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The performance characteristics of modern DRAM memory systems are impacted
by two primary attributes. device datarate and row cycle time. Modern DRAM device dat-
arates and row cycle times are scaling a different rates with each successive generation of
DRAM devices. As a result, the performance characteristics of modern DRAM memory
systems are becoming more difficult to evaluate at the same time that they are increasingly
limiting the performance of modern computer systems. In this work, a performance evalua-
tion framework that enables abstract performance analysis of DRAM memory systems is
presented. The performance evaluation framework enables the performance characteriza-
tion of memory systems while fully accounting for the effects of datarates, row cycle
times, protocol overheads, device power constraints, and memory system organizations.

This dissertation utilizes the described evaluation framework to examine the perfor-
mance impact of the number of banks per DRAM device, the effects of relatively static
DRAM row cycle times and increasing DRAM device datarates, power limitation con-
straints, and data burst lengths in future generations of DRAM devices. Simulation results
obtained in the anaysis provide insights into DRAM memory system performance charac-

teristics including, but not limited to the following observations.



» The performance benefit of having a 16 banks over 8 banks increases with increasing
datarate. The average performance benefit reaches 18% at 1 Gbps for both open-page
and close-page systems.

» Close-page systems are greatly limited by DRAM device power constraints, while
open-page systems are less sensitive to DRAM device power constraints.

* Increasing burst lengths of future DRAM devices can adversely impact cache-limited
processors despite the increasing bandwidth. Performance losses of greater than 50%

are observed.

Findly, This dissertation also present a unique rank hopping DRAM command-
scheduling algorithm designed to dleviate the bandwidth constraints in DDR2 and future
DDRx SDRAM memory systems. The proposed rank hopping scheduling algorithm sched-
ules DRAM transactions and command sequences to avoid the power limiting constraints
and amortizes the rank-to-rank switching overhead. Execution based simulations show that
some workloads are able to fully utilize the additional bandwidth and significant perfor-

mance improvements are observed across a range of workloads.
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CHAPTER 1 | ntroduction

Performance of modern computer systems have seen dramatic improvements in the past
thirty years due to advancements in silicon process technology. The advancementsin silicon
process technology have enabled the number of transistors on a single chip to roughly
doubled every two years as suggested by Moore’'s Law. As a corollary to Moore's Law,
processor performance has aso doubled roughly every two years in the same time period
due to a combination of the larger transistor budget and the increased switching speed of
those transistors. However, increases in processor performance did not lead to comparable
increases in performance of computer systems for al types of applications. The reason that
increases in processor performance did not lead directly to comparable increases in
computer system performance is that computer system performance is fundamentaly
constrained by the interaction between the processor and memory e ements. Moreover, in
contrast to the rapid improvements in processor performance, memory system performance
has seen only relatively modest improvements in the past thirty years. The result of the
imbalance in performance scaling trends between processor and memory is that modern
computer systems are increasingly constrained by the performance of memory systems; in
particular, the performance of DRAM based memory systems. The work in this dissertation
is dedicated to the investigation of DRAM memory system performance characteristics, and
the result of the investigation is then used to evaluate and support the design of future

DRAM devices.



1.1 Problem Description

Computer system performance is increasingly limited by the performance of DRAM
based memory systems due to the fact that the rate of DRAM memory system performance
increase has lagged the rate of processor performance increase in the past thirty years. One
reason that DRAM memory system performance has consistently lagged processor
performance is that DRAM memory systemstypically consist of one or more chips that are
designed and manufactured separately from the processor, and the performance of the
interconnected multi-chip DRAM memory system is difficulty to scale to achieve higher
datarate and lower access latency. One apparent solution to the problem of access latencies
introduced by system level interconnects between processors and memory systems is to
integrate the memory system with the processor onto the same silicon die. However, in the
case of the integrated memory system, the size of the silicon die limits the storage capacity
of the memory system, and that capacity cannot be configured by the end user as needed for
different operating environments. Moreover, the die area used by the memory system could
have been used by performance enhancing features or more processor cores. In essence, the
integration of processor and memory system onto the same silicon die is currently a viable
solution for only a limited subset of high performance systems. As a result, high
performance processors are keeping silicon die areafor use by logic transistors, and memory
transistors for main memory are still constructed separately from the processor chip. For
example, high performance processors such as Intel’s Itanium and Pentium processors,
AMD’s Opteron processor, and IBM’s Power5 processors are all moving toward multi-core
designs or aready contain multiple processor cores per chip, and the study of the memory

system as a separate entity will continue to have great relevance for the foreseeabl e future.
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A second reason that the rate of increase of DRAM memory system performance has
lagged the rate of increase of processor performance is that while high performance
processors are specialized parts and typically command high price premiums, standard
DRAM devices are commodity items that can be fredy purchased from multiple vendors.
The commodity nature of standard DRAM devices means that DRAM device manufacturers
are extraordinarily sensitive to manufacturing costs, and only features that provide
substantial performance benefits for minima cost increments are considered in each new
generation of standard DRAM devices. However, there is great difficulty in the
determination of performance impact for different performance enhancing features proposed
for each new generation of DRAM devices, and that difficulty arises from the fact DRAM
memory system performance depends on a large number of independent variables such as
workload characteristics of memory access rate and request sequence, memory Ssystem
architecture, and memory system configuration. As a result, system architects and design
engineers will often disagree as to the impact of various performance enhancing features,
since that performance impact depends on the configuration of specific systems.

Presently, DRAM device datarates are increasing with each new generation of DRAM
devices at the rate of 100% every three years, and DRAM row cycle times are decreasing at
arate of approximately 7% per year[22]. The collectivetrends areincreasing the ratio of row
cycle times to the duration of data bursts on the data bus. As a result, to maintain a given
utilization rate of memory system bandwidth, more requests must be issued to the DRAM
memory system in paralel for each successive generations of higher data rate DRAM
devices. Collectively, these trends form the larger picture that while DRAM based memory

system performance are increasingly limiting system performance, it is becoming more



difficult to maintain efficiency in each successive generations of higher data rate DRAM
devices. Moreover, system architects and design engineers often disagree as to the
desirability of various proposed DRAM device and system enhancements designed to
increase DRAM memory system performance. With these considerations forming the
background, the work in this dissertation is devoted to the creation of a common basis that
system architects and design engineers can use to quantify the impact of various proposed
performance enhancing features in modern DRAM devices, subjected to different

workloads, system architecture and system configurations.

1.2 Contributions and Significance

The contribution of this dissertation is three-fold. Specifically, The contributions are the

following:

* We create a parameterized and abstract DRAM memory access protocol. With proper
definition of timing parameters, the DRAM memory access protocol accurately models
DRAM device and system level interactions of SDRAM, DDR SDRAM, DDR2 SDRAM
and DDR3 SDRAM memory access protocals. The creation of the abstract DRAM memory
access protocol ensures that the analytical work performed for one memory system retains
context for direct comparison against another memory systems. i.e. comparisons of an
SDRAM memory system against a DDR2 SDRAM memory system.

e We derive a set of mathematical equations that establish the relationship between DRAM
memory system configuration, timing parameters and the maximum achievable bandwidth.

The formalized methodology is then utilized to examine the performance of future DRAM



memory systems given different DRAM system configurations, device data rates, row cycle
times, DRAM device power limitations, rank-to-rank data bus turnaround overheads, read-
and-write data bus turnaround overheads, cache line burst lengths, and the number of banks
in agiven DRAM device.

« We create a DRAM transaction and command scheduling algorithm that groups row
activation commands and column access commands separately to ensure that maximum
bandwidth can be maintained despite the existence of constraints such as data bus
synchronization overhead in DDR, DDR2 and DDR3 SDRAM memory systems and

mechanismsthat limit peak power in DDR2 and DDR3 memory systems.

To aid the evauations of performance and manufacturing cost trade-offs in modern
DRAM devices, the work in this dissertation proceeds through a detailed examination of
modern DRAM memory systems, starting from a description of modern DRAM devices and
ending with the introduction of a high performance, power-constrained DRAM transaction
and command scheduling algorithm. We believe that the performance evaluation
methodology can contribute directly to the evauation process of future DRAM device and
memory system cost-performance trade-offs. We also believe that the DRAM transaction
and command scheduling agorithm can contribute directly to the design of future high
performance memory systems that must support high request rate access patterns with low

gpatia locality.



1.3 Organization of Dissertation

In this dissertation, the DRAM memory system is methodicaly examined from the
transistor level to the system level. In thisfirst chapter, abrief introduction to the dissertation
is given. In Chapter 2, basic DRAM device architecture is described, and important details
of DRAM device operations are examined in depth. In Chapter 3, typical DRAM based
memory system topology and system architectures are described. The details provided in
Chapters 2 and 3 are then used to create a generic DRAM memory access protocol in
Chapter 4. The generic DRAM memory access protocol methodically examines the
interactions between DRAM commands in a DRAM memory system. Then, from the
description of the generic DRAM access protocol, a table of minimum scheduling distances
between combinations of DRAM commands is summarized as table 4.3. Chapter 5 then
examines DRAM controller designs and address mapping policies. The table of minimum
scheduling distances is then used to form the foundation of a formalized methodology for
the computation of maximum DRAM system bandwidth, hereafter referred to as the
Reguest Access Distance methodology. The Request Access Distance methodology for the
computation of maximum DRAM system bandwidth is formally defined in Chapter 6. In
Chapter 7, results from studies based on the use of the Request Access Distance
methodology are presented and anadyzed. In Chapter 8, a unique rank-hopping memory
scheduling algorithm is proposed and studied. The algorithm is designed to alleviate various
constraints imposed upon high datarate DDRx SDRAM devices. Chapter 9 summarizesthis
work with concluding remarks. Finaly, in Appendix A, the workloads used in the
investigation of maximum DRAM system bandwidth in Chapter 7 are described in detail

and aglossary of terminology is enclosed in Appendix B.
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CHAPTER 2 DRAM Device Badc
Circuitsand Architecture

2.1 Introduction:

To facilitate the study of DRAM based memory systems, this chapter describes basic
circuits and architecture of DRAM devices. For dl practica purposes, it is impossible to
provide a complete overview aswell as an in depth coverage on the topic of DRAM circuits
and architecture in a single chapter. The limited goal in this chapter is to provide a broad
overview of functionalities of circuits and common functional blocks in DRAM devices
sufficient to provide a basic understanding of internal circuits and architecture of modern
DRAM devices. With the understanding of the fundamentals of DRAM device operationsin
place, more advanced discussions of architectural trade-offs at the DRAM device and
system level would then be possible.

This chapter begins the examination of modern DRAM devices with the description of a
basic fast page mode (FPM) DRAM device. Various components such as DRAM storage
cells, DRAM array structure, voltage sense amplifiers, control logic and decoders are then

examined separately.



2.2 DRAM Device Organization

Figure 2.1 illustrates the organi zation and structure of aFast Page M ode (FPM) DRAM

device. Internally, the array of DRAM storage cellsin Figure 2.1 is organized as 4096 rows,

1024 columns per row, and 16 bits of data per column. In this device, each time arow access

occurs, a 12 bit address is placed on the address bus and the row address strobe (RAS) is

asserted by an external memory controller. Insde the DRAM device, the address on the

address bus is buffered by the row address buffer, then sent to the row decoder. The row

address decoder then accepts the 12 bit address and selects one of 4096 rows of storage cells.

The data values contained in the selected row of storage cells are then sensed and

maintained in the array of sense amplifiers. Each row of DRAM cellsin this chip consists of

1024 columns and each column is 16 bits wide. That is, a 16 bit wide column is the basic

r——— - - - - - - - -" -" -—" -"-—-—-«-"-¥ —-«W—-W -7 - - - —/ — — i
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CASL#__ DeV|ceI
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I no. 2 clock I

| generator |- L g dataout ~9 |

| i buffer 16 =
-¢—e . =

| —=N column column datain {16 |©| 16
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|| & bufer 1 decoder -buffer sl |

| £24 16 |

I
addI
— b I:((a)frII?rSoIIler"_ sense amp array |
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Figure 2.1: 64 Mbit Fast Page Mode DRAM Device (4096 x 1024 x 16).

8



addressable unit of memory in this device, and each column access that follows the row
accesswould ordinarily read or write 16 bits of data from the samerow of DRAM. The FPM
DRAM device does dlow each 8 bit half of the 16 bit column to be accessed independently
through the use of separate column access strobe high (CASH) and column access strobe
low (CASL) signals. The way that a column accessis engaged issimilar to the row accessin
that the memory controller would place a 10 bit address on the address bus, but then assert
the appropriate column access strobe (CAS#) signals. Internally, the DRAM chip then
takes the 10 bit column address, decodes it and uses it to select one column out of 1024
columns. The datafor that column is then placed onto the data bus or overwritten with data
from the data bus depending on the write enable (WE) signal.

All DRAM devices, from the FPM DRAM device to modern DDRx” SDRAM devices,
possess similar basic organizations. All DRAM devices have one or more arrays of DRAM
cells organized into anumber of rows and columns, with a column being the smallest unit of
addressable memory on that device. All DRAM devices aso have some logic circuits that
control the timing and sequence how the device operates. In the case of the FPM DRAM
device shown in Figure 2.1, the chip has internal clock generators as well as a built-in
refresh controller. In most cases, the DRAM device itsdf controls the relative timing of the
sequence of eventsfor agiven action. The FPM DRAM device aso keeps the address of the
next row that needs to be refreshed, so when the memory controller asserts a new refresh
command to the DRAM device, the row address to be refreshed can be loaded from the
interna refresh counter rather than having to load a separate row address from the off chip

address bus. Also, pin usage has always been restrictive on DRAM devices. As a result,

*.  DDRx denotes DDR, DDR2, and variants of future DDRx SDRAM devices

9



modern DRAM devices move data onto and off of the device through a set of bi-directiona
input-output pins connected to the system. Finally, advanced DRAM devices such as
ESDRAM, Direct RDRAM and RLDRAM have evolved to include morelogic circuitry and
functionality on chip, such as row caches or write buffers that allow for read-around-write
functionality. These circuitry improve performance but add to the die cost of the DRAM
device. As a result, they are not found in standard DRAM devices. However, these
performance enhancing features may prove to be necessary e ements in future high datarate

DRAM devices.

10



2.3 DRAM Storage Cells

Figure 2.2 shows a circuit diagram of the basic one transistor, one capacitor (1T1C) cell

wordline Storage
Gate capacitor
bitline
ol L
transistor —

Figure 2.2: Basic 1T1C DRAM Cell Structure.
structure used in modern DRAM devices as the basic storage unit. In the structure illustrated
in Figure 2.2, when the access transistor is turned on by applying avoltage on the gate of the
access trangistor, a voltage representing the data value may be placed onto the bitline and
used to charge the storage capacitor. The storage capacitor then retains the stored charge for
a limited period of time after the voltage on the wordline is removed and the access
transistor is turned off. However, due to leakage currents through the access transistor, the
electrical charge stored in the storage capacitor gradually dissipates. As a result, before the
stored charge decays to indistinguishable vaues, data stored in DRAM cells must be
periodically read-out and written back in a process known as refresh. Otherwise, the stored
electrical charge will gradually leak away and the value stored in the capacitor will no longer

be resolvable after some time.

2.3.1 Cell capacitance, Leakage and Refresh
In a 90 nm process technology optimized for the manufacturing of DRAM devices, the
capacitance of aDRAM storage cell in atypica DRAM deviceis on the order of 30 fF, and

the leakage current of the DRAM access transistor ison the order of 1 fA [23]. With the cell

1n



capacitance of 30 fF and leakage current of 1 fA, atypical DRAM cell can retain the state of
the stored data for hundreds of milliseconds. That is, hundreds of milliseconds after datais
written, the electrical charge of a DRAM cell will till resolve to the stored digital value by
the differential sense amplifier. Some cells in a typical DRAM device can even hold the
stored data val ue for upwards of severa seconds. However, areliable memory systems must
be designed in such a manner that not a single bit of data would be lost due to charge
leakage. Theresult of thisrequirement meansthat every single DRAM cell in agiven device
must be refreshed at least once before any single bit in the entire device would lose its stored
charge due to leakage. In most modern DRAM memory systems, the storage cdls in
standard DRAM devices are typicaly refreshed once every 32 or 64 ms. In some cases
where DRAM cells have low capacitance storage capacitors or high leakage currents
through the access transistor, the time period between refresh intervals must be reduced to

ensure reliable data retention.
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2.4 DRAM Array Structures

In DRAM devices, large numbers of DRAM cells are grouped together to form DRAM

array structures. Figure 2.3 illustrates a single bank of DRAM storage cells where a row

bitline

row gselect
>0
o
<
i 1

wordline

—y 1024
T 0% T
sense amp array
I/O gating

Figure 2.3: Top Down view of DRAM array.

address is sent to the row decoder, and the row decoder selects one row of cells. A row of
cellsisformed from one or more wordlines that are driven concurrently to activate one cell
on each one of thousands of bitlines. There may be hundreds of cells connected to the same
bitline, but only one cell will place its stored charge from its storage capacitor on the bitline
at any onetime. The resulting voltage on the bitlineis then resolved into adigita value by a
differential sense amplifier. Figure 2.3 illustrates an abstract DRAM array in a top down
view, and it also abstractly illustrates the size of a cell in the array. The size of a unit cell in
Figure 2.3 is 8 F2. In the context of DRAM cell size, “F" is a process independent metric
that denotes the smallest feature size in a given process technology. In a 90 nm process
technology, F is literally 90 nm, and an area of 8 F? trandlates to 64800 nm? in the 90nm
process. The cross sectiond area of aDRAM storage cell is expected to scale linearly with

respect to the process generation, maintaining the 6~8 F2 cell sizein each generation.
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In modern DRAM devices, the capacitance of a storage capacitor is far smaller than the
capacitance of the bitline. Typically, the capacitance of a storage capacitor isone-tenth of the
capacitance of the long bitline that is connected to hundreds of other cells. The reative
capacitance values create the scenario that when the small charge contained in a cell is
placed on the bitline, the resulting voltage on the bitline is small and difficult to measure in
an absolute sense. In DRAM devices, the voltage sensing problem is resolved through the
use of a differential sense amplifier that compares the voltage of the bitline to a reference
voltage. In the following section, the functionality of the differential sense amplifier is

examined in some detail.
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2.5 Differential Sense Amplifier

In DRAM devices, the functionality of resolving small eectrical charges stored in
storage capacitors into digita values is performed by a differential sense amplifier. In
essence, the differentiad sense amplifier takes the voltages from a pair of bitlines as input,
senses the difference in voltage levels between the bitline pairs and amplifies the difference

to one extreme or the other.

2.5.1 Functionality of Sense Amplifiers in DRAM Devices

Sense amplifiers in modern DRAM devices perform three different functions. The first
function that sense amplifiers perform in a DRAM device is to sense the minute change in
voltage that occurs when an access transistor is turned on and a storage capacitor places its
charge on the hitline. The sense amplifier compares the voltage on that bitline against a
reference voltage as provided on a separate bitline and amplifies the voltage differential to
the extreme so that the storage value can be resolved as a digital one or a zero. This role of
the sense amplifier is its primary role in DRAM devices, as it senses minute voltage
differentials and amplifies them to represent the digital value.

The second function of sense amplifiers in a modern DRAM device is that sense
amplifiers also restores the value of a cell after the voltage on the bitline is sensed and
amplified. The act of turning on the access transistor alows a storage capacitor to share its
stored charge with the bitline. However, the process of sharing the stored value from a
storage cell discharges the storage cell. After the process of charge sharing occurs, the
voltage leve within the storage cell would be roughly equal to the voltage on the bitline, and

thisvoltage level cannot be used for another read operation. As aresult, after the sensng and
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amplification operation, the sense amplifier must aso restore the amplified voltage vale to
the storage cell.

The third and somewhat surprising function of sense amplifiers in a modern DRAM
deviceisthat arrays of sense amplifiersaso act astemporary data storage. That is, after data
values contained in storage cells are sensed and amplified, the sense amplifiers continue to
drive the sensed data values until the DRAM array is precharged and readied for another
access. In this manner, data in the same row of cells can be accessed by reading them from
the sense amplifier without repeated row accesses to the cells themselves. In this role, the
array of sense amplifiers effectively actsasarow buffer that caches an entire row of data. As
a result, an array of sense amplifiers is also referred to as a row buffer. Row buffer
management policies in essence control operations of the sense amplifiers. Different row
buffer management policies dictate whether an array of sense amplifiers will retain the data
for an indefinite period of time", or will dischargeit immediately after data has been restored
to the storage cells. Active sense amplifiers consume additional current above quiescent
power levels, and effective management of sense amplifier operation is an important task for

systems seeking optimal trade off points between power and performance.

2.5.2 Circuit Diagram of a Basic Sense Amplifier

Figure 2.4 shows the circuit diagram of a basic sense amplifier. Complex sense
amplifiersin modern DRAM devices contain the basic € ements shown in Figure 2.4 as well
as additional circuit elements for array isolation, careful baance of the sense amplifier
structure, and faster sensing capability. In the basic sense amplifier circuit diagram shownin

Figure 2.4, the equalization (EQ) signa line controls the voltage equalization circuit. The

*. Indefinitely long until mandatory refresh cycle kicksin.
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Figure 2.4: Basic sense amplifier circuit diagram.
functionality of this circuit is to ensure that the voltages on the bitline pairs are as closely

matched to each other as possible. Since the differential sense amplifier is designed to
amplify the voltage differentia between the bitline pairs, any voltage imbalance that exists
on the bitline pairs prior to the activation of the access transistors would degrade the
effectiveness of the sense amplifier.

The heart of the sense amplifier isthe set of 4 cross-connected transistors, labelled asthe
sensing circuit in Figure 2.4. The sensing circuit is essentially a bi-stable circuit, designed to
drive the bitline pairs to complementary voltage extremes, depending on the respective
voltages on the bitlines at the timethe SAN and SAP sensing signals are activated. After the
assertion of the SAN and SAP, the bitlines are driven to the full voltage levels. The column
sdlect line (CSL) then turns on the output transistors and allows the fully driven voltage to
reach the output and be read out of the DRAM device. At the same time, the access
transistor for the accessed cell remains open, and the fully driven voltage on the bitline now
re-charges the storage capacitor. In case of awrite operation, the input write drivers provide
a larger current to overdrive the sense amplifiers and the bitline voltage. The open cell

would then be overwritten by the new data val ues asserted by the input write drivers.
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Figure 2.5: lllustrated diagrams of sense amplifier operation. Read(1) example.

2.5.3 Basic Sense Amplifier Operation
Figure 2.5 shows four different phases in the sensing operations of a differential sense
amplifier. In Figure 2.5, the operations of a sense amplifiersis labelled as phases zero, one,
two and three. The reason that the precharge phase is labelled as phase zero is because the
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precharge phase istypically considered as a separate operation from arow access operation.
That is, while the Precharge phase is a prerequisite for the subsequent phases of a row
access operation, it is typicaly performed separately from the row access. On the other
hand, Access, Sense, and Restore are three different phases that are performed atomicaly in
sequence for any row access operation.

Phase zero in Figure 2.5 is labelled as Precharge, and it illustrates that before the
process of reading data from a DRAM array can begin, the bitlines in a DRAM array is
precharged to areference voltage, V. In many modern DRAM devices, V /2, the voltage
half way between the power supply voltage and ground, is used as the reference voltage. In
Figure 2.5, the equalization circuit is activated, and the bitlines are precharged to V.

Phase one in Figure 2.5 islabelled as (cell) Access, and it illustrates that as a voltage is
applied to the right most wordline, that wordline is overdriven to a voltage that is at least V
above VCC*. The voltage on the wordline activates the access transistors, and the charge in
the storage cell is discharged onto the bitline. In this case, since the voltage in the storage
cell was a high voltage val ue that represented a digital value of “1”, the voltage on the bitline
increases from V,« to V. As the voltage on the bitline changes, the higher voltage on the
bitline begins to affect operations of the cross connected sensing circuit. In the case
illustrated in Figure 2.5, the dlightly higher voltage on the bitline begins to drive the lower
NFet to be more conductive than the upper NFet. Conversely, the minute voltage difference
drives the lower PFet to be less conductive than the upper PFet. The bitline voltage thus

biases the sensing circuit and readies it for the sensing phase.

*. Themaximum voltage that can be placed across the accesstransistor is Vs - V. (V¢ isthe threshold voltage of the
accesstransistor, V gsisthe gate-source voltage on the access transistor) By overdriving the wordline voltageto V. +
V4, the storage capacitor could be charged to full voltage (maximum of V) by the sense amplifier in the restore
phase of the sensing operation. The higher-than-V . wordline voltage is generated by additional |evel-shifting voltage
pumping circuitry not examined in this text.
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Phase two in Figure 2.5 is labelled Sense, and it illustrates that as the minute voltage
differences drives a bias into the cross connected sensing circuit, SAN, the DRAM device's
Nsense amplifier control signal, turns on and drives the voltage on the lower bitline down'”.
Figure 2.5 shows that as SAN turns on, the more conductive lower NFet allows SAN to
drive the lower bitline down in voltage from V,g to ground. Similarly, SAP, the Psense
amplifier control signal drives the bitlineto afully restored voltage va ue that represents the
digital value of “1”. The SAN and SAP control signals thus collectively force the bi-stable
sense amplifier circuit to be driven to the respective maximum or minimum voltages.

Finally, phase three of Figure 2.5 is |abelled as Restore, and it illustrates that after the
bitlines are driven to the respective maximum or minimum voltage vaues, the overdriven
wordline remains active and the fully driven bitline voltage now restores the charge in the
storage capacitor through the access transistor. At the same time, the voltage value on the
bitline can be driven out of the sense amplifier circuit to provide the requested data. In this
manner, the contents of a DRAM row can be accessed and driven out of the DRAM device

concurrently with the data restoration process.

2.5.4 Voltage Waveform of Basic Sense Amplifier Operation

Figure 2.6 shows the voltage waveforms for the bitline and selected control signas
illustrated in Figure 2.5. The four phases labelled in Figure 2.6 corresponds to the four
phases illustrated in Figure 2.5. Figure 2.6 shows that before a row access operation, the
bitline is precharged, and the voltage on the bitline is set to the reference voltage, V. In

phase one, the wordline voltage is overdriven to at least V, above V., and the DRAM cell

*. In modern DRAM devices, the timing and shape of the SAN and SAP control signals are of great importancein
defining the accuracy and latency of the sensing operation. However, for the sake of brevity, thistext assumesthat the
timing and shape of theseimportant signals are optimally generated by the control logic.
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Figure 2.6: Simplified sense amplifier voltage waveform. Read(1) example.
discharges the content of the cell onto the bitline and raises the voltage from Vg to V. In

phase two, the sense control signas SAN and SAP are activated in quick succession and
drives the voltage on the bitline to the full voltage. The voltage on the bitline then restores
the charge in the DRAM céllsin phase three.

Figure 2.6 illustrates the relationship between two important timing parameters: tgrcp
and tga s Although the relative durations of tycp and tga gare not drawn to scale, Figure 2.6
shows that after time tgrcp, the sensing operation is complete, and the data can be read out
through the DRAM device's data 1/O after that time. However, after time period of trep
from the beginning of the activation process, data has yet to be restored to the DRAM cells.
Figure 2.6 shows that after time period of tga g from the beginning of the activation process,
the data restore operation is assumed to be complete, and the DRAM device is ready to

accept a precharge command that will complete the entire row cycle process after time

perl od of tRP
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2.5.5 Writing into DRAM Array

Figure 2.7 shows a simplified timing characteristic for the case of awrite command. As
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Figure 2.7: Row activation followed by column write into DRAM array.

part of the row activation command, datais automatically restored from the sense amplifiers
to DRAM cells. However, in the case of a write command in commodity DRAM devices,
data written by the memory controller is buffered by the 1/0 buffer of the DRAM device and
used to overwrite the sense amplifiers and DRAM cells . In this case, the restore phase may
be extended by the write recovery phase. Similar to the relative timing described in Figure
2.6, the addition of a column write command simply means that a precharge command
cannot be issued until after the correct data values have been restored to the DRAM cells.
The time period required for write datato overdrive the sense amplifiers and through written

to the DRAM cellsisreferred to as the write recovery time, denoted as tyyr in Figure 2.7.

*, Some DRAM devices such as Direct RDRAM devices have write buffers. Dataisn’t driven directly into the DRAM
array by the datal/O circuitry in that case, but the write mechanism into the DRAM array remains the same when the
write buffer commits the data into the DRAM array prior to a precharge operation.
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2.6 DRAM Device Control Logic

All DRAM devices contain some basic logic control circuitry to direct the movement of
data onto, within, and off of the DRAM devices. Essentially, some control logic must exist
on DRAM devices that accepts externally asserted signa and control, then orchestrates an
appropriately timed sequences of internal control signals to direct the movement of data. As
an example, previous discussion on sense amplifier operations hinted to the complexity of
the intricate timing sequence in the assertion of the wordline voltage followed by assertion
of the SAN and SAP sense amplifier control signals, followed yet again by the column

sdect signal. The sequence of timed control signals are generated by the control logic on

DRAM devices.
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Figure 2.8: Control logic for 32 Mbit FPM DRAM device.
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Figure 2.8 showsthe control logic that generates and control s the timing and sequence of
signals for the sensing and movement of data on the FPM DRAM device illustrated in
Figure 2.1. The control logic on the FPM DRAM device asynchronoudy accepts externa
signal control and generates the sequence of internal control signas for the FPM DRAM
device. The external interface to the control logic on the FPM DRAM device is smple and
straightforward, consisting of essentialy 3 signas. row access strobe (RAS), column
access strobe (CAS), and write enable (WE). The FPM DRAM device described in Figure
3.21 is a device with a 16 bit wide data bus, and the use of separate CASL and CASH
signals allow the DRAM devicesto control each half of the 16 bit wide data bus separately.

In FPM DRAM devices, the controller to FPM DRAM device interface is an
asynchronous interface, and the memory controller directly controls the timing of the
movement of data inside the FPM DRAM device. In early generations of DRAM devices
such as FPM DRAM devices, the direct control of theinterna circuitry of the DRAM device
by the external memory controller and the asynchronous nature of the device interface
means that the DRAM device could not be well pipelined, and new commands to the
DRAM device may not beinitiated until the movement of data for the previous command is
completed”. The asynchronous nature of the interface means that system design engineers
can implement different memory controller that operated at different frequencies, and
designers of the memory controller are solely responsible to ensure that the controller can
correctly control different DRAM devices from different DRAM device and module

manufacturers, possibly with subtle timing variations.

*.  For every rule, there are exceptionsto the rule. Pipeline burst EDO devices were designed to have some limited
pipelining capability with an implicit clocking scheme.
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2.6.1 Mode Register Based Programmability
Modern DRAM devices are controlled by synchronous statemachines whose behavior
depends on the input values of the command signals as well as the values contained in the

programmable mode register in the control logic. Figure 2.9 shows that in an SDRAM
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Figure 2.9: Programmable mode register in an SDRAM device.

device, the mode register contains three fields: CAS latency, burst type, and burst length.
Depending on the value of the CAS latency field in the mode register, the DRAM devices
returns data two or three cycles after the assertion of the column read command. The value
of the burst type determines the ordering of how the SDRAM device returns data, and the
burst length field determines the number of columnsthat a SDRAM devicewill return to the
memory controller with a single column read command. SDRAM devices can be
programmed to return 1, 2, 4, 8 columns, or an entire row. Direct RDRAM devices and
DDRx SDRAM devices contain more mode registers that control ever larger set of
programmabl e operations including, but not limited to: different operating modes for power
conservation, electrical termination calibration modes, self test modes, and write recovery

duration.
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2.7 DRAM Device Configuration

DRAM devices are classified by the number of data bitsin each device, and that number
typically quadruples from generation to generation. For example, 64 Kbit devices were
followed by 256 Khit devices, and those devices were in turn followed by 1 Mbit devices.
Recently, half generation devices that merely double the number of data bits of previous
generation devices have been used to facilitate smoother transitions between different
generations. Asaresult, 512 Mbit devices now exist along side 256 Mbit and 1 Gbit devices.

In agiven generation, a DRAM device may be configured with different data bus widths

to facilitate its use in different applications. Table 2.1 shows three different configurations of

Device configuration | 64 Meg x 4 32 Meg x 8 16 Meg x 16
Number of banks 4 4 4

Number of rows 8192 8192 8192
Number of columns 2048 1024 512

Data bus width 4 8 16

TABLE 2.1: Three different configurations of 256 Mbit SDRAM device

a 256 Mhit device. Table 2.1 showsthat a 256 Mbit SDRAM device may be configured with
a4 bit wide data bus, an 8 bit wide data bus or a 16 bit wide data bus. In the configuration
with a 4 bit wide data bus, an address provided to the SDRAM device to fetch a single
column of data will receive 4 bits of data, and there are 64 million separately addressable
locations in the device with the 4 bit data bus. The 256 Mbit SDRAM device with the 4 bit
wide data bus is thus referred to as the 64 Meg x4 device. Internally, the 64 Meg x4 device
consists of 4 bits of data per column, 2048 columns of data per row, 8192 rows per bank and

there are 4 banks in the device. Alternatively, a256 Mbit SDRAM device with a 16 bit wide
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data bus will have 16 bits of data per column, 512 columns per row, 8192 rows per bank, and
4 banksin the 16 Meg x16 device.

In atypical application, four 16 Meg x16 devices can be connected in parallel to form a
single rank of memory with a 64 bit wide data bus and 128 MB of storage. Alternatively,
sixteen 64 Meg x4 devices forms a single rank of memory with a 64 bit wide data bus and
512 MB of storage. DRAM memory system organizations are examined separately in a

following chapter.

2.7.1 Device Configuration Trade-offs

In the 256 Mbit SDRAM device, the size of the row does not change in different
configurations, and the number of column per row simply decreases with wider data busses
specifying a larger number of bits per column. However, the constant row size between
different configurations of DRAM devices within the sasme DRAM device generation is not

ageneralized trend that can be extended to different device generations. For example, table

Device configuration | 512 Meg x4 | 256 Meg x 8 | 128 Meg x 16
Number of banks 8 8 8

Number of rows 16384 16384 8192

Number of columns 2048 1024 1024

Data bus width 4 8 16

TABLE 2.2: Three different configurations of 1 Gbit DDR2 SDRAM device

2.2 shows different configurations of a1 Gbit DDR2 SDRAM device where the number of
bits per row differs between the x8 configuration and the x16 configuration.

