design reasoning

Abstract: Architedural design occupies apivotal positionin software engineeaing. It is
during architedural design that crucia requirements such as performance,
reli ability, costs, etc., must be aldressed. Y et the task of achieving these
properties remains a difficult one. Senior architeds with many yeas of
experience have to make difficult choicesto med competing requirements.
Thistask is made even more difficult with the shift in software engineeing
paradigm from mondithic, stand-alone, built-from-scratch systemsto
comporentized, evolvable, standards-based, and product line oriented systems.
Many well-established design strategies need to be reconsidered as new
requirements guch as evolvabilit y, reusability, time-to-market, etc., are
becoming more important. These requirements do rot come from asingle
source, but result from negotiations among many stakeholders. A systematic
framework is neaded to help architeds achieve quality requirements during
architedural design. This paper outlines an approach that formulates
architedural properties such as modifiability and performance & “ softgoals’
which are incrementally refined. Tradeoffs are made & conflicts and synergies
are discovered. Architedural dedsions are tracel to stakeholders and their
dependency relationships. Knowledge-based tool support for the process
would provide guidance during design as well asrecords of design rationales
to fadlit ate understanding and change management.

2 L. Chung,D. Gross & E. Yu

1 INTRODUCTION

The importance of architedura design is now widely recognized in
software engineering, as evidenced by the recent emergence of semina
reference texts eg. (Shaw & Garlan, 1996 Bass 199B) and severa
international workshop series and specia sessionsin major conferences. It is
adknowledged, however, that many isales in software architecture are just
beginning to be adressed. One key task that remains a difficult challenge
for practitionersis how to proceed from requirements to architectural design.

This task has been made much more difficult as a result of today’s
changing software environment. Systems are no longer mondithic, built
from scratch, ar operate in isolation. Systems built in the old paradigm have
cortributed to the legacy system problem. Today’'s g/stems must be
developed quickly, evolve smoacthly, and interoperate with many other
systems. Today's architects adopt strategies wuch as reusability,
comporentization, gatform-based, standards-based, etc., to address new
business level objectives auch as rapid timeto-market, product line
orientation, and customizability. Two important aspects may be noted in this
shift in software engineering environment: (i) there have been significant
shifts in architectural quality objectives; and (ii) architectura requirements
are originating from a much more complex network of stakehaolders.

System-wide software qualities have been recognized to be important
since the erly days of software engineeing. For example, (Boehm, 1976
and (Bowen, 198%) classified a number of software dtributes such as
flexibility, integrity, performance, maintainability, etc. It is well known that
these quality attributes (also referred to as nonfunctiona regquirements) are
hard to deal with, because they are often ill defined and subjective. The
recent flurry of adivities on software achitecture involving researchers and
practitioners have refocused attention onthese software qualities since it is
redized that system-wide qualities are largely determined during the
architedura design stage (Boehm, 1992 Perry, 1992 Kazman, 1994 Shaw
& Garlan 19%; Bass, 1998. With the shift to the new, fast-cycled,
comporent-oriented software ewironment, priorities among many quality
objectives have dianged, and rew objectives such as reusability and
standards compliance ae becoming more prominent. While performance
will continue to be important, it must now be traded off against many kinds
of flexibility. As a result, many architectura solutions that were well
accepted in the past heed to be rethought to adapt to changes in architectural
objectives.

When systems were stand-alone and had definite lifetimes, requirements
could usualy be traced to a small, well-defined set of stakehdders. In the
new software ewironment, systems tend to be much more widely

Architectural Design to Meet Sakeholder Requirements 3

interconnected, have amore varied range of potential customers and user
groups (e.g., due to product line orientation), may fall under different
organizational jurisdictions (at any one time, and also over time), and may
evolve indefinitely over many incarnations. The development organization
itself, including architects, designers, and managers, may undergo many
changes in structure and personnel. Requirements need to be negotiated
among stakeholders. In the cae of architectural quality requirements, the
negotiations may be especialy challenging due to the vagueness and open-
endedness of initial requirements. Understanding the network of
relationships among stakeholders is therefore an important part of the
challenge facal by the archited praditioner.

These trends suggest the need for frameworks, tedchniques, and tools that
can suppat the systematic achievement of architectural quality objectivesin
the context of complex stakeholder relationships.

In this paper, we outline an approach which provides a goal-oriented
process support framework, coupled with a model of stakeholder
relationships. The paper includes smplified presentations of the NFR
Framework (Chung, 1999 and the i* framework (Yu, 1995. A web-based
information system example, incorporating a KWIC comporent, is used to
illustrate the proposed approadh.

2. GOAL-ORIENTED PROCESS SUPPORT FOR
ARCHITECTURAL DESIGN

Consider the design of a web-based information system. There would be
a set of desired functionalities, such as for searching information, retrieving
it, scanning it, downloading it, etc. There would also be anumber of quality
requirements such as fast response time, low storage, ease of use, rapid
development cycle, adaptability to interoperate with other systems,
modifiability to offer new services, etc. The functiona side of the
requirements are handled by many development methoddogies, from
structured analysis and design, to recent object-oriented methods. Almost al
these methods, however, focus overwhelmingly, if not exclusively, on
deding with functional requirements and design. While there is amost
universal agreement on the crucial importance of achieving the quality
requirements, current practice is often ad hcac, relying on after-the-fact
evaluation of quality attributes. Tedhniques for evaluating and assessing a
completed architectural design (“product”) are certainly valuable. However,
such techniques usually do rot provide the needed step-by-step (“process’)
guidance on haw to seek out architectural solutions that balance the many
competing requirements.

4 L. Chung,D. Gross & E. Yu

Complementary to the product-oriented approaches, the NFR Framework
(Churg, 1993, 198) takes a process-oriented approach to deding with
quality requirements. In the framework, quality requirements are treated as
(potentially conflicting or synergistic) goas to be adieved, and used to
guide and rationalize the various design decisions during the
system/software development. Because quality requirements are often
subjective by nature, they are often achieved na in an absolute sense, but to
a sufficient or satisfactory extent (the notion of satisficing). Accordingly, the
NFR Framework introduces the concept of softgoals, whose achievement is
judged by the sufficiency of contributions from other (sub-) softgoals.
Throughou the development process consideration d design alternatives,
analysis of design tradeoffs and rationalization d design decisions are dl
caried aut in relation to the stated softgoals and their refinements. A
softgoal interdependency graph is used to support the systematic, goal-
oriented process of architectural design. It also serves to provide historica
reaords for design replay, analysis, revisions, and change management.

Modifiahility Performatnce
[System] [System]
Space Performanc
Mo fafilty difiabilit e Titne Perfi
: odifiability itrie Perfortnance
[Algorithm] [Function] [Systerm]
Modifiability
[Drata Rep]

Figure 1. A softgoal interdependency graph showing refinements of quality requirements
based on topic and type

For the purpase of illustration, let us consider a small part of the example
in which akeyword in context (KWIC) system is needed. The KWIC system
is part of a web information system, used to support an electronic-shopgng
caaog. Suppase the KWIC system architect is faced with an initial set of
quality regquirements: “the system shoud be modifiable” and “the system
shoudd have good performance’. In the dorementioned processoriented
approad, the achitect explicitly represents each of these & a softgoal to be
achieved duing the architectural design process Each softgoa (e.g.,
Modifiability [system]) is associated with a type (Modifiability) and a topic
(system), along with other information such as importance, satisficing status
and time of creation. Figure 1 shows the two softgoal s as the top level nodes.

Architectural Design to Meet Sakeholder Requirements 5

As these high level requirements may mean different things to diff erent
people, the archited neeads to first clarify their meanings. This is done
through an iterative process of softgoal refinement which may involve
reviewing the literature and consulting with damain experts. After
consultation, the architect may refine Modifiability [System] into three
offspring softgoals: Modifiability [Algorithm], Modifiability [Data
representation], and Modifiability [Function]. This refinement is based on
topic, since it is the topic (System) that gets refined, whil e the softgoal type
(Modifiahility) is unchanged. This gep may be justified by referring to the
work by Garlan and Shaw (Garlan, 1993), who consider changes in
processing algorithm and changes in data representation, and to Garlan,
Kaiser, and Notkin (Garlan, 1992), who extend the consideration with
enhancement to system function. Simil arly, the achitea refines Performance
[System], this time based on its type, into Space Performance [System] and
Time Performance [System], referring to work by Nixon (Nixon, 1993).

Figure 1 shows the two refinements. In the figure, a small "arc" denotes
an “AND” contribution, meaning that in order to satisfice the parent
softgoal, al of its offsprings need to be satisficed. As will be shown later,
there are aso ather contribution types, including “OR” and pertial positive
(+) or negative (-) contributions. Contribution types are important for
dedding the satisficing status of a softgoal based on contributions towardsiit.

In paralel to the refinement of quality requirements, the software
architea will consider different ways of meding the KWIC functiona
requirements in the mntext of the web information system. At various points
during the design process, the archited will go through a number of
interleaving adivities of comporentization, composition, choice of
architedural style, etc. Each adivity can involve nsideration of
alternatives, where NFRs can guide seledion, hence narrowing down the set
of architectural alternatives to be further considered.