DDR2 SDRAM devices at the 1 Gbit and above densities have 8 banks of DRAM arrays
per device. In the x4 and x8 configuration of the 1 Gbhit DDR2 SDRAM device, there are

16384 rows per bank and each row consists of 8192 hits. In the x16 configuration, there are
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8192 rows and each row consists of 16384 bhits. These different configurations lead to
different numbers of bits per bitline, different numbers of bits per row activation, and
different number of bits per column access. In turn, differences in the number of bits moved
per command lead to different power consumption and performance characteristics for
different configurations of the same device generation. For example, the 1 Ghit, x16 DDR2
SDRAM device is configured with 16384 bits per row, and each time a row is activated,
16384 DRAM cdls are smultaneously discharged onto respective bitlines, sensed,
amplified then restored. The larger row size meansthat a1 Gbit, x16 DDR2 SDRAM device
with 16384 bits per row consumes significantly more current per row activation than 1 Ghit
x4 and x8 configuration with 8192 bits per row. The differences in current consumption
characteristicsin turn leads to difference in timing parameters designed to limit peak power

consumption characteristics of DRAM devices.
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2.8 Data I/O

2.8.1 Burst Lengths and Burst Ordering

In SDRAM and DDRx SDRAM devices, a column read command moves a variable
number of columns. As illustrated in the section on the programmable mode register, an
SDRAM device can be programmed to return 1, 2, 4, or 8 columns of data as a single burst
that takes 1, 2, 4 or 8 cycles to complete. In contrast, a Direct RDRAM device returns a

single column of datawith an 8 beat” burst. Figure 2.10 shows an 8 beat, 8 column read data
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Burst of 8 columns in SDRAM device Burst of 1 columns in Direct RDRAM device

Figure 2.10: Burst lengths in DRAM devices.

burst from an SDRAM device and an 8 beat, single column read data burst from a Direct
RDRAM device. The distinction between the 8 column burst of an SDRAM device and the
single column data burst of the Direct RDRAM device is that each column of the SDRAM
device is individually addressable, and given an a column address in the middle of an 8
column burst, the SDRAM device will re-order the burst to provide the data of the requested
address first. This capability is known as critical-word forwarding. For example, in an
SDRAM device programmed to provide a burst of 8 columns, a column read command with
a column address of 17 will result in the data burst of 8 columns of data with the address
sequence of 17-18-19-20-21-22-23-16 or 17-16-19-18-21-20-23-22, depending on the burst

type as defined in the programmabl e register. In contrast, each column of a Direct RDRAM

*. In DDRx and Direct RDRAM devices, two beats of data are transferred per clock cycle.
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device consists of 128 hits of data, and each column access command moves 128 bits of data
inaburst of 8 contiguous beats in strict burst ordering. That is, differing from SDRAM and
DDRx SDRAM devices, Direct RDRAM devices support neither programmable burst

lengths nor different burst ordering.

2.8.2 N-bit Prefetch

In SDRAM devices, each time a column read command is issued, the control logic
determines the duration and ordering of the data burst, and each column is moved separately
from the sense amplifiers through the 1/0 latches to the externd data bus. However, the
separate control of each column limits the operating data rate of the DRAM device. As a
result, in successive generations of SDRAM, and DDRx SDRAM devices, successively
larger numbers of bits are moved in parallel from the sense amplifiers to the read latch, and
the data is then pipelined through a multiplexor to the external data bus.

Figure 2.11 illustrates the data 1/0 structure of a DDR SDRAM device. Figure 2.11
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Figure 2.11: Data I/0O in DDR SDRAM device illustrating 2-bit prefetch.

shows that given the width of the external data bus as N, 2N bits are moved from the sense
amplifiers to the read latch, the 2N bits are then pipelined through the multiplexors to the

external data bus. In DDR2 SDRAM devices, and the number of bits prefetched by the
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interna data bus is 4N. The N bit prefetch strategy in DDRx SDRAM devices means that
internad  DRAM circuits can remain essentially unchanged between transitions from
SDRAM to DDRx SDRAM, but operating data-rate of DDRx SDRAM devices can be
increased to levels not possible with SDRAM devices. However, the downside of the N bit
prefetch architecture is that short bursts are no longer supported. For example, in DDR
SDRAM devices, a minimum burst length of 2 columns of data are accessed per column
read command, and in DDR2 SDRAM devices, a minimum burst length of 4 columns of
data are accessed per column read command. This trend is likely to continue in future
generations of DDR3 and DDR4 SDRAM devices, thus requiring longer data burstsfor each

success ve generations of higher datarate DRAM devices.
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2.9 DRAM Device Packaging

One difference between DRAM and logic devices is that most DRAM devices are
commodity items whereas logic devices such as processors and application specific
integrated circuits (ASIC) are typically specidized devices that are not commodity items.
The result of the commodity statusfor DRAM devicesisthat even more so than logic device
manufacturers, DRAM device manufacturers are extraordinarily sensitive to cost. One area
that reflects the cost sengitivity is the packaging technology utilized by DRAM devices.

Table 2.3 shows the expected pin count and relative costs from the 2002 | nternational

2004 2007 2010 2013 2016
Semi Generation (nm) 90 65 45 32 22
High Perf. device pin count 2263 3012 4009 5335 7100
High Perf. device 1.88 1.61 1.68 1.44 1.22
cost (cents/pin)
Memory device pin count 48-160 48-160 62-208 81-270 105-351
Memory device pin cost 0.34-1.39 | 0.27-0.84 | 0.22-0.34 | 0.19-0.39 | 0.19-0.33
(cents/pin)

TABLE 2.3: ITRS roadmap projections for package pin count and costs

Technology Roadmap for Semiconductors (ITRS) for high performance logic devices as
compared to memory devices. Table 2.3 shows the trend that memory chips such as DRAM
will continue to be manufactured with relatively lower cost packaging with lower pin count

and lower cost per pin.
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Figure 2.12 shows 4 different packages used in previous and current generations of

Packaging Evolution

Figure 2.12: DRAM device packages.

DRAM devices. Early DRAM devices typically packaged in low pin count and low cost
Dual Inline Packages (DIP). Increasesin DRAM device density and wider data bus widths
have required the use of the higher pincount and larger Small Outline J-lead (SOJ)
packages. DRAM devices then moved to Thin Small Outline Package (TSOP) in the late
1990's. As DRAM device data rates increases to multiple hundreds of megabits per second,
Ball Grid Array (BGA) packages are needed to better control signal interconnects at the

package level.
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2.10 A 256 Mbit SDRAM Device

Figure 2.13 showsthe die photograph of a256 Mbit SDRAM device. Figure 2.13 shows

Figure 2.13: 256 Mbit SDRAM device from Micron.
that much of the surface area of the silicon die is dominated by the regular structures of the
DRAM arrays. In this case, roughly 70% of the silicon surface is used by the DRAM arrays,
and the rest of the arealis taken up by /0 pads, sense amplifiers, decoders and the minimal
control logic. The SDRAM device shown in Figure 2.13 is manufactured on a DRAM
optimized 0.11um process with 3 layers of metal interconnects and 6 layers of poly silicon.
The SDRAM device is contained in a low cost 54 pin TSOP package. On a commodity
SDRAM device, 14 pins of the 54 pin package are used for power and ground, 16 pins are
used for the data bus, 15 pins are used for the address bus, 7 pins are used for the command

bus, and asingle pinis used for the clock signal.

2.10.1 SDRAM Device Block Diagram

Figure 2.14 shows a block diagram of the 256 Mbit SDRAM device. Figure 2.14 shows
that unlike the FPM DRAM device illustrated in Figure 2.1, the 256 Mbit SDRAM device
has 4 banks of DRAM arrays, each with its own array of sense amplifier, row decoders and

column decoders. Similar to the FPM device, the SDRAM device contains separate address
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Figure 2.14: SDRAM Device Architecture with 4 Banks.
registers that are used to control dataflow on the SDRAM device. In case of a row access

command, the address from the address register is forwarded to the row address latch and
decoder, and that address is used to activate the selected wordline. Data is then discharged
onto the bitlines and the sense amplifiers array senses, amplifies and holds the data until a
subsequent column access command either reads the data through the 1/O gating out to the
data bus, or accepts write data from the data bus through the I/O gating, overwrites data in

the sense amplifier arrays, then overwrites datain the DRAM cellsto the new values.

2.10.2 Pin Assignment and Functionality
In an SDRAM device, commands are decoded on the rising edge of the clock signal
(CLK) if the chip sdect line (CS#) is active. The command is asserted by the DRAM

controller on the command bus, which consists of the write enable (WE#), column access
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CS# | RAS# | CAS# | WE# | addr
command inhibit (nop) H X X X X
no operation (nop) L H H H X
active (activate row - RAS) L L H H addr
read (start read - CAS) L H L H addr
write (start write - CAS W) L H L L addr
burst terminate L H H L X
precharge L L H L ok ** hank address, or
all banks (with a_10
auto refresh L L L H X assertion)
load mode register L L L L code

TABLE 2.4: SDRAM commands
(CASH), and row access (RASH) signal lines. Although the signal lines have function-

specific names, they essentially form a command bus, allowing the SDRAM device to
recognize more commands without the use of additional signal lines. Table 2.4 shows the
command set of the SDRAM device and the signal combinations on the command bus.
Table 2.4 shows that as long as CS# is not selected, the SDRAM device ignores the signa's
on the command bus. In the case that CS# is active on the rising edge of the clock, the
SDRAM device then decodes the combination of control signals on the command bus. For
example, the combination of an active low voltage value on RAS#, high voltage value on
CAS# and high voltage value on WE#, the SDRAM device recognizes that this combination
signifies a row activation command and begins the row activation process on the selected
bank and row address as provided on the address bus.

Another command allows the SDRAM device to load in new values for the mode
register from the address bus. That is, in case that CS#, RAS#, CAS# and WE# are dll active
on the rising edge of the clock signa, the SDRAM device decodes the load mode register

command and loads the mode register from value presented on the address bus.
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2.11 Process Technology and Scaling Considerations

The 1IT1C cdl structure places specialized demands on the access transistor and the
storage capacitor. Specifically, the cross sectiona area occupied by the 1T1C DRAM cdll
structure must be smdl, leakage through the access transistor must be low, and the
capacitance of the storages capacitor must be large. The data retention time and data
integrity requirements provide the boundaries in the design of a DRAM cell. Different
DRAM devices can be designed to meet the demand of high performance or low cost
market. Presently, DRAM devices are manufactured on DRAM-optimized process
technologies whereas logic devices are typically manufactured on logic-optimized process
technologies. DRAM optimized process technologies can be used to fabricate logic circuits,
and logic optimized process technologies can also be used to fabricate DRAM circuits.
However, DRAM optimized process technologies have diverged substantially from logic
optimized process technologies in recent years. Consequently, it has become less
economically feasible to fabricate DRAM circuits in logic optimized process technology
and logic circuits fabricated in DRAM optimized process technology is much slower than
similar circuitsin alogic optimized process technol ogy. These trends have conspired to keep

logic and DRAM circuits separate in different devices.

2.11.1 Cost Considerations

Historically, manufacturing cost considerations have dominated the design of standard,
commodity DRAM devices. In the spring of 2003, a single 256 megabit DRAM device,
using roughly 45 mm? of silicon die areaon a0.11um DRAM process had a selling price of

approximately $4 per chip. In contrast, a desktop Pentium 4 processor from Intel, using
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roughly 130 mm? of die area.on a0.13um logic process, had a selling price that ranged from
$80 to $600 in the comparable time frame. Although the respective selling prices were due
to the limited sources, non-commodity nature of processors and the pure commodity
economics of DRAM devices, the disparity doesillustrate the level of price competition on
the sade of commodity DRAM devices. The result is that DRAM manufacturers are
singularly focused on the low cost aspect of DRAM devices. Any proposal to add additional
functionalities must then be weighed against the increase in die cost and possible increases

in selling price.

2.11.2 DRAM-versus-Logic Optimized Process Technologies

One apparently inevitable trend in semiconductor manufacturing is the march toward
integration. As the semiconductor manufacturing industry dutifully fulfills Moore's Law,
each doubling of transistors allow design engineers to pack more logic circuitry or more
DRAM storage cells onto asingle piece of silicon. However, the semiconductor industry has
thus far generaly resisted the integration of DRAM and logic onto the same silicon device
for various technical and economic reasons.

Figure 2.15 illustrates some technical issues that have prevented large scale integration
of logic circuitry with DRAM storage cells. Basically, logic optimized process technologies
have been designed for transistor performance while DRAM optimized process
technol ogies have been designed for low cost, error tolerance and |eakage resistance. Figure
2.15 shows a typica logic based process technology with 7 or more layers of copper
interconnects while a typical DRAM optimized process technology has only 2 layers of

aluminum interconnects along with perhaps an additional layer of tungsten for local
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Figure 2.15: Comparison of DRAM Optimized Process versus Logic Optimized Process.

interconnects. Moreover, a logic optimized process typicaly uses low K material for the
inter-layer dielectric while the DRAM optimized process uses the venerable S O,. Figure
2.15 ad'so shows that a DRAM optimized process would use 4 or more layers of polysilicon
to form the structures of a stacked capacitor (for those DRAM devices that use the stacked
capacitor structure), while the logic optimized process merely uses 2 or 3 layers of
polysilicon for local interconnects. Also, transistors in a logic optimized process are
typically tuned for high performance while transistors in a DRAM optimized process are
tuned singularly for low leakage characteristics. Finaly, even the substrate of the
respectively optimized process technologies are diverging as logic optimized process
technologies move to depleted substrates and DRAM optimized process technologies
largely stayswith bulk silicon.

The respective specidizations of the differently optimized process technologies have

largely succeeded in preventing widespread integration of logic circuitry with DRAM
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storage cells. The use of aDRAM optimized process as the basi s of integrating logic circuits
and DRAM storage cells lead to dlow transistors with low drive currents connected to few
layers of metal interconnects and relatively high K SO, inter-layer dilectric. That is, logic
circuitsimplemented on aDRAM optimized process would be substantidly larger aswell as
dower than comparable circuits on a similar generation logic optimized process .
Conversely, the use of ahigher cost logic optimized process as the basis of integrating logic
circuitsand DRAM storage cells|ead to high performance but |eaky transi stors coupled with
DRAM cells with relatively lower capacitance, necessitating large DRAM cell structures
and high refresh rates.

In recent years, new hybrid process technologies have emerged to solve various
technical issues limiting the integration of logic circuits and DRAM storage cells. Typically,
the hybrid process starts with the foundation of a logic optimized process, then additional
layers are added to the process to create high cepacitance DRAM storage cells. Also,
different types of transistors are made available for use as low leakage access transistors as
well as high drive current high performance logic transistors. However, hybrid process
technology then becomes more complex than alogic optimized process. As aresult, hybrid
process technologies that enable seamless integration of logic and DRAM devices are
typically more expensive, and their use have thus far been limited to specialty niches that
require high performance processor and high performance and yet small DRAM memory
systemsthat are limited by the die size of asinglelogic device. Typically, the application has

been limited to high performance System-on-Chip (SOC) devices.

*. DRAM cdl sizesin hybrid logic based process technologies are
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CHAPTER 3 DRAM Memory Sygem
Organization

In this chapter, basic terminologies and basic building blocks of DRAM memory
systems are described. While the previous chapter examined the operations of a single
DRAM device, this chapter examines the construction, organization and operation of
multiple DRAM devices in the context of a complete memory system. The goal of this
chapter is to cover the definition of basic terminologies sufficient to describe DRAM
memory System organizations and establish acommon nomenclature for use throughout this
work. The performance anaysis and DRAM scheduling algorithm in subsequent chapters

are described by using the basic terminology defined in this chapter.

3.1 Conventional Memory system

Historically, the number of storage bits contained in a single DRAM device has been
inadequate to serve as the main memory for most computing platforms, with the exception
of specialty embedded systems. In the past few decades, the growth rate of DRAM device
storage capacity has roughly paralleled the growth rate of the size of memory systems for
desktop computers, workstations and servers. The pardlel growth rates in DRAM device
storage capacity and DRAM memory system capacity have dictated system designs in that
multiple DRAM devices must be interconnected together to form larger memory systemsfor

most computing platforms. In this chapter, the organization of different multi-chip DRAM
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Figure 3.1: Multiple DRAM devices connected to a processor through a memory controller.

memory systems and different i nterconnection strategies, deployed for cost and performance
concerns, are explored.

In Figure 3.1, multiple DRAM devices are interconnected together to form a single
memory system that is managed by a single memory controller. In modern computer
systems, one or more DRAM memory controllers (DM C) may be contained in the processor
package or integrated into a system controller that resides outside of the processor package.
Regardless of the location of the DRAM memory controller, the functionality of the DRAM
memory controller is to accept read and write requests to a given address in memory,
trandate the request to one or more commands to the memory system, issue those
commands to the DRAM devices in the proper sequence and proper timing, and retrieve or

store data on behalf of the processor or I/O devicesin the system.
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3.2 Basic Nomenclature

The organization of multiple DRAM devices into a memory system can impact the
performance of the memory system in terms of operating datarates, latency, and sustainable
bandwidth characterigtics. It is therefore of great importance that the organization of
multiple DRAM devices into larger memory systems be examined in detail. However, the
problem that has hindered the examination of DRAM memory system organizations is the
lack of clearly defined nomenclature. Without a common basis of well defined
nomenclature, technical articles and datasheets often succeed in introducing confusion
rather than clarity to discussions on DRAM memory systems. In one particularly egregious
example, a technical datasheet for a system controller used the word bank in two bullet
items on the same page to mean two different things. In this datasheet, one bulleted item
trumpeted that the system controller can support 6 banks (of DRAM devices). Then, severa
bulleted items later, the same datasheet states that the same system controller supports
SDRAM devices with 4 banks. In a second example that was nearly as egregious, an article
in awell respected technical journal examined the then new Intel i875P system controller,
and proceeded to discuss the performance advantage of the system controller due to the fact
that it could control two banks of DRAM devices.

In these two examples, the word bank was used to mean three different things. While the
meaning of the word bank can be inferred from context in each case, the overloading and
repeated use of the terminology introduces unnecessary confusion into discussions about
DRAM memory systems. In this section, the terminology of channel, rank, bank, row and
column is defined and al subsequent discussions in thiswork will conform to their usage as

defined in this chapter.
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Figure 3.2: Systems with single memory controller and different data bus widths.
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3.2.1 Channel

Figure 3.2 shows three different system controllers with dightly different
configurations of the DRAM memory system. In Figure 3.2, each system controller has a
single DM C, and each DM C controls a single channel of memory. In the example labelled
as the typical system controller in Figure 3.2, the system controller controls a single 64 bit
wide channel. In modern DRAM memory systems, commodity non-ECC DRAM memory
modules are standardized with 64 bit wide data busses, and the 64 bit data bus width of the
memory module matches the data bus width of the typical persona computer system
controller. In the exampled labelled as Intel 1875P system controller, the system controller
connects to a single channed of DRAM with a 128 bit wide data bus. However, since
commodity DRAM modules have 64 bit wide data busses, matching pairs of 64 bit wide
memory modules are required for Intel’si875P system controller to operate with the 128 bit
wide data bus. The paired-memory-module configuration of Intel’s i875p system controller
is often referred to as a dual channel configuration. However, since there is only one
memory controller and both memory modules operate in parallel to store and retrieve data

through the 128 bit wide data bus, the paired-memory module configurationisin fact a 128
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Figure 3.3: Systems with two independent memory controllers and two logical channels.

bit wide single channel memory system. Also, similar to SDRAM and DDR SDRAM
memory systems, standard Direct RDRAM memory modules are designed with 16 bit wide
data busses and system controllers such asthe Intel 1850 system controller use matched pairs
of Direct RDRAM memory modules to form a single 32 bit wide logical channel of
memory.

In contrast to system controllers that use a single DRAM memory controller to control
the entire memory system, Figure 3.3 shows that the Alpha EV7 processor and the Intel
1925x system controller each hastwo DRAM memory controllers that independently control
64 bit wide data busses . The use of independent DRAM memory controllers can lead to
higher sustainable bandwidth characteristics since the narrower channelslead to longer data
bursts per cacheline request and the various inefficiencies dictated by DRAM access
protocols can be better amortized. As a result, newer system controllers are often designed
with multiple memory controllers despite the die cost of adding memory controllers.

Modern memory systems with one DRAM memory controller and multiple physical
channels of DRAM devices such as those illugtrated in Figures 3.2 are typically designed

with the physical channels operating in lockstep with respect to each other. However, there

*. Ignoring additional bit widths used for error correction and cache directory in the case of the Alpha EV7 processor.
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Figure 3.4: High performance DMC with 4 channels of interleaved FPM DRAM devices.

are two variaions to the single-controller-multiple-physical-channd configuration. One
variation of the single-controller-multiple-physical-channel configuration is that some
system controllers, such as the Intel i875P system controller, allow the use of mismatched
pairs of memory modulesin the different physical channels. In such a case, the i875p system
controller operatesin an asymmetric mode and independently controls the physical channels
of DRAM modules. However, since there is only one DRAM memory controller, the
multiple physical channels of mismatched memory modules cannot be accessed
concurrently, and only one channel of memory can be accessed a any given instance in
time. In the asymmetric configuration, the maximum system bandwidth is the maximum
bandwidth of asingle physical channel.

A second variation of the single controller-multiple-physical-channel configuration can
be found in high performance FPM DRAM memory systemsthat were designed prior to the
emergence of DRAM devices that support consecutive-cycle data bursts. Figure 3.4
illustrates a sample timing diagram of a column access in an SDRAM memory system.

Figure 3.4 showsthat an SDRAM deviceisableto return aburst of multiple columns of data
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for a single column access command. However, an FPM DRAM device supported neither
single-access-multiple-burst capability nor the ability to pipeline multiple column access
commands. As aresult, FPM DRAM devices need multiple column accesses that cannot be
pipelined to retrieve the multiple columns of datafor a given cacheline access.

One solution deployed to overcome the shortcomings of FPM DRAM devicesis the use
of multiple FPM DRAM channelsin asingle memory system that operatesin an interleaved
fashion. Figure 3.4 also shows how a sophisticated FPM DRAM memory system can send
multiple column accesses to different physical channelsin such amanner so that the data for
the respective column accesses appear on the data bus in consecutive cycles. In this
configuration, the multiple FPM DRAM channels provided the sustained throughput
required in high performance workstations and servers before the appearance of modern
synchronous DRAM devices that can burst through multiple columns of datain consecutive

cycles.
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3.2.2 Rank

Figure 3.5 shows a memory system populated with 2 ranks of DRAM devices.
Essentially, arank of memory isa*®bank” of one or more DRAM devices that operate in
lockstep in response to a given command. However, the word “ bank” is currently used by
DRAM device manufacturers to describe the number of independent DRAM arrayswithin
a DRAM device. To lessen the confusion associated with overloading the nomenclature,
the word rank is now used to denote a set of DRAM devices that operate in lockstep
fashion to commands in a memory system.

Figure 3.5 illustrates a configuration of two ranks of DRAM devicesin asingle channe
in a classical DRAM memory system topology. In the classical DRAM memory system
topology, the address and command busses are connected to every DRAM device in the
memory system, but the wide data bus is partitioned and connected to different sets of
DRAM devices within the system. The memory controller then uses chip-seect signals to

sdlect the appropriate rank of DRAM devices to respond to a given command.
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3.2.3 Bank

The word bank has been over used to mean anumber of different things in the memory
system. As described previoudy, the word bank had been used to describe independent
memory arrays insde a DRAM device, a set of DRAM devices that collectively act in
response to commands, as well as different physical channels of memory. In this text, the
word bank is used dtrictly to denote an independent memory array inside aDRAM device.

Figure 3.6 shows an SDRAM device with 4 banks. Modern DRAM devices contain
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write drivers .
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decoder

bank
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Figure 3.6: SDRAM device with 4 banks of DRAM arrays internally.

multiple banks so that multiple, independent accessesto different DRAM arrays can occur
in parallel. In this design, each bank of memory is an independent array that can be in
different phases of the row access cycle. Some common resources, such as the I/0O gating
that allows access to the data pins must be shared between different banks. However, the
multi-bank architecture allows commands such as read requests to different banks to be
pipelined. Certain commands, such as refresh commands, can also be engaged in multiple
banks in paralel. In this manner, multiple banks can operate independently or

concurrently depending on the command.
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Figure 3.7: DRAM devices with 4 banks, 8192 rows per bank, 512 columns per row, and
16 bits per column.

3.2.4 Row

In DRAM devices, arowissimply the group of storage cellsthat are activated in paralle
in response to a row activation command. In DRAM memory systems that utilize the
conventional system topology such as SDRAM, DDR SDRAM and DDR2 SDRAM
memory systems, multiple DRAM devices are typically connected in parald as ranks of
memory. Figure 3.5 shows how DRAM device can be connected in parallel to form ranks of
memory devices. The effect of DRAM devices connected as ranks of DRAM devices that
operate in lockstep is that a row activation command will activate the addressed row in all
DRAM device of agiven rank of memory. This arrangement means that the size of arow is
multiplied by the number of DRAM devicesin agiven rank, and aDRAM row spans across
the multiple DRAM devices of agiven rank of memory.

A row is also sometimes referred to asa DRAM page, since arow activation command
in essence activates a page of memory. DRAM pages are typicdly severa kilobytesin size,
and they are cached at the sense amplifiers until a subsequent precharge command is issued
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Figure 3.8: Classical DRAM system topology, width of data bus equals column size.

by the DRAM memory controller. Various schemes have been proposed to take advantage of
locality at the DRAM page level. However, one problem with the exploitation of locality at
the DRAM page level isthat the size of the DRAM page depends on the configuration of the
DRAM device and the memory modules, rather than the architectural page size of the

processor.

3.2.5 Column

In DRAM memory systems, a column of data is the smallest independently addressable
unit of memory. Figure 3.8 illustrates that in memory systems such as SDRAM and DDRX
SDRAM memory systems with topology similar as to the memory system illustrated in
Figure 3.5, the size of a column of datais the same as the width of the data bus. In a Direct
RDRAM device, acolumn is defined as 16 bytes of data, and each read command accesses a
single column of data 16 bytes in length from each physical channel of Direct RDRAM
devices

In DDRx SDRAM memory systems, each column access command loads or stores

multiple columns of data depending on the programmed burst length. For example, in a

*,  DDRx denotes DDR SDRAM and evol utionary DDR memory systems such as DDR2 and DDR3 SDRAM memory
systems, inclusively.
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Figure 3.9: Location of data in a DRAM memory system.

DDR2 DRAM device, each memory read command returns a minimum of 4 columns of
data. The distinction between a DDR2 device returning a minimum burst size of 4 columns
of dataand a Direct RDRAM device returning a single column of data over 8 beats' is that
the DDR2 device accepts the address of a specific column, and returns the requested
columnsin different orders depending on the programmed behavior of the DRAM device. In
this manner, each column is separately addressable. In contrast, Direct RDRAM devices do
not reorder data within a given burst, and a 16 byte burst from a single channel of Direct

RDRAM devicesistransmitted in-order and treated as a single column of data.

3.2.6 Memory System Organization: An Example
Figure 3.9 illustrates a DRAM memory system with 4 ranks of memory, each rank of
memory consists of 4 devices connected in parallel, each device has 4 banks of DRAM

arrays internally, each bank has 8192 rows, and each row has 512 columns of data. In a

*. A beat issimply adata-transition on the data bus. In SDRAM memory systems, there is one data-transition per clock
cycle, so one beat of data istransferred per clock cycle. In DDRx SDRAM memory systems, two data transfers can
occur in each clock cycle, so two beats of dataistransferred per clock cycle. The use of the beat terminology avoids
overloading the word cycle in discussions regarding DDRx SDRAM memory systems.
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DRAM based memory system, the DRAM controller accepts an address and breaks down
the address into separate addresses that point to the specific channel, rank, bank, row,
column where the data is contained.

Although Figure 3.9 illustrates a uniformly organized memory system, memory system
organizations of many computer systems are typicaly non-uniform. The reason that the
DRAM memory systems organizations in many computer systems are typically non-uniform
is because most computer systems are designed to allow end usersto upgrade the capacity of
the memory system by inserting and removing commodity memory modules. To support
memory capacity upgrades by the end user, DRAM controllers have to be designed to
flexibly adopt to different configurations of DRAM devices and modules that the end user
could place into the computer system. This support is provided for through the use of
address range registers whose functiondlity is examined separately in the chapter on system

controllers.

3.3 Memory Modules

Some earlier generations of computer systems alowed end users to increase memory
capacity by providing sockets on the system board where additional DRAM devices can be
inserted. Figure 3.10 illustrates a system board with sockets that allow end users to remove
and insert individual DRAM devices, usualy contained in dual link packages (DIP). The
process of memory upgrade was cumbersome and difficult, as DRAM devices had to be
individually removed and inserted into each socket. Pins on the DRAM devices may be bent
and not visually detected as such. Defective DRAM chips were difficult to locate and
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Figure 3.10: An 80386sx system board with sockets for dual in-line package DRAM devices.

routing of sockets for a large memory system requires large surface areas on the system
board. The solution to the problems associated with memory upgradability was the creation
and use of memory modules.

Memory modules are essentially miniature system boards that hold a number of DRAM
devices so that groups of DRAM devices can be quickly and easily inserted and removed
from the system board. Memory modules provide an abstraction at the module interface so
that different manufacturers can manufacture memory upgrades for a given computer
system with different DRAM devices. DRAM memory modules also reduce the complexity
of the memory upgrade process. Instead of the removal and insertion of individual DRAM
chips, memory upgrades with modules containing multiple DRAM chips can be quickly and
easily inserted into and removed from a module socket. Over the years, memory modules
have themselves gradually evolved, obtained a level of sophistication, and now require

exacting specifications for compatibility between different systems.
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3.3.1 Single In-line Memory Module (SIMM)

In the late 1980's and early 1990’s, the computer industry first standardized on the use of
30 pin Single In-line Memory Modules (SIMMs), then later moved to the use of 72 pin
SIMMs. SIMMs arereferred to as single-inline due to the fact that the contacts on both sides
of themodule are electrically identical. A 30 pin SIMM provides interconnectsto 8 or 9 pins
on the data bus, as well as power, ground, address, command and chip select signal lines. A
72 pin SIMM increases the width of the data bus connection to 32 or 36 hits.

Figure 3.11 shows the two sides of a 30 pin SIMM. The DRAM devices on the SIMM in
Figure 3.11 consists of two 4 megabit and one 1 megabit DRAM devices. Collectively, these
DRAM devices provide a 9 bit wide data bus interface and 1 megabyte of parity protected
memory storage capacity. Typica computer systems in the early 1990’s used sets of four
matching 30 pin SIMMs similar to the oneillustrated in Figure 3.11 to provide a 36 bit wide

memory interface to support parity checking by the memory controller.
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3.3.2 Dual In-line Memory Module (DIMM)

In the late 1990's, as the personal computer industry transitioned from FPM/EDO
DRAM to SDRAM, 72 pin SIMMs were phased out in favor of dual in-line memory
modules (DIMMSs). DIMMs are physically larger than SIMMs and provides a 64 or 72 hit
wide data bus interface. The difference between a SIMM and a DIMM s that contacts on
either side of the DIMM are electricaly different. The electrically different contacts dlow a
denser routing of eectrical signals as well as close pairing of power and ground signals for
noise minimization.

Figure 3.12 illustrates a 128 MB PC3200 ECC DDR SDRAM DIMM with an
interesting configuration. Since ECC support required that this DIMM provide a 72 bit wide
data businterface to the memory system, an odd number of DRAM devicesis needed on the
memory module to create such an interface. Typically, for a128 MB ECC DIMM, four 256
megabit DRAM device with 16 bit wide interface would be utilized along with asingle 128
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Figure 3.13: Edge view of a registered DIMM stacked with 2 ranks of DRAM devices in
TSOP package.

megabit DRAM device with 8 bit wide interface. Such a configuration would minimize cost,
but in this case, the manufacturer of the memory modul e chose to create the memory module
with five identical 256 megabit DRAM devices, each with a 16 bit data bus interface. The

result isan 80 bit data businterface, but only 72 are used on the DIMM.

3.3.3 Registered Memory Module

Memory modules of varying capacity and timing characteristics are needed to suite a
wide range of computers and upgrade options. High performance workstations and servers
typically require large memory capacity. The problem associated with large memory
capacity memory modules is that a large number of DRAM devices must be connected
together to create the large capacity memory module. Figure 3.13 shows a memory module
stacked with 2 ranks of 64 megabit SDRAM devices. On the memory module partialy
shown in edgeview in Figure 3.13, each rank consists of 18 DRAM devices and atotal of 36
DRAM devices are connected together on the memory module to form a memory module
256 megabytes in capacity. The large number of DRAM devices creates a problem in that
the large number of DRAM devices presents a large loading factor on the various address,
command and data busses.

Registered memory modules aleviate the issue of electrical loading by large numbers of

DRAM devicesin alarge memory system through the use of registersthat buffer the address

57



DRAM
devices
command/
address memory
register (latch) address/ module
command A »

Figure 3.14: Registered latches buffer the address and command.
Also introduces additional latency into the DRAM access.

and control signals at the interface of the memory module. Figure 3.14 illustrates that
registered memory modules use registered latches at the interface of the memory module to
buffer the address and control signals. In this manner, the registers greetly reduce the
number of electrica loads that a memory controller must drive directly, and the signd
interconnects in the memory system are divided into two separate segments. between the
memory controller and the register, and between the register and DRAM devices. The
segmentation alows timing characteristics of the memory system to be optimized by
limiting the number of electrical loads as well as reducing the path lengths of the critica
control signalsin individual segments of the memory system. However, the drawback to the
use of the registered latches on a memory module is that the buffering of the address and
control signas introduce delays into the memory access latency, and the cost of ensuring of
signal integrity in a large memory system is paid in terms of additiona latency for all

memory transactions.
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Capacity devic_e number devices d(_evice number number | number of
density of ranks | perrank | width of banks | ofrows | columns

128 MB 64 Mbit 1 16 x4 4 4096 1024

128 MB 64 Mbit 2 8 x8 4 4096 512

128 MB 128 Mbit | 1 8 x8 4 4096 1024

128 MB 256 Mbit | 1 4 x16 4 8192 512

TABLE 3.1: Four different configurations for a 128 MB SDRAM memory module

3.3.4 Memory Module Organization

Modern DRAM memory systems often support large varieties of memory modules to
give end users the flexibility of selecting and configuring to the desired memory capacity.
Since the price of DRAM devices fluctuate depending on the unpredictable commodity
market, one memory module organization may be less expensive to manufacture than
another organization at a given instance in time, while the reverse may be true at a different
instance in time. As a result, a memory system that supports different configurations of
memory modules allows end usersthe flexibility to purchase and use the most economically
organized memory module. However, one issue that memory system design engineers must
account for in providing the flexibility of memory system configuration to the end user is
that the flexibility trandates into large combinations of memory modules that may be placed
into the memory system at a given instance in time. Moreover, multiple organizations often
exist for a given memory modul e capacity, and memory system design engineers must often
account for not only different combinations of memory modules of different capacities, but
also different modules of different organizations for a given capacity.

Table 3.1 shows that a 128 MB memory module can be constructed from a combination
of sixteen 64 Mbit DRAM devices, eight 128 Mbit DRAM devices, or four 256 Mbit

DRAM devices. Table 3.1 shows that the different memory module organizations not only
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serial presence detect (SPD) Configuration Value (interpreted)
DRAM type DDR SDRAM
No. of row addresses 16384
No. of column addresses 1024
No. of banks 4
Data rate 400
Module type ECC
Cas latency 3
TABLE 3.2: Sample parameter values stored in SPD

Figure 3.15: The SPD stores memory module configuration information.

use different number of DRAM devices, but also presents different numbers of rows and
columns to the memory controller. To access the memory on the memory module, the
DRAM controller must recognize and support the organization of the memory module
inserted by the end user into the memory system. In some cases, new generations of DRAM
devices can enable memory module organizations that a memory controller was not

designed to support, and incompatibility follows naturally.