For example, the achitect can consider architectures with varying
numbers of (main) comporents: i) Inpu, Circular Shift, Alphabetizer and
Output; ii) Input, Line Storage, Circular Shift, Alphabetizer and Output and
so forth. Eadh choice will make particular contributions to the NFRs. With
either choicethe achitect can further consider alternatives about control, for
example, ore with a Master Control and ae without. Y et another decision
point might concern the way data is shared: sharing of data in the main
memory, sharing of datain a database, sharing of datain arepository with an
event manager and so forth. Figure 2 describe some of the éove dternative
architedures using “conventional” block diagrams. The diagrams were
redrawn by one of the aithors based on (Shaw & Garlan, 1996).

6 L. Chung,D. Gross & E. Yu

= Direct Memory Access -
S
System IO

m Clrcular Shift Alphabetizer

Architecture 1: Shared Data

Waster Contiol
Output

[= 2 =]
Bl 2|| 3 IR £ =
: b

rcham:‘zls Clrcular Shift aiphabetic S

i .
Architecture 2: Abstract Data Type

= . Firvond
Architecture 3: Implicit Invocation
=mnnun Fipe

| Input } - }‘CirculqlShlﬂl— ————— == [Alphabetizer |- — ==

Architecture 4: Pipe and Filter

Figure 2. Architedural alternativesfor aKWIC system

Let us assume that the achitect is interested in an architedure which can
contribute paositively to the softgoal Modifiability [Data representation], and
considers the use of an “Abstract Data Type” style of architecture, as
discus=ed by Parnas (Parnas, 1972) , and Garlan and Shaw (Garlan, 19%):
comporents communicate with each ather by means of explicit invocation of
procedures as defined by comporent interfaces.

As the achitect would learn sooner or later, the positive contribution of
the Abstract Data Type achitecture towards modifiable data representation

Architectural Design to Meet Sakeholder Requirements 7

is made & the expense of another softgoal, namely the time performance
softgoal. Figure 3 shows the positive @ntribution made by the abstract data
type solution by means of “+” and the negative cntribution by “-”
contribution link.

The architect would want to consider other architedural alternatives in
order to better satisfice the stated softgoals. The achitect may discover from
the literature that a “Shared Data” architecture typically would not degrade
system resporse time, at least when compared to the Abstrad Data Type
architedure, and more importantly perhaps it is quite favorable with respect
to space requirements. This discovery draws on work by Parnas (Parnas,
1972, and by Garlan and Shaw (Garlan, 198) who considered a Shared
Data architedure in which the basic comporents (modues) communicae
with each other by means of shared storage. Not unlike the Abstract Data
Type architecture, however, the Shared Data achitecture also has me
negative influence on severa other softgoals: a negative (-) impad on
modifiability of the underlying algorithm (process) and a very negative (--)
impad on modifiability of datarepresentation.

Figure 3 shows both design steps along with the various contributions
that each dternative makes towards the refined softgoals. Note that the
diagram is build iteratively rather than in one step -- acarding to the
architedural “discovery process' of the achitect.

Modifiability Performance
[Systemn] [Systemn]

Tine Performance
[Fystem]

3pace Performance
[Eystem]

Modifiability
[Algorithm]

+

odifiability
[Function]
Modifiability
[Data Rep]

Shared Data Abstract Data Types

Figure 3. Contribution of the Shared Data and Abstrad Data Type achitedures

8 L. Chung,D. Gross & E. Yu

Interestingly, Figure 3 shows tradeoffs between the achitectura
alternatives that have been considered so far. The architect can continue to
consider other architectural alternatives, including hybrid solutions, or
dedde which of the two better suits the needs of the stakeholders. How can
the architect go abou doing the latter, if that is what she so desires? One
way to do the tradeoff analysis is by using the degree of criticality (or
priority, or dominance, or importance) of the quaity requirements. In the
context of a particular web information system, for example, the
stakeholders might indicate that performance is more critical than
modifiability. In this case, then, the achitect would chocse Shared Data over
Abstrad Data Type, since Shared Data is more satisfactory with respect to
both space and time performance, hence the overdl performance
requirements (recall the “AND refinement”).

During the process of architecting, the archited needs to make many
dedsions, most likely in consultation with stakeholders. As the above
discussion suggests, an interesting question is. “how can the architect
evaluate the impaa of the various decisons?” The NFR Framework
provides an interactive evaluation procedure, which propagates labels
asociated with softgoals representing their satisficing status (such as
satisficed, denied, undtermined, and conflict) across the softgoal
interdependency graph. Labels are propagated along the direction of
contribution, usualy “upwards’ from spedfic, refined goals towards high
level initial goals.

Because of the subjective nature of quality requirements, the software
architea will want to explain and justify her decisions throughou the
softgoal refinement process This can be dore in the NFR Framework using
“claims’. Claims can be attached to contributions (links in the graph) and to
softgoals (nodes). Claims can themselves be justified by further claims.
These rationales are important for facilitating understanding and evolution.
For example, Shared Data may by and large have alvantage over Abstract
Data Type with respect to space consumption. This genera relationship,
however, may need to be argued for (or againgt), in the ntext of the
particular web information system. If, for example, the volume of the datato
be maintained by the system is low, the relative advantage of Shared Data
may not matter much. If this is indeed the case, the expected data volume
can then be used as a claim against the relationship: “ Shared Data makes a
strong pasitive (++) contribution towards meding spacerequirements’. This
might then lead the archited to choose Abstract Data Type as the ultimate
architedure.

Figure 4 shows a softgoal interdependency graph for the KWIC system,
taken from work by Chung, Nixon and Yu (Chung, 1995 which is based on
(Garlan, 1993 and Garlan, Kaiser, and Notkin (Garlan, 1992).

Architectural Design to Meet Sakeholder Requirements

Couptehensibility ME‘“'““““'J‘ Performance

2 shpportl

§) TFuncticn]

8hared Data Abstract Data Type Implicit Invoeation Pipe & Filter
stppartl: amang the vitl fw goals (from market swrveys) swppa rl3: fewer asnmpiions emong interactin e madules
support2: | Parnas72) shpportd: expected size of daia is linge (frenr dewain expert)
demyl: many inplenrentors frurdfiar with ADTs (fromr dowain expert)
Legen Link Types Criticallty Evaluation Labels
s weak pesitive satisficing @ andeteurined
++ sliong positive satisficing 1 sriticsl @] heuttal
- weak negative satisficing " very critial P satishioed
= stluhg hegative satisficing ® denied

Figure 4. A softgoal interdependency graph for the KWIC system

3. MEETING DIFFERENT STAKEHOLDER
REQUIREMENTS

We now illustrate the nedd to relate organizational context to the process,
and consequently the outcomes, of architectural design. The illustration will
be dore through three scenarios, which will show that different sets of
stakeholder concerns are transformed by the achitectural design processinto
different architectural choices for information systems. More specificaly,
ead different set of stakehoders and their concerns leads the achitects to
reason about different quality concerns, make and evaluate different design
dedsions, and finally leads, in our case, to the most appropriate achitectura

designsto be used in a particular web-based information system context.

10 L. Chung,D. Gross & E. Yu
31 Scenario 1

An e-shopping software vendar specializes in doffering software products
which can be used in advertising, selling, and shipping goods and servicesin
an Internet-based virtual market. The products should generate, anong other
things, e-catalogs © that any internet user can search for goods using a web-
browser. The e-catalog archited realizes that she needs a software system
which can generate an index, here an alphabetized list of the words in the
descriptive text of ead catalog item such that each word in the list is
aswciated with alist of all catalog items pertaining to that word. Such aligt,
however, is just what a KWIC system generates. Hence, the e-catalog
architect asks a KW C comporent architect to bult an indexing system. This
is a brief description of the esential functional aspect of the scenario. We
will shortly describe the quality aspect of the scenario, along with more
details of the functional aspect.

kwic plcaion
component RR

\ interacti\fiw ease of usé
/ KIC] I I
e>den3|b|l| minimize
E-cataloy search time
‘ faIcT architect ‘ e-shopping
guud SPACH
perrurmance ' support ‘
kAiC] 1 multiple
' vendaors 1l
goudtlme 3.5
perormance space
LWIE l resource

affe 've!! /

modlfablll h

[process response
2ulile: time !

Figure 5. Organizaional context for the ecatalog applicaion

Figure 5 depicts the relationships among the three types of stakehalders,
using the i* framework proposed by Yu (Yu, 1994). The i* framework
alows for the description d actors and their dependencies in organizational
settings. A circle represents an actor (e.g., e-shopping vendor) who may be
dependent on some other actor (e.g., e-catalog architect) to achieve some of
its goals (e.g., developing an e-catalog application). Not unlike the NFR
Framework, the i* framework also dstinguishes a quality requirement,

Architectural Design to Meet Sakeholder Requirements 11

denoted by a cloud like shape (to suggest softnesg, from a functional one,
denoted by arectangle. In the i* framework , a dependency is described by a
directed link between two actors. This type of graph is called a Strategic
Dependency model in the i* framework (the other type of graphin i* -- the
Strategic Rationale model will not be discussed in this paper).

In the arrent scenario, the e-shopping venda depends on the e-catalog
architect to deliver an e-caaog application, who in turn depends on the
KWIC comporent architect to deliver an indexing system.