3.3.5 Serial Presence Detect (SPD)

Memory modules have gradually evolved as each generation of new memory modules
gains additional levels of sophistication and complexity. Table 3.1 showed that a DRAM
memory module can be organized as multiple ranks of DRAM devices on the same memory
module, each rank consisting of multiple DRAM devices and the memory module can have
differing numbers of rows and columns. What isn’'t shown in table 3.1 is that each DRAM
memory module may in fact have different timing parameters, and the variability of the
DRAM modules in turn increases system level complexity that a memory system design

engineer must deal with.
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Figure 3.16: Topology of a generic DRAM memory system.

To reduce the complexity and eliminate confusion involved in the memory upgrading
process, the solution adopted by the computer industry is to store the configuration
information of the memory module on a flash memory device whose content can be
retrieved by the memory controller as part of the system initialization process. In this
manner, the memory controller can obtain the configuration and timing parameters required
to optimally access data from DRAM devices on the memory module. Figure 3.15 shows
the image of a small flash memory device on a DIMM. The small flash memory deviceis
known as a Serial Presence Detect (SPD) device, and it stores parameter values that defines
the configuration and timing characteristics of the memory module. Table 3.2 also shows

some parameter values that are stored in the SPD.

3.4 Memory System Topology

In Figure 3.16, a memory system where 16 DRAM devices are connected to a single
DRAM controller is shown. In Figure 3.16, the 16 DRAM devices are organized into four

separate ranks of memory. Although al 16 DRAM devices are connected to the same
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DRAM contraller, different numbers of DRAM devices are connected to different networks
for the uni-directiona address and command bus, the bi-directional data bus, and the uni-
directional chip sdect lines. In this topology, when a command is issued, electrical signals
on the address and command busses are sent to all 16 DRAM devicesin the memory system,
but the separate chip-select signal selects a set of 4 DRAM devices in a single rank to
provide the data for a read command or receive the data for a write command. In this
topology, each DRAM device in agiven rank of memory is aso connected to a subset of the
width of the data bus along with three other DRAM devicesin different ranks of memory
Memory system topology determines the signal path lengths and electrical loading
characteristics in the memory system. As a result, designers of modern high performance
DRAM memory systems must pay close attention to the topology and organizations of the
DRAM memory system. However, due to the evolutionary nature of the memory system,
the classic memory system topology described above and shown in Figure 3.16 has
remained essentialy unchanged for Fast Page Mode DRAM (FPM), Synchronous DRAM
(SDRAM) and Dud Data Rate SDRAM (DDR) memory systems. Furthermore, variants of
the classical topology with fewer ranks are expected to be used for DDR2 and DDR3

memory systems.

3.4.1 Direct RDRAM System Topology

One memory system with a system topology dramatically different from the classica
DRAM memory system topology is the Direct RDRAM memory system. In Figure 3.17, 4
Direct RDRAM devices are shown connected to a single Direct RDRAM memory

controller. Figure 3.17 shows that in a Direct RDRAM memory system, the DRAM devices
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Figure 3.17: Topology of a generic Direct RDRAM memory system.

are connected to a well matched network of interconnects where the clocking network, the
data bus and the command busses are dl path length matched by design. The benefit of the
well matched interconnection network is that signal skew is minimal by design and
electrical signalling rates in the Direct RDRAM memory system can be increased to higher
frequencies than a memory system with the classc memory system topology. Modern
DRAM systems with conventional multi-rank topology can also match the raw signalling
rates of a Direct RDRAM memory system. However, the drawback for these DRAM
systems s that idle cycles must be designed into the access protocol and devoted to system
level synchronization. As aresult, even when pushed to comparable data rates, multi-rank
DRAM memory systems with classica system topologies are less efficient in terms of data
transported per cycle per pin.

The Direct RDRAM memory system can achieve higher efficiency in terms of data
transport per cycle per pin. However, in order to take advantage of the system topology and
enjoy the benefits of higher pin data rates and higher data transport efficiency, Direct
RDRAM memory devices are more complex than comparable DRAM memory devices that
use the classic memory system topology. In DRAM devices, complexity trandates directly
to increased costs. As a result, the higher data transport efficiency of Direct RDRAM

memory systems has to be traded off against relatively higher DRAM device costs.
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CHAPTER 4 DRAM Memory Access
Protocol

The basic structures of DRAM devices and memory System organizations are described
in some detail in previous chapters. In this chapter, the DRAM memory access protocol is
examined in similar detail. A memory access protocol defines commands that a DRAM
memory controller uses to manage the movement of data on DRAM devices in the memory
system, and each memory system has a dightly different access protocol. The DRAM
memory access protocol described in this chapter can be broadly applied to modern memory
access protocol s such as SDRAM, and DDRx SDRAM memory access protocols.

This chapter examines a generic DRAM memory access protocol by focusing on basic
DRAM commands common to al commodity DRAM devices. Modern DRAM devices
with additional logic circuitry, write buffers or cache require the use of additional commands
to manage data flow and device operations, on agiven DRAM device, and those commands

are not covered in the examination of the generic DRAM access protocol.
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Figure 4.1: Command and data movement on generic SDRAM device.

4.1 Basic DRAM Commands:

A detailed examination of any DRAM memory access protocol is a difficult and
complex task. The complexity of the task arises from the number of combinations of
commands in modern DRAM memory systems. Fortunately, a basic memory access
protocol can be modeled by accounting for a limited number of basic DRAM commands .

In this section, five basc DRAM commands are described. The descriptions of the basic

*. Modern DRAM devices such as Direct RDRAM and DDR2 SDRAM devices support larger sets of commands.
However, most are used to manage the electrical characteristics of the DRAM devices, and only indirectly impacts
access latency and sustai nable bandwidth characteristics of aDRAM memory system at a given operating frequency.
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commands form the foundation of the DRAM memory access protocol examined in this
chapter. The interaction of the basic DRAM commands are then used to determine the
latency response and sustainable bandwidth characteristics of DRAM memory systems in
this text.

Throughout this chapter, the SDRAM deviceillustrated in Figure 4.1 isused as ageneric
DRAM device for the purposes of defining the basic memory access protocol. Figure 4.1
illustrates that different phases of operations occurs on the DRAM devices to facilitate the
movement of data for each command. The generic DRAM access protocol described in this
chapter is based on a resource usage model. That is, the generic DRAM access protocol
assumes that two different commands can be fully pipeined on a given DRAM device as
long as they do not require the use of a shared resource at the same time, and that there are
no additional constraints beyond the immediate resource sharing constraint”. Figure 4.1
illustrates four overlapped phases of operation for an abstract DRAM command. In phase
one, the command is transported through the address and command busses and decoded by
the DRAM device. In phase two, data is moved within a bank, either from the cells to the
sense amplifiers or from the sense amplifiers back into the DRAM arrays. In phase three, the
data is moved through the shared 1/0 gating, read latches and write drivers. In phase four,
read data is placed onto the data bus by the DRAM device or the memory controller. Since
the data bus may be connected to multiple ranks of memory, no two commands to different

ranks of memory can use the shared data bus at the same instance in time.

*. Additiona constraint on the scheduling of DRAM commands may be the presence of timing parameters such astrrp
and teayy: These timing parameters are used to limit the maximum current draw of DRAM devices, so whilethe
resource on the DRAM deviceis not used, these timing parameters specify that the resource cannot be used until
sometime later to limit peak power consumption characteristics.
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Figure 4.2: Different phase of an abstract DRAM commands in a generic DRAM
device.

A DRAM access protocol indirectly defines the minimum timing constraints between
consecutive DRAM commands. In this chapter, the description of the DRAM memory
access protocol beginswith the examination of individual DRAM commands and progresses
with the examination of combinations of DRAM commands. Power limitation constraints
are then described in some detail. The chapter concludes by correlating the generic DRAM
memory access protocol to a specific DRAM memory access protocol, the DDR2 SDRAM

memory access protocol.

4.1.1 Generic DRAM Command Format

Figure 4.2 abstractly illustrates the progression of a generic DRAM command. In Figure
4.2, the time period that it takes to transport the command from the DRAM controller to the
DRAM device is illustrated and labelled as toyp. Figure 4.2 dso illustrates tpyameter @
generic timing parameter that measures the duration of “operation 1”. In thistext, the timing
of operations is measured from the end of the command transport stage until the end of the
operation itself . In cases where the duration of an operation limits the timing of command

issuance, thayameter then defines the minimum time that commands may be placed onto the

*. CAS commands excepted. tca g denotes the beginning of the CAS command to the beginning of the data transport
phase. It is defined in this manner due to historical usage of thetca gtiming parameter. Also, the definition of thetcag
command enables tyyp to be defined as zero rather than as anegative value in memory systems without awrite
delay.
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command and address bus. As aresult, t,yameter SO denotes the minimum time that must
pass between the start of two commands whose relative timing is limited by the duration of
an operation measured bY toaameter-

DRAM commands are abstractly defined in this text, and the abstraction separates the
actions of each command from the timing specific nature of each action in specific DRAM
access protocols. That is, the abstraction enables the same set of DRAM command
interactions to be applied to different DRAM memory systems with different timing
parameter values. For example, the command transport time requires 1 clock cycle on
SDRAM and DDRx SDRAM memory systems and 4 clock cycles in Direct RDRAM
memory systems. By abstracting out protocol specifics timing characteristics;, DRAM
commands can be described in abstract terms. The generic DRAM memory access protocol
in turn enables abstract performance analysis of DRAM memory systems, and the results of

the abstract anaysisis then equally applicable to many different memory systems.
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Parameter | Description lllustration

t Data Burst duration. The time period that data burst occupies on the data bus. Fiqure 4.4

Burst Typically 4 or 8 beats of data. In DDR SDRAM, 4 beats of data occupies 2 cycles 9 ’

t Column Access Strobe latency. Time interval between column access command and Fiqure 4.4

CAS data return by DRAM device(s). Also known as tg, . 9 )

t Command transport duration. Time period that a command occupies on the command Fiqure 4.3

CMD bus as it is transported from the DRAM controller to the DRAM devices 9 ’

t Column Write Delay. Time interval between issuance of column write command and Fiqure 4.5

CWD placement of data on data bus by the DRAM controller. 9 ’

t Data Strobe turnaround. Used in DDR and DDR2 SDRAM memory systems. Not used in Figure 4.17

DQs SDRAM or Direct RDRAM memory systems. 1 full cycle in DDR SDRAM 9 :

t Four (row) bank Activation Window. A rolling time frame in which a maximum of four Figure 4.29

FAW bank activation may be engaged. Limits peak current profile. 9 ’

t Row Access Strobe. Time interval between row access command and data restoration in Fiqure 4.3

RAS DRAM array. After tgas, DRAM bank could be precharged. 9 i
Row Cycle. Time interval between accesses to different rows in a given bank .

tre _ Figure 4.6
trc = tras + trp
Row to Column command Delay. Time interval between row access command and data )

treD - Figure 4.3
ready at sense amplifiers.

trRrc Refresh Cycle Time. Time interval between Refresh and Activation command Figure 4.7

t Row activation to Row activation Delay. Minimum time interval between two row Figure 4.29

RRD activation commands to same DRAM device. Limits peak current profile. 9 )
Row Precharge. Time interval that it takes for a DRAM array to be precharged and .

trp . Figure 4.6
readied for another row access.

t Write Recovery time. Minimum time interval between end of write data burst and the start Fiqure 4.5

WR of a precharge command. Allows sense amplifiers to restore data to cells 9 ’

TABLE 4.1: Summary of timing parameters used in generic DRAM access protocol

4.1.2 Summary of Timing Parameters

The examination of the DRAM access protocol begins by careful definition of the
timing parameters. Table 4.1 summarizes the timing parameters used in the description of
the DRAM memory access protocol in this chapter. The timing parameters summarized in
table 4.1 isfar from a complete set of timing parameters used in the description of amodern
memory access protocol. Nevertheless, the timing parameters describe here is a minimum

set of timing parameters whose use is sufficient to characterize and illustrate important

interactions in modern DRAM memory systems.
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4.1.3 Row Access Command

Figure 4.3 abstractly illustrates the progression of a generic row access command, also

trep

cmd & addr bus [emd }— ~

bank utilization : d&a rgtoZed tZDRZM Zells: : : :|
device utilization time
data bus >

address and
command bus

Generic DRAM device (one rank)

Figure 4.3: Row Access command and timing.

known as arow activation command. The purpose of arow access command isto move data
from the DRAM arraysto the sense amplifiers. Two timing parameters are associated with a
row access command: tgcp and tgas. Thetimeit takes for the row access command to move
data from the DRAM cell arrays to the sense amplifiers is known as the Row Column
(Command) Delay, tgcp. After trep, an entire row of datais held in the sense amplifiers. At
that time, a column read or write access commands can be engaged to move data between
the sense amplifiers and the memory controller through the data bus.

After tgep time, data is available a the sense amplifiers, but not yet restored to the
DRAM cdlls. A row access command discharges the DRAM cdlls of the accessed row. Asa
result, the row of data must be restored from the sense amplifiers back into the DRAM cells
before the sense amplifiers can be used to sense the data in a different row. The time it takes
for a row access command to discharge and restore data from the row of DRAM cdllsis
known as the Row Access Strobe latency or tgas After tgas, the sense amplifiers are
assumed to have completed the data restoration process, and the DRAM array can be

precharged for another row access to the same bank.
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4.1.4 Column Read Command
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Generic DRAM device (one ran
Figure 4.4: Column Read command and timing.

Figure 4.4 abstractly illustrates the progression of a column read command. A column
read command moves data from the array of sense amplifiers of agiven bank to the memory
controller. There are two timing parameters associated with a column read command: tcas
and tg, Thetimeit takes for the DRAM device to place the requested data onto the data
bus after issuance of the column read command is known as the Column Access Strobe
Latency (tcas OF top ). After toas, the requested data is moved from the sense amplifiers
onto the data bus, then into the memory controller. Modern memory systems move data in
relatively short bursts, typically occupying 2, 4 or 8 beats on the data bus. To maintain
consistency in the description of the access protocol, the duration of the data burst is
described in terms of atime duration rather than the number of clock cycles. The data burst
duration islabelled in Figure 4.4 astg -

Figure 4.4 shows that the column read command goes through 4 separate overlapping
phases. In phase one, the command is transported on the address and command bus then
decoded by the DRAM device. In phase two, the appropriate columns of data is retrieved
from the sense amplifier array of the selected bank and moved to the 1/0O gating. In phase
three, the data flows through the 1/0 gating and out to the data bus. In phase four, the data
occupies the data bus for time duration of tg;g.
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Figure 4.5: Column Write command and timing for SDRAM, DDR SDRAM and DDR2 SDRAM

4.1.5 Column Write Command

Figure 4.5 abstractly illustrates the progression of a column write command. A column
write command moves data from the memory controller to the sense amplifiers of a given
bank. The column write command goes through a similar set of overlapped phases as the
column read command. However, due to the fact that the direction of the data movement
differs between a read command and a write command, the ordering of the phases is
reversed. In Figure 4.5, phase one shows that the column address and column write
command is placed on the address and command bus. In phase two, the data is placed on the
data bus by the memory controller. Then in phase three, the data flows through the I/O
gating, and in phase four, the data reaches the sense amplifiers in the appropriate bank. One
timing parameter associated with a column write command is tqyp, command write delay.
Column write delay isthe delay between the time when the column write command isissued
and the write data moved onto the data bus by the memory controller. Different memory
access protocols have different settings for toyp. Figure 4.5 shows that in SDRAM and

earlier DRAM devices, data for the write command is placed onto the data bus at the same
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Figure 4.6: Row precharge command and timing.

time as the issuance of the column write command. In DDR SDRAM, write datais delayed
one full clock cycle, and in DDR2, the write delay is one cycle less than tcag Figure 4.5
aso illustrates t\yr, the write recovery time. The write recovery time denotes the time
between the end of the data burst and the completion of the movement of data into the

DRAM arrays.

4.1.6 Precharge Command

Accessing data on a DRAM device data access is a two step process. A row access
command moves data from the DRAM cells to the array of sense amplifiers. The data
remains in the array of sense amplifiers for one or more column access commands to move
data to and from the DRAM devices to the DRAM controller. In this context, a precharge
command completes the sequence as it resets the array of sense amplifiers and the bitlines
and prepares the sense amplifiersfor another row access command. Figure 4.6 illustratesthe
progression of a precharge command. Figure 4.6 shows that in the first phase, the precharge

command is sent to the DRAM device, and in phase two, the selected bank is precharged.
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Figure 4.7: Row refresh timing.

The timing parameter associated with the (row) precharge command is tgp The two
row-access related timing parameters, tgp and tga s, Can be combined to form tgc, the row
cycle time. The row cycle time of a given DRAM device denotes the speed at which the
DRAM device can bring data from the DRAM cell arrays into the sense amplifiers, restore
the data to the DRAM cells, then precharge the bitlines to the reference voltage level and
made ready for another row access command. The row cycle time is the fundamenta
limitation to the speed a which data may be retrieved from different rows within the same

DRAM bank.

4.1.7 Refresh Command

Theword DRAM isan acronym that stands for Dynamic Random Access Memory. The
reason that the memory isreferred as“dynamic” isthat the electrica charge retained by the
storage capacitor gradually leaks out with the passage of time, and data stored in DRAM
cells must be occasionaly read out and restored to full value. A DRAM refresh command
accomplishes the task of data readout and restoration to full value into the DRAM cells. As

long as the time interval between refresh commands is shorter than the worst case time
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period in which data in storage cells deteriorate to indistinguishable values, DRAM refresh
commands can be used to overcome leaky DRAM cells and maintain functionaity of the
DRAM storage system. The drawback to the refresh mechanism is that refresh commands
consume bank bandwidth and power. As a result, there are a number of different refresh
mechanisms used by different systems, some ae designed to minimize controller
complexity while others are designed to minimize bandwidth impact.

Figure 4.7 illustrates a basic refresh command that allows the DRAM controller to send
asingle refresh command to refresh one row in all banks. When a basic refresh command is
issued, the DRAM device takes a row address from an internal register, then sends the same
row addressto all banks to be refreshed concurrently. Asillustrated in Figure 4.7, the single
refresh command to all banks take one refresh cycle time to complete. Figure 4.7 also
illustrates that the refresh cycle time, tgec, is @t least equal to the row cycletimetgc, and in
many cases, much longer than tc.

The refresh command illustrates one weakness of the resource usage model in that
according to the strict interpretation of the resource usage model, aDRAM controller should
be able to issue a refresh command to a DRAM device every row cycle time. However,
Figure 4.7 shows that the DRAM device can issue the basic refresh command only once
every refresh cycle time, and that refresh cycle time is longer than the row cycle time. The
reason that the resource usage modd failsin this case is because the basic bank-concurrent
refresh cycle is power-limited, and the DRAM device needs more time for the current spike
induced by the concurrent refresh of all banks in a given DRAM device to settle before

another refresh or row activation command can be engaged.
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oersty | B | rowcoun | fousie | fowere | ety
256 Mbit (x8) 4 8192 8192 55 75

512 Mbit (x8) 4 16384 8192 55 105

1 Ghit (x8) 8 16384 8192 55 127.5

TABLE 4.2: Refresh cycle times of DDR2 SDRAM devices

In modern DRAM memory systems, depending on the refresh requirement of the
DRAM devices, the memory controller typically injects one row refresh command once
every 32 or 64 milliseconds for each row in abank. That is, in a DRAM device with 8192
rows per bank and 64 ms refresh cycle requirement, 8192 refresh commands are issued
every 64 msto aDRAM deviceto refresh one row in al banks concurrently. Depending on
the design of the memory controller, the 8192 refresh commands may be issued
consecutively or evenly distributed throughout the 64 mstime period.

Table 4.2 shows the genera trend of refresh cycletimesin DDR2 SDRAM devices. The
generd trend illustrated in table 4.2 shows that with increasing DRAM device density, and
in combination with the desire to retain the per bit charge capacitance of DRAM storage
cdls, it takes an increasing amount of current draw to refresh one row in al banks
concurrently, and the refresh cycle time increases in each successive generation of DRAM
devices. Fortunately, DRAM device design engineers and DRAM memory system design
engineers are actively exploring aternatives to the bank-concurrent refresh command. Some
advanced memory systems are designed in such a manner that the controller manually
injects row cycle reads to individual banks. The per-bank refresh scheme decreases the
bandwidth impact of refresh commands at the cost of increased complexity in the memory

controller.
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4.1.8 A Read Cycle

Figure 4.8 illustrates a read cycle in a generic DRAM memory system. In modern
DRAM devices, each row access command brings thousands of bits of datain paralld to the
array of sense amplifiersin a given bank. A subsequent column read command then brings
tens or hundreds of those hits of data through the data bus into the memory controller. For
applications that are likely to stream through memory, keeping thousands of bits of a given
row of data active at the sense amplifiers means that subsequent memory reads from the
same row do not have to incur the latency or energy cost of another row access. In contrast,
applications that are not likely to access data in adjacent locations favor memory systems
that immediately precharges the DRAM array and prepares the DRAM bank for another
access to a different row. In Figure 4.8, a sequence of commands in an abstract memory
system designed for applications that do not benefit from keeping rows of datain the sense
amplifiers for subsequent accesses is illustrated. In Figure 4.8, data is brought in from the
DRAM cells to the sense amplifiers by the row access command. After trep, data from the
requested row has been resolved by the sense amplifiers, and a subsequent column read

command can then be issued by the memory controller. After tcpas, the DRAM chip begins
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Figure 4.9: One “read cycle” with single column read and precharge command.

to return data on the data bus. Concurrent with the issuance of the column read command,
the memory device actively restores data from the sense amplifiers to the DRAM cells, and
after tga g from the initial issuance of the row access command, the DRAM cells would be
ready for another row access. Callectively, memory systems that immediately precharges a
bank to prepare it for another access to a different row are known as close-page memory
systems. Memory systems that keep rows active at the sense-amplifiers are known as open-

page memory systems.

4.1.9 Complex Commands

In the previous section, Figure 4.8 illustrated aread cycle in a generic DRAM memory
system by issuing three separate commands. As part of the evolution of DRAM devices and
architecture, some DRAM devices support commands that perform more complex series of
actions. Figure 4.9 shows the same sequence of DRAM commands that cycles through a
row and issues a single column read command as presented in Figure 4.8. However, the
simple column read command in Figure 4.8 was replaced with a compound column read
and precharge command. As the name implies, the column read and precharge command
combines a column read command and a precharge command into a single command. The

advantage of a column read and precharge command is that for memory systems that
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Figure 4.10: One “read cycle” with single do-it-all read command.

precharge the DRAM bank immediately after aread command, the complex command frees
the DRAM controller from having to keep track of the timing of the precharge command.
The DRAM controller in a system that utilizes the compound column read and precharge
command also gains from the fact that the controller can now place a different command on
the address and command bus that the separate precharge command would have otherwise
occupied. The complex command thus reduces the address and command bus bandwidth
requirement for aread cycle. Although the column read and precharge command illustrated
in Figure 4.9 delays the timing of the column read command to satisfy tgras, the flexibility
and reduced address and command bus bandwidth can result in a net win for certain
bandwidth bound close-page DRAM memory systems despite the small increase in
additional hardware on the DRAM device.

Some DRAM devices support even more complex compound commands, such as a
command that performs all of the actions normally required in a DRAM read cycle. Figure
4.10 illustrates aread cycle in a specialized DRAM devicethat performsall of the actions of
a read cycle with a single read command. The specialized single read command further

simplifies controller design and alows the DRAM device to operate as an SRAM-like

79



tAL internally delayed
CAS command
cmd & addr bus| row act | col read| B
internal command "colread
bank utilization [ data sense | baTk access | |ol_ataLest_ore_ ]
device utilization I/ gating
data bus ?ﬁ data burst
RCD
—
teas (tel) Burst

Figure 4.11: Delayed column read command with posted CAS.

device. Memory systems that support the do-it-all single read commands are typically found
in high performance embedded systems.

One complex command supported by the DDR2 SDRAM memory system is the posted-
CAS command. The posted-CAS command is simply a delayed column access command.
Figure 4.11 abstractly illustrates a posted-CAS command. The posted CAS command is
simply an ordinary column access (read or write) command that can be issued to the DRAM
device before tgp for the row activation command has been satisfied. The DRAM device
internally delays the action of the CAS command. The number of delay cycles for the
posted-CAS command is pre-programmed into the DRAM device. The advantage of the
posted-CAS command is that it allows a DRAM memory controller to issue the column
access command immediately after the row access command.

Aside from the complex read and delayed read commands, some DRAM devices also
support additional complex commands that are needed to manage specialized hardware
structures such as write buffersin ESDRAM and Direct RDRAM devices or channel buffers

in Virtual Channd DRAM devices.
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4.2 DRAM Command Interactions

In the previous section, basic DRAM commands were described in some detail. In this
section, the interactions between these previoudy described basic DRAM commands are
examined in similar detail. In this text, a resource usage model is used to model DRAM
command interactions. In the resource usage model, DRAM commands can be scheduled
consecutively subject to availability of shared on-chip resources such as sense amplifiers,
1/O gating buffers, and the availability of off-chip resources such as the command, address
and data busses. However, even with the availability of shared resources, secondary
considerations such as power limitation can prohibit commands from being scheduled
consecutively”.

This section examines read and write commands in a memory system with smplistic
open-page and close-page row buffer management policies. In a memory system that
implements the open-page row buffer management policy, once arow is opened for access,
the array of sense amplifiers continues to hold an entire row of data for subsequent column
read and write accesses to the same row. Open-page memory systems rely on workloads that
access memory with some degree of spatial locality so that multiple column accesses can be
performed to the same row and minimizes the number of DRAM row cycles. In an open-
page memory system, DRAM command sequence for a given request depends on the state
of the memory system, and the dynamic nature of the command sequences in open-page
memory systems means there are larger numbers of possible DRAM command interactions
and memory system state combinations in an open-page memory system than the number of

DRAM command interactions in a close-page memory system. The larger number of

i.e tRRD and tFAW’ examined %parately
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Figure 4.12: Consecutive column read commands to same bank, rank and channel.

command interactions and the dynamic nature of DRAM command sequences result in
more complex command interactions and a higher degree of difficulty in scheduling
command sequences in open-page memory systems. In the following sections, the large
number of possble DRAM command interactions for open-page memory systems are
examined in detail. The detailed examination of DRAM command combinations enablesthe
creation of a table that summarizes the minimum scheduling distances between DRAM
commands. The summary of minimum scheduling distances in turn enables performance

analysis of DRAM memory systemsin this text.

4.2.1 Consecutive Reads to Same Rank

In modern DRAM memory systems such as SDRAM, DDR SDRAM and Direct
RDRAM memory systems, read commands to the same open row of memory in the same
bank, rank and channd can be pipelined and scheduled consecutively subject to the
availability of the data bus. Figure 4.12 shows two read commands, labelled as read 0 and
read 1, pipelined consecutively. As illustrated in Figure 4.4, tcas after aread command is

placed on to the command and address bus, the DRAM device begins to return data on the
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data bus. Since column read commands to the same open bank of the same rank can be
pipelined consecutively, and the limitation on the scheduling of these commands is the
duration of the data burst on the data bus, it follows that consecutive DRAM read commands
to the same row of the same bank of memory can be scheduled every tg, . time period.
Modern DRAM devices contain multiple banks inside a single rank of memory. In
modern memory systems such as SDRAM, Direct RDRAM and DDR SDRAM, read
commands to open rows in different banks within the same rank of memory can also be
pipelined consecutively. Similar to consecutive column read commands to the same bank of
the same rank of memory, DRAM column read commands can be scheduled to different
open banks within the same rank of memory once every tg,« time period. Figure 4.12 aso
shows the scheduling of column read consecutive accesses to different open banks within

the same rank.

4.2.2 Consecutive Reads to Different Rows of Same Bank

Modern DRAM devices are designed to hold an entire row of datain the array of sense
amplifiers for multiple column read or write accesses until a precharge command is issued
independently or as part of a column read and precharge command. As aresult, consecutive
read commands to the same open bank can be issued and pipeline consecutively. However,
read commands to different rows within the same bank would incur the cost of an entire row
cycle time as the current DRAM array must be precharged and a different row activated by

the array of sense amplifiers.
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Figure 4.13: Consecutive column read commands to different rows of same bank:
best case scenario.

Best Case Scenario:

Figure 4.13 illugtrates the timing and command sequence of two consecutive read
requests to different rows within the same bank of memory array. In this sequence, the first
read command, |abelled asread O isissued, the array of sense amplifiers must be precharged
before a different row to the same bank can be accessed. After a time period tgp from the
issuance of a precharge command, a different row access command can then be issued, and
time period tgcp after the row access command, the second read command labelled as read
1 can then proceed. Figure 4.13 illustrates that consecutive column read accesses to different

rows within the same bank could at best be scheduled with minimum timing of tg & + trp +

*
treD -

Worst Case Scenario:

Figure 4.13 illustrates the best case timing of two consecutive read commands to
different rows of the same bank. However, in the case that data from the current row had not
yet been restored to the DRAM cells, a precharge command cannot be issued until tga g time

period after the previous row access command to the same bank. In contrast to the best case

*.  Thebest casetiming of aread command to a different row also depends on the internal prefetch data path of the
DRAM device. InaDDR2 SDRAM device, aburst of 8 isfetched with two separate fetches of burst of 4. In that case,
the precharge command cannot begin until at best tg,4/2 + trp + trcp time period has passed from the previous
column read command.
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Figure 4.14: Consecutive column read commands to different rows of same bank:
worst case scenario.

timing shown in Figure 4.13, Figure 4.14 shows the worst case timing for two consecutive

read commands to different rows of the same bank where the first column command was
issued immediately after a row access command. In this case, the precharge command
cannot be issued immediately after the first column read command, but must wait until tgag
time period after the previous row access command has elapsed. Then, tgp time period after
the precharge command, the second row access command could be issued, and tgcp time
period after that row access command, the second column read command completes this
sequence of commands.

Figure 4.13 illustrates the best case timing of two consecutive read commands to
different rows of the same bank and Figure 4.14 illustrates the worst case timing between
two column read command to different rows of the same bank. The difference between the
two different scenarios means that a DRAM memory controller must keep track of the
timing of a row access command and delay any row precharge command until the row

restoration requirement has been satisfied.
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Figure 4.15: Consecutive DRAM read commands to different banks, bank conflict,
no command re-ordering.

4.2.3 Consecutive Reads to Different Banks: Bank Conflict

The case of consecutive read commands to different rows of the same bank has been
examined in the previous section. This section examines the case of consecutive read
requests to different banks with the second request hitting a bank conflict against an active
row in that bank. The consecutive read request scenario with the second read request hitting
a bank conflict to a different bank has several different combinations of possible minimum
scheduling distances that depend on the state of the bank as well as the capability of the

DRAM controller to re-order commands between different transaction requests.

Without Command Re-Ordering

Figure 4.15 illugtrates the timing and command sequence of two consecutive read
requests to different banks of the same rank, and the second read request is made to arow
that is different than the active row in the array of sense amplifiers of that bank. Figure 4.15
makes three implicit assumptions. The first assumption made in Figure 4.15 is that both
banks i and j are open, where bank i is different from bank j. The second read request is
made to bank j, but to different row than the row of data presently held in the array of sense

amplifiers of bank j. In this case, the precharge command to bank j can proceed concurrently
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with the column read access to a bank i. The second assumption made in Figure 4.15 is that
the tras requirement had been satisfied in bank j, and bank j can be immediately
precharged. The third and final assumption madein Figure 4.15 isthat the DRAM controller
does not support command or transaction re-ordering between different transaction requests.
That is, al of the DRAM commands associated with the first request must be scheduled
before any DRAM commands associated with the second request can be schedul ed.

Figure 4.15 shows that due to the bank conflict, the read request to bank j is trandated
into a sequence of three DRAM commands. The first command in the sequence precharges
the sense amplifiers to bank j, the second command brings the selected row to the sense
amplifiers, and the last command in the sequence performs the actual read request and
returns data from the DRAM devices to the DRAM controller. Figure 4.15 illustrates that
consecutive read requests to different rows, with the second row hitting a bank conflict,
given that the DRAM command sequences cannot be dynamically re-ordered, then the two

requests can at best be scheduled with minimum timing distance of toyp + trp + trep-

With Command Re-Ordering

Figure 4.15 illustrates the timing of two requests to different banks with the second
request hitting a bank conflict; and the DRAM controller does not support command or
transaction re-ordering. In contrast, Figure 4.16 shows that the DRAM memory system can
obtain bandwidth utilization if the DRAM controller can interleave or re-order DRAM
commands from different transactions requests. Figure 4.16 shows the case where the
DRAM controller alows the precharge command for bank j to proceed ahead of the column

read command for the transaction request to bank i. In this case, the column read command
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Figure 4.16: Consecutive DRAM read commands to different banks, bank conflict,
with command re-ordering.

to bank i can proceed in parald with the precharge command to bank j, since these two
commands utilize different resources in different banks. To obtain the better utilization of
the DRAM memory system, the DRAM controller must be designed with the capability to
re-order and interleave commands from different transaction requests. Figure 4.16 shows
that in the case the DRAM memory system can interleave and re-order DRAM commands
from different transaction requests, the two column read commands can be scheduled with
the timing of trp + trep - tomp- Figure 4.16 thus illustrates one way that a DRAM memory

systems can obtain better bandwidth utilization with advanced DRAM controller designs.

4.2.4 Consecutive Read Requests to Different Ranks

Consecutive read commands to the open banks of the same rank of DRAM device can
be issued and pipelined consecutively. However, consecutive read commands to different
ranks of memory may not be issued and pipelined back to back depending on the system
level synchronization mechanism and the operating data rate of the memory system. In some
memory systems, consecutive read commands to different ranks of memory relies on system
level synchronization mechanisms that are non-trivia for multi-rank, high data rate memory
systems. In these systems, the data bus must idle for some period of time between data

bursts from different ranks on the shared data bus. Figure 4.17 illustrates the timing and
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Figure 4.17: Back-to-back column read commands to different ranks.

command sequence of two consecutive read commands to different ranks. In Figure 4.17,
the read-write data strobe re-synchronization time is labelled as tpgs. For relatively low
frequency SDRAM memory systems, data synchronization strobes are not used, and tposis
zero. For Direct RDRAM memory system, the use of the topology matched source
synchronous clocking scheme obviates the need for a separate strobe signal, and tpgg isalso
zero. However, for DDR SDRAM, DDR2 and DDR3 SDRAM memory systems, the use of
a system level data strobe signal shared by all of the ranks means that the tpqg data strobe

re-synchronization penalty is non-zero.

4.2.5 Consecutive Write Requests: Open Banks

Differing from the case of consecutive column read commands to different ranks of
DRAM devices, consecutive column write commands to different ranks of DRAM devices
can be pipelined consecutively in modern DRAM memory systems. The difference between
consecutive column write commands to different ranks of DRAM devices and consecutive

column read commands to different ranks of DRAM devicesis that in case of consecutive
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Figure 4.18: Consecutive write commands to different ranks.

code

column read commands to different ranks of DRAM devices, one rank of DRAM devices
must first send data on the shared data bus, give up control of the shared data bus, then the
other rank of DRAM devices must then gain control of the shared data bus and send its data
to the DRAM controller. In the case of the consecutive column write commands to different
ranks of memory, the DRAM memory controller sends the data to both ranks of DRAM
devices without needing to give up control of the shared data bus to another bus master.
Figure 4.18 shows two write commands to different ranks, labelled as write O and write 1,
pipelined consecutively, and consecutive column write commands to open banks of memory

can occur every tg r¢ Cycles without needing any idle time on the data bus.

4.2.6 Consecutive Write Requests: Bank Conflicts

Similar to the case of the consecutive read requests to different rows of the same bank,
consecutive write requests to different rows of the same bank must also respect the timing
requirements of tgag and tgp Additionaly, column write commands must also respective

the timing requirements of the write recovery time tyyg. In case of write commands to
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Figure 4.19: Consecutive write commands, bank conflict best cases.

different rows of the same bank, the write recovery time means that the precharge cannot
begin until the write recovery time has alowed data to move from the interface of the
DRAM devicesthrough the sense amplifiersinto the DRAM cells. Figure 4.18 shows two of
the best case timing of two consecutive write requests made to different rows in the same
bank. The minimum scheduling distance between two write commands to different rows of
the samebank istoywp + teurst + twr + tre + trep - tomp-

Figure 4.18 aso shows the case where consecutive write requests are issued to different
ranks of DRAM devices with the second write request results in abank conflict. In this case,
the first write command proceeds, and assuming that bank j for rank n had previousy
satisfied the trag timing requirement, the precharge command for a different bank or
different rank can be issued immediately. Similar to the case of the consecutive read requests
with bank conflicts to different banks, bank conflicts to different banks and different ranks

for consecutive write requests can also benefit from command re-ordering.
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Figure 4.20: Write command following read command to open banks.

4.2.7 Write Request Following Read Request: Open Banks

Smilar to consecutive read commands and consecutive write commands, the
combination of a write command that immediately follows a read command can be
scheduled consecutively subject to the timing of the respective data bursts on the shared data
bus. Figure 4.20 illustrates a write command that follows a read command and shows that
the internal data movement of the write command does not conflict with the internal data
movement of the read command. As a result, a column write command can be issued into
the DRAM memory system after a column read command aslong as the timing of data burst
returned by the DRAM device for the column read command does not conflict with the
timing of the data burst sent by the DRAM controller to the DRAM device. Figure 4.20
shows that the minimum scheduling distance between a read command that follows a read
command istcas + teurs + tpos - tewp-

The minimum scheduling distance between awrite request that follows aread request is
different for different memory access protocols. For example, in the SDRAM memory
system, tpgs and toyp are both zero, and the minimum scheduling distance between awrite

request that follows aread request issimply tcas + tgyrs-
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Figure 4.21: Write command following read command to same bank: bank conflict,
best case.

4.2.8 Write Following Read: Same Bank, Conflict, Best Case

Figure 4.21 illustrates the best case scenario for a write request that follows a read
request to the same bank, but to different rows. In the best case scenario presented in Figure
4.21, datain the row accessed by the read request has already been restored to the DRAM
cdls. That is, the tgas timing requirement has already been satisfied for the row held by
bank “i” before the read command illustrated in Figure 4.21 was issued into the DRAM
memory system. Figure 4.21 shows that under this condition, the precharge command can
be issued consecutively to the column read command. The row access command to the
different row in bank i can then be issued into the DRAM memory system after the DRAM
array in bank i is precharged. The column write command can then proceed after time tgcp
following the row access command. Figure 4.21 thus shows that a read request that follows
a read request to different rows of the same bank can at best occur with the minimum
scheduling distance of tg ¢ + trp + trep - tombD-

Figure 4.21 show the best case timing of the scenario where aread request that followsa
read request to different rows of the same bank. The best case scenario assumesthat thetgag
timing requirement has been satisfied for bank i. Inworst case that the read command wasin
fact issued immediately after the preceding row access command, the tgrag timing

requirement must be satisfied before the precharge command can be issued. In the worst
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Figure 4.22: Write command following read command to different banks:
bank conflict, best case.

case scenario, the minimum scheduling distance between the column read command and the

column write command that follows it increasesto aentire row cycle, tpc.

4.2.9 Write Following Read: Different Banks, Conflict, Best Case

Figure 4.22 illustrates the case where a write request follows aread request to different
banks. Figure 4.22 shows that the column read command is issued to bank i, the column
write command is issued to bank j, and i is different from j. In the common case, the two
commands can be pipelined consecutively with the minimum scheduling distance shown in
Figure 4.20. However, the assumption given in Figure 4.22 is that the write command is a
write command to a different row than the row currently held in bank j. As a result, the
DRAM controller must first precharge bank j and issue a new row access command to bank
j before the column write command can be issued. In the best case scenario presented, the
row accessed by the write command in bank j had already been restored to the DRAM cells,
and more than tgra g time period had elapsed since row was initially accessed. Figure 4.22
shows that under this condition, the read command and the write command that followsit to
adifferent bank can best scheduled with the minimum scheduling distance of toyp + trp +
trcD-

Figure 4.22 shows the case where the ordering between DRAM commands from
different requestsis strictly observed. In this case, the precharge command sent to bank j is
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Figure 4.23: Read following write to same rank of DRAM devices.

not constrained by the column read command to bank i. In a memory system with DRAM
controllers that support command re-ordering and interleaving DRAM commands from
different transaction requests, the efficiency of the DRAM memory system in scheduling a
write request with a bank conflict that follows a read request can be increased in the same

manner asillustrated for consecutive read requestsin Figures 4.15 and 4.16.

4.2.10 Read Following Write to Same Rank, Open Banks

Figure 4.23 shows the case for a column read command that follows a column write
command to open banks in the same rank of DRAM devices. The difference between a
column read command and a column write command isthat the direction of data flow within
the selected DRAM devices is reversed with respect to each other. The importance in the
direction of data flow can be observed when a read command is scheduled after a write
command to the same rank of DRAM devices. Figure 4.23 shows that the difference in the
direction of data flow limits the minimum scheduling distance between the column write
command and the column read command that follows to the same rank of devices. Figure
4.23 shows that after the DRAM controller places the data onto the data bus, the DRAM
device must make use of the shared 1/0 gating resource in the DRAM device to move the

write data through the buffers into the proper columns of the selected bank. Since the 1/0
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Figure 4.24: Read following write to different ranks of DRAM devices.

gating resource is shares between all banks within arank of DRAM devices, the sharing of
the 1/0 gating device means that a read command that follows a write command to the same
rank of DRAM devices must wait until the write command has been completed before the
read command can make use of the shared I/O gating resources regardless of the target or
destination bank 1D’s of the respective column access commands. Figure 4.23 shows that the
minimum scheduling di stance between awrite command and a subsequent read command to
the same rank of memory istcwp + teurs + twr - temp-

In order to aleviate the write-read turnaround time illustrated in Figure 4.23, some high
performance DRAM devices have been designed with write buffers so that as soon as data
have been written into the write buffers, the 1/0 gating resource can be used by another

command such as a column read command.

4.2.11 Read Following Write to Different Ranks, Open Banks

Figure 4.24 shows a dightly different case for a column read command that follows a
column write command than the case illustrated in Figure 4.23. The combination of column
read command issued after a column write command illustrated in Figure 4.24 differs from
the combination of column read command issued after a column write command illustrated

in Figure 4.23 in that the column write command and the column read command are issued
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Figure 4.25: Read following write to different rows of the same bank: best case.

to different ranks of memory. Since the data movements are to different ranks of memory,
the conflict in the directions of data movement inside of each rank of memory isirrelevant.
The timing constraint between the issuance of a read command after a write command to
different ranks is then reduced to the data bus synchronization overhead of tpqos, the burst
duration tg, and the relative timing differences between read and write command
latencies. The minimum time period between a write command and a read command to
different ranks of memory isthustcwp + tayrst + tpgs - teas:

In an SDRAM memory system, toyp and tpos are both zero, and the minimum
scheduling distance between a column write command and a column read command that
follows it to a different rank of memory is tg g - tcas. [N contrast, toyp 1S one full cycle
less than tcag in @ DDR2 SDRAM memory system. If thgg can be minimized to one full
cycle, tewp + tpgs - tcas would cancel to zero, and the minimum scheduling distance
between a read command that follows a write command to a different rank in DDR2

SDRAM memory systemissimply tg -

4.2.12 Read Following Write to Same Bank, Bank Conflict

Figure 4.25 illustrates the case where a read request follows a write request to different
rows of the same bank. In the best case scenario presented, the tgag row restoration time
requirement for the previous row has already been satisfied. Figure 4.25 shows that under
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Figure 4.26: Read following write to different banks, bank conflict, best case.

this condition, the precharge command can be issued as soon as the data from the column
write command has been written into the DRAM célls. That is, the write recovery time tyyr
must be respected before the precharge command can proceed to precharge the DRAM
array. Figure 4.25 shows that the best case minimum scheduling distance between a read
request that follows awrite request to different rows of the same bank istoyp + tgurst + twr
+1rp + rcD - lomb:

Figure 4.25 shows the command interaction of aread request that follows awrite request
to different rows of the same bank on a DRAM device that does not have a write buffer. In
DRAM devices with write buffers, the data for the column write command is temporarily
stored in the write buffer. In case that aread request arrives after awrite request to retrieve
data from a different row of the same bank, a separate commit-data command may have to
be issued by the DRAM controller to the DRAM devices and force the write buffer to
commit the data stored in the write buffer into the DRAM cells before the array can be

precharged for another row access.

4.2.13 Read Following Write: Different Banks Same Rank, Conflict: Best Case
Finally, Figure 4.26 illustrates the case where a read request follows a write request to
different banks of the same rank of DRAM devices. However, the read request is sent to

bank j, and a different row is presently active in bank j than the row needed by the read
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request. Figure 4.26 assumes that the tga 5 timing requirement has aready been satisfied for
bank j, and the DRAM memory system does not support DRAM command re-ordering
between different memory transactions. Figure 4.26 shows that in this case, the precharge
command for the read request command is can be issued as soon as the write command is
issued. Figure 4.26 thus shows that the minimum scheduling distance in this caseis toyp +
rp + trcD-

Figure 4.26 aso reveals severd points of note. One obvious point is that the DRAM
command sequence illustrated in Figure 4.26 likely benefits from command re-ordering
between different memory transactions. A second, less obvious point illustrated in Figure
4.26 is that the computed minimum schduling distance depends on the relative duration of
the varioustiming parameters. That is, Figure 4.26 assumes that the precharge command can
be issued immediately after the write command and that tcyp + trp + trep- 1S greater than
tcwp * teurs T twr- 1N casethat toyp + trp + trep- iSin fact lessthan toyp + teyrg + twirs
the use of the shared I/O gating resource becomes the bottleneck and the column read
command must wait until the write recovery phase of the column write command has
completed before the column read command can proceed. That is, the minimum schduling
distance between awrite request and aread request to adifferent bank with abank conflictis

in fact the Iarger of tCMD + tRP + tRCD' and tCWD + tBUI’S + tWR'
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4.3 Minimum Scheduling Distances

In previous sections, the resource usage model for DRAM devices was applied to basic
DRAM commands and minimum scheduling distances between different combinations of
DRAM commands were examined in detail. Table 4.3 summarizes the minimum scheduling
distances of read and write requests in an open-page DRAM memory system to a
combination of channels, ranks, banks and rows. Table 4.3 summarizes the minimum
scheduling distances between read and write requests rather than between row access,
column read, column write and precharge commands. In table 4.3, the |etter “R” representsa
read request, the letter “W” represents a write request, the letter “sS’ means that the
consecutive requests are made to same channel, rank, bank or row, and “d” means that the
requests are made different channel, rank, bank or row. For example, the first row of the
table shows that consecutive DRAM read commands to open banks in the same channd,
rank, bank and row can be issued with a minimum timing of tg .

In case of a bank conflict between two consecutive requests to a DRAM memory
system, some degree of uncertainty exists as to the minimum scheduling distance between
those commands since the timing of the second request depends on the progress of the data
restoration phase of the previous row access. Table 4.3 shows both the best case and worst
case minimum scheduling distances for consecutive requests to an open-page DRAM
memory system that does not support command re-ordering. The best case scenario shows
the minimum scheduling distance given that the tga g timing requirement of the row access
command had aready been satisfied, and the worse case scenarios shows minimum
scheduling distance given that the tgp 5 timing requirement of the row access command had

not been satisfied”.
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Minimum scheduling distance

L egend

R = Read
W = Write
S = same;

d = different
0 =open

¢ = conflict;

F 2 ; Z r | between DRAM commands Minimum scheduling distance

e | x| nln 0| open-page _ between DRAM commands

v |t Kkl Kk w| No Command Re-Ordering Worst Case
Best Case

R | R| s| s| of tgyrst -

R|R|s|s|c| tgystttrp+treD tre

R | R| s| d| o tgyst -

R|R|s|d|c| tcup+trp +trep tre - tBurst

R| R|d|-| o thgs*taurst )

R|R|d|-|c|temp+trp*+trecD trc - taurst

R | W| s|s| o] tcas*tgurst * s - tcwp -

R | W|s|s| c| tgyst*trp*trep - towd tre

R | W| s| d| o] tcas*tgyrst+tbgs - tewp -

R | W|s|d|c| tcup+trp +trep tre - tBurst

R | W|d|-| o] tcas *tgurst * tpgs - tewp -

R|W|d|-|c| temp*tre*treD tre - taurst

W] R | sl s| ol tcwp*tgust * twr - tcmp -

W R | s|s|c| tcwp+tpustttwr *trp ttrep -temp | tre

W| R | s|d|o| tcwp*taurst+twr - temp -

W| R| s| d| c| teup *trp *treD tre - tBurst

Wi R d|-|of tewp*teusttpgs - tcas -

W| R|dl -|c|teup*trp +treD tre - tBurst

W| W| s| s| o] tgyrst -

W] W| s| s|c| tcwp+tpustttwr *trp ttrep -temp | tre

W| W| s| d| o tgyst -

W| W| s| d| c| tewp+trp+tred tre - taurst

W[ W[ d| -| of tgyrt -

W| W|dl -|c|teup*trp +trep tre - taurst

TABLE 4.3: Minimum timing for consecutive read and write transactions:

Some request combinations list tge as the worst case minimum scheduling distance while other request combinations
list tre - teyrgt @ the worst case minimum scheduling distance. The assumption used in table 4.3 is that arow access
isonly issued in combination with a column access command. As aresult, there must be at |east one column access
command to an open row before another column access command to adifferent row arrives a the same bank, and the
minimum scheduling distance between two requests to different banks iStre - tg g rather than tge. Table4.31in
essence shows the second and third request in a sequence of requests where the first request that conflicts with the

open-page

third request isinferred by the status of the open row.
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Figure 4.27: : Current Profile of a DRAM Read Cycle.

4.4 Additional Constraints: Power

In the previous sections, the resource contention model was used to construct the table of
minimum scheduling distances between DRAM commands. Unfortunately, constraints in
addition to the resource contention issue exist in modern DRAM memory systems and limits
bandwidth utilization of modern DRAM based memory systems. One such congtraint is
related to the power consumption of DRAM devices. With continuing emphasis placed on
memory system performance, DRAM manufacturers are expected to push for ever higher
data transfer rates in each successive generation of DRAM devices. However, just as
increasing operating frequencies lead to higher activity rates and higher power consumption
in modern processors, increasing data rates for DRAM devices also increase the potential for
higher activity rates and higher power consumptions on DRAM devices. One solution
deployed to limit the power consumption of DRAM devices isto constrain the activity rate
of DRAM devices. Condtraints on the activity rate of DRAM devices in turn limit the
capability of DRAM devices to move data, and limits the performance of DRAM memory

systems.
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In modern DRAM devices, each time a row is activated, thousands of bits are
discharged, sensed, then restored to the DRAM cells in paralel. As a result, the row
activation command is a relatively energy intensive operation. Figure 4.27 shows the
abstract current profile of a DRAM read cycle. Figure 4.27 shows that an active DRAM
device draws arelatively low and constant quiescent current level. The DRAM device then
draws additiona current for each activity on the DRAM device. The total current draw of
the DRAM device is simply the summation of the quiescent current draw and the current
draw of each activity on the DRAM device.

The current profile shown in Figures 4.27 and 4.28 are described in terms of abstract
units rather than concrete values. The reason that the current profiles are shown in abstract
units in Figures 4.27 and 4.28 is that the magnitude of the current draw for the row
activation command depends on the number of bits in a row that are activated in parald,
and the magnitude of the current draw for the data burst on the data bus depends on the data
bus width of the DRAM device. As aresult, the current profile of each command on each
respective device depends not only on the type of the command, but also on the interna
organization and externa configurations of the DRAM device.

All modern DRAM devices contain multiple banks of DRAM arrays that can be
pipelined to achieve high performance. Unfortunately, since the current profile of an DRAM
device is proportiond to its activity rate, a high performance, highly pipelined DRAM
device can aso draw a large amount of current. Figure 4.28 shows the individual
contributions to the current profile of two pipelined DRAM read cycles on the same device.
Thetota current profile of the pipelined DRAM deviceis not shown in Figure 4.28, but can

be computed by the summation of the quiescent current profile and the current profiles of
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Figure 4.28: : Current Profile of Two Pipelined DRAM Read Cycles.

the two respective read cycles. The problem of power consumption for a high performance
DRAM device is that instead of only two pipelined read or write cycles, multiple read or
write cycles can be pipelined, and as many as tgd/tg ¢ NUMber of read or write cycles can
be theoretically pipelined and in different phases in a single DRAM device. To limit the
maximum current draw of a given DRAM device and avoid the addition of heat remova
mechani sms such as heat spreaders and heatsinks, new timing parameters have been defined
in DDR2 and DDR3 devices to limit the activity rate and power consumption of DRAM

devices.

4.4.1 tgrp: Row to Row (activation) Delay

In DDR2 SDRAM devices, the timing parameter trrp has been defined to specify the
minimum time period between row activations on the same DRAM device. In the present
context, the acronym RRD stands for row-to-row activation delay. The timing parameter
trrp 1S Specified in terms of nanoseconds, and table 4.4 shows that by specifying tgpp in
terms of nanoseconds instead of number of cycles, a minimum spacing between row
activation is maintained regardless of operating datarates. For memory systems that

implement the close-page row buffer management policy, trrp €ffectively limits the
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Device configuration | 512 Mbit x 4 | 256 Mbit x 8 | 128 Mbit x 16
Data bus width 4 8 16

Number of banks 8 8 8

Number of rows 16384 16384 8192

Number of columns 2048 1024 1024

Row size (bits) f/8192 8192\ 6/16384 \
trrD (NS) 75 75 10

traw (NS) N37.5 37.5 NS0

TABLE 4.4: tgrp and tgay for 1 Gbit DDR2 SDRAM device from Micron

maximum sustainable bandwidth of a memory system with a single rank of memory. In
memory systems with 2 or more ranks of memory, consecutive row activation commands
can be directed to different ranks to avoid the trgp constraint.

Table 4.4 shows trrp for different configurations of a 1 Ghit DDR2 SDRAM device
from Micron. Table 4.4 shows that the 1 Ghit DDR2 SDRAM device with the 16 bit wide
data bus is internally arranged as 8 banks of 8192 rows per bank and 16384 bits per row.
Comparatively, the 512 Mbit x 4 and 256 Mbit x 8 configuration of the 1 Gbit DDR2
SDRAM device are arranged internally as 8 banks of 16384 rows per bank and 8192 hits per
row. Table 4.4 thus shows that with the larger row size, each row activation on the 128 Mbit
x 16 configuration draws more current than a row activation on the 256 Mbit x 8 or 512
Mbit x 4 configuration, and the data sheet requires that the row activations must be spaced

farther apart in time.

4.4.2 teaw: Four Bank Activation Window

In DDR2 SDRAM devices, the timing parameter tgay has been defined to specify a
rolling time frame in which amaximum of four row activations on the same DRAM device

may be engaged concurrently. The acronym FAW stands for Four bank Activation Window.
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Figure 4.29: : Maximum of Four Row Activations in any tgay time frame.

Figure 4.29 shows a sequence of row activation requests to different banks on the same
DDR2 SDRAM device that respects both tgrp as well as tgay. Figure 4.29 shows that the
row activation requests are spaced at least tgrp apart from each other, and that the fifth row
activation to a different bank is deferred until at least tgayy, time period has passed since the
first row activation was initiated. For memory systems that implement the close-page row
buffer management system, tgayy Places additional constraint on the maximum sustainable
bandwidth of a memory system with a single rank of memory regardless of operating
datarates.

The timing parameters tgrrp and tgayy have been defined for DDR2 SDRAM devices
that are 1 Ghit or larger. These timing parameters will carry over to DDR3 and future DDRx
devices, and they are expected to increase in importance as future DRAM devices are

introduced with larger row sizes.
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4.5 DDR2 SDRAM Protocol

In previous sections, a generic DRAM access protocol was examined in detail. In this
section, the DDR2 SDRAM memory access protocol is described in detail. The goal of this
section is to illustrate by example of how the generic DRAM access protocol applies to a

specific DRAM memory system.
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Figure 4.30: A column read command and a column write command in DDR2 SDRAM syste

4.5.1 DDR2 SDRAM Memory System Basics

Figure 4.30 illustrates the progresson of a column read command and a column write
command in a DDR2 SDRAM memory system. Figure 4.30 illustrates some important
aspects of the DDR2 SDRAM memory system:

«  DRAM commands asserted on the command bus occupy afull clock cycle and straddle
clock boundaries.

* DDR, DDR2 and future DDRx SDRAM memory systems transport two beats of datain
each clock cycle, each beat equates to one column of data.

« Datafor column commands are transported with respect to the timing of the source
synchronous differential data strobe signals, DQS and DQSH#.

« Datafor column read commands are sent by the DRAM devices and edge aligned to the data
strobe signal.

« Datafor columnwrite commands are sent by the DRAM controller and center aligned to the
data strobe signd.
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# of cycles @
parameter value 400 Mbps 533 Mbps 667 Mbps
tcycle 5ns 3.75ns 3ns
tBurst - 2,4 2,4 2,4
tcas - 3,4 3,4,5 4,5
temp - 1 1 1
tewp(tw) - 2,3,4 3,4 3,4
fbgs - 1 1 1,2
trAs 40 ns 8 11 14
tre 55ns | 11 15 19
trRcD 15 ns 3 4 5
trRp 15ns 3 4 5
twr 15 ns 3 4 5

TABLE 4.5: Typical timing parameter values of DDR2 SDRAM Devices

4.5.2 Typical Parameter Values

The timing parameters used to examine the DRAM access protocol were previoudly
described only in abstraction. Table 4.5 shows typical values for those timing parametersin
three different speed grades of DDR2 SDRAM devices. Table 4.5 shows that the timing
parameters tras, trer treps trp @nd tyyr are naturally specified in terms of nanoseconds.
Table4.5 dso lists the values of the various timing parameters in terms of the number of
cycles in specific DDR2 SDRAM devices. For example, in a DDR2 SDRAM device that
operates at 400 Mbps, each cycleis5 nsin duration. To meet the tga 5 timing requirement of
40 ns as illustrated, there must be at least 8 clock cycles between the time when a row is
opened for access and the time when a precharge command can be issued to the 400 Mbps
DDR2 SDRAM device.

DRAM Memory modules are now commonly offered for sale directly to consumers. To

reduce the complexity of the myriad of timing parameters, DRAM memory modules are
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sold on the basis of the latency values of tcpas, trep @d tgp That is, DRAM modules are
now offered for sale as PC2-4300 (3-4-4) where the CAS latency is 3 cycles, trep is 4
cycles and tgp is 4 cycles or PC2-4300 (4-5-5) where the CAS latency is 4 cycles, tgep 1S5

cyclesand trp iS5 cycles.
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4.6 Summary

In this chapter, ageneric DRAM access protocal is described in some detail. The generic
DRAM access protocol is created from a basic resource usage model. That is, two DRAM
commands can be pipeline consecutively if they do not require the use of a shared resource
at the sameinstance in time. Additional congtraints, such as power consumption limitations,
can further limit the issue rate of DRAM commands.

One popular question that is often asked, but not addressed by the description of the
generic DRAM access protocol, is in regards to what happens if the timing parameters are
not fully respected. For example, what happens when a precharge command is issued before
the tga 5 data restoration timing parameter has been fully satisfied? Does the DRAM device
contain enough intelligence to delay the precharge command until tga g has been satisfied?

The answer to questions such as these is that in general, DRAM devices contain very
little intelligence. The DRAM device manufacturers provide datasheets to specify the
minimum timing constraints for individual DRAM commands. To ensure that the DRAM
devices operate correctly, the DRAM controller must respect the minimum and maximum
timing parameters as defined in the datasheet. In the specific case of a precharge command
issued to a DRAM device before tgag has been satisfied, the DRAM device may still
operate correctly, since the electrica charge in the DRAM cdls may have adready been
mostly restored by the time the precharge command was engaged. The issue of early
command issuance is thus analogous to that of the practice of processor overclocking. That
IS, a processor manufacturer can specify that a processor will operate correctly within a
given frequency and supply voltage range, but an end user may increase the supply voltage

and operating frequency of the processor in hopes of obtaining better performance from the
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processor. In such a case, the processor may well operate correctly from a functiona
perspective. However, the parameters of operation is then outside of the bounds specified by
the processor manufacturer, and the functional correctness of the processor is no longer
guaranteed by the processor manufacturer. Similarly, in case that a DRAM command is
issued at atiming that is more aggressive than that specified by the DRAM device datashest,
the DRAM device may still operate correctly, but the functional correctness of the DRAM
device is no longer guaranteed by the manufacturer of the DRAM device or memory
module.

Finally, the work in this chapter points out that modern DRAM memory systems such as
SDRAM, DDR SDRAM, DDR2 SDRAM, DDR3 SDRAM and even Direct RDRAM have
memory access protocolsthat are more similar to each other than different. The similarity of
the memory access protocols enables the definition of the generic DRAM access protocol,
and the performance analysis of the generic DRAM memory system can be broadly applied
to different memory systems. The work presented in this chapter creates a baseline DRAM
memory access protocol that can be used in a framework that abstractly analyzes DRAM
based memory systems. Specifically, the table summarized as table 4.3 contains the
minimum scheduling distance for any pair of DRAM commands to a single channel of a
DRAM memory system. The table thus enables the computation of DRAM memory system
bandwidth and latency characteristics in support of abstract analysis of DRAM memory

system performance characteristics.



CHAPTER 5 DRAM Menory Controller

5.1 Primary Functions

In modern computer systems, the system controller acts as the glue logic that connects
processors, high speed input-output devices and the memory system to each other. The
system controller can exist as a separate device or as part of the processor and integrated into
the processor package; the function of the system controller remains essentially same in
either case. The primary function of the system controller is to manage the flow of data
between the processors, input-output devices and the memory system, correctly and
efficiently. Within the system controller, the function of the DRAM memory controller isto
manage the flow of datainto and out of the DRAM devices. However, due to the complexity
of DRAM memory access protocols, the large number of timing parameters, the
innumerable combinations of memory system organizations, different workload
characteristics and different design goals, the design space of a DRAM memory controller
has as much freedom as the design space of a processor that implements a specific
instruction set architecture. In that sense, just as the instruction set architecture defines the
programming model of a processor, the DRAM access protocol and timing parameters
define the interface protocol of aDRAM memory controller. In both cases, the performance
characteristics of the respective devices depend on the implementation specifics of the
microarchitecture, rather than the superficial description of a programing model or the

interface protocol.
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DRAM memory controllers can be designed to minimize die size, minimize power
consumption, maximize system performance, or simply a reasonably optimum combination
of various conflicting design goals. The goal in this chapter isto examine the various issues
important to the design and implementation of modern DRAM memory controllers.
Specifically, the following items are particularly important to the design and implementation
of aDRAM memory controller:

* Row-buffer Management Policy
* Address Mapping Scheme
e Memory Transaction and DRAM Command Ordering Scheme

Due to the increasing disparity in the operating frequency of modern processors and the
access latency to main memory, there is alarge body of active and ongoing research in the
architectura community devoted to the optimization of the DRAM memory controller.
Specifically, Address Mapping Scheme designed to minimize bank address conflicts have
been studied by Lin et. al. and Zhang et. a[24,25,27]. DRAM Command and Memory
Transaction Ordering Schemes have been studied by Briggs et. a., Cuppu et. a., Hur €.
al., McKee et. a., and Rixner et. al[28,32,33,34,37,42,51]. Due to the sheer volume of
research into optimal DRAM controller designs for different types of DRAM memory
systems and workload characterigtics, this chapter is not intended as a comprehensive
summary of all prior work. Rather, the text in this chapter proceeds to describe the basic
concepts of DRAM memory controller design in abstraction. Relevant research on specific

topics are then referenced as needed.
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5.2 Row-buffer Management Policy

Modern memory controllers typically use one of two policies to manage the operations
of sense amplifiers in the DRAM devices. In modern DRAM devices, arrays of sense
amplifiersalso act as buffersthat can provide temporary storage for an entire row of data. As
a result, policies that manage the operation of sense amplifiers are better known as row-
buffer management policies. The two primary row-buffer management policies are the
open-page policy and the close-page policy. Different row-buffer management policies
exist, including dynamic row-buffer management policies that use timers to keep a row
open for alimited period of time before closing it, or use the access history of the memory
access sequence to dynamically determine whether the controller should implement the
open-page or close-page policy. However, dynamic row-buffer management policies are
typically based on either the close-page policy or the open-page policy, and the examination

in thistext islimited to open-page and closed-page policies.

5.2.1 Open-Page Row-buffer Management Policy

In modern, commodity DRAM devices, data access to and from the data storage cellsis
a two step process that requires a separate row access command and a column access
command. In cases where the memory access sequence has a high degree of spatial locality,
it makes sense to direct the memory access sequences to the same row of memory. The
Open-page row-buffer management policy is designed to favor memory accesses to the
same row of memory by keeping sense amplifiers open and holding an entire row of datafor
ready access. In the Open-Page row-buffer management policy, the primary assumption is

that once arow of datais brought to the array of sense amplifiers, different columns of the
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same row may be accessed again in the near future. Under this assumption, after arow is
activated, the sense amplifiers are kept active to await another memory access to the same
row. In the case another memory read access is made to the same row, that memory access
could occur with the minimal latency of tcas, Since the row is aready active in the sense
amplifier and only a column access command is needed to move the data from the sense
amplifiersto the memory controller. However, in the case that the accessisto adifferent row
of the same bank, the memory controller would have to first precharge the DRAM array,
perform another row access, then perform the column access. The minimum latency to

access data in the bank conflict caseistgp + trep + teas:

5.2.2 Close-Page Row-Buffer Management Policy

In contrast to the open-page policy, the Close-page row-buffer management policy is
designed to favor random accesses to different rows of memory. The open-page row-buffer
management policy and closely related variant policies are typicaly deployed in memory
systems designed for low processor count general purpose computers. In contrast, the close-
page row-buffer management policy and closely related variants are typicaly deployed in
memory systems designed for large processor count multiprocessor systems or speciaty
embedded systems. The reason that open-page row-buffer management policies are
deployed in memory systems of low processor count platforms while close-page row-buffer
management policies are deployed in the memory systems of larger processor count
platforms is that in a memory system that services memory requests from multiple
processors or multiple threaded contexts concurrently, the intermixing of memory request
sequences reduces the available spatial locdity of the resulting memory access sequence .

Moreover, each memory request in an open-page memory system trandates to different
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combinations of DRAM commands with different timings, and the resulting sequence is
more difficult to schedule consecutively as compared to the same memory access sequence
in a close-page memory system. The bottom line is that as the bandwidth demand to the
memory system increases with increasing processor count, the efficiency of the DRAM
system to schedule the resulting combinations of DRAM commands decreases, and the
throughput of the close-page system can exceed that of a comparable open-page system.
The definition of the row-buffer management policy forms the foundation for the design
of a DRAM memory controller. The row-buffer management policy directly or indirectly
impacts the selection of the address mapping scheme, the memory command re-ordering
mechanism, and the transaction re-ordering mechanism for DRAM memory controllers. In
the following sections, the address mapping scheme, the memory command re-ordering
mechanism, and the transaction re-ordering mechanism are explored in the context of the

row-buffer management policy used.

*,  Some memory systems designed for large processor count platforms, such as Alpha EV7's Direct RDRAM memory
system, use open-page policy to manage the sense amplifiers. A fully loaded Direct RDRAM memory system has 32
banks per rank and 32 ranks per channel. The large number of banks in the Direct RDRAM memory system means
that memory requests from different processors can be directed to different banks. More conventional memory
systems that use SDRAM and variants of DDRx SDRAM memory devices are limited to far fewer banks of DRAM
arrays per rank and fewer ranks as well. The result isthat the number of bank conflicts growsrapidly for alarge
processor count application.
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5.3 Address Mapping Scheme

Many factors collectively contribute to impact the latency and sustainable bandwidth
characteristics of a DRAM memory system. One factor that impacts the performance of a
memory system is the address mapping scheme. In a memory system with a poorly devised
scheme to suite the workload, multiple, consecutive memory accesses may be mapped to
different rows of the same bank, resulting in bank conflicts that impacts performance. On
the other hand, awell devised address mapping scheme could map the same memory access
sequence to different rows of different banks, where accesses to different banks can occur
with some degree of concurrency. The task of an address mapping scheme is to minimize
bank conflicts and maximize paralelism in the memory system. The process of devising and
examining address mapping schemes begins by examining the property of DRAM memory

channels, ranks, banks, rows and columns.

5.3.1 System Organization Variable Definition

To facilitate the examination of address mapping schemes, variables are defined in this
section to abstractly denote the organization of memory systems. For the sake of simplicity,
auniform memory system is assumed throughout this text. Specifically, the memory system
under examination is assumed to have K independent channels of memory, and each channel
consists of L ranks per channel, B banks per rank, R rows per bank, C columns per row, and
V bytes per column’, and the total size of physical memory in the systemissimply K * L *
B* R* C* V. Furthermore, it is assumed that each memory access |oads and stores memory

at the granularity of a cacheline. The length of a cacheline is defined as Z bytes, and the

*. The number of bytes per column may be provided by multiple devicesin parallel.
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number of cachelines per row is denoted as N. The number of cachelines per row is a
dependent variable and it can be computed by multiplying the number of columns per row
by the number of bytes per column and divided through by the number of bytes per

cachdline. Thatis, N =C* V / Z. The organization variables are summarized in table 5.1.

Symbol De\:)aer:\?jtzice Description
K Independent Number of channels in system
L Independent Number of ranks per channel
B Independent Number of banks per rank
R Independent Number of rows per bank
C Independent Number of columns per row
Vv Independent Number of bytes per column
z Independent Number of bytes per cacheline
N Dependent Number of cachelines per row

TABLE 5.1: Summary of System Configuration Variables

In general, the value of a given system configuration parameter can be any positive
integer. For example, a memory system can have 3 channels of memory with 6 ranks of
memory per channel. However, for the sake of simplicity, the values of parameters defined
for the system under study are assumed to be integer powers of 2, and the lower case | etter of
the respective parameters are used to denote that power of two. For example, there are 2b =
B banks in each rank, and 2' = L ranksin each channd of memory. A memory system with
theszeof K* L * B* R* C* V canthen beindexed withk + | + b +r + ¢ + v number of

address bits.