This kind of diagram shows where requirements originate. It also serves
as a basis for determining what kind of negotiated delegations should take
place, how different architectural decisions affect the various dakeholders,
and passibly what kind of requirements to allocate to, and haw to partition
the system into, sub-systems and comporents. Just like a softgoa
interdependency graph, it becomes a basis for judtification and
system/software achitectural evolution.

Now we describe the quality concerns of the stakeholders. To start with,
the eshoppng vendar expects the application software system to be essy to
use. The vendar also has other concerns. As the atalog items is expected to
grow quite rapidly, storage space resourceis a very important concern, asis
fast response time. Also shown in Figure 5 is a multiple-vendar support,
namely, allowing for the integration d catalogs that reside on various srver
machinesin physically remote vendar organizations. The exclamation marks
denate the criticality of a quality. The highest priority is assigned to two
exclamation marks, medium priority to ore, and low priority nore.

As a matter of fact, the list of quaity requirements and their criticalities
is determined through cooperation between the ecaalog architect and the e
shopping venda who go through a processof reaursive refinements, in the
manner of the previous sction, which may aso require the KWIC
comporent architect’s involvement at least occasiondly. The list then
bemmes what is commonly known as the user requirements.

When the user requirements are more or less stisfactory, the ecaaog
archited directs her attention more towards defining the system
requirements, whose darification may neal more of the KWIC comporent
archited’s involvement than before. The system requirements may inherit
some of the user requirements more or lessdirectly, such as good space ad
response time requirements. The system requirements will also come from
the system’s perspective. For example, the “ease of use” requirement now
may be translated more specificaly into interadivity (such as configuring
indexing options dynamicdly) and extensibility (such as alowing for the use
of international language daracter sets, categorical search and phormtic
seach). Ancther system requirements that might be wnsidered is the
modifiability requirement, here for changing the overall agorithm which

12 L. Chung,D. Gross & E. Yu

builds those indices transparently in a distributed setting. The criticdities
may also change, due to the new requirements and the derived requirements.
For example, in the presence of the extensibility requirement, which is new,
the criticality of the good time performance requirement is lowered from
critical to medium.

With the organizational context in place the KWIC comporent archited
uses the processoriented NFR Framework to refine the quality softgoals,
consider architectural design alternatives, carry out tradeoff anaysis and
evaluate the degree to which softgoals are satisficed, all in consideration of
the context. The top portion of Figure 6 represents those softgoas that
originated from the eshopgng venda, and are negotiated and delegated
through the ecaalog archited to the KWIC architect. Therelative aiticality
values are preserved in the softgoal interdependency graph. Figure 6 shows
the result of the process whereby the archited has arrived at four
architedural aternatives in an attempt to satisfice the stated softgoals.

E-Catalogue KWIC Component
Mo difiability ien Perform ance
KWIC] e [systern]

Mlodifi ability

Modifiability
[Algorittem

31: “high vohame
of data expected”

Shared Data Abstract Data Types Implicit Invocation Pipe & Filter

Figure 6. A softgoal interdependency graph for the ecaaog KWIC Comporent

Importantly, the diagram in figure 6 shows a number of claims, which
derive from the knowledge of the organizaional context, and which are used
to argue for, or against, the types of softgoal criticdities and interdepencies,
and consequently in softgoal evaluation and selection among architectural

Architectural Design to Meet Sakeholder Requirements 13

aternatives. For example, using the Shared Data architedura style is
expected to have avery good contribution towards gace performance The
archited uses the organizational context diagram (figure 5) to find some
argument in support (or denial) of that particular contribution. In the aurrent
scenario, for example, the achitect argues for the validity of the contribution
by pointing to the eshopgng venda who wants the system to have the
ability to handle arapidly growing number of catalog items. This claim is
denoted by the “S1” arrow in figure 6.

Despite the significant savings by the Shared Data achitecture in deta
storage, however, the Implicit Invocaion architedure seems to be the most
promising for achieving extensibility of function, which is as critical as
space performance. Furthermore, Implicit Invocaion helps modifiability of
processes, in contrast to Shared Data, athough there is atie between the two
concerning interactivity. Although not well met by Implicit Invocaion, time
performance is of low criticality. Taking all these into account, the KWIC
archited chooses the Implicit Invocaion as the target architectural design.

3.2 Scenario 2

A system administrator wants to offer the user a help facility which can
retrieve dl the documents that have some keyword in their description, as
indicated by the user. The administrator, thus, asks a system architect to
build such a help facility. The system architect, in turn, asks a KWIC
comporent architect for an indexing software system, after realizing that the
facility is essentially a KWIC system such as used the Unix “man —K”
command.