5.3.2 Available Parallelism in DRAM System Organization
channel:

Independent channels possess the highest degrees of parallelism in the memory system.

There are no restrictions on requests to different channels controlled with independent
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memory controllers. For a performance optimized design, consecutive cacheline accesses

should be mapped to different channels.”

rank:

Most DRAM accesses can proceed in paralle in different ranks, subject to the
availability of the shared address, command and data busses. However, rank-to-rank
switching penalties in high frequency, globally synchronous DRAM memory systems such
as DDRx SDRAM memory systems limit the desirability of sending consecutive DRAM

requests to different ranks.

bank:

Similar to the case of multiple DRAM accesses to multiple ranks, multiple DRAM
accesses can proceed in pardlel in different banks of a given rank subject to the availability
of the shared address, command and data busses. Scheduling consecutive DRAM read
accesses to different banks within agiven rank is more efficient than scheduling consecutive
read accesses to different ranks since idle cycles are not needed to re-synchronize the data
bus. However, consecutive DRAM read and writes are more efficiently performed to
different ranks of memory instead of different banks of the same rank. In modern systems,
read requests tend to have higher spatia locality than write requests due to the existence of
write back caches. Theresult isthat in a high performance design, bank addresses should be
mapped lower than rank addresses to favor the extraction of spatiad locality from

consecutive memory read accesses.

*,  Theexploration of parallelism in the memory system is an attempt to extract maximum performance. For |ow-power
targeted systems, different criteria may be needed to optimize the address mapping scheme.
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row:

In aDRAM memory system, only one row per bank can be active in any time period,
provided that additiona ESDRAM-like row-buffers are not present in the DRAM device.
The result of the forced serialization of accesses to different rows of the same bank means
that row addresses are typica ly mapped to higher order memory address rangesto lessen the
likelihood that spatially-close consecutive accesses would be made to different rows of the

same bank.

column:

In a memory system that implements open-page row-buffer management policy,
consecutive cachelines are mapped to the same row of memory, and a memory access
sequence that streams through memory would produce memory accesses to adjacent
locations of the same DRAM row. As aresult, for a memory system that utilize the open-
page row-buffer management policy, adjacent columns should be mapped to the low address
range. In contrast, for amemory system that utilize the close-page row-buffer management
policy, consecutive cachelines should be mapped to different banks, then to different rows of
memory. Such a mapping scheme scatters consecutive memory access streams across
different banks, different ranks and different channels. The result is that in amemory system
that utilize the close-page row-buffer management policy, the low range of the column
address that denote the column offset within a cacheline is optimally mapped to the lowest
range of the address, but the remainder of the column addresses are best mapped to the high

address ranges comparable to the row addresses.
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5.3.3 Baseline Address Mapping Schemes

In a DRAM memory system that utilize the open-page row-buffer management policy,
consecutive read requests to the same row, bank, rank and channel can be pipelined
consecutively, whereas a similar combination of read requests to the same row, bank, rank
and channel in a memory system that utilize the close-page row-buffer management policy
incurs the same latency penalty as read requests to different rows of the same bank, rank and
channel. That is, in a memory system that utilize the close-page row-buffer management
policy, thereis no difference between accesses to the samerow or different rows of the same
bank, rank and channel. The difference in the access preferences means that optimal address
mapping schemes are different for memory systems that utilize open-page and close-page
row-buffer management policies.

In the previous section, the available parallelism of memory channels, ranks, banks,
rows and columns were examined in abstraction. In this section, two baseline address
mapping schemes are established. In the abstract memory system, the total size of memory
issmply K* L*B* R* C* V. The convention adopted in thiswork isthat the colon, “:” is
used to denote separation in the address ranges. As a result, k:l:b:r:c:v not only denotes the
size of the memory, but also the order of the respective address ranges in the address
mapping scheme. Finally, for the sake of simplicity, C* V can be replaced with N * Z in the
performance anaysis. That is, instead of the number of bytes per column multiplied by the
number of columns per row, the number of bytes per cacheline multiplied by the number of
cachelines per row can be used equivalently. The size of the memory systemisthusK * L *

B* R* N* Z, and the address mapping scheme can be denoted by k:l:b:r:n:z.
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Open-page Baseline Address Mapping Scheme

In this section, asimple baseline address mapping scheme that isfavorable for amemory
system that utilize the open-page row-buffer management policy is described. In a system
that utilize the open-page row-buffer management policy, consecutive cacheline addresses
should be placed into different channels, then adjacent cachelines should be mapped into the
same row, same bank, and same rank. The baseline address ordering is thus row, rank, bank,
cachelines per row, channel, and cacheline offset. Utilizing the previoudy described
convention, this baseline address mapping scheme for the open-page row-buffer

management policy isr:l:b:n:k:z.

Close-page Baseline Address Mapping Scheme

Similar to the baseline address mapping policy for a memory system that utilize the
open-page row-buffer management policy, consecutive cacheline addresses should be
mapped to different channelsin the address mapping policy for amemory system that utilize
the close-page row-buffer management system. However, the central belief of the close-
page row-buffer management policy isthat thereis little spatia locality between temporally
adjacent memory accesses, so DRAM rows are precharged as soon as possible. In this case,
mapping consecutive cacheline addresses to the same bank, same rank and same channel of
memory resultsin abank conflict and greatly reduces avail able memory bandwidth. In order
to minimize the chances of bank conflict, adjacent lines are mapped to different channdls,
then to different banks, then to different ranks. The baseline ordering isthus row, cachelines

per row, rank, bank, channel and cacheline offset, and denoted asr:n:l:b:k:z.

122



5.3.4 Parallelism versus Expansion Capability

In modern computing systems, one capability that system designers often must provide
to end users is to permit the end users to conFigure the memory capacity of the memory
system by adding or removing memory modules. In the context of the discussion of address
mapping schemes, adjustable memory expansion capability means that respective channel,
row, column, rank and bank address ranges must be flexibly adjusted depending on the
configuration of the DRAM modules inserted into the memory system by the end user. In
order to minimize the complexity of DRAM memory controllers, memory system
organization parameters that can be varied are typically mapped to the highest address
range. In this manner, the lower order address bits can remain unchanged regardiess of the
number, capacity and configuration of the memory modules in the system. As an example,
in contemporary desktop personal computer systems, system memory capacity can be
adjusted by adding or removing ranks of DRAM devices. In these systems, rank indices are
mapped to the highest address range in the DRAM memory system. The result of such a
mapping scheme means that an application that utilizes only asubset of the memory address
space would typically make use of fewer ranks of memory than is available in the system.
The address mapping scheme optimized for expansion capability would thus present less
rank parallelism to memory accesses, or in the case where channel indices are mapped to the
high address ranges, parallelism presented by multiple channels may not be available to
individual applications.

In the respective baseline address mapping schemes described previoudy, the channe
and rank address ranges are mapped to low end of the address range. For a flexible, user

configurable memory system, the channel and rank indices may be moved to the highest
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address ranges. The result is that the k:1:r:b:n:z address mapping scheme would be used in a
memory controller with an expandable memory system that implements an open-page row-
buffer management policy, and the k:l:r:n:b:z address mapping scheme would be used in a
memory controller with an expandable memory system that implements the close-page row-
buffer management policy. In these address mapping schemes geared toward memory
system expendability, some degrees of channel and rank parallelism are often lost to
workloads that use only asubset of the contiguous physical address space.

The loss of paralelism for single threaded workloads in memory systems designed for
configuration flexibility is less of a concern for memory systems designed for large multi-
processor systems. In such a system, concurrent memory accesses from different memory
access streams to different regions of the physical address space would make use of the
parallelism offered by multiple channel and multiple ranks. Moreover, the constraint on the
limited parallelism available to single threaded workloads can be alleviated in cases where
the virtual address mapping mechanism randomizes the address trand ation from the virtua
address space to the physical address space. Finally, some address mapping schemes have
been devised to make use of the available parallelism offered by multiple banks and ranks to

alleviate the issue of address aliasing in concurrent array accesses.

5.3.5 Bank Address Aliasing (stride collision)

One additional problem in the consideration of an address mapping scheme is the
problem of bank address adiasing. Bank address aliasing occurs when workloads access
arrays whose respective sizes are powers-of-two concurrently. Concurrent accessesto arrays
that are powers-of-two can result in bank conflicts when the arrays are digned to a given

address boundary and the paired accesses are made to different rows of the same bank.
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To obtain the highest performance, an address mapping scheme should be devised so
that consecutive memory accesses to different DRAM rows are mapped to different banks,
different ranks or different channels of memory. The problem in a simple address mapping
schemeisthat arrays whose sizes are power-of-two may have each element of the respective
array coincidentally mapped to different rows of the exact same channel, bank and rank. In
such a case, concurrent array accesses would result in bank conflicts for each pair of
memory accesses. The task then is to devise a scheme that avoids bank conflicts for

concurrent array accesses to arrays aligned on power-of-two address boundaries.

Proposed Solution to Alleviate Address Aliasing

The bank address aliasing problem has been respectively investigated by Lin et. a. [27]
and Zhang et. a.[24,25]. In Lin et. a., the proposed solution was applied to a Direct
RDRAM memory system with 32 banks per rank, 32 ranks per channel and 4 channels. In
this configuration, the rank address and 4 out of 5 bits of the bank address are bitwise
XOR’ed with the 9 bit row address. The resulting bank address was then placed in reverse
ordering in the address mapping scheme. Lin et. d. illustrated that this configuration
effectively rotated the bank and rank mapping so that there is no address boundary where
every pair of concurrent array accesses would result in bank conflicts. The address mapping

scheme proposed by Lin et. a. isshown as Figure 5.1.

-¢——cachetag |cache index >
| row (9) | bank [4]] bank [3:0] [rank (5) | column (7)|channel (2)|offset (4)]
¥ 9

| row (9) | bank [0] | bank [4:1] [rank (5) | column (7)|channel (2)|offset (4)]

Figure 5.1: Addres's mapping scheme proposed by Lin et. al.
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In the work by Zhang et. al., a similar approach in rotating bank addresses through the
use of bitwise XOR function is retained. In their work, Zhang et. al. applied the bank
rotation function to amore conventiona DRAM memory system, simulating up to 32 banks,

and this scheme also showed varying degrees of improvement. The mapping scheme

page index bank index page offset
|

| page index | new bank index | page offset |

Figure 5.2: Address mapping scheme proposed by Zhang et. al.

described by Zhang et. a. is shown as Figure 5.2.

Problems with Proposed Solutions

The schemes proposed by Lin et. a. and Zhang et. a. are smilar schemes gpplied to
different memory systems. The use of the Direct RDRAM memory system allowed Lin et.
al. a higher degree of bank parallelism in the form of 1024 banks DRAM arays. The
generous level of bank parallelism allowed Lin et. d. to create a 1:1 mapping that permutes
the available number of banks through the address space in the system configuration
examined. In contrast, Zhang et. d. illustrated a more modest memory system where the
page index was larger than the bank index. The problem is that there are few banks in
contemporary SDRAM and DDR SDRAM variant memory systems, and for a DRAM
memory system with 2° panks, there are only 2b possible permutations in mapping the
physicad address to memory address. In implementing the bank address permutation
scheme, the address aliasing problem is simply shifted to a larger granularity. That is,

without bank permutation, arrays aligned on address boundaries of 20*P) would cause a
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bank conflict on every pair of concurrent array accesses. The act of permuting the bank
index means that arrays aligned on address boundaries of 200P*0) would cause a bank
conflict on every pair of concurrent array accesses. Essentialy, there are not enough banks
to rotate through the address space in a contemporary memory systems to completely avoid
the memory address aiasing problem, but the presence of more banks does defer the address

aliasing problem to larger arrays aigned on an exact power-of-two address boundaries.

An Address Aliasing Example: STREAM on a Desktop Personal Computer

The STREAM benchmark is designed to measure the maximum bandwidth available on
a given computer system[40]. The benchmark contains array access sequences that create
bank address aliasing problems in that the STREAM benchmark is specifically designed to
march through large arrays whose sizes may be statically defined as powers-of-two number
of bytes. As a result, the address boundaries of the arrays used in the benchmark are
naturally aligned to cause concurrent read and write streams of the accessed arrays to map to
the same DRAM bank. Fortunately, the addition of a simple offset to increase the size of the
respective arrays means that the statically alocated arrays are no longer proper powers-of-
two in size, and the address boundaries of the respective arrays are not aligned to the same
bank addresses.

As an example, the address mapping scheme utilized by the memory controller in Intel’s
875P system controller places the bank address range on physical address bits 14 and 15
when 256 Mbit DDR SDRAM devices are used to conFigure the memory system[41]. In
this configuration, arrays that are powers-of-two and larger than 216 bytes in size could have
all array indices mapped to the same bank if the static arrays are alocated consecutively.

The address aliasing problem can be aleviated in this specific system by increasing the size
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of the respective arrays by bytes. Table 5.2 summarizes the change in measured

Copy Scale Add Triad
No Offset (MB/s) 2331 2473 2584 2496
With Offset (MB/s) 2448 2474 3164 3157
Difference (MB/s) 117 1 580 661

TABLE 5.2: : Measured STREAM Results: With and Without OFFSET

bandwidth for the STREAM benchmark in a Dell PowerEdge 400SC computer system that
uses the Intel 875P system controller. The results show that the insertion of the 214 byte
array offset can alleviate bank conflicts on aligned address boundaries and improve effective

DRAM bandwidth by as much as 25%.
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5.4 Memory Transaction and DRAM Command

Ordering Schemes

The design space of amodern DRAM controller isincredibly large. A DRAM controller
can be fully protocol compliant for a given DRAM memory system, but implements the
most simplistic controller possible to minimize complexity and die size of the memory
controller. Alternatively, a highly complex, high performance memory controller can be
implemented to extract the maximum performance from a given memory system. The
performance characteristic of the DRAM memory controller depends on the DRAM
command and memory transaction ordering schemes have been studied by Briggs et. d.,
Cuppu et. a., Hur et. d., McKeeet. d., Lin et. a, and Rixner et. al[27,28,32,33,34,37,42]. In
studies performed by Briggset. a., Cuppu et. al., McKeeet. d., Lin et. a., and Rixner €. d,
various DRAM-centric scheduling schemes are examined. In the study performed by Hur et.
al., the observation is noted that the ideal DRAM scheduling algorithm depends not only
only the optimality of scheduling to the DRAM memory system, but also depends on the
requirement of the application. In particular, the integration of DRAM memory controllers
with the processor core onto the same silicon die means that the processor core can interact
directly with the memory controller and provide direct feedback to select the optimal
DRAM scheduling algorithm.

The design of a high performance DRAM memory controller is further complicated by
the emergence of modern high performance multi-threaded processors and multi-core
processors. While the use of multi-threading have been promoted as away to hide the effects

of memory access latency in modern computer systemg44,45], the net effect of multi-
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threaded and multi-core processors on a DRAM memory system is that the intermixed
memory request stream from the multiple threaded contexts to the DRAM memory system
disrupts the row-locality of the request pattern and increases bank conflicts[50]. As aresult,
an optimal DRAM controller design not only have to account for the idiosyncrasies of
specific DRAM memory systems, application specific requirements, but also the type and
number of processing elementsin the system.

The large number of design factors that a design engineer must consider further
increases the complexity of a high-performance DRAM memory controller. Fortunately,
some basic strategies exist in common for the design of a high performance DRAM memory
controller. Specifically, the strategies of bank-centric organization, write caching, seniors-
first are common to many high-performance DRAM controllers, and specific adaptive

arbitration algorithms are unique specific DRAM controllers.

5.4.1 Write Caching

One dtrategy deployed in many modern DRAM controllers is the strategy of write
caching. The basic idea for write caching is that write requests are typically non-critical in
terms of performance, but read requests may be critical. As aresult, it istypicaly desirable
to cache write requests and allow read requests to proceed ahead. Furthermore, DRAM
devices are typically poorly designed to support back-to-back read and write requests.

Figure 5.3 repeats the illustration of a column read command that follows a write command

t +t Ftwr -t temb .

CWD " BurstA WR_ CMb time -
cmd&addr - — | write0 |— ————— read 1
bank “i” of rank “m"- — — — — — | datarestore L
bank “j” of rank *‘m"- — — — — — — — — — - " rowxopen |
rank “m” utilization- — — — — — - 110 gating I/0 gating
databus- — — — — — databurst | — — — — — - data burst

tewp tBurst twr

Figure 5.3: Write command following read command to open banks.
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and shows that due to the differences in the direction of data flow between read and write
commands, significant overheads exist when column read and write commands are
pipelined back-to-back. The strategy of write caching allows read requests that may be
critical to application performance to proceed ahead of write requests, and the write caching
strategy can aso reduce read-write overheads when it is combined with a strategy to send
multiple write requests to the memory system consecutively. One memory controller that
utilizes the write caching strategy is Intel’s 870 system controller which can buffer upwards

of 8 KB of write datato prioritize read requests over write requesty 49].

5.4.2 DRAM-Bank-Centric Request Queuing Organization

In modern DRAM controllers, before a datafor a given memory transaction is stored or
retrieved from the DRAM devices, the transaction must be trandated into a sequence of
DRAM commands. To facilitate the pipelined execution of commandsin a DRAM memory
system, DRAM commands can be placed into a single queue or multiple queues. One
organization that can facilitate the pipelined execution of commands in a high performance
DRAM memory controller isaset of queues organized on a per bank basis . In this manner,
DRAM commands from different transactions are directed to the same queue in the case that
they access the same bank. The per bank organization alows a memory controller to quickly
recognize requests that are directed to the same row or different rows of the same bank. In
the case that multiple pending requests are directed toward the same row in the same bark,
but interleaved with requests directed toward different rows of the same bank, the per-bank

queuing mechanism can easily facilitate transaction re-ordering to minimize the number of

*.  The bank-centric request queuing construct is a conceptua construct. Memory controllers can utilize a unified queue
with sophisticated hardware to perform the transaction re-ordering and bank rotation described in thistext, abeit with
greater difficulty.
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bank conflicts. Moreover, the bank-centric organization also facilitates a bank-rotation
mechanism that can process concurrent requests to different banks and increase the
utilization of the memory system in between bank conflicts to a given same bank.

Figure 5.4 shows one organization of a set of request queues organized on a per-bank

Bank 0

022 oSl ® o= /

= > — >
Roc. _»giz‘;—:—%giz—;—:—%d 22 heduling:
Req. gﬁomaﬁgﬁo'\’a — Y rsgur?dfjrtlbrt])?ﬁ
stream 8 of T S : through n banks

DRAM address mapping b

row:column:bank:offset [Bank n -1]

queue depth

Figure 5.4: Per Bank Organization of DRAM Request Queues.

basis. In the organization illustrated in Figure 5.4, memory transaction regquests are
trandated into memory addresses and directed into different request queues based on their
respective bank addresses. In this organization, multiple column commands can be issued
from a given request queue to a given bank if they are directed to the same open row. In the
case that a given request queue has exhausted al pending requests to the same open row and
the next ordered request in the queue is addressed to arow, the request queue can then issue
a precharge command and allow the next bank to issue commandsinto the memory system.
Figure 5.4 shows that the scheduling priority is passed from bank to bank in a round robin
fashion. In the round-robin bank-rotation command scheduling scheme, DRAM bank
conflict overhead to a given bank can be hidden by accesses to different banks if there are
sufficient numbers of pending requests to other banks that can be processed before the

scheduling priority rotates back to the same bank.
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5.4.3 Feedback Directed Scheduling

In modern computer systems, memory accessis performed by the memory controller on
behalf of processors or intelligent 1/0 devices. Memory access requests are typicaly
encapsulated in the form of transaction requests that contains the type, address, and data for
the request in the case of write requests. However, in the mgority of systems, thetransaction
requests typically do not contain information that allows a memory controller to prioritize
the transactions. Instead, memory controllers typically rely on the type, access history, and
memory system state to schedule the memory transactions. In one recent study performed by
Hur and Lin, the use of a history based arbiter that selects among different scheduling
policiesis examined in detail[51]. In this study, the memory access request history isused to
sdect from different arbitration policies dynamically, and speedups between 5 and 60
percent are observed on some benchmarks.

The exploration of a history-based DRAM transaction and command scheduling
algorithm is enabled by the fact that the Hur and Lin based the study on a POWER5
processor, a processors with an integrated DRAM controller. As more processors are
designed with integrated DRAM memory controllers, these processors can communicate
directly with the DRAM memory controllers and schedule DRAM commands based not
only on the availability of resources within the DRAM memory system, but aso on the
DRAM command access history. In particular, as multi-threaded and multi-core processors
are integrated with DRAM memory controllers, these DRAM memory controller not only
have to be aware of the availability of resources within the DRAM memory system, but they
must also be aware of the state and access history of the respective threaded contexts on the

processor in order to achieve the highest performance possible.
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CHAPTER 6 PerformanceAnaIySiS
Methodology. Request
Access Digances:

6.1 Motivation

In recent years, the importance of memory system performance as a limiter of computer
system performance has been widely recognized[52,53]. However, DRAM devices
specificaly and memory systems as a whole are still designed by engineers whose
predominant concerns are those of cost minimization and functional correctness. Moreover,
the commodity nature of main stream SDRAM, DDR SDRAM and DDR2 SDRAM devices
means that DRAM design engineers are reluctant to add functionalities or to restructure
DRAM devicesin such away that would increase the die size overhead of these devices. As
aresult, the topic of memory system performance analysis is important not only to system
architects, but it is aso needed by DRAM design engineers to evaluate design trade-off
points between the die cost of various features against potential performance benefits of

those features.
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6.1.1 DRAM Device Scaling Considerations

Figure 6.1 shows generd DRAM scaling trends from 1998 to 2004. Figure 6.1 shows
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Figure 6.1: DRAM datarate and row cycle time scaling trends.

that while DRAM device datarate have doubled every three years in between 1998 and
2004, row cycle times have decreased by roughly 7% per year during the same period of
time. The difference in the scaling trends means that each generation of DRAM devices has
a different combination of datarate and row cycle time. Moreover, as each generation of
DRAM devices scae in size, the physical organization of the DRAM device directly
impacts timing parameters such astrcp, tras traws trrp aNd trec. Specifically, as DRAM
device density doubles with each generation, DRAM device design engineers can choose to
double the number of cells per row, double the number of rows in each bank, or double the
number of banks within a given DRAM device.

In the case that the number of storage cells are doubled for each row, the desire to keep
the electrical charge of the storage cell a the same level meansthat the energy consumed for
each row access roughly doubles. The increase in power consumption in turn means that

teaws trrp @d trec Must be increased when the number of storage cells are doubled. In the
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case that the number of rows are doubled, the number of storage cells per bitline segment or
the number of segments must increase appropriately. The increasing number of DRAM
storage cells per bitline then impacts tgcp, tras and tge. Furthermore, the doubling of the
number of rows means that twice the number of refresh cycles are needed per unit time, and
memory system performance may be further degraded. Finally, the doubling of the number
of banks has the smallest impact on DRAM device timing parameters, but the increase in
bank count increases the complexity of the control logic, and the larger number of logic
transistors increases die size.

The different combinations of device datarates, row cycle times, and device organization
impact for each generation of DRAM devices lead to the situation that each generation of
DRAM devices must be re-examined in terms of performance characteristics in the context
of the larger memory system. Moreover, a suitable analytical framework must be used to
examine the performance characteristics so that a wide range of system configurations can

be considered while DRAM device timing parameters are varied.

6.1.2 Execution Based Analytical Framework

Two types of analytical frameworks are typically used to evaluate the performance of
DRAM memory systems. In general, the two types of analytica frameworks can be
described as execution based and trace based analytical frameworks, respectively?.
Typicdly, memory system studies are based on closed-loop, execution based
simulationg 28,32,33,34,37,42,46,51]. The use of execution based simulations means that

the performance of the memory system is impacted by the request rate of the processor or

1. Alternatively, closed-loop and open-loop systems. The open-loop system can be driven by address trace inputs or
random number generators. The fundamental concept remains the same.
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processors, and the performance of the memory system istightly coupled to the performance
of the processor or processors. For example, one study with a specific set of DRAM device
timing parameters, workloads and system configuration can reach one conclusion in regards
to the performance sengitivity of specific DRAM timing parameters, while a second study
with the same set of DRAM device timing parameters, workloads and system configuration
but different processor frequency or cache sizes can reach a different conclusion in regards
to performance sensitivity of specific DRAM timing parameters. In this manner, execution
based simulation frameworks can accurately measure system performance sensitivity to
DRAM device parameters for specific system configurations.

The accuracy of execution based simulations in measuring system performance
sensitivity to DRAM device parameters for specific system configurations ironically
presents a problem in that the overall system performance depends on both processor
performance and memory system performance. However, the individual contributions of
processor performance and memory system performance are difficult to separate out from

each other. Figure 6.2 abstractly illustrates the point that the idle times in the data bus of the

| | | I | I | L] time
. R
data data
idle t r{( idle time
due to idle added due to DRAM protocol
CPU trc OF traw overhead

Figure 6.2: Abstract illustration of DRAM system data bus activity.
DRAM system are non-linear functions of processor frequency, protocol overhead and
DRAM row cycle times. The result is that the performance characteristic of a DRAM
memory system is a non-linear function of each individua parameter, even when other

parameters are held as constants.

137



The complexity of system level interactions means that while execution based
simulation frameworks are highly accurate in reflecting the sengitivity of system level
performance to DRAM system configurations and timing parameters, the intermixing of
processor performance in the equation means that a different framework that can separate
out processor performance from DRAM memory system performanceis required to analyze

DRAM memory system performance in isolation.

6.1.3 Trace Based Analytical Framework

Trace based analytical frameworks differ from execution based analytical frameworksin
that trace-based analytical frameworks are open-loop systems, and memory system
performance can be separated from processor performance. In generd, trace based
analytical frameworks are less suitable for use in the analysis of system level performance
characteristics. However, the use of an open-loop trace-based andytical framework means
that the input request rate can be independently controlled. In the extreme case, a trace-
based analytica framework can assume an infinitely fast processor, and memory requests
can be issued into the memory system at saturation rates. In the case that the trace input is
driven a saturation rates, all idle times in the DRAM memory system attributable to the
processor are diminated. In this manner, atrace based analytica framework can measure the
limits of performance sensitivity to individua DRAM system configuration and timing

parameters, assuming ideal processors.

6.1.4 Trace Based versus Execution Based Analytical Framework
The trace based methodology is deficient in some ways whileit is advantageous in other

ways when it is compared to an execution driven analytical framework. The trace based
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analytical framework is deficient in that memory address traces do not contain information
in regards to dependencies in the memory request stream. The result is that even inherently
dependent memory references can be collapsed entirely and the analytical framework can
compute a higher bandwidth efficiency than the theoretical bandwidth efficiency of the
workload running on an infinitely fast processor. In this manner, a trace based analytical
framework computes a bandwidth efficiency that represents the upper-bound of bandwidth
efficiency for any given single threaded workload, and the amount of deviation between the
efficiency computed by a trace based anaytical framework and the efficiency obtained from
an execution based simulation is dependent on the number of dependent memory requestsin
agiven workload relative to the total number of memory requests in the workload.

The issue of trace based methodologies not respecting the dependency of memory
references can be resolved by using an execution based methodology that uses highly
accurate models of the processors and the memory system. However, an execution based
methodology is aso problematic in that the processor state machine is dramaticaly more
complex than the memory system statemachine, and the vast mgjority of the simulation
cycles are used for processor state ssmulation. Moreover, that problem is exacerbated when
the god of the simulation is to examine fundamenta limitations of the DRAM memory
system. In the case that an infinitely fast processor is gpproximated by using an extreme
ratio of processor to memory system operating frequency, an execution based methodol ogy
would be many orders of magnitude dower than a trace based methodology. In thiswork, a
trace based methodology is deployed so that alarge design space of DRAM memory system
configuration and timing characteristics can be examined in detail. The trade off is the loss

of accuracy in that memory dependency in single threaded workloads is not respected.
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6.2 The Request Access Distance Framework

In this study, a trace-based analytical framework is used to evaluate the impact of
DRAM timing parameters and memory system configuration to memory system
performance. The analytical framework is based on the computation of memory system
bandwidth efficiency subjected to different combinations of configuration and timing
parameters including, but not limited to, DRAM device datarates, burst lengths, tgc, traws
and tpgs: The maximum bandwidth efficiency of the DRAM memory system can be
computed by separately computing, then adding up the DRAM protocol overhead and
DRAM row cycle time constraints for each request. The trace-based anaytical framework
described in this work is referred to as the Request Access Distance methodology for the
computation of DRAM memory system efficiency.

The process of computing DRAM memory system bandwidth efficiency begins with a
re-examination of memory system activity once the memory requests are driven a

saturation rates. Figure 6.3 illustrates that once DRAM memory system idle times due to

time -
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Figure 6.3: Abstract illustration of DRAM system data bus activity.

non-memory-intensive processor or processors are removed, all remaining idle timesin the
DRAM memory system must be directly contributed by the overhead of the DRAM

protocol, DRAM row cycle times, or DRAM power constraints such as tgayy or trrp-
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6.2.1 Computing DRAM Protocol Overhead

One source of DRAM bandwidth inefficiency is attributable to the protocol
inefficiencies. In this regard, the previous work that formalized the description of the
abstract DRAM access protocol now enables the computation of DRAM protocol overhead

for any par of memory references. Table 6.1 contains the entries of minimum DRAM

p
r ﬁ Minimum scheduling
5 2 a L 2 Sfrn:(;igsemeen DRAM protocol overhead
. n between DRAM command
|| x | ) n| Open-page airs. (unit: tgrsp)
ot k| k| No command re-ordering pairs. * "Burs
u | Best case
S L egend
R =read; W = write;
RIR|S|S|S] tBurst 0 s=same; d = different;
R|R|s|s|d| tgys 0 0 = open; ¢ = conflict;
R|R|s|dl-| thostayrst toos / taurst
R| W| s|s|s|tcas*taust+ tbos-tcwp | (tcas * tbos - tew) / teurst
R| W|s|s|d|tcas*taust+tbos-tcwp | (tcas * tbos - tewp) / teurst
R| W|s|dl-|tcas*taust*tbos-tcwp | (tcas * tbos - tewp) / teurst
W|IR|s|s|s|tcwptteurstttwr-tomp | (towp * twr - temp) / taurst
Wi R| s|s|d|tcwp*turstttwr-tcmp | (tcwp * twr - tomp) / taurst
W| R| s| d| -| tcwp* taurst * Ibgs - tcas | (tcwp *+ tbgs - tcas) / teurst
W| W| s | s| s| tgyrst 0
W| W| s | s| d| tgyrst 0
W| W s | d|-| taye 0

TABLE 6.1: Table of Request Access Distance Overhead

command scheduling distances converted to request access distance overhead. Essentialy,
the DRAM protocol overhead between any pair of memory references can be computed by
subtracting out the data burst duration, tg g, from the minimum scheduling distance, and
the protocol overhead is converted to units of tg,¢ by dividing through by tg . In this
work, the protocol overhead between a memory request j and the request that immediately

precedesit is denoted by D(j).
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6.2.2 Computing Row Cycle Time Constraints

In this work, a request | is defined to have a request access distance, D,(j), to a prior
request made to a different rows of the same bank as request j. The request access distance
D,(j) describes the timing distance between it and the previous request to a different row of
the same bank. In the case that two request are made to different rows of the same bank and
the minimum constraints for row cycle times are not met, some idle time must be inserted
into the command and data busses of the DRAM memory system. The minimum request
access distance Dy, is the number of requests that must be made to an open row of a given
bank, to different banks, or to different ranks, between two requests to the same bank that
requires a row cycle for that bank. The minimum access distance ensures that minimum
DRAM row cycle time requirements are satisfied for al requestsin a request stream. In the
case that D,(j) is less than D,,,, some amount of idle time, D;(j), must be added so that the
total access distance for request j, Dy(j), is greater than or equal to D,,. The basic unit for the
minimum access distance statistic is the data bus utilization time for a single transaction
request, tgr time period. In a close-page memory system with row cycle time of tgc and
access burst duration of tg &, Dy, isSmply (tre - teurst) / tBurst-

The request access distance for request j in a close-page memory system is simply
defined as D,(j). However, two different request distances are defined for each request j in an
open-page memory system: D,¢(j) and Di¢(j). Dy.¢() and D, 5(j) are need for request j if
and only if request j isthe first column access of a given row access. If request j is not the
first column access of a row access to a given bank, then the respective row activation and
precharge time constraints do not apply, and D,_(j) and D,¢(j) are not needed. The request

access distance D,()) is the request access distance between request j and the first column
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access of the previous row access to the same bank and the request access distance D, 4(j) is
the request access distance between request j and the last column access of the previous row
access to the same bank.

In an open-page memory system, arow is kept active at the sense amplifiers onceit is
activated so subsequent column accesses to the same row can be issued without additional
row cycles. In case of abank conflict in an open-page memory system between two requests
to different rows of the same bank, the second request may not need to wait for the entire

row cycle time before it can be issued. Figure 6.4 shows that in the best case, bank conflicts

time
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Figure 6.4: Consecutive Read Commands to Same Bank: Bank Conflict.

between two different column access requests can be scheduled with the timing of tg 4 +
trp + trep If the row restoration time tgp g has already been satisfied for the previous row
access. In the best case scenario, the minimum scheduling distance between two column
commands in an open-page system to different rows of the same bank is (tgp + trep) / taurst
The best case scenario illustrated in Figure 6.4 shows that Dy, is by itself insufficient to
describe the minimum access distances for an open-page system. In thiswork, two different
access distance distances, D, ¢ and D¢, are separately defined for open-page memory
systems to represent the worst case and best case timing between column accesses to
different rows of the same bank, respectively. The variable D, ¢ denotes the minimum

request access distance between the first column access of arow access and the first column
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access to the previous row access of the same bank. The variable D,y s denotes the
minimum request access distance between the last column access to a row and the first
column access to the previous row access of the same bank. In aclose-page memory system,
D¢t IS same as Dy, and D,,.¢ can be simplified as Dy,,. In an open-page memory system,
multiple column access commands can be issued to the same row while that row is active,
and both D¢ and D,,.is are needed to account for the different timing conditions that exist
between different column accesses of different rowsin an open-page memory system.

The total access distance for request j in a close-page memory system isdefined as Dy(j).
Since two sets of request access distances are needed to ensure that minimum row cycle
timings are met in a DRAM memory system, two different total access distances are aso
needed for each request in an open page memory system. The two total access distances are
D¢.(j) and Dy5(j). The total request distances Dy_¢(j) and Dy ¢(j) must be greater than Dy,
and Dy, for every request j that is the first column access of arow accessto agiven bank,
respectively. In cases where ether D, (j) is less than D, or Dy () is less than D,y
additional idling distance must be added. The required idling distance D;_¢(j) is needed to
satisfy the minimum request access distance of Dy, and Dj_¢(j) is needed to satisfy the
minimum request access distance of D, . In a close-page memory system, D () is by
itself sufficient to account for the minimum idling distance needed by request j, and D;(j)
equals Dj_¢(j). In an open-page memory system, D;(j) is equal to the larger value of D_¢(j)
and D;_+(j) for request j that is the first column access of a given row. In the case that agiven
request j is not thefirst column access of agiven row, Dj(j) is zero.