Similar to figure 5 for scenario 1, we may now describe the three types of
stakehalders using thei* framework, together with the functional and quality
requirements that the stakeholders delegate anong themselves, together the
various criticalities of each of the requirements. And anaogous, to figure 6
for scenario 1, the achitect iteratively builds an NFR softgoa
interdependency graph in which she further refines the various quality
requirements and argues for or against certain claims. These analogous
figuresfor scenario 2 are not shown for lack of space but some fragments of
the functional and quality requirements as well as the (soft) god
interdependencies related to this scenario appear in figure 7 and 8.

Taking all contributions of each architectura style into accourt, together
with the various criticalities of the softgoals to be adieved, the architea
might want to choose the Pipe and Filter architectural style & the most
promising one.

14 L. Chung,D. Gross & E. Yu

3.3 Scenario 3

A reuse manager is appointed by product line management to overseethe
development of various systems in the organization. As it happens, the
KWIC architect, the ecaalog architect and the help file system architect all
work in the same organization. The reuse manager asks the KWIC architeds
to consider reuse as a critical priority and to maximize reuse of al
comporents developed in that organization.

This scenario is especialy interesting as it introduces a stakeholder (the
reuse manager) whose global quality concern of having reusable mmporents
prompts the KWIC archited to find a solution that represents the union of
quality concerns of al other architects, as well astaking into account each of
their intended customer (the eshopgng venda and the man administrator).

Esentially, figure 7 shows a merge of all stakehalders' quality softgoals
discussd in the previous scenarios. In addition it show that reuse manager
depends on the KWIC system architect to buld a system that delivers and
maximizes the use of reusable comporents for all development activities in
that organizaion. Not shown are product line management stakeholders,
who depend on the reuse manager for reduced development costs.

Figure 7. Organizationa context for the Reuse requirement

For each of the two previous scenarios a different architectural solution
style was chasen according to the specific kind d organizational context and
its derived set of requirements. To find a reusable comporent solution the
KWIC comporent architect will neeal to re-negotiate the delegated
requirements with each o the involved stakeholders to overcome the
stakehalders conflicting requirements. Perhaps the KWIC architea will aso
need to renegotiate the degree of reusability with the reuse manager.

Now that the architect has an organizational understanding (of which
quality requirements and criticalities originated from which stakeholders,

Architectural Design to Meet Sakeholder Requirements 15

and what network of relationships exists among the stakehoders), the
archited now proceeds to use the NFR framework to evaluate, and further
argue for or against the various architectural styles. During the evaluation,
the architect renegotiates conflicting quality requirements and criticalities
with the affected stakeholders and finds an architecural solution that makes
acceptable trade-offs. Figure 8 shows the result of the achitectural design
process (The "broken" lines are not part of the NFR Framework graphical
notation, but are used in this paper to avoid cluttering the diagram with links
not directly related to the achitectura styles giown to be evaluated. The "e"
subscript stands for the ecaalog architects point of view, while the "h"
subscript stands for help file system architect's paint of view).

Reuse KWIC Component fer;ewrf:]mce
Tlnchfi ability sy
[EWIC] Interactivity ~ Reusability

KWIC,e] [KWIC] Spare Parformance

TimeFetformance

Unix compliance

Shared Data Abstract Data Types Implicit Invocation Pipe & Filter

Figure 8. A softgoal interdependency graph for the Reuseable KWIC Componrent

The figure shows the achitect evaluating the Implicit Invocation style for
meding the quality requirements originating from the ecaalog architect, the
help file system architect and the reuse managers. While evaluating the
Implicit Invocaion style the archited may renegotiate with the help file
system architect her demand for "Unix compliance' which, for her, would be
better dealt with when using the Pipe & Filter style. The organizational
corntext (such as the “approval” dependency that the architects have on the

16 L. Chung,D. Gross & E. Yu

reuse manager), will make the negotiating parties more forthcoming when
concessons to their requirements and/or criticalities are needed.

4, DISCUSSION AND RELATED WORK

As pointed out by Garlan and Perry (Garlan, 199), architectural design
has traditionally been largely informal and ad hoc. Our proposal is aimed at
rectifying some of the manifested symptoms by taking a more disciplined
approach to architedural design. In particular, our proposa is aimed at
improving our ability to understand the rationales behind architectural
chaices, hence making the system nore eaily tracesble and evolvable. We
have illustrated how to cary out a finer-grained analysis, and the
comparison d architectural designs by considering quality-related concerns
of multi ple stakeholders and their interdependencies.