The request access distance statistic is a first order model that examines DRAM

performance characteristics with varying ratios of tgc and device data rate. The use of tgp
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and tgcp in the formal definition introduces additional variables into the first order model.
For the purposes of simplicity, (trc - tgyrst) / 2 Can be used as an approximation for tgp +

trcp- The various request access distance definitions are summarized in table 6.2.

Notation | Description Formula
e Do) DRAM Protocol overhead for request | table 6.1
*qmi Dm Minimum access distance required for each request j (trc - taurst) / taurst
o )| D) Access distance for request j -
§< Di(0) Idling distance needed for request j to satisfy tgc Figure 6.5
g Dy(j) Total access distance for request j -
© Do Minimum distan_ce needed between first column (tre - taure) / teurst
commands of different row accesses
Din-if Between last column and first column of different rows | Dmf= (R * tre) /turst ~=
(tre - taurst) / (2 * taurst)
£ Dr.() Access distance for request j to first column of last row | -
% Dr.(0) Access distance for request j to last column of lastrow | -
q"’>; Dis() Idling distance needed by request j to satisfy trc Figure 6.5
é‘: Dis() Idling distance needed by request j to satisfy trp+ trcp | Figure 6.5
g,_ D(G) gj(iicnéjsgiz]t(a;(r:s V\?Zigssdsby request j that is first column Dy(i) = max (D), i)
D(G) Idling distance needed by request j that is not the first 0
column access of a row access
D) Total access distance for request j to satisfy tgc -
D) Total access distance for request j to satisfy tgp+ trep | -

TABLE 6.2: Request Access Distance Terminologies Defined

The key element in the Request Access Distance statistic for the computation of DRAM
memory system bandwidth efficiency is the set of formulas used to compute the necessary
idling distances for each request in a request stream. The fundamental insight that enables
the creation of the Request Access Distance statistic is that idling distances added for D,(j)
requests previous to request j must be counted toward the total access distance needed by

request j since these previous idling distances increases the effective access distance of
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request j. The formulafor computing the additional idling distances needed by request j for

both open-page and close-page memory systems are illustrated in Figure 6.5.

c -1
S £ . . .
§2 <Di(i) = MAXI Dy (i), Dy = Dy()) + > b
o7 : :
° n=1-D.0)
-1
Dj _¢1(1) = MAXI D), Dy g =| B 1) * > D;(n)
(O] . .
g n=j-(D, _gi)
2 “>’< -1
g.(l)
Dj _11() = MAXID(1). Dy _j¢=| Dy () * > D;(n)
N =J=Dp _y50)

Figure 6.5: Definition of Idling Distances for Request j.

The request access distance analysis computes the idling distances that are needed for
every request in a request stream to satisfy. The sum of the idling distances for the entire
sequence may be used to compute the bandwidth efficiency for a specific system
configuration and a given workload. The addition of theidling distance for request j enables

the total request distances Dy_j+(j) and Dy.¢4(j) to satisfy Dy, and D41, respectively.

6.2.3 Computing tgayw Constraints

In DDR2 and future generations of DRAM devices, operationa restrictions on the
DRAM device are under active consideration by DRAM design engineers to ensure that a
given DRAM device does not exceed the defined limit for instantaneous power draw. The
restriction on peak power draw of DDRx DRAM devices is implemented in terms of the

number of banks that can be activated in a given period of time. Specificaly, the timing
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parameter teayy has been defined as the rolling window of time within which no more than 4
banks can be activated. In a close-page memory system, the rolling four bank activation
window equates to a rolling timing window within which a maximum of 4 column
commands can be issued. In an open-page memory system, the rolling four bank activation
window equates to a rolling timing window within which a maximum of four column
accesses that are the first column accesses of arow access can be issued.

The tpay banking restriction can be incorporated into the Request Access Distance
statistic by limiting the number of column accesses that are the first request accesses for a
row access. The process of incorporating the tgayy banking restriction into the Request
Access Distance statistic begins by computing the number of row activations allowed in a
rolling tgc window. The equivalent number of banks that can be active in a rolling tgc
window is denoted as Ao in this study, and it can be obtained by taking the 4 banks that
may be active in arolling tgayy Window, multiplying by tgc and dividing through by teaw

The formulafor computing A5, IS shown in Figure 6.6.
Re
traw

Maximum Row Activation (per rank, per tgc) : Amax = 4 x

Figure 6.6: Formula for Maximum Number of Bank Activations per tgc window.

The maximum number of row activations per rolling tgc window further constrains the
efficiency of aDRAM memory system in that there can at best be A5 number of column
accesses that are the first column accesses of each respective row activation in any rolling
trc time frame. In case that there are more than A5, number of column accesses that are
the first column accesses of each respective row activation in any rolling tgc time frame,
additional idling distances needs to be added to the idling distance of request j. The
additional idling distances needed to satisfy the tgayy constraint is denoted as Dy 4(1)-
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The computation of D;_4(j) requiresthe definition of anew variable, D;,,(j,m), wherem
istherank id of request j, and D;,(j,m) represents the idling value of request j. The basic idea
of theidling value of agiven request is that in a multi-rank memory system, requests made
to different ranks means that a given rank can idle for that period of time. As a result, a
request j made to rank m means that request j has an idling value of 1 to all ranks other than
rank m, and it has an idling value of O to rank m. Figure 6.7 illustrates the formula for the

computation of additional idling distances required to satisfy the tgayy constraint.

j
Di _xtrall) = MAXIO.D ) = | Ay =17+ Z D;(n) +D;,(N, M)

n :I_] ~(Amax—1)]

D. (J, m) O for request n that is the first column access of a row activation to
v a bank that is in the same rank as request j.

Div(j’ M) = 1 for request n that is not the first column access of a row activation
or if request n is not made to the same rank as request j.

Figure 6.7: Formula for Additional Idling Distance Dj_, (j) for Request j.

Finaly, Figure 6.8 shows the formula for Djqq(), for the total number of idling
distance for request j that is the first column accesses of a row activation. The process of
computing bandwidth efficiency ina DRAM memory system constrained by tgay, isthen as
smpleas replacing D;(j) with D;_qt5(j) in the formulas for computation of additional idling
distancesin Figure 6.5.

I:)i—total(j) = I:)i(j) + I:)i —xtra(j)

Figure 6.8: Definition of Idling Distance Dj_t4(j) for Request j - Constrained by teay,.
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6.2.4 DRAM Memory System Bandwidth Efficiency Computation

Finaly, Figure 6.9 illustrates that the bandwidth utilization efficiency of a DRAM
memory System can be obtained by dividing the number of requestsin the request stream by
the sum of the number of requests in the request stream and the total number of idling
distances needed by the stream to satisfy the DRAM protocol overhead, the row cycle time

congtraints and the tgayy bank activation constraint needed by the requests in the request

stream.
.. r
Efficiency =
r r = number of
requests in
r+ Z Di _iotar(M request stream

n=1

Figure 6.9: Bandwidth Efficiency of Request Stream.

6.2.5 System Configuration

The Request Access Distance methodology can be used to compute the bandwidth
efficiency of agiven memory system. However, the bandwidth efficiency computed with the
Reguest Access Distance mythology is workload specific and sensitive to the organization

of the DRAM memory system. Figure 6.10 shows one system organi zation of a close-page
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Figure 6.10: Request Access Distance in a close-page system with per-bank queues
and round robin bank rotation.
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memory system where the request stream is subjected to an address mapping policy and
trandated into DRAM channel, rank, bank, row and column addresses. The request streamis
then sent to each DRAM bank, and each DRAM bank simply records the number in
between each pair of accessesto that bank.

The request access distance statistic computes the number of idle distances that must be
inserted into a given request stream in order to meet al of the specified constraints.
However, a well designed DRAM memory system can substantialy increase maximum
bandwidth efficiency by re-ordering the request stream to minimize the number of bank
conflicts. In Figure 6.10, requests from the request stream are placed into n separate queues,
one gueue per bank in the memory system. Each queue has the depth of D, and the memory
system rotates through the n banks in around robin fashion. In an idealized memory system
with infinitely deep queues, each queue will have some requests in queue waiting for access
to agiven bank in the memory system. In the idealized case, the request access distance for
all requests will ben - 1, since the distance between accesses to any bank isn - 1. However,
in the case where the depth of the queuesis shalow, or if the bank address distribution of the
access sequence is not sufficiently random, then at a given instance in time some queues
may be empty while other queues arefilled to the maximum depth. In such acase, many idle
scheduling dots may need to be inserted to meet minimum DRAM row cycle time
requirements. Finally, In the extreme case where the depth D of the queue is O, the memory
system does not re-order the request stream, and the memory references are executed in

strict order.
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6.3 Impact of Refresh

The Request Access Distance methodology for the computation of maximum DRAM
memory system bandwidth efficiency described in this chapter have thus far omitted any
mention of the impact of DRAM refresh on the bandwidth efficiency. The reason for the
omission isthat the impact of refresh is somewhat difficult to formalize in the same manner
as the Request Access Distance methodology. In generdl, DRAM refresh commands are
injected into the memory system once for each row in the memory system every 64
milliseconds, and each refresh command refreshes one row in al banks concurrently. The
refresh action takes tgec time, and the overhead of stopping and restarting the DRAM
command pipelineis onerow cycletime.

In a close-page memory system, the impact of refresh is relatively easy to compute. The
impact of refresh commands can be presented as a bandwidth overhead of fixed percentage
value. The percentage value can be computed by multiplying the number of rows per bank
by the sum of tgec and tye, then dividing through by the overall refresh cycle time period,
typically 64 milliseconds.

In an open-page memory system, the impact of refresh can be approximated by the same
method described for the close-page memory system. However, the subtle difference
between the impact of arefresh command in an open-page memory system and the impact
of arefresh command in a close-page memory system is that the refresh command not only
presents itself as a bandwidth overhead, but it also closes al open rowsin all banks. In this
manner, the impact of arefresh command in an open page memory system presents a second
order impact on DRAM memory system performance that is not captured by the simple

overhead computation. However, since the cost of re-opening a row is relatively less than
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the refresh overhead of trec + tre per refresh command, the impact of the second order
effect may be ignored in the overal performance computation. Moreover, in cases where
DRAM memory system performance characteristics are directly compared to each other
using the same set of workloads, the impact of the refresh overhead may be factored out
entirely, since refresh would have identical impact on systems with the same workload and
the same number of rows per bank. As aresult, it is believed that the impact of refresh can
be ignored dtogether in cases where systems of identical configurations are compared
directly to each other, and in cases where absolute values are desired, the impact of refresh
can be factored in by computing the overhead as a fixed percentage, using the formula

describe above.
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6.4 Applied Examples

Two simplified examples are shown in this section to illustrate how the Request Access
Distance analytical framework can be applied to a sample request stream to compute the

maximum bandwidth efficiency for aworkload.

6.4.1 Close-Page System Example

Figure 6.11 shows how maximum bandwidth efficiency can be computed for a request

Bank id’s of accesses Request Stream Dm =7
(round robin re-ordered)
|

(o[ 2][s[5[7]of1]2]3]6]7[7]2[7][0[3[4]6]7[1]3]4]5]6[7[4[7[0[1][3][5]6]

DX()] \-5‘5-\504186-741244185531128877

Di() 3 7 6 1 2 1 133
Dy() 7 8 8 8 71178 7 7 71277188 77 7128877

32requests +3+7+6+1+2+1+1+3+3=59request slots
Bandwidth efficiency = 32 / 59 = 54.2% of peak

Figure 6.11: Efficiency Computation Example: Close-Page D, = 7.

stream in a close-page memory system. For the purpose of simplifying the example, Figure
6.11 assumes an idealized DRAM access protocol where the DRAM protocol overhead is
zero for dl requests, the tgayy bank activation constraint does not apply, and only the row
cycle time determines the bandwidth efficiency of the request stream. In Figure 6.11, the
request stream has been simplified down to the sequence of bank ID’s, The access distances
for each request are then computed from the sequence of bank I1D’s. The exampleillustrated
asFigure 6.11 specifies that aminimum of 8 requests need to be active at any given instance
in time in order to achieve full bandwidth utilization. In terms of access distances, there
must be 7 accesses to different banks in between memory accesses to a given bank. At the

beginning of the sequence in Figure 6.11, two requests are made to bank 0 with only 4 other
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requests to different banks in between them. As a result, an idling distance of 3 must be
added to the access sequence before the second request to bank O can proceed. Two requests
later, the request to bank 2 has an access distance of 5. However, idling distances added to
requests in between accesses to bank 2 also counts toward its effective total access distance.
The result is that the total access distance for the second access to bank 2 is 8, and no
additional idling distances ahead of the access to bank 2 are needed. Finaly, after al idling
distances have been computed, the maximum bandwidth efficiency of the access sequence
can be computed by dividing the total number of requests by the sum of the total number of
requests and all of the idling distances. In the example shown as Figure 6.11, the maximum

sustained bandwidth efficiency is 54.2%.

6.4.2 Open-Page System Example
In this section, an example is used to illustrate the process for obtaining maximum
sustainable bandwidth for different DRAM row cycle times and device data rates in an

open-page memory system. Figure 6.12 shows a request stream that has been simplified
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Bandwidth efficiency = 32 /57 = 56.1% of peak

Figure 6.12: Efficiency Computation Example: open-page, D¢ = 8, D5 = 4.
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down to a sequence of the bank ID’s and row ID’s of the individua requests, and the access
distances are then computed from the sequence of bank ID’s and row ID’s. The example
illustrated as Figure 6.12 specifies that a minimum of 9 requests need to be active at any
given instance in time to achieve full bandwidth utilization, and there must be 8 requests
between row activations as well as 4 requests between bank conflicts. Figure 6.12 shows
that Dj_¢(j) and D;_+(j) are separately computed but the idling distance D;(j) is smply the
maximum of Dj(j)) and Dy (). After dl idling distances have been computed, the
maximum bandwidth efficiency of the request sequence can be computed by dividing the
total number of requests by the sum of the total number of requests and all of the idling
distances. In the example shown as Figure 6.12, the maximum sustained bandwidth

efficiency is56.1%.
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CHAPTER 7 DRAM Memory Sygem
Performance Analyss
Results

7.1 Introduction

In this chapter, the trace based Request Access Distance analytical framework is used to
examine the performance sengtivity of DRAM memory systems to different device and
system organizations, timing parameters, and workloads. To demonstrate the utility and
flexibility of the Request Access Distance analytical framework, systems with differing
organizations and timing parameters are used to study the impact of different row cycle
times, device datarates, data burst lengths, tpayy power constraints, tpog rank-to-rank data
bus switching time, the number of banks and the number of ranks in the memory system.

The Request Access Distance analytical framework formalizes the methodol ogy for the
computation of maximum sustainable DRAM memory system bandwidth, subjected to
different configurations, timing parameters, and address traces. However, the use of the
Reqguest Access Distance analytical framework does not reduce the complexity of anaysis
in that the andytical framework does not reduce the number of independent variables that
impact the performance of a DRAM memory system, it simply identifies them. To reduce
the complexity of the task of anayzing the performance of DRAM memory systems, two
sets of studies are performed with dightly differing system assumptions in this work to
examine varying aspects of DRAM memory system performance sensitivity to different

configurations and timing parameters.
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7.1.1 Workloads

The performance characteristics of DRAM memory systems depend on workload-
specific characteristics of access rates and access patterns. In the Request Access Distance
analytical framework, input traces are driven at saturation rates so that the effects of
processor performance can be factored out from memory system performance. Despite the
fact that the workload traces are driven at saturation rate of the respective memory systems,
the workload-specific request access patterns remain important in the analysis of DRAM
memory system performance. To examine the range of workload-specific variances, alarge
set of application traces are used in this study. From the SPEC CPU 2000 benchmark suite,
address traces from 164.gzip, 176.gcc, 197.parser, 255.vortex, 172.mgrid, 178.galgd,
179.art, 183.equake, and 188.ammp are used. The address traces from the SPEC CPU 2000
benchmark suite were captured through the of the MASE simulation framework with the L2
cache size of the smulated processor set to 256 KB[29]. In addition, processor bus traces
captured from a desktop persona computer system running various benchmarks and
applications such as IMMark 2.0 CPU, IMark 2.0 Complex Mathematics, 3DWinbench CPU,
SETI@Home and Quake3, are added to the mix. The SPEC workload traces and desktop
computer application traces collectively form a rich set of diverse workloads that enable
generdized observations to be made about DRAM memory system performance
characteristics in this study, and detailed information on traces used in this study can be

found in appendix A.
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7.2 Close-page System Performance Analysis

To limit the number of independent variables that affect DRAM memory system
performance to a manageable subset, a single rank memory system that uses a close-page
row buffer management policy is used in the first set of studies to examine the performance
trade-off of a DRAM device with 8 banks versus 16 banks, tgayy, limitations with teayy, Set
equd to tgc and tgc/2, memory controller sophistication in terms of transaction re-ordering

capability, and data burst duration.

7.2.1 System Configuration Assumptions

Figure 7.1 shows the system configuration used in the close-page memory system studly.

Bank 0
oklolelolg
X K|X [X]X R OBSUOOBSUO/ Bank 1 A
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DRAM address mapping ° 1 Rank
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pﬁ;ﬁggl; Close Page Policy***
C(‘:ie th D Read Timing = Write Timing
P No Refresh
1 channel, 1 rank, 8/16 banks No Rank-to-Rank Switch Overhead
16384 rows x 1024 columns No RW or WR Turnaround Overhead

Figure 7.1: Close-page studies system configuration .

Figure 7.1 shows that the analytical framework accepts transaction requests from a trace
input file, maps the request into the memory system, then places the request into one of N
queues in the system. The system is configured with a single channel and a single rank of
memory, with 16384 rows per bank and 1024 columns per row. The number of banks can be
set to 8 or 16 banks depending on the configuration, and there is one queue for each bank in
the memory system. In the analytical framework, one request per queue is selected from the

memory system on a round-robin basis and sent into the Request Access Distance
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computation engine. Finaly, in the analytical framework, each request moves data in the
granularity of a cacheline, and the contiguous movement data for a given request occupies

tgurg duration on the data bus.

Re-Ordering Queue Depth

In this study, the depth of the per-bank request queues used for memory request re-
ordering can be varied depending on configuration, and this depth is used to represent the
level of sophistication of the memory controller. Pending requests are selected from the
requests queues to maximize the temporal distance between any two requests from the same
bank. In the case that the queue depth D is very deep, the round-robin request selection
mechanism will likely have at least one pending entry in each queue each time it goesto the
queue to obtain a request. However, in the case that the queue depth is shallow, the round-
robin request selection mechanism will likely have to skip over many queues that do not
have any pending requests, and idling time may have to be added so that row cycle time
requirements can be met for any two requests to the same bank. In the extreme case where
the queue depth D is zero, transaction requests are sent into the Request Access Distance
computation engine in strict request order.

Finally, the memory request re-ordering performed in the analyticd framework is based
on the address request stream from the captured traces, and this re-ordering may further
violate the naturad memory ordering of a given workload. In this sense, the maximum
achievable bandwidth of a given workload computed by the trace based analytica
framework further deviates from the maximum achievable bandwidth of that specific
workload in areal system. However, the goa of thiswork isto examine the limits of DRAM

memory system configuration and timing parameter variations, and in that context, the

159



specific memory dependencies of a single threaded workload is not a critical consideration.
In particular, future high performance DRAM memory systems are expected to support
multi-threaded and multi-core processors. For these high performance DRAM memory
systems, the higher memory request rate from the multi-threaded and multi-core processors
means that more pending requests would be available in the request queue for re-ordering,
and more requests can be re-ordered for performance. In this sense, the workloads used in
this study represent realistic address request patterns found in various single-threaded
workloads, but the memory dependency assumptions are more applicable to current and
near-future high performance DRAM memory systems that support multi-threaded and

multi-core processors.

DRAM protocol overhead

For the close-page memory system study, a single rank memory system is used along
with a memory controller that performs vari ous degrees of sophisticated memory request re-
ordering. As a result, the read-write turnaround overheads can be minimized and the rank-
to-rank switching overhead does not apply. As part of the effort to limit the number of
independent variables examined in each set of the overall study, the DRAM protocal is

assumed to be ideal and protocol overheads are set to zero for the close-page system study.

7.2.2 Workload Characteristics: 164.gzip

In this work, memory address traces from various workloads are sent through the
Reguest Access Digance analytical framework so that the maximum bandwidth efficiency
of the address request pattern in the trace can be computed, given differing system

configurations and timing parameters. Figure 7.2 shows the bandwidth efficiency of the
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memory system as address trace from 164.gzip is used to drive the anadytical framework.
Essentialy, the address trace from 164.9zip is subjected to varying conditions of the re-
ordering queue depth, number of banks in the memory system, tgay constraints and
trc/teurg étios. For each set of condition, asustained bandwidth efficiency is computed and

plotted in Figure 7.2. Figure 7.2 shows that in cases where the address trace is not re-
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Figure 7.2: 164.gzip bandwidth efficiency graph.
ordered, the memory system is limited by the row cycle time and differences in the number
of banks or tgayy does not matter. However, when the 164.gzip address trace is subjected to
some amount of re-ordering, the efficiency of the DRAM memory system increases
dramatically. As the efficiency increases, the performance of the DRAM memory system
becomes more sensitive to the number of available banks and to the bandwidth limitations

imposed by teay at higher tgo/tg < rétios.

Maximum Sustainable Bandwidth of 164.gzip Address Trace in Close-page Systems
Figure 7.2 shows the efficiency of the DRAM memory system subjected to the memory
request pattern of 164.gzip. However, the efficiency graph does not provide certain insight

into workload performance characteristics that can be observed when the data is plotted as a
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function of sustained bandwidth. Figure 7.3 shows the same dataset as Figure 7.2, but in
place of the abstract trc/tg s ratio, Figure 7.3 assumes a specific system configuration
where trc is 60ns, the data burst duration is 8 begts of data, and the width of the databusis
8 bytes. Given specific DRAM device datarate and system configuration, the efficiency
graph shown in Figure 7.2 can be converted to a graph that shows the maximum sustainable

bandwidth of a given memory request sequence. In the bandwidth view, Figure 7.3 shows

9 Same graph as
— above, but applied
.. g to specific system
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Figure 7.3: 164.gzip maximum sustainable bandwidth: close-page.

Maximum Sustainable Bandwidth: GB/s

that without transaction re-ordering, the maximum sustainable bandwidth of the DRAM
memory system increases very sowly with respect to increasing datarate of the memory
system. Figure 7.3 shows that for tpay = tre, the maximum number of open banks per
rolling tgc window is4, and DRAM memory system can only sustain approximately 4 GB/s
of bandwidth for the 164.gzip address trace. However, in the case that tgay = trc/2, the
maximum number of open banksis 8, and the sustained bandwidth for 164.gzip continuesto
increase until the datarate of the DRAM memory system reaches 1.07 Gbps. At the datarate
of 1.07 Gbps, the ratio of trc/tg,rst €quals the maximum number of concurrently open

banks, and the maximum sustained bandwidth reaches a plateau for al test configuration.

162



Finaly, Figures 7.2 and 7.3 both show the performance benefit from having 16 banks
compared to 8 banks in the DRAM memory system. Both Figures 7.2 and 7.3 show that at
low datarates, the performance benefit of having 16 banksisrelatively small. However, the

performance benefit of 16 banksincreases with increasing tyc/tg < rétio.

7.2.3 tgaw Limitations in Close-page Systems: All Workloads

In a close page memory system with a single rank of memory devices, tgayy limits the
number of banksthat can be utilized in any rolling tgc timeframe. The net effect isthat teayy
limits available bank bandwidth, and that impact is particularly damaging for close-page

memory systems operating with high ratios of tgc/tg, & Figure 7.4 summarizes the impact
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Figure 7.4: tgay impact: comparing tpayw = tre VErsus tpaw = tre/2.

of tgayy DY showing the respective average curves of the maximum sustainable bandwidth
for al address traces used in this study. The average curve of the respective maximum
sustainable bandwidth for all address traces with tgay, Set equal to tre is shown as a solid
black line, and the average curve for the case where tgay Set equal to haf of tge isshown as

a dashed red line. Figure 7.4 shows that larger tgayy limits DRAM bandwidth at all
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illustrated datarates, but the impact of tgay Can be deferred until higher datarates by
reducing tgayw. Figure 7.4 can thus be use as an illustration for memory system design
engineers to seek design alternatives to a close-page DRAM memory system with only one

rank of DRAM devices and high tgayy value.

7.2.4 Bank Comparison: 8 versus 16: All Workloads

In dl DRAM devices, a bank of DRAM arrays cannot be accessed while it is in the
process of being opened with a row activation command or closed with a precharge
command. In this sense, the row activation and precharge actions on a DRAM bank
represent the access overhead to that bank. This access overhead is particularly important in
a close-page memory system, since each column access incurs the access cost of the row
cycle time for a single bank. In modern DRAM devices, DRAM arrays are organized into
multiple banks to hide the row access overhead, and accesses to different banks can be
pipelined as long as there are enough banksin aDRAM system to service pending requests
to those banks.

Figure 7.5 shows the mean bandwidth improvement curves for the 8 banks to 16 banks
comparison for all address traces examined in this study with different system
configurations. Figure 7.5 illustrates two intriguing points about the importance of having
more banks in a high performance DRAM memory system. One intriguing point illustrated
by Figure 7.5 is that a system that supports moderate amounts of re-ordering shows a higher
degree of bandwidth improvement when compared to a system that supports a high degree
of memory transaction re-ordering in the range of relaively lower trc/tg, g ratios. The
respective bandwidth improvement curves crossover and systems that support a high degree

of memory transaction re-ordering performs better when the tg/tg ¢ rétio increases. One
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Figure 7.5: Mean and median bandwidth improvements: 8 banks versus 16 banks.

explanation of the crossover phenomenon is that a sophisticated memory system with deep
re-ordering queues can readily extract available DRAM bandwidth, and as long as the
trc/teurg rétio is far less than the number of available banks, such a system can readily
extract near maximum bandwidth from a given DRAM memory system. In this case, the
highly sophisticated memory system would not benefit much from additional banks as long
as theratio of trc/tg, g IS relatively low. In contrast, a memory system that performs only
moderate amounts of transaction re-ordering can readily make use of the additional banks at
lower trc/tg g ratios, thus showing areatively higher degree of bandwidth improvement as
compared to the highly sophisticated memory system. However, as the tpc/tg g rétio
continues to increase, the pressure to fully utilize available DRAM banks dso increases. The
result is that at higher trc/tg 4 ratios, a highly intelligent memory system can benefit the
most from having additional banks.

A second intriguing point illustrated by Figure 7.5 isthat aslong asthe DRAM deviceis

not constrained by teayy, the benefit in the maximum sustainable bandwidth of having 16
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banks over 8 banks continues to increase with increasing tg/tg 4 rétio. In modern DRAM
devices with relatively constant tge values and higher data rates in successive generations of
DRAM devices, the point illustrated by Figure 7.5 shows that as data rates increase, the
value of having more banks also increases. However, Figure 7.5 aso illustrates that the
benefit of having more banks no longer increases with increasing trc/tg g rétio once teayy
limitskick in to limit bank bandwidth.

Finaly, Figure 7.5 shows that on average, maximum sustainable bandwidth for all
workloads increases by 2 to 6% in memory systems that do not re-order memory
transactions, and having 16 banks only minimally improves the sustainable bandwidth
characteristics for these systems. However, in memory systems that do re-order memory
transactions, having 16 banksimproves the average bandwidth from 4% to 18%, depending

on specific system configurations and trc/tg g ratios.

7.2.5 Burst Length Impact: SPEC Workloads

Aside from the examination of bank count and the impact of tgy, the Regquest Access
Distance analytical framework can adso be used to investigate interesting system
architecture issues. One issue that can be examined with the Request Access Distance
analytical framework is the cacheline size issue. In recent years, one strategy that has been
deployed by DRAM device design engineers to increase DRAM device datarate without
fundamentally changing DRAM circuits is to increase the interna prefetch bit width of the
DRAM device for each column access command. That is, in each successive generation of
DRAM devices, more and more bits are fetched in pardlel internally in the DRAM device.

The wide paradlel word is moved to the interface of the DRAM device and sent across a
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narrow data bus at higher datarates. The internad N-bit fetch mechanism is commonly
referred to as the prefetch-n architecture, where N bits of data are fetched internaly per bit
of external DRAM device data bus width. In these cases, the data busis designed to operate
at N times the datarate of the DRAM core. For SDRAM devices, the prefetch widthis 1. For
DDR SDRAM devices, the prefetch width is 2. For DDR2 SDRAM devices, the prefetch
width is4. For DDR3 SDRAM devices, the prefetch width will be increased to 8.

The prefetch width of DRAM devices impacts system architecture in that it defines the
minimum data burst length in the DRAM memory system. The specification of a minimum
burst length in turn means that a minimum amount of data must be transferred for each
request. In the case that the length of the cacheline is smaller than the minimum amount of
data moved per column access command, the system design engineer may have no choice
but to increase the length of the cacheline. Fortunately, in the case where a given workload
makes use of a high percentage of data in each accessed cacheline, the longer cacheline and
longer data bursts from the DRAM memory system is more efficient in transporting data in
the memory system. However, in the case where a given workload only uses asmall fraction
of each accessed cacheline, the transfer of longer cachelines becomes counter productive
and detrimental to the overall performance characteristic of the memory system.
Unfortunately, the complexity of the picture in regards to the burst length issue increases as
the ratio of trc/tgrst Changes, and teayy limits the number of row activations per unit time.
That is, astheratio of tg/tg g INCreases, the cost associated with moving asingle cacheline
increases dramaticaly. In this case, the transport of long cachelines becomes more

economical, particularly in a close-page system.
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Figure 7.6: Ratio of request throughput: burst of four versus burst of eight.

Figure 7.6 shows the ratio of bandwidth throughput for two sets of address traces from
nine different workloads from the SPEC CPU 2000 benchmark suite. Thefirst set of address
traces were captured with the cacheline size set to 128 bytes. The second set of address
traces were captured with the same set of workloads and the cacheline size set to 64 bytes.

In this study, the set of address traces captured with the cacheline size set to 128 bytesis
coupled with a DRAM memory system with a 16 byte wide data bus that transfers data in
bursts of eight beats, and the set of address traces captured with the cacheline size set to 64
bytes is coupled with the same DRAM memory system that provides data in bursts of four
beats. Then, the two sets of address traces are subjected to the Request Access Distance
bandwidth efficiency analysis. The respective bandwidth efficiencies are then converted into
runtimes by multiplying through the computed efficiency against the number of requestsin
each trace. The ratios of the runtimes are then compares to each other in Figure 7.6. Figure
7.6 ams to illugrate the trade-off points between systems with different cacheline sizes

given different tro/tg g rétios and tgayy constraints of in a close-page memory system.
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In Figure 7.6, the request throughput ratio of one means that the workload performs
equaly well with a cacheline length of 128 bytes as it does with a cacheline length of 64
bytes. In the case that the request throughput ratio is greater than one, the system with the 64
byte cacheline performed better. Figure 7.6 shows that if the DRAM device is not
constrained by tpay, then a processor with 64 byte cachelines and coupled to a DRAM
memory system with minimum burst duration of four beats of data has equal performanceto
the processor with 128 byte cachelines and coupled to a DRAM memory system with
minimum burst duration of eight beats of data in five out of nine SPEC workloads.
Specifically, 164.gzip, 172.mgrid, 178.galgel, 179.art, and 183.equake, collectively labelled
as ‘al others’ in Figure 7.6, show no performance advantage from shorter cachelines and
shorter DRAM transfers. In contrast, Figure 7.6 shows that the address trace from
181.ammp performed much better with shorter cachelines due to the fact that with longer
cachelines, fewer setsof cachelines are available to the gpplication, and 181.ammp with 128
byte cacheline thrashed the small 256 KB L2 cache. In this scenario, the memory system
with 64 byte cachelines is unquestionably better. In contrast, address traces from 176,gcc,
197.parser and 255.vortex also show significant performance advantage for the system with
shorter cachelines and shorter DRAM transfers.

Finaly, for the close-page memory system with 64 byte cachelines and 4-beat DRAM
data burst, tpayy, limitations begin to constrain the top end bandwidth available in the DRAM
memory system. As a result, tgayy, limitations unambiguoudy swing the performance
advantage to systems with longer cachelines and longer DRAM data transfers as the data

rate of the DRAM memory system increases.
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7.2.6 Queue Depth Analysis

Modern high performance DRAM memory systems utilize a range of techniques for
performance optimization. In this study of a close-page memory system, a unique gueuing
structure was used to facilitate the implementation of a round-robin request re-ordering
mechanism and extract parallelism from available DRAM banks. The intent of the re-
ordering mechanism and the construction of the queuing structure in this study is not to
examine the benefit of the specific re-ordering mechanism described. Rather, the intent of
the re-ordering mechanism is to provide a basis for comparing the performance of DRAM
memory systems with differing levels of sophistication in the memory controller.

Figure 7.7 summari zes the performance characteristics of all workloads examinedinthis
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study when subjected to differing re-ordering assumptions. The average curve of all
workloads subjected to a DRAM memory system that does not re-order memory requests
are set to black in color, and the average curve of workloads subjected to a DRAM memory

system that aggressively re-orders memory transactions are set to red in color.
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Figure 7.7 illustrates that a close-page DRAM memory system that does not re-order
memory requestsis limited by tgc row cycle times. In such a case, the performance of the
DRAM memory system increases only minutely with increasing datarate. Figure 7.7 also
illustrates the point that with aggressive re-ordering, the tg row cycle time constraint can be
alleviated, and such a DRAM memory system can sustain much higher DRAM bandwidth
as a DRAM memory system that does not re-order memory transactions. Finally, as the
datarate of the DRAM device climbs, tga,y, begins to constrain available bandwidth, and
once tgayy limitation kicks in, no further bandwidth improvement can be observed with

increasing datarate.
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7.3 Open-page System Performance Analysis

In this section, a study that compares dightly different sets of system configuration and
timing parameters than the close-page memory system study is used to examine their
respective impact on an open-page memory system. Specifically, the performance trade-off
of a DRAM device with 8 banks versus 16 banks, a system configured with 1 rank or two
ranks of DRAM devices, tpay limitations with tpay, Set equal to tpe and tg/2, and different

rank-to-rank switching time overheads are compared in this study.

7.3.1 System Configuration Assumptions

Figure 7.8 shows the system configuration used in the open-page memory system studly.
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Figure 7.8: Open-page studies system configuration .

Figure 7.8 shows that the analytical framework accepts transaction requests from a trace
input file, maps the request into the memory system, then sends the request to the Request
Access Distance computation engine in strict ordering. The system is configured with a
single channel and a 1 or 2 ranks of memory, with 16384 rows per bank and 1024 columns

per row. The number of banks can be set to 8 or 16 depending on the configuration.
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DRAM protocol overhead

For the open-page memory system study, a one rank memory system is compared to a
two rank memory system. Also, the memory controller is assumed to perform no transaction
request re-ordering. As aresult, the rank-to-rank switching overhead may be significant, and
read-write turnaround overheads may also impact the maximum sustainable bandwidth to a
non-trivial degree. As a result, the open-page memory systems study is designed to fully
accounts for the effects of the DRAM protocol, and the rank-to-rank turn around time, tpgs,
can be varied from 0 to 3 clock cycles (0~6 beats). The other timing parameters used, but not
varied independently in this study are: toyp, Set to 3 clock cycles, toyp, set to 1 clock cycle,
tyr, Set to 4 clock cycles, tg,«, Set to 4 clock cycles, and tcas, Set to 4 clock cycles. Finally,
the performance impact of the refresh overhead, although non-trivial, is also ignored in the
open-page memory systems study due to the belief that the effects of effect can be factored
out in the comparison of two system configurations driven with the same workload, with the

same refresh cycle times and the same number of rows per bank to be refreshed.

7.3.2 Address Mapping

In the open-page study, the address mapping scheme is designed so that consecutive
cacheline requests are directed to the same row of the same bank, and the rank 1D is mapped
immediately above the range of the bank ID to take advantage of parallelism between

different ranks. Figure 7.9 shows the address mapping scheme used in the open-page study.

MSB

Physical Address Space Lse

—
[ | [ |
N W WA

Row ID RankID BankID Column ID
Figure 7.9: Open-page address mapping scheme.
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7.3.3 Average of All Workloads

Figure 7.10 shows the maximum sustainable bandwidth averaged across all workloads used in
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Figure 7.10: Maximum bandwidth averages: all workloads.

the study. Figure 7.10 compares 4 different system configurations. a 1 rank 8 bank (1R8B) memory
system, a1 rank 16 bank (1R16B) memory system. a2 rank 8 bank (2R8B) memory system, and a2
rank 16 bank memory system. The system configuration is varied with the timing parameter tgayy Set
equal to tpc and tre/2, and thog varied between O clock cycles and 3 clock cycles.

Figure 7.10 shows that for the open-page memory system, the high-degree of access locality
provided by the single threaded workloads enable it to achieve high bandwidth efficiency without the

benefit of sophisticated transaction request re-ordering mechanism.
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Figure 7.10 aso shows the following characteristics for the sustainable bandwidth graph of the

average of al workloads.

L]

The address mapping scheme effectively utilizes parallelism afforded by the multiple ranks,
and the performance of a2R8B memory system isequal to that of a 1IR16B memory system.
The bandwidth degradation suffered by the 2R8B memory system compared to the 1R16B
memory system is relatively small, even with the rank-to-rank switching overhead of tpgg
set to 3 clock cycles (6 beats). The reason for this minimal impact is that the access locality
of the single-threaded workloads tended to keep accesses to within a given rank, and rank-
to-rank switching time penalties are relatively minor or largely hidden by row-cycle time
impacts.

Interestingly, the difference of tpog set to 3 clock cycles also impacted the sustainable
bandwidth of single-rank memory systems due to the fact that tpog impacts read-write
turnaround times.

The four bank activation window constraint, tgay, negatively impacts the sustainable
bandwidth characteristic of a 2 rank memory system just as it does for a 1 rank memory
system. This surprising result can be explained with the observation that the address
mapping scheme, optimized to obtain bank parallelism for the open-page row buffer
management policy, tended to direct accesses to the same bank and the same rank. The result
isthat bank conflicts are aso directed onto the same rank, and multiple row cycles tended to
congregate in a given rank of memory, rather than distributed across two different ranks of
memory.

The impact of tpqg is relatively constant across different datarates for systems that are not
impacted by teay. A close examination of the bandwidth curves for the 2R16B system
revealsthat in systemsimpacted by trayy limitations, the impact of tpog is mitigated to some
extent. That is, idle cycles inserted into the memory system due to rank-to-rank switching
times also contributes to the idle time needed by the DRAM device to recover between
consecutive row-accesses. In that sense, the same idle cycles can be used for multiple

purposes, and the impact of these respective constraints are not additive.
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7.3.4 Workload Characteristics: 164.gzip

Figure 7.11 shows the maximum sustainable bandwidth characteristic of 164.9zip in open-page
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Figure 7.11: 164.gzip maximum sustainable bandwidth: open-page.

memory systems. Figure 7.11 shows that 164.9zip is an outlier in the sense that the workload has
high degree of accesslocality, and most request are kept within the same rank of memory systems. In
the case that DRAM accesses are made to a different rank, a bank conflict also follows. As aresullt,
theimpact of tpggis not readily observablein any system configuration, and a 2 rank, 8 bank system
configuration performance identically to a 1R16B memory system. Also, the number bank conflicts
are relatively few and the impact of tga, iS minimal and not observable until datarates reach
significantly above 1 Gbps. Finaly, the maximum sustainable bandwidth for 164.gzip scales nicely
with the total number of banks in the memory system, and the bandwidth advantage of a 2R16B
system over that of a1 rank 16 bank system is nearly as great as the bandwidth advantage of the

1R16B system over that of a 1R8B system.
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7.3.5 Workload Characteristics: 255.vortex

Figure 7.12 shows the maximum sustainable bandwidth characteristic of 255.vortex in open-

9 have
significant bandwidth
2 ranks of 8 banks perform advantage over all others.
8 - worse than 1 rank 16 banks
if tpgs = 3 clocks (6 beats).

~
i

tpgs Minutely impacts
performance even with
only 1 rank of memory
due to R/W turnarounds

(]
P

Performance gap between

1 rank of 16 banks and

2 ranks of 8 banks closes
~with higher data rates.

For systems limited by

teaws: 9ap closes faster

i
‘\\

|

\
£

N

2 ranks of 8 banks with

Maximum Sustainable Bandwidth: GB/s

3 - 2 ranks of 8 banks perform separate tgayy limits on
same as 1 rank 16 banks if ~ each rank does not alleviate
— ) ) traw = trc/2 & tpos = 0. traw impact much.
| system configuration t
2 traw DoS
— W Filled - teay =tref2 ooy SOlidline
1- A 1 rank 16 banks 0 Outline _F/:W _th O cycles
O 2ranks 8 banks FAW = 'RC = = Dashes
] 0O 1 rank 8 banks 3 cycles (6 beats)
0 I i I i I i I i I i I i I

533.33 666.66 800 933.33 1066.7 1200 1333.3
Datarate - Mbits/sec

trc = 60ns, burst of eight, 8B wide channel
Figure 7.12: 255.vortex maximum sustainable bandwidth: open-page.

page memory systems. Figure 7.12 shows that similar to 164.gzip, 255.vortex is an outlier from the
set of average curves for al workloads shown in Figure 7.10. However, Figure 7.12 shows that in
contrast to 164.gzip, 255.vortex is an outlier that is not only sensitive to the system configuration in
terms of the number of ranks and banks, but it is aso extremely sensitive to the impacts of tga, and
tpos. Figure 7.12 also shows that 255.vortex has a relatively lower degree of access locality, and
fewer column accesses are made to the same row than other workloads, resulting in a relatively
higher rate of bank conflicts. The bank conflicts also tended to be clustered to the same rank of
DRAM devices, even in 2 rank system configurations. The result is that the tgay bank activation
congtraint greatly impacted the maximum bandwidth of the DRAM memory system in al system

configurations.
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To summarize, Figure 7.12 shows the following characteristics for the sustainable bandwidth
characteristics of 255.vortex.

+ 255.vortex is greatly impacted by the rank-to-rank switching overhead, tpgg, in system
configurations with 2 ranks of memory. The overhead is somewhat alleviated at higher data
rates, as other overheads become more significant. At higher datarates, the bandwidth
impact of tpog remains, but the effects become less discernible as an independent source of
hindrance to data transport in a DRAM memory system.

* The rank-to-rank switching overhead, tpgs, also impacts the maximum sustainable
bandwidth characteristic of single rank DRAM memory systems due to its impact on the
read-write turnaround time.

» Like 164.gzip, 255.vortex aso benefits greatly from a system configuration with 2 ranks of
devices, each with 16 banksinternally.

* Unlike 164.9zip, 255.vortex is extremely sensitive to tgayy, and the two rank memory system
organization only minimally alleviate the impact of tgay. Figure 7.12 shows that at high
datarates, a tpayy limited 2R8B memory system does achieve higher bandwidth utilization
compared to a similar tgyy limited 1R16B memory system despite the impact of a 3 cycle
tpos rank-to-rank switching overhead.

* Finally, the impact of tgay 0n 255.vortex is reminiscent to that of all benchmarksin a close-
page memory system where the simulation assumption of tgay = trc/2 completely limits
sustai nable bandwidth for all system configurations beyond a certain datarate. In this case,
all tpaw limited memory systems reach a plateau in terms of the maximum sustainable
bandwidth at roughly 800 Mbps. At datarates higher than 800 Mbps, no further
improvements in maximum sustainable bandwidth can be observed for 255.vortex in al

teaw limited memory systems.
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7.3.6 tgay Limitations in Open-page System: All Workloads

Figure 7.4 shows tha tgayy is particularly detrimental to the sustainable bandwidth

characteristic for close-page memory systems operating with high ratios of tgc/tg g Figure
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Figure 7.13: Comparing tpaw = trc/2 versus tgaw = tge in open-page system.

7.13 shows that tes,y can sSimilarly impact an open-page memory system, although to a
lesser degree. Figure 7.13 shows the impact of tgay in al rank 16 bank memory system in
terms of the percentage of bandwidth differential between the case where tgayy = trc and the
case where tpay = tre/2. The bandwidth advantage curves for different workloads used in
the smulation are drawn separate lines in Figure 7.13, illustrating the wide variance in
workload sensitivity to the limitation presented by a restrictive tgay, parameter. One
workload worthy of note is the previously examined 255.vortex, where bandwidth impact
for the case where tpay = tre Can impact bandwidth by upwards of 40~50%. However, on
average, a workload running on a memory system where teayy, = tre suffers a bandwidth
loss on the order of 0~12% compared to the same system with a more restrictive tgayy, vaue

where tFAW = tRclz.
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7.3.7 Configuration Comparison: 1R8B vs. 2R8B vs. 1R16B vs. 2R16B

Figure 7.14 shows three sets of cross comparisons for the sustainable bandwidth characteristics
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Figure 7.14: All workloads mean sustainable bandwidth: cross comparisons.

of four different system configurations: 1R16B versus 1R8B, 2R8B versus 1R8B, and 2R16B versus

2R8B. Figure 7.14 shows that the bandwidth advantage of a 2R8B memory system over that of a

1R8B memory system is roughly comparable as the bandwidth advantage of a 1R16B memory

system over that of a 1R8B memory system. Figure 7.14 also illustrates the point that in case of a

memory system configuration with relatively lower datarates and high rank-to-rank switching time

penalty, the 1R16B memory system has some advantage over that of a 2R8B memory system.

However, as data rate incresses, the impact of tgs,y becomes more important. In such a case, the

2R8B configuration begins to outperform the 1R16B configuration, albeit minutdy. Finaly, the

bandwidth advantage of a 2R16B memory system over that of a 1R16B memory system is roughly

half of the bandwidth advantage presented by the 1R16B memory system over that of the 1R8B

memory system.

180



Mean Bandwidth Improvements: Open-page and Close-page.

Figure 7.15 shows the mean bandwidth improvement curves for the 1R16B to 1R8B comparison
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Figure 7.15: Mean bandwidth improvements: close-page and open-page.

for the open-page memory system and the close-page memory system with per-bank re-ordering
queue depth of 4. Figure 7.15 shows that despite the differences in the row buffer management
policy and the differences in the re-ordering mechanism, the bandwidth advantage of a 1R16B
memory system over that of a 1R8B memory system correlates nicely between the open-page
memory system and the close-page memory system. In both cases, the bandwidth advantage of
having more banks in the DRAM device scales at roughly the same rate with respect to increasing
datarate and constant row cycle time. In both memory systems, the bandwidth advantage of the
1R16B memory system over that of the 1R8B memory system reaches approximately 18% at 1.067

Ghbps.
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7.4 DRAM Performance Analysis Summary

An extensive study of DRAM memory system performance characteristicsis performed

in this chapter. As examined in this work, the performance of DRAM memory systems

depends on workload-specific characteristics. However, some observations about the

performance of DRAM memory systems can be madein general:

The benefit of having a 16 bank device over an 8 bank device in a one rank memory system
configuration increases with datarate. The performance benefit increases to approximately
18% at 1 Gbps for both open-page as well as close-page memory systems. While some
workloads may only see minimal benefits, others will benefit greatly. Embedded systems
that are limited in the number of workloads should examine the bank count issue carefully.
Single threaded workloads have high degrees of access locality, and sustainable bandwidth
characteristics of an open-page memory system for a single threaded workload is similar to
that of a close-page memory system that performs relatively sophisticated transaction re-
ordering.

The increase in DRAM internal bit-prefetch depth means a loss of randomness in memory
access and an increase in minimum burst length for each access. The increase in minimum
burst length may dictate the design of longer cachelines in some systems, depending on
system configuration. For some embedded processors with relatively small cache sizes, the
increase in data burst length may have a significant performance impact, particularly if the
application does not use the additional data moved with longer burst lengths, and the longer
burst lengths lead to cache thrashing.

The tpay activation window constraint will greatly limit close-page memory systems
without sophisticated re-ordering mechanisms. Theimpact of tgay iSrelatively lessin open-
page memory systems, but some workloads, such as 255.vortex, exhibit relatively less
spatial locality, and their performance characteristics are similar to that for all workloads in
close-page memory systems. In this study, even atwo-rank memory system did not aleviate
the impact of tgay, on the memory system. Consequently, a DRAM scheduling agorithm
that takes the impact of tgy,y into consideration is needed for the next generation DRAM

controller.
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CHAPTER 8 Power-Congrained DDRXx
Scheduling Algorithm

8.1 Introduction

The primary goa in the design of high performance memory systems is to obtain a
design that can obtain maximum bandwidth with low regquest access latencies. However,
constraints such as data bus synchronization overhead in DDRx* SDRAM memory systems
and mechanisms that limit peak power in DDR2 and DDR3 memory systems will
significantly impact sustainable bandwidth in high performance DDRx SDRAM memory
systems. Moreover, while DRAM device datarate increases with each new generation of
DDRx SDRAM devices at the rate of 100% every three years, DRAM row cycle times are
only decreasing at arate of 7% per year[22]. Collectively, these trends increase the difficulty
of achieving maximum sustainable bandwidth from each successive generation of higher
datarate DDRx SDRAM devices by increasing the ratio of DRAM row cycle time to data
transport time. Previous studies have recognized and examined the importance of DRAM
access scheduling but do not address the issue of data bus synchronization and power
limiting constraints in DDRx SDRAM memory systems34,37,42,43,48]. Recent work by
Rixner examines the impact of data bus synchronization overhead and row-to-row activation
time, but does not address the four-bank-activation window limitation of tga, nor specific
algorithms to deal with the conflicting requirements of these different overheads.[46] To

design a high performance DDRx SDRAM memory controller, the issue of memory access

1. DDRx denotesDDR, DDR2, DDR3 and future DDR SDRAM variant memory systems.
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scheduling is re-visited in this chapter to address the constraints imposed on DDR2 and
DDR3 SDRAM memory systems by the data bus synchronization overhead of tpgg and
peak power limiting timing parameters tgay and tgrrp. 1N this work, we propose a memory
transaction and DRAM command scheduling algorithm that enables a two rank DDRx
SDRAM memory system to achieve optimal bandwidth utilization while fully respecting the
timing constraints imposed on the DDRx SDRAM memory system by teaw, trrp and tpos:
The proposed DRAM transaction and command ordering algorithm selects pending memory
transactions based on DRAM bank and rank addresses, then sequences the DRAM row
activation and column access commands in a specific ordering to minimize the bandwidth
impact imposed on the DRAM memory system.

In a 1 Ghit DDR3 SDRAM memory system examined in this study, the proposed
DRAM transaction and command ordering algorithm increases the maximum sustainable
bandwidth by 41% above a moderately intelligent memory system that implements around
robin bank rotation scheduling algorithm. Simulations show that the aggressve DRAM
transaction and command ordering algorithm increases the performance of bandwidth
intensive workloads by roughly 40% when compared against a round-robin bank-rotation
scheduling agorithm that does not account for the bandwidth impact of tpaw, trrp and
tpos: In this chapter, the proposed DRAM transaction and command scheduling agorithm
is described, and the maximum sustainable bandwidth of the proposed agorithm is
illustrated. The simulation framework and the workloads used in this study as well as
implementation requirements that enable the unique rank hopping scheduling algorithm is
also described in detail. Finaly, the results and analysis and impact of the proposed

scheduling algorithm on scaling trends is discussed in the concluding section.
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8.2 Background Information

8.2.1 Row Buffer Management Policy

Previous trace based studies have shown that single threaded-workloads benefit well
from a open-page row buffer management policy and that tgay, impacts are relatively minor
compared to that of aclose-page memory system. However, the impact of tgay growsworse
with relatively constant row cycle times and increasing datarates in both open-page and
close-page systems and tgay grestly limits the performance of close-page memory systems.
In this study, the goal is to examine a scheduling algorithm that facilitates the extraction of
maximum bandwidth in tgs,, limited, close-page memory systems. The rationale for the
focus on close-page memory systems in this work is that the impact of tgayy, 0n close-page
memory systems isimmediate and extreme. As aresult, the scheduling algorithm examined
inthiswork is specifically targeted for close-page memory systemsto alleviate the impact of
the tpayy bank activation window in DDRx SDRAM memory systems. The extension of the

algorithm and study to the less-affected open-page memory systems is deferred to a future

study.
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8.2.2 Timing Parameters
The timing parameters used in this part of the study and the projected values for a 1

Gbps (500 Mhz) DDR3 SDRAM memory system are summarized in table 8.11.

Parameter Description Value
t Data Burst duration. Time period that data burst occupies on the data bus. Typically 4 or 8 8ns
Burst beats of data. In DDR SDRAM, 4 beats of data occupies 2 full cycles. Also known as tg, .
t Column Access Strobe latency. Time interval between column access command and data 10 ns
CAS return by DRAM device(s). Also known as tg; .
t Command transport duration. Time period that a command occupies on the command bus 2ns
CMD as itis transported from the DRAM controller to the DRAM devices.
t Column Write Delay. Time interval between issuance of column write command and 8ns
CwD placement of data on data bus by the DRAM controller.
t Data Strobe turnaround. Used in DDR and DDR2 SDRAM memory systems. Not used in 4ns
DQs SDRAM or Direct RDRAM memory systems. 1 full cycle in DDR SDRAM systems.
Four bank Activation Window. A rolling time frame in which a maximum of four bank
traw L L h 48 ns
activation may be engaged. Limits peak current profile.
t Row Access Strobe. Time interval between row access command and data restoration in 40 ns
RAS DRAM array. After tgas, DRAM bank could be precharged.
Row Cycle. Time interval between accesses to different rows in same bank
tre _ 50 ns
fre = lras * 1rp
Row to Column command Delay. Time interval between row access command and data
trep P 10 ns
ready at sense amplifiers.
t Row activation to Row activation Delay. Minimum time interval between two row activation 10 ns
RRD commands to same DRAM device. Limits peak current profile.
t Row Precharge. Time interval that it takes for a DRAM array to be precharged and readied 10 ns
RP for another row access.
b Write Recovery time. Minimum time interval between end of write data burst and the start 10 ns
WR of a precharge command. Allows sense amplifiers to restore data to cells

TABLE 8.1: Summary of timing parameters

8.2.3 Bank Activation Window Limited Memory System

To ensure that a commodity DDRx SDRAM device does not exceed a specified
maximum power draw, timing parameters have been introduced to limit the power
consumption characteristics. In DDRx SDRAM devices, trrp and tgay have been defined
to specify the minimum time periods for row (bank) activations on a given DRAM device.

The acronym RRD stands for row-to-row activation delay, and FAW stands for four bank

1. 1GbpsDDR3 SDRAM devices are currently under development at the time of this study. The timing parameters
illustrated in table 8.1 are projected from 667 Mbps (333 MHz, dual datarate) DDR2 SDRAM devices subjected to
current scaing trends in DRAM devices.
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activation window. The timing parameters tgrp and tgay are specified in terms of

nanoseconds, and Figure 8.1 shows that by specifying tgpp and tgay in terms of
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=N —
cmd YR(S)

internal cmd

data { Jdata

overlapping
current
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Figure 8.1: Maximum of Four Row Activations in any tgay time frame.

nanoseconds instead of the number of cycles, the minimum spacing between row activation
is maintained regardless of operating datarates. on a given DRAM device, row activations
must be scheduled at least trrp apart from each other, and within any tgay time period, at
most four row activations can be engaged?. For close-page memory systems, trrp and teayy
effectively limit the maximum sustainable bandwidth to each rank of memory, irrespective
of the device datarate. In this case, the maximum bandwidth efficiency of asingle rank, tgayy

limited close-page DRAM memory system is (4 * tgyrst) / traw-

8.2.4 Consecutive Commands to Different Ranks: Data Bus Synchronization

In all modern DRAM memory systems, consecutive column-read commands to the
same open row of the same bank or to different open rows of different banks of the same
rank can be issued and pipelined consecutively. However, consecutive column-read

commands to different ranks of memory cannot be pipelined consecutively in DDR, DDR2

1. Precharge commands are not shown in the heavily pipelined timing diagrams of Figures 8.1, 8.2, and 8.3 in order to
simplify the timing diagrams. In these Figures, the precharge command is assumed to be issued separately or viaa
column-read/write and precharge command. Since command bandwidth is not a constraint for the memory system
examined in this study, leaving the illustration of the precharge command out of the timing diagrams does not impact
statements made in the study. The timing and usage of the precharge command is accurately simulated in the
simulation framework.
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and DDR3 SDRAM memory systems due to insertion of idle cycles on the data bus to
ensure proper transfer of control of the source synchronous data strobe signals from one
rank of DRAM devices to another?. In this study, a 2 cycle, 4 ns switching time is specified
for aDDR3 SDRAM memory system that operates at 1 Gbps (500 MHZz).

Figure 8.2 illustrates the timing and command sequence of consecutive close-page read

aock 00000000 OO OO OO C o C OO C OO0 Ot OOt N CCONOCOtCOCO00CO0NEM
cmdBus YR)C)
Internal Cmd

DataBus (data | | Y data
togs (R)  RowActivation CommendtoRank 0 (R)  Row Activation Command to Rank 1

(©  Column Read Commiand to Rank 0 (©)  Column Read Commiand to Rank 1
Figure 8.2: Consecutive Read Command to Alternate Ranks in DDR3 SDRAM (@ 1 Ghps).

cycles to aternate ranks of DRAM devices. In Figure 8.2, each DRAM access is trandated
to a row-activation command and a column-access command. Figure 8.2 illustrates that the
minimum spacing of tpos, the read-write data-strobe re-synchronization time, is needed in
between each pair of column-read commandsto allow one rank of DRAM devicesto release
control of data strobe synchronization signals and for a different rank of DRAM devices to
gain control of them. In this case, each column-read access incurs the rank switching
overhead of tpgs, and the maximum sustainable bandwidth efficiency of a close-page
memory system that alternates memory requests between two different ranksistg st/ (teurgt
+ tpgg)- The compound effect of thos and tpayy is that neither a one-rank-at-artime nor a
simple aternate-rank hopping agorithm can sustain high bandwidth with ideally pipelined
DRAM commands. In these cases, either the peak power limiting timing parameters or the
rank-to-rank switching time will significantly impact maximum sustainable bandwidth in

traditionally designed DDRx SDRAM memory systems.

1. Future high frequency memory systems will be limited to at most two ranks of memory on a multidrop bus.
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8.3 Proposed Rank Hopping Scheduling Algorithm

In the previous section, respective maximum sustainable bandwidth efficiencies for a
single rank DDRx memory system and a dua rank DDRx memory system that alternates
memory accesses between the two ranks of memory were computed as (4 * tg ) / teayy @nd
teust / (tBurst *+ tpgg), respectively. Substituting in the projected values for timing
parameters for the 1 Gbps DDR3 SDRAM device specified in table 8.1, the maximum
bandwidth efficiencies is 66.7% for both casesl. In contrast, the proposed DRAM
transaction and command scheduling algorithm amortizes the rank switching overhead and
increases the maximum bandwidth efficiency for adual rank memory systemto B * tg ;. /
(B * teurst * tpog), Where B denotes the number of banksin a given rank of DRAM devices
in this study?. Substituting in the projected values for timing parameters as specified in table
8.1, the proposed scheduling algorithm increases the maximum sustainable bandwidth
efficiency from 66.7% to 94%. The maximum bandwidth efficiency of 94% represents
increases of 41% of additional bandwidth over the maximum bandwidth efficiencies of the
baseline memory systems.

The key to increasing the bandwidth efficiency of atwo-rank DDRx SDRAM memory
system can be found through a fundamental examination of the causes of the respective
constraints imposed on a DDRx SDRAM memory system by tpgs, trrp @nd tpaw: INahigh
frequency DDRx SDRAM memory system with a single rank of memory, row activations

cannot be scheduled closely to each another, and a dua rank DDRx SDRAM memory

1. Without accounting for refresh. DRAM refresh cycles are assumed as a constant bandwidth overhead for all systems
compared in this study. As a constant overhead in al systems, it can be factored out and safely ignored as a
simplifying assumption.

2. DDR2 deviceslarger than 1 Gbit and all DDR3 devices have 8 banksinternally. B is equal to 8 for these devices. The
bank count may be further increased in future DDRX devices
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system that aternates read cycles between different ranks incurs the rank switching
overhead of tpqg for each access. To minimize the bandwidth impact of tpgs, trrp and
teawy, @ high performance DDRx SDRAM memory system must schedule row accesses to
aternate ranks of memory to avoid the constraints of tgrp and tgay,. [N contrast, to minimize
the bandwidth impact of tpgs, a high performance DDRx SDRAM memory system must
group schedule column-read commands to the same rank of memory for aslong as possible.
The solution to the bandwidth constraintsimposed by tpqs, trrp and teay in ahigh datarate
DDRx SDRAM memory system is then a scheduling algorithm that de-couples row access
commands from column access commands, distributes row-access commands to different
ranks of memory to avoid incurring the constraints of tgrp and tgay, and group schedules
column-read commands to a given rank of memory for as long as possible, thus amortizing
the rank switching overhead of tpgs

In this work, the command-pair rank hopping (CPRH) memory transaction re-ordering
and DRAM command scheduling algorithm is described that alleviates the impacts of teayy
and tpgs simultaneously. The CPRH memory scheduling approach rely on the basic
principle of round robin access rotation through all of the banks in a two rank memory
system. The CPRH algorithm superficially resembles the simpler aternating rank
scheduling illustrated in Figure 8.2 in that each row activation command is followed
immediately by a column access command. However, unlike the alternating rank scheduling
where each column command is a posted CAS command that immediately follows the row
activation command to the same bank, the column command issued in the command pair
algorithm is issued to a different bank of DRAM arrays. In essence, the command pair

algorithm further de-couples the row-activation command and the column-access
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commands to create the regular scheduling pair of row and column commands that mimic
the command pairs found in basic DDRx SDRAM command scheduling agorithms.

The command ordering sequence for the CPRH scheduling agorithm can be constructed
from the basis of around robin rotation through the banks. That is, DRAM column accesses
are scheduled to bank 0, bank 1, bank 2, and rotated through sequentialy to the (B-l)th bank
of a given rank of memory. The agorithm then switches to bank O of the aternate rank of
memory and the process repeats itself in rotating through al banks in a two rank memory
system. Then, working backwards from the respective column access commands, the row
access commands are scheduled to each rank in dternate ordering. Figure 8.3 illustrates the
construction and timing of the CPRH algorithm for a memory system with two ranks of 1
Gbps DDR3 SDRAM devices. Figure 8.3 shows that the CPRH algorithm achieves high
bandwidth in atwo rank DDR3 SDRAM memory system despite the constraints imposed on
the memory system by trrp, traw @d tpos:

The DRAM command sequence for the command pair scheduling agorithm is

summarizes as Figure 8.4. Figure 8.4 shows that while the column access commands are

column access row activations column access Pettern repeats

rank switch ’to aternatg rank rank switch

“V““““ “““V““““
rankIDO 1 00 10 00 10 11 11 01
bank ID 3 7 40 01 52 13 64 25 76 37 40 01 52 13 64 25 76 37

(R) Row Activation to Rank 0 (C) Column Read to Rank 0 (R) Row Activationto Rank 1 (C) Column Reed to Rark 1

Figure 8.4: Row and Column Command Sequences in Rank Hopping Algorithm.

group-scheduled successively to each bank in a given rank of memory, the row-activation
commands are alternately scheduled to different ranks of memory. In the DRAM command
sequence shown in Figures 8.3 and 8.4, the command pair algorithm amortizes the rank

switching cost of tpog and achieves the theoretical maximum sustainable bandwidth.
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Finally, Figures 8.3 and 8.4 also reveal a subtle optimization to the command pair agorithm
inthat row activations need not strictly aternate between different ranks. Figure 8.4 showsa
sequence that begins with a column access rank switch overlapped with two row activations
to the same rank. In this case, the rank-switching overhead of tpgg increases the minimum
scheduling distance between two row activation commands, and the trgp row activation
constraint does not expose additional latency in the scheduling of DRAM commands in the

memory system.

8.4 Experimental Methodology

8.4.1 Simulation Framework

MASE, the micro architecture smulation environment, is part of SimpleScalar version
4.0, and it is used asthe simulation framework for this study[22]. MASE is used asthe basis
of the smulation framework due to the fact that it has been designed to interact with an
event-driven variable-memory-access-latency DRAM memory system. That is, memory
access latencies are not pre-computed at the instance in time when memory requests are
initiated. Rather, the simulator uses the event-driven memory system to simulate each
memory access independently, then returns the status of the memory accessto the functiona
unit that initiated the memory reference when the memory transaction is serviced and
marked as COMPLETED by the DRAM memory system simulator. In this simulation
framework, multiple memory transactions exist in the memory system concurrently, and the

event driven simulation allows the latency of a memory request to be affected by a request
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that happens later in time. This framework allows memory write requests to be deferred in
favor of memory read requests, and it also allows for the implementation of prioritization of
read transactions, instruction fetch transactions and prefetch transactions. The transaction
request ordering mechanism is a necessary element that enables the sudy of memory access
ordering agorithms examined in this study.

In Figure 8.5a, we show that the processor core of MASE consists of three basic blocks,

| masefe| | maseexec| | mase-commit stat_us rid|start_time address access type
\ ' valid | 0 54 OXXXXX| | Fetch
Invalid|-1
valid [-1]| 14 OXXXXX| D Write
vaid [0 36 OXXXXX| D Read
. — —~ Invalid -1| —— —
sim-mase | BIU: bus interface unit vaid 1] — | —— —
Figure 8.5: MASE Simulator Structure. Figure 8.5b: Bus Interface Unit Data Structure

each block representing a different portion of a high performance out of order processor: the
instruction fetch and decode front end, the out-of-order execution engine, and the retirement
unit. These three basic blocks of the processor are then ssimulated by three sets of simulation
code: mase-fe, mase-exec, and mase-commit, respectively. In MASE, each portion of the
processor can independently access memory through the cache hierarchy. In the case of a
memory access that misses the on chip cache hierarchy, a memory transaction request is
created and sent to the bus interface unit (BIU). Mase-fe, the front end of the processor,
would stal completely in the case of an instruction cache miss, but mase-exec could
generate multiple outstanding memory references concurrently and continue simulation of
the out of order execution core aslong asit has instructions not dependent on the datafrom

an outstanding memory request. Similarly, mase-commit, the in-order backend of the

1. Inthisrole, the BIU isfunctionally equivaent to adata structure of miss status handling registers (M SHRs)
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processor could generate memory write requests independently from mase-fe and mase-
exec. In this manner, MA SE provides the framework for aworkload to generate and sustain
multiple, concurrent memory transactions to the memory system.

In MASE, pending memory references are tracked through the BIU that keeps track of
the state of all active memory transactionsin the system. An abbreviated view of the interna
data structure of the BIU is shown as Figure 8.5b. For each transaction, the bus interface
data structure keeps track of the requesting functional unit, the requesting processor (in case
of multiple processors), the request time, the address of the request, and the type of the
request. When a memory transaction is generated, the processor places the request into the
bus interface data structure. The DRAM memory system is assumed to exist in a separate
timing domain but operates concurrently with the processor. The DRAM memory system
simulator then selects transactions from the BIU and simulate the transaction through the
DRAM memory system on a cycle by cycle basis. The DRAM memory system simul ates
the progress of every memory transaction, then updates the status of the memory transaction
request in the BIU as it completes the simulation of the given transaction. In this manner, the
processor smulation is compl etely de-coupled from the DRAM memory system simulation.

The MASE smulation code described here has been enhanced to include a redlistic,
cycle accurate, and user configurable DRAM memory system. The DRAM memory system
smulator simulates the timing of memory transactions subject to the type, speed,
configuration, and the state of the memory system. The DRAM memory system in our

simulation framework consists of abusinterface unit (BIU), one or more transaction-driven
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memory controllers, and one or more command-driven memory systems. In Figure 8.6, we

Sim-mase
Processor
BIU DRAM Memory System
o t _______ M eTnoE ——
| / Controller | DDRx SDRAM
System | transaction |
Controller | queue |
\ Memory
| Controller | DDRx SDRAM
[ et E

Figure 8.6: : Memory System Enhancement to MASE.

illustrate a symbolic representation of the simulation framework in this study. In this
simulation framework, the processor or processors generate memory referencesthat are then
held in the BIU as transactions. The memory system then selects pending memory
transactions for processing based on a transaction ordering policy. Each memory transaction
is then converted to a sequence of DRAM commands and simulated based on the
configuration, state, and timing of the DRAM memory system. The DRAM simulator
models SDRAM, DDR SDRAM DDR2 and DDR3 SDRAM memory systems. In this
simulation framework, al DRAM timing parameters summarized in table 8.1including
tcas tras trp tbos and tpay are accurately simulated according to the DRAM access
protocols specified in respective DRAM device datasheetq38]. Furthermore, the DRAM
timing parameters can be easily adjusted through the use of a configuration file. The same
configuration file dso specifies the column, row, bank, rank and channd configuration of
the memory system that the smulator need to generate the proper DRAM command

sequences and accurately simulates timing of the DRAM commands.
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8.4.2 System Configuration

In this study, processor and memory system configurations are kept as constants. The
only two variables that differentiates between the various systems are the DRAM
transaction ordering policy and the DRAM-command-scheduling agorithm. In all
configurations, the L2 cache size of the processor is configured as 256 KB, and the
processor frequency is set to 5 GHz. The memory system consists of a single 8 byte wide
channel of 1 Gbps DDR3 SDRAM devices, and the peak bandwidth of this memory system
is 8 GB/s. The DRAM memory system consists of 2 ranks of memory devices, each rank
consists of 8 separate 1 Ghit DDR3 SDRAM devices connected in paralel, and there are 8
banks per rank, 16384 rows per bank and 1024 columns per row. Collectively, the two
ranks of DDR3 SDRAM devices form a memory system with 2 GB of memory that is

accessible by a 31 bit physical address space.