Our proposa draws on concepts that have been identified as esential to
portray architectural infrastructure, such as elements, comporents, and
conrectors as suggested by Perry and Wolf (Perry, 199), Garlan and Shaw
(Garlan, 1993, Abowd, Allen, and Garlan (Abowd, 1993, and Robbins,
Medvidovic, Redmiles and Rosenblum (Robhkins, 1998). In ou view, our
emphasis on quality concerns and stakeholder interdependencies are
complementary to efforts directed towards identification and formali zaion
of conceptsfor functional architectural design.

Concening the role of quality requirements, design rationde, and
asesanent of alternatives, the proposal by Perry and Wolf (Perry, 1999 is
of close relevanceto our work. Perry and Wolf propacse to use achitectural
style for constraining the architedure and coordinating cooperating software
architeds. They also propose that rationale, together with elements and
form, constitute the model of software architecture. In ou approad,
weighted properties of the achitectural form are justified with resped to
their positive and negative antributions to the stated NFRs, and weighted
relationships of the achitedural form are astraded into contribution types
and labels, which can beinteractively and semi-automatically determined.

Boehm (Boehm, 1999, and Kazman, Bass Abowd, and Webb (Kazman,
1994 have agued convincingly for the importance of addressing quality
concerns in software architectures. Kazman, Bass Abowd, and Webb
(Kazman, 1994 propose a basis (called SAAM) for understanding and
evaluating software achitectures, and gives an illustration using
modifiability. This proposa is similar to aurs, in spirit, as both take a
qualitative gproad, instead of a metrics approadh, bu differs from ours

Architectural Design to Meet Sakeholder Requirements 17

since SAAM is produwct-oriented, i.e., they use quality requirements to
understand and/or evaluate architectural products.

In comparing architectural alternatives, it isintuitively appealing to use a
tabular format. For example, in (Garlan & Shaw, 193), atable is used to
present the quality evaluations of four architectural alternatives. Such atable
can be interpreted as depicting contributions from the achitectura
aternatives to the quaity attributes treated as goals. In ou study, we
illustrated the importance of context and the neeal to trace design decisionsto
stakeholder requirements. Our approach suggests that the tabular
representation d design alternatives and quality attributes is not sufficiently
expressive.

We might consider extending the tabular representation by distinguishing
quality requirements that come from different stakeholders, and by adding
more explanatory notes such as the daims in the softgoal interdependency
graphs.

Our approach emphasizes explicitly representing and wsing the quality
concerns of multiple interacting stakehalders during the design of software
architeadures. Our approac is thus similar to the on-going work by Boehm
and In (Boehm, 1996, who explore aknowledge-based tod for identifying
potential conflicts among quality concerns early in the software/system life
cycle, and using quality requirements in examining tradeoffs involved in
software achitectural design. Stakeholders such as user, maintainer,
developer, customer, etc., are mapped to quality attributes in a graph. Our
approach goes further by indicating that stakehalder requirements can be
traced through a network of dependency relationships in an organizationa
model.

S. CONCLUSIONSAND FUTURE WORK

Achieving architectural quality requirements is a key objective in
architedure-based approades to software engineering. Quality requirements
vary acarding to context and need to be negotiated among stakeholders. We
have outlined a systematic approach for representing and addressing quality
requirements during architectural design. The design reasoning is related to
context through an organization model of stakeholder dependencies.

Using an extended version of the familiar KWIC example, we have
illustrated how architectural decisions might vary depending on context, and
how the design process can be guided and asdsted using appropriate
notational and reasoning suppat. The historicd records of design decisions
and rationales will facilitate understanding and evolution.

18 L. Chung,D. Gross & E. Yu

We have been working on tools to support the approach. These include
facilities for generating and maintaining the graphs, for propagating labels,
and for design revison. Knowledge for addressing spedfic quality
requirements are codified in knowledge bases to assist in the refinement of
goals. Known interactions among quality requirements are aodified as
correlationrules for detecting conflicts and synergies.

This paper represents a first step in an attempt to provide a systematic
architedural design support framework that takes organizational and
stakeholder relationships into account. We have drawn on the NFR
framework for deding with software quality requirements, and the i*
framework for modelling and reasoning about strategic actor relationships.
In future work, we intend to further elaborate on isaues ecific to
architedura design, and to better integrate architectural design reasoning
and aganizational relationships reasoning.

REFERENCES

Abowd, G., Allen R. and Garlan, D.(1993) “Using Style to Understand Descriptions of
Software Architecdures’, Sdtware Engineeing Notes, 18(5): 9--20, Proc. of SGSOFT
"93: Symposium on the Foundations of Software Engineaing.

Boehm, B. W. (1976) “ Software Engineeing”, IEEE Transactions on Computers, 25(12), pp.
1226-1241

Bass L., Clements P. and Kazman, R. (1998) Software Architedure in Pradice, SEI Seriesin
Sdtware Engineeing, Addison-Wesley.

Boehm, B. and Scherlis, B(1992) “Megaprogramming”, Proc. the DARPASdtware
Techndogy Conference

Boehm, B. and In, H.(1996) "Aids for Identifying Conflicts Among Quality Requirements”,
Proc. International Conference on Requirements Engineeing, (ICRE96), Colorado, April
1996, and |EEE Sdtware, March 1996.

Bowen, T. P. , Wigle, G. B. and Tsai, J. T. (1985) “Spedficaion o Software Quality
Attributes’, Report RADC-TR-85-37, val. | (Introduction), vol. Il (Software Quality
Spedficaion Guidebook), vol Il (Software Quality Evaluation Guidebook), Rome Air
Development Center, GriffissAir Force Base, NY, Feb. 1985.

Churg, L.K.(1993) “Representing and Using Non-Functional Requirements: A Process
Oriented Approadh” . Ph.D. Thesis, Dept. of Computer Science, Univ. of Toronto, June
1993. Also Technicd Report DKBS--TR--93--1.

Chung, L.K. Nixon, B. and Yu, E.(1995) “Using Non-Functional Reguirements

to Systematically Seled Among Alternatives in Architedura Design”, Proc., 1st Int.
Workshop onArchitedures for Sdtware Systems, Seatle, April 24-28, 1995., pp. 31-43.

Churg, L.K. Nixon, B. A., Yu, E and J. Mylopoul 0s(1998), Non-Functional Requirementsin
Software Engineeaing, Kluwer Publishing (to appea).

Garlan D. and Shaw, M.(1993) “An Introduction to Software Architedure Advancesin
Sdtware Engineeing and Knowledge Engineeing: Vol. |, World Scientific Publishing
Co.

Garlan, D., Kaiser, G. E. and Notkin, D. (1992) “Using Tool Abstradionto Compose
Systems’, IEEE Computer, Vol. 25, June 1992. pp. 30--38.

Architectural Design to Meet Sakeholder Requirements 1¢

Garlan, D. and Shaw, M. (1993) “An Introduction to Software Architedure”, in Advancesin
Sdtware Engineeing and Knowledge Engineeing: Vol. |, World Scientific Publishing
Co.

Garlan, D. and Perry, D.(1994) “ Software Architedure: Pradice, Potential, and Pitfall s,
Proc. 16th Int. Conf. on Sftware Engineeging, pp. 363--364.

Kazman, R, Bass L., Abowd, G. and Webb, M. (1994) “SAAM: A Method for Analyzing the
Properties of Software Architecures’, Proc. Int. Conf. on Software Engineeing, May
1994, pp. 81--90.

Nixon, B. A.(1993) “Deding with Performance Requirements During the Development of
Information Systems.”, Proc. IEEE Int. Symp. on Requirements Engineaing, San Diego,
CA, January 4--6, Los Alamitos, CA: IEEE Computer Society Press pp. 42--49.

Parnas, D. L. (1972) “On the Criteriato be Used in Decompaosing Systems into Modules”,
Comnunications of the ACM, Vol. 15, Dec 1972, pp. 1053--1058.

Perry, D. E. and Wolf, A. L. (1992 “Foundations for the Study of Software Architecure”,
ACM SIGSOFT Sdtware Engineeing Notes, 17(4), pp. 40--52.

Robbins, J. E. , Medvidovic, N., Redmiles, D. F. and Rosenblum, D. S. (1998) “Integrating
Architedure Description Languages with a Standard Design Method", Proc. 20th Int.
Conf. on Software Engineaing, pp. 209--218.

Shaw, M. and Garlan, D. (1996) “ Software Architedure: Perspedives on an Emerging
Discipline”, Prentice Hall .

Yu, E. S. K. and Mylopoulos, J. (1994) “Understanding ™" Why" in Software Process
Modelling, Analysis, and Design.”, Proc., 16th Int. Conf. on Software Engineeing,
Sorrento, Italy, May 1994 pp. 159--168.

Yu, E.(1995) “Modelli ng Strategic Relationships for ProcessReengineaing”, Ph.D. Thesis,
Dept. of Computer Science, Univ. of Toronto.

APPENDIX

The KWIC problem statement (Parnas, 1972): “The KWIC [Key Word in
Context] index system acceots an ordered set of lines; each lineis an ordered
set of words, and each word is an ordered set of characters. Any line may be
“circularly shifted” by repeatedly removing the first word and appending it
at the end o the line. The KWIC index system outputs a list of all circular
shifts of all linesin alphabeticd order.”