8.4.3 Address Mapping and Row Buffer Management Policy

The importance of address mapping has been examined some detail in previous
literature [24,25,27,47,48]. In a memory system that implements the open-page row buffer
management policy, the role of the address mapping scheme is to optimize the tempora and
spatial locality of the address request stream and direct memory accesses to an open DRAM
row (bank) and minimize DRAM bank conflicts. However, in a memory system that
implements the close-page row-buffer management policy, the goal of the address mapping
scheme isto minimize temporal and spatial locality to any given bank and instead distribute
memory accesses throughout different banks in the memory system. In this manner, the
DRAM memory system can avoid memory accesses to the same bank of memory and

instead focus on transaction and DRAM command ordering a gorithms that rotates through
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all available DRAM banks to achieve maximum DRAM bandwidth. In this study, a simple
address mapping scheme optimized for close-page memory systemsis used, and the address

mapping scheme is summarized in Figure 8.7. In the address mapping scheme illustrated in

count | range 31 bit physical address range (byte addressable)

channel 1 0

— —
rank 2 1 3}<—>{0 | r_M MM }4—»{ }4—»{

bank 8 3 1098 65 32 0
row 16384 | 14 %/—) %f—) A R{J R{J R(—J

| 1024 | 10 row column rank bank column byte
o ID IDhigh ID ID IDlow offset

Figure 8.7: Close-page-optimal address mapping for 2 GB DDR3 SDRAM memory system.

Figure 8.7, the three lowest bitsin a physical address istrandated as the byte offset in the
8 byte wide channel, and the next three lowest address bits denote the three lowest bits of
the column address. In essence, these three bits also represents the cacheline offset, since
the size of the cacheline used in the system is 64 bytes. Address bits 6~8 then denote the
bank 1D of the memory address, and the 9 address bit then denotes the rank 1D. In this
manner, an application that streams through a large array will have consecutive cachelines
that reside in different banks, and the memory system can optimally pipeline the

consecutive memory accesses to different banks with maximum bandwidth efficiency.

8.4.4 Structural Enhancement to Bus Interface Unit

The DRAM memory system enhancement in MASE has been previoudy described to
contain the BIU, one or more transaction driven memory controllers and one or more
command driven memory systems. In this simulation framework, a memory access that
misses the cache is sent to the BIU, and the BIU can hold up to 256 memory references to

the memory system. The pending memory references are then sent to the transaction queue
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according to the transaction ordering policy specified. However, in a traditional system
topology, the BIU is a separate structure that resides separately from the memory controller
and the address mapping stage that converts physical addresses to DRAM addresses occurs
after the memory transaction is moved into the transaction queue in the memory controller.
As aresult, the BIU in atraditional system topology is not aware of the memory addresses
of pending transactions, and it cannot prioritize memory references based on the rank or
bank address of pending transactions. In this work, we assume that the memory controller is
integrated with the processor (a common practice in modern processors), and the memory
address mapping stage can be moved into the BIU. In this scheme, the BIU contains a copy
of the address range registers and it is aware of the configuration of the DRAM memory
system. In this scheme, as amemory transaction is placed into the BIU, the physical address
is immediately trandated into respective memory addresses. With the respective memory
addresses, the BIU can then prioritize memory transactions based on the type as well as the

memory addresses of pending transactionsin the system.

8.4.5 Write Sweeping

In this work, considerable effort is devoted toward the optimization of DRAM
bandwidth utilization in a DDRx SDRAM memory system. Various schemes have been
devised and timing diagrams have been shown that maximize DRAM memory bandwidth.
Implicit in the various schemes and timing diagrams is the assumption that the illustrated
access sequences consist purely of memory read transactions. The reason that the various
schemes and timing diagrams consist of purely memory read transactions is that in DDRX
SDRAM memory systems, the bandwidth overheads for read-write turnarounds are even

greater than the overhead imposed on DRAM memory system by tpqs, trrp and tran -
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Figure 8.8 illustrates the case where a column-read command follows a column write

tewp * teurst + twr - temp temp
AN
cmd&addr — - | write0O I— ————— W ___
bank “i” of rank *m"- — — — — — data restore row x open |
rank “m” utilization - — — — — — 1 I/0 gating I/0 gating
databus - — — — — — databurst | — — — — — q databurst |
tewp teurst twr time >

Figure 8.8: : Read Command following Write Command to Same Rank.

command to the same rank of DRAM devices and shows that this combination of DRAM
commands can at best be scheduled with the minimum timing of toyp + teurs + twr - tomb-
In this case, the data bus can utilized for tg4 time period by the write command, so the
overhead for aread command that follows awrite command to the same rank of memory is
tcwp T twr - tomp- USing timing parameters values specified in table 8.1, the bandwidth
overhead for write-read turnaround is 16 ns. Thevaue of 16 nsfor the write-read turnaround
isgreater than other bandwidth overheads examined in this study. To aleviate the bandwidth
overhead of read-write and write-read turnarounds in the DRAM memory system, some
transaction ordering policies in this study utilize the technique of write sweeping. That is,
the BIU acts as a write buffer for pending memory write transactions, and as much as
possible, DRAM write requests are scheduled consecutively to the memory system. In this
manner, pending write transactions are occasionally swept as a group into the memory

system, and the number of read-write turnarounds are minimized.

1. Direct RDRAM devices have write buffers designed to aleviate the read-write turnaround overhead in high datarate
memory systems. Data for column write commands are temporarily stored in the write buffer then retired into the
DRAM array viaa separate command. The write buffer minimizes but does not completely eliminate the read-write
turnaround overhead.
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8.4.6 Transaction Ordering Policy

To keep the DRAM memory system optimally saturated with DRAM commands to the
appropriate banks and ranks, a transaction ordering policy must select the appropriate
transactions with the proper rank and bank addresses from the BIU to send to the transaction
queue. As a result, the transaction ordering policies should match the DRAM command
scheduling algorithm to keep the memory system operating at maximum efficiency. Three
different DRAM transaction ordering policies and the associated DRAM command
scheduling algorithm are compared against each other in this study: First Come First Serve,
Bank Round Robin, and Command Pair Rank Hopping.

In the First Come First Serve transaction ordering policy, hereafter referred to as the
FCFS transaction ordering policy, the BIU buffers all memory transactions, but sends
transactionsto the DRAM memory system in the order of arrival regardless of the address or
type of the memory transaction request. The DRAM memory system simulator allows
different DRAM commands from different transactions to be pipelined, but DRAM
commands of the same type cannot be re-ordered in the transaction queue. That is, whilethe
column-read command from a prior memory transaction is still waiting in the transaction
queue for a row to be opened, a separate row activation command from a subsequent
transaction can be engaged, subject to the constraints of tggrp and tgay. However, the
column access command of the subsequent transaction cannot be scheduled ahead of the
column access command of the prior transaction in this scheduling algorithm.

In the Bank Round Robin transaction ordering policy, hereafter referred to as the BRR
transaction ordering policy, the BIU buffers adl transactions, and memory read transactions

are given priority and scheduled to the DRAM memory system according to the type and
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bank address of the pending request. Figure 8.9 shows the address sequence for the BRR

Schedule Order |
rankID 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
bank ID O 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Figure 8.9: : Address Sequence for Bank Round Robin Transaction Ordering Policy.

transaction ordering policy where the bus interface unit schedul es transaction to the memory
system by selecting the oldest memory transactions with specific rank and bank addresses.
In case that there are no pending memory read transactionsin the BIU or in case that nearly
all 256 entries of the BIU are filled with pending transactions, write sweeping is triggered to
move pending write transactions to the DRAM devices. In the BRR transaction ordering
policy, DRAM commands are also scheduled in strict ordering, and DRAM commands of
the same type from different transactions are not re-ordered in the transaction queue.

In the Command Pair Rank Hopping transaction ordering policy, hereafter referred to as
the CPRH transaction ordering policy, the BIU also buffers all transactions, and memory
read transactions are given priority and scheduled to the DRAM memory system according
to the bank address of the pending request. However, in order to enable the DRAM
command sequence and timing diagram as illustrated in Figure 8.3 and Figure 8.4, the
CPRH transaction ordering policy must send a stream of memory transactions whose

address sequence is not readily intuitive from the BIU to the transaction queue. Figure 8.10

Schedule Order |

rankID 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
bankID 3 4 0 5 1 6 2 7 3 4 0 5 1 6 2 7 3

Figure 8.10: : Address Sequence for Rank Hopping Transaction Ordering Policy.

shows the address sequence for the CPRH transaction ordering policy where the BIU

schedules transaction to the transaction queue by selecting the earliest pending memory
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transaction of the appropriate type with specific rank and bank addresses. Similar to the
BRR transaction ordering policies, in case that there are no pending memory read
transactions in the BIU or in case that nearly all 256 entries of the BIU are filled with
pending transactions, a burst of write sweeping is triggered. In this study, the CPRH
transaction ordering policy is paired with the CPRH DRAM scheduling algorithm, and the

DRAM command sequence is as previoudy described in Figure 8.4.

8.4.7 Workloads

In this study, a random sampling of workloads from the SPEC CPU 2000 benchmark
suite are used to validate the proposed design. A range of different applications that exhibit
different memory bandwidth utilization rates are used to characterize the impact of the
transaction reordering algorithm on different memory request patterns and request rates.

Table 8.2 summarizes the workloads used in this study.

Workload Name Description

164.9zip popular data compression program written by Jean-Loup Gailly for the project. CPU 2000 INT
176.gcc C compiler program. CPU 2000 INT

255.vortex single user object oriented database transaction benchmark. CPU 2000 INT
256.bzip2 another compression program. CPU 2000 INT

172.mgrid multigrid solver of 3D potential field CPU 2000 FP

173.applu Partiall differntial equation algorithm CPU 2000 FP

177.mesa graphic routine, creating a 3D object from a 2D scalar field. CPU 2000 FP
178.galgel computational fluid dynamics. CPU 2000 FP

179.art neural networks-object recognition CPU 2000 FP

183.equake quake simulation algorithm CPU 2000 FP

188.ammp computational chemistry. CPU 2000 FP

300.twolf VLSI placement and routing algorithm CPU 2000 INT

TABLE 8.2: SPEC CPU 2000 workloads used in study
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8.5 Simulation Results

In this work, all of the workloads are simulated through the execution of two billion
instructions. Each workload is simulated with three different sets of memory systems that
are identica in terms of the paging policy, address mapping scheme, the DRAM memory
system configuration. The only difference that exists between the different memory systems
is the memory transaction and DRAM command scheduling algorithms described in

previous sections.

8.5.1 Improvement in Sustained Bandwidth

In thiswork, different agorithms that impact the maximum sustai nable bandwidth of the
DRAM memory system are examined. We expect that the performance impact of the
respective agorithms on each workload will depend on the bandwidth utilization of the
workload, so we present the average sustained bandwidth of the each workload through the

simulated execution of 2 hillion instructions in Figure 8.11. The average sustained
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Figure 8.11: : Average Sustained Bandwidth through 2 Billion Instructions.
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bandwidth for each workload is obtained by counting the total number of memory
transactions processed through the simulation of 2 billion instructions, multiplying through
by the number of bytes per transaction and the ssmulated processor frequency, then dividing
through by the number of simulated processor cycles. Figure 8.11 shows that the average
sustained bandwidth for workloads used in this study ranges from 0.5 GB/s to 4.5 GB/s.
Figure 8.11 aso shows that three workloads with the greatest improvements in bandwidth
utilization from the CPRH scheduling algorithm are among the five workloads that already
utilize high memory bandwidth. Finaly, Figure 8.11 aso shows that not all bandwidth

intensive workloads benefit greatly from the CPRH scheduling algorithm.

8.5.2 Workload Speedups

Figure 8.12 shows the IPC speedups of the BRR and CPRH scheduling a gorithms with
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Figure 8.12: : IPC Speedup of BRR and CPRH Scheduling Relative to FCFS Scheduling .

respect to the in-order FCFS scheduling algorithm. The workloads are arranged by the order
of their respective bandwidth utilization. In three workloads, 300.twolf, 164.gzip and

177.mesa, the BRR scheduling algorithm showed no appreciable speedup reative to the
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FCFS scheduling algorithm. On the other hand, 179.art showed an 80% speedup for the
CPRH scheduling agorithm relative to the FCFS scheduling algorithm.

Figure 8.13 shows the IPC speedup of the CPRH scheduling algorithm compared to the
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Figure 8.13. . IPC Speedup of CPRH Scheduling Relative to BRR Scheduling .
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moderately intelligent BRR scheduling algorithm. The maximum bandwidth advantage of
the CPRH scheduling algorithm compared to the BRR scheduling agorithm has been
previously computed to be 47%. In Figure 8.13, 179.art shows a 44% speedup in IPC in
using the CPRH algorithm compared to the BRR agorithm, and 188.ammp as well as
300.twolf report negligible speedups for the CPRH scheduling algorithm over the BRR

algorithm.

8.5.3 Memory Access Latency Distribution

In modern uni-processor and multi-processor systems, multiple memory transactions
may be sent to the memory system concurrently. In case that the memory system is not
immediately available to service a memory transaction, or if a memory transaction is
deferred to allow alater transaction to proceed ahead of it, the latency of the later transaction
will decrease at the expense of the increased latency of the prior memory transaction.

However, if the transaction or DRAM command re-ordering algorithm results in a more
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efficient utilization of the memory system, then the average memory access latency for all

memory transactions will decrease. Figure 8.14 shows the impact of the CPRH scheduling
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Figure 8.14: : Impact of Scheduling Policy on Memory Access Latency Distribution: 179.art.
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algorithm on the memory access latency distribution for the 179.art through 2 billion
instructions. The memory access latency distribution illustrated in Figure 8.14 is obtained by
amechanism that records the access latency for each memory transaction in the BIU. In the
simulation framework, each time a memory transaction is sent to the BIU, the start time of
the transaction is recorded by the BIU. Upon completion of the memory transaction, the BIU
simply computes the latency and keeps track of the number of transactions for each a
specific latency value.

In the smulated memory system, the minimum latency of a memory transaction is
simply the delay through the BIU added to the delay of the memory controller and the
minimum DRAM latencies of trep + tcas. N the smulated memory system, the delays
through the BIU and memory controller is set to 10 ns, and the minimum access latency is
approximately 30 ns for the set of timing values used in this study and illustrated in Figure
8.14. Figure 8.14 showsthat the CPRH scheduling algorithm greatly decreases the queueing

delay for many pending memory transactionsin 179.art, and the number of transactionswith
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memory access latency greater than 400 ns is significantly less than the same workload
operating with the FCFS scheduling a gorithm.

In Figure 8.14, the memory access latency distribution curve graphically illustrates the
benefits of the CPRH algorithm for 179.art. However, just as the memory access latency
distribution curve can be used to illustrate the benefit of the CPRH scheduling algorithm, it
can aso be used to illustrate possible problems with the CPRH scheduling algorithm for

other workloads. Figure 8.15 shows the latency distribution curve for 188.ammp, and
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Figure 8.15: Impact of Scheduling Policy on Memory Access Latency Distribution: 188.ammp.

188.ammp was one workload that points to possible issues withe the CPRH algorithm. That
is, Figure 8.11 shows that 188.ammp was the second most bandwidth intensive workload
with the FCFS scheduling algorithm, but aside from the non-bandwidth intensive 300.twolf,
188.ammp also saw the smallest speedup for al workloads with the CPRH scheduling
algorithm. Figure 8.15 shows that the CPRH scheduling algorithm resulted in longer
latencies for a number of transactions, and the number of transactions with memory access
latency greater than 400 ns actually increased. Figure 8.15 also shows that the increase of
the small number of transactions with memory access latency greater than 400 nsis offset by
the reduction of the number of transactions with memory transaction latency around 200 ns

and theincrease of the number of transactions with memory access latency less than 100 ns.
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In other words, the CPRH scheduling algorithm redistributed the memory access latency
curve so that most memory transactions received a modest reduction in access latency, but a
few memory transaction suffered a substantial increase in access latency. The net result is
that the changes in access latency cancelled each other out, and 188.ammp only shows a

minor speedup for the CPRH algorithm over the FCFS or the BRR agorithm.
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8.6 Quick Summary of the Rank Hopping Algorithm

Power consumption and heat dissipation considerations are constraining high
performance DRAM memory systems just as they are constraining high performance
processors. The combination of power limitation and data bus synchronization constraints
limits available memory bandwidth in DDR2 and future DDR3 SDRAM memory systems
that do not adequately account for these bandwidth constraints. This work presented a
unique memory transaction ordering policy and DRAM command-scheduling agorithm
that maximizes sustainable bandwidth of the memory system while operating within power
and system synchronization constraints of DDR2 and DDR3 SDRAM devices. In a 1 Ghit
DDR3 SDRAM memory system used as the basdline in this study, the resulting DRAM
command ordering algorithm increases the maximum sustainable bandwidth by more than
41% compared to a moderately intelligent memory system. Simulations with the projected
timing parameters show that the proposed agorithm increases IPC by 40~80% on a
bandwidth intensive workload, 179.art, over a baseline of an unintelligent memory system,
and over 40% with the baseline of the moderately intelligent memory system. Moreover,
two different scaling trends means that the scheduling algorithm proposed in this work will
become even more important as process scaling continues in the future. The first trend that
favors the proposed scaling agorithm is that as processor frequencies and DRAM device
data rates increase, the power limitation constraints will likely remain in place or increase at
amuch lower rate. The result is that row activations must be scheduled farther apart from
each other in terms of number of cycles, and the proposed scheduling algorithm allows the
row activation commands to be scheduled farther apart in a given rank without impacting

the scalability of maximum bandwidth efficiency as long as trrp does not exceed 2 * tg 4

210



or tgay does not exceed 8 * tg 4 The second trend that favors the proposed scheduling
algorithm is that as transistor budgets continue to grow, the trend toward multi-threaded
cores and chip-level multiprocessors appearsto beinevitable. Memory request streamsfrom
these processors will have higher access rates and less spatial locality compared to memory
request streams from traditiona uniprocessors. The higher access rate will require more
bandwidth per pin from the memory system, and the decreased spatial locality property
means an increase in the number of row cycles per transaction, even in open-page DRAM
memory systems. Both effects of the multi-threaded and multi-processor system increase the
importance of a close-page, bandwidth optimized DRAM transaction and command

scheduling algorithms such as the one proposed in this work.
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CHAPTER 9 Concludlng Remarks

The work performed in this dissertation is devoted to answering questions that are
fundamental to understanding the performance of modern DRAM memory systems. In
particular, the following questions were asked and answered in this work:

« How do changesin system configuration impact the performance of DRAM memory

systems?

*  How would the performance characteristic of the DRAM memory system changein relation

to scaling trends of DRAM device datarates and row cycletimes?

* What can be doneto alleviate constraints that limit the efficiency of modern DRAM

memory systems, such as tgayy and tpos?

Throughout the text of this dissertation, answers to each of these questions have been
gradually revealed. In thisfinal chapter, the answers to these questions are summarized, the
significance of the work is highlighted, related work is addressed, and directions of future

research are sketched out.

9.1 Summary and Contributions

In this dissertation, the foundation to facilitate future research into DRAM memory
systems performance analysis is laid. The definition of the abstract and generic DRAM

access protocol that is common to SDRAM, DDR SDRAM, DDR2 SDRAM, and future
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DDRx SDRAM variants means that DRAM performance analysis performed for each
generation of DRAM devices can be compared directly to each other, subjected to the
scaling considerations of changing datarates and row cycle times.

The definition of the generic DRAM access protocol in turn enables the description of
high level analytica frameworks that can be used for performance analysis of DRAM
memory systems. In this work, the Request Access Distance methodology for the
computation of sustainable memory bandwidth is described in detail. The Request Access
Distance methodology is then used to extensively anayze the performance characteristics of
modern DRAM memory systems that will operate at datarates of 1 Gbps and above. This
work advances the state of the art in terms of an analytical method that can be applied to a
DRAM memory system to understand its performance characteristics, and it supports that
work with extensive studies that aid in the understanding of modern DRAM memory
systems. In particular, we show that the addition of more banksin DRAM memory systems
can improve performance by an average of 18% for both close-page and open-page memory
systems. We aso show that the tgay bank activation constraint is critical for close-page
memory systems, and less so for open-page systems, although its impact does grow with
increasing datarate.

Finaly, this work presents a novel DRAM command scheduling agorithm that
amortizes the overhead costs of rank-switching time and schedules around the tgayy bank
activation constraint. We show that the scheduling algorithm can improve maximum
bandwidth by 41%, and it can improve performance by as much as 40% for some specific

workloads.
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9.2 Limitations

The ultimate metric of DRAM memory system performance is related to how fast it can
service critical requests from processors. However, the focus of thiswork is to characterize
and improve sustainable bandwidth of a DRAM memory system, not to identify and service
critical requests. The rationale used to justify the focus of thiswork is that by improving the
sustainable bandwidth of the DRAM memory system, the average request service time can
be reduced. The study performed in chapter 8 shows that while this strategy does benefit
most workloads, it does not benefit al workloads. The transaction re-ordering policy used
by the rank-hopping agorithm, designed to improve sustainable bandwidth of the DRAM
memory system, unintentionally deferred some critically needed requests at the expense of
non-critical requests. The result is that the net performance improvement was negligible
despite the improvement of available bandwidth from the DRAM memory system.

The study of the rank-hopping algorithm points out that an ideal DRAM memory
scheduling algorithm must be coupled with the identification of critical loads within request
sequences. In the case that the DRAM memory system is given that information, it can then
dynamicaly adjust the scheduling agorithm to further improve system performance
depending on the request pattern. In a recent study, an adaptive feedback memory system
that dynamically adjusted DRAM memory scheduling algorithm based on processor request
pattern is described[51]. However, that study utilizes a relatively simplified model of a
multi-rank DDR SDRAM memory system. We believe that future DRAM memory systems
study should proceed along parallel paths, so that the needs of the processor is accounted for
while scheduling around DRAM hazards such as row cycle times, tgay bank activation

congtraints, and tpgs rank-switching overheads.
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9.3 Related Work

The traced-based Request Access Distance anaytical framework is a unique
methodology in analyzing DRAM memory system performance in terms of citations that
can be traced in previoudly published literatures. However, a comparable framework may
exist in work performed independently by Pawlowski and presented in a tutorial session at
HPCA in 2005[54]. In the tutorial session, simulation results were presented that compared
the bandwidth efficiency of various existing memory systems subjected to randomly
generated sequences of read and write access patterns. It can be speculated from the
presented results that the fundamental methodol ogy shares fundamenta similaritieswith the
Reqguest A ccess Distance methodology described in this work. However, due to the fact that
the underlying framework for the results presented in the tutorial was not disclosed, a direct
comparison against the Request Access Distance analytical framework was not possible.

This work also presented a unique DRAM scheduling algorithm that performs memory
access sequences in specific ordering to maximize available DRAM bandwidth. Although
the scheduling algorithm is itself unique, much work aready exist in the field of DRAM
memory scheduling agorithm. In particular, works by Briggs et. a., Cuppu €t. a., Hur €.
al., McKeeet. a., and Rixner et. d are particularly instrumental in advancing the state of the
art in DRAM memory scheduling agorithms[28,32,33,34,37,42,51]. This work advances
the state of the art by proposing a scheduling algorithm that is unique to high performance,

high datarate, short channel DDRx SDRAM memory systems.
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9.4 Future Work

The studies performed in this work can be extended in many different directions. In

particular, the following directions are particularly interesting and they are currently under

consideration for specific future research directions.

L]

Extend the abstract protocol to cover high performance DRAM devices such as FCRAM,
RLDRAM and XDR DRAM. The extension of the abstract protocol in turn will enable the
computation of the table of DRAM protocol overheads. The creation of the table in turn
enables the extension of the Request Access Distance analytical framework to those
memory systems.

Explore adaptive DRAM memory scheduling a gorithmsthat simultaneously account for the
effects of DRAM system inefficiencies as well as processor request priority. In particular, a
study of adaptive scheduling agorithms for a processor that can send aong priority
information to aid the DRAM controller in selecting amongst transaction re-ordering
agorithms that are not based solely on recent request access histories.

The Request Access Distance method reports the sustainable DRAM bandwidth in terms of
in-efficiency. As described in this text, the inefficiencies are computed in terms of the idle
times that must be added to fully account for DRAM protocol overhead, DRAM row cycle
time constraints and DRAM device power congtraints. A future version of the simulation
framework may be developed to keep track of the each set of causes of bandwidth loss
separately so that the dominant causes can beidentified and analyzed specifically.

In this work, DRAM memory system performance is studied based on use of traces from
single-threaded workloads. While the study does not lose relevance with the onset of multi-
threaded (MT) and chip multiprocessors (CMP), the explicit examination of DRAM
memory system performance characteristics subjected to MT and CMP processors will gain
increasing relevance as these processors become mainstream.

Finally, the development of the rank-hopping algorithm for MT and CMP processors should
be coupled with further enhancements, such as a pseudo-open-page optimized address

mapping scheme and a distributed refresh mechanism to minimize the impact of refresh.
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CHAPTER A

Appendix: Workioad
Descriptions

A.1 Trace Fundamentals

The performance analysis performed in this study relies on trace based workloads. This
section summaries the traces used this study and provides a cursory examination into the
characteristics of workloads used in this work. There are two types of traces used in this
work. One type of traces consists of memory request sequences logged by using the Micro-
Architectural Simulation Environment (MASE) from the University of Michigan [29]. The
second type of traces used in this text consists of processor bus traces captured with adigital

logic analyzer during the execution of workloads on a test computer system. Figure A.1

Address Request Type Time Stamp Address Request Type Time Stamp
0x404361C0 IFETCH 2007226645 0xé495F78 P_FETCH 54.782,500 us
0x200261C0 IFETCH 2007226645 0x01495F70 P_FETCH 54.792,500 us
0x404374C0 IFETCH 2007226720 0x01495F68 P_FETCH 54.802,500 us
0x200274C0 IFETCH 2007226720 0x01495F60 P_FETCH 54.812,500 us
0x404438C0 READ 2007226819 OxO1FC84E0 P_MEM_RD 54,942,000 us
0x400038C0 READ 2007226819 OxO1FC84E8 P_MEM_RD 54.952,000 us
0x40435700 IFETCH 2007228119 OxO1FC84FO P_MEM_RD 54.962,000 us
0x20025700 IFETCH 2007228119 OxO1FC84F8 P_MEM_RD 54.972,000 us
0x40439FCO READ 2007228279 0x01C2B290 P_MEM_RD 55.241,500 us
0x40009FCO READ 2007228279 0x01C2B298 P_MEM_RD 55.251,500 us
0x200276C0 IFETCH 2007228521 0x01C2B280 P_MEM_RD 55.261,500 us
0x404438D0 READ 2007228766 0x01C2B288 P_MEM_RD 55.271,500 us
0x400038D0 READ 2007228911 O0x01F7B2A0 P_MEM_WR 55.311,500 us
Ox4E435A70 WRITE 2007229102 Ox01F7B2A8 P_MEM_WR 55.321,000 us
0x4002E7EO0 WRITE 2007229292 0x01F7B2BO0 P_MEM_WR 55.331,000 us
0x40439FEO0 READ 2007229382 0x01F7B2B8 P_MEM_WR 55.341,000 us

Mase simulator address trace Logic analyzer: processor bus trace

Figure A.1: Sample Memory Request Trace Segments.

shows trace segments from both types of traces.
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Figure A.1 shows two trace segments from the two types of traces used in this study.
Figure A.1 shows that each trace logged the address, type, and timestamp for each trace. In
the address trace captured from MASE, each transaction request is recorded as a single
event, and the time stamp for each request is recorded in the form of CPU cycle count. In the
address trace captured by the digital logic analyzer on a processor bus, each entry of the
trace segment represents an active cycle on the processor bus. In the test system, each
cachdineis 32 bytesin length and each cacheline transaction occupies four bus clock cycles
on the processor bus, and the cacheline transfer appears as four separate events in Figure
A.1%. The timestamp logged by the digital logic analyzer also differs from the timestamp
logged by the architectural simulator in that the digital logic analyzer records timestamp in
terms of microseconds, and since the processor bus of the test system operates at 100 MHz,
the timestamp increments with the minimum granularity of 10 nanoseconds for each event
in the processor bus trace. Finaly, one last difference between the two different types of
traces is that traces created by the architectural smulator record virtual addresses as
generated by the simulated workloads, whereas the processor bus traces record physical
addresses as they appear on the processor bus. In the context of the performance anaysis
based on these traces, traces with virtual addresses may be subjected to additional virtua to
physica address page mapping considerations whereas traces recorded with physica

addresses need not dea with virtual to physical address mapping considerations.

1.  Somel/O transactions seen in the bus trace captured by the digital logic analyzer only occupies a single bus clock
cycle, so not al transactions go through four bus clock cycles.
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A.2 Description of Workloads

In this work, address traces from nine different SPEC benchmarks and four sets of
processor bus traces were used. The address traces for the SPEC benchmarks were
generated by MASE, and the processor bus traces were captured on a personal computer
with an AMD K6-111 processor while four different applications were running on the host
system. Redtricted by the relatively shallow memory buffer depth of the digital logic
analyzer, traces captured through the use of the logic anadyzer are relatively short trace
segments. Each trace segment consists of approximately four million active processor bus
cycles that represents approximately one million transaction requests. To ensure that the
captured traces adequately represent the performance characteristics of the workload,
multiple trace segments for each workload were captured for each workload. Rather than
merging the independent trace segments into one large trace for a given workload, the
results for each trace segment are presented individualy to illustrate the degree of variance

within each workload. The traces used in this study are asfollows:

MASE Traces (SPEC CPU 2000 Benchmarks)

164.9zip, 176.gcc, 197.parser, 255.vortex.

MASE Traces (SPEC CPU 2000 FP Benchmarks)

172.mgrid, 178.galgd, 179.art, 183.equake, 188.ammp.

AMD K6 Processor Bus Traces
Mark 2.0 - CPU, AWT, Complex Mathematics. 3 Segments, 3DWinbench CPU: 1

Segment, SETI@Home: 3 Segments, Quake 3: 5 Segments.
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A.2.1 164.gzip: C Compression

164.gzip isabenchmark in the SPEC CPU 2000 integer suite. 164.9zip isapopular data
compression program written by Jean-Loup Gailly for the GNU project. 164.gzip uses
Lempel-Ziv coding (LZ77) as its compression algorithm. In the captured trace for
164.gzip, four billion simulated instructions were executed by the simulator over two
billion simulated processor cycles, and 2.87 million memory requests were captured in the

trace. Figure A.2 shows that 164.gzip undergoes a short duration of program initialization,
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Figure A.2: : 164.Gzip trace overview.
then quickly enters into a repetitive loop. Figure A.2 shows the memory system activity of
164.gzip through thefirst 1.8 billion processor cycles. Figure A.2 also showsthat 164.gzipis
typicaly not memory intensive, since it averages less than one memory reference per
thousand instructions. Moreover, in the time periods when 164.gzip fills the memory system
with transaction requests, the transaction requests appear to be bursts of memory write

requests.
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A.2.2 176.gcc: C Programming Language Compiler

176.gcc is a benchmark in the SPEC CPU 2000 Integer suite that tests compiler
performance. 176.gcc is based on gcc version 2.7.2.2 and generates code for a Motorola
88100 processor. In the captured trace for 176.gcc, 1.5 billion simulated instructions were
executed by the ssimulator over 1.63 billion simulated processor cycles, and 4.62 million
memory requests were captured in the trace. Unlike 164.gzip, 176.gcc does not entersinto a

discernible and repetitive loop behavior within the first 1.5 billion instructions. Figure A.3
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Figure A.3: : 176.gcc trace overview.

shows the memory system activity of 176.gcc through the first 1.4 billion processor cycles.
Figure A.3 shows that 176.gcc, like 164.gzip, is typically not memory intensive, although it
does averages more than three memory references per thousand instructions. Moreover, in
the time frame illustrated in Figure A.3, 176.gcc shows a heavy component of memory
access due to instruction fetch requests, and relatively fewer memory write requests. The
reason that the trace in Figure A.3 shows a high percentage of instruction fetch requestsis

that the trace was captured with the L 2 cache of the simulated processor set to 256 KB.

221



A.2.3 197.parser: C Word Processing

197.parser is abenchmark in the SPEC CPU 2000 integer suite that performs syntactic
parsing of English, based on link grammar. In the captured trace for 197.parser, 4 billion
simulated instructions were executed by the simulator over 6.7 billion simulated processor
cycles, and 31.2 million requests were captured in the trace. Similar to 164.gzip, 197.gzip
undergoes a short duration of program initialization, then quickly enters into a repetitive
loop. However, 197.gzip entersinto loops that are relatively short in duration and is difficult

to observe in an overview. Figure A.4 shows the memory system activity of 197.parser

X scale - 10000000 CPU ticks per pixel width i >
3 Seale - 200 {ransactions per pixe, height Time /

-]

Figure A.4: : 197.parser trace overview.

through thefirst 6.7 billion processor cycles. Figure A.4 showsthat 197.parser is moderately
memory intensive, since it averages approximately eight memory references per thousand

instructions. Figure A.5 shows that each loop lasts for approximately 6 million CPU cycles
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Figure A.5: : 197.parser trace view closeup.
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A.2.4 255.vortex: C Object-oriented Database

255. vortex is a benchmark in the SPEC CPU 2000 Integer suite. In the captured trace

for 255.vortex, 4 billion smulated instructions were executed by the simulator over 3.3

billion simulated processor cycles, and 7.2 million requests were captured in the trace. In

the first 3.3 billion processor cycles, 255.vortex goes through severa distinct patterns of

behavior. However, after a1.5 billion cycleinitidization phase, 255.vortext appears to settle

into execution loops that lasts for 700 million processor cycles each, and each loop appears

to be dominated by instruction fetch and memory read requests with relatively fewer

memory write requests. Figure A.6 shows the memory system activity of 255.vortex through
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Figure A.6: : 255.vortex Overview.

the first 3.3 hillion processor cycles. Figure A.6 aso shows that 255.vortex is typically not

memory intensive, since it averages less than two memory reference per thousand

instructions.
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A.2.5 172.mgrid: Fortran 77 Multi-grid Solver: 3D Potential Field

172.mgrid is abenchmark that demonstrates the capabilities of avery simple multigrid
solver in computing a three dimensiona potential field. It was adapted by SPEC from the
NAS Parallel Benchmarks with modifications for portability and a different workload. In
the captured trace for 172.mgrid, 4 billion simulated instructions were executed by the
simulator over 9 billion simulated processor cycles, and 47.5 million requests were
captured in the trace. 172.mgrid is moderately memory intensive, as it generates nearly

twelve memory requests per thousand instructions. Figure A.7 shows that after a short
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Figure A.7: : 172.mgrid trace overview.
initialization period, 172.mgrid settles into a repetitive and predictable loop behavior. The
loops are dominated by memory read requests, and memory write requests are relatively

fewer.
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A.2.6 178.galgel: Fortran 90 Computational Fluid Dynamics

In the captured trace for 178.galgel, 4 billion simulated instructions were executed by

the smulator over 2.2 billion smulated processor cycles, and 3.1 million requests were

captured in the trace. Relatively, 178.galgel is not memory intensive, as it generates less
than one memory requests per thousand instructions. Figure A.8 shows that after a short
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Figure A.8: : 178.galgel trace overview.

initialization period, 178.galgel settles into a repetitive and predictable loop behavior. The

loops iterations are bursty and goes through severd different phases.
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A.2.7 179.art (SPEC CPU 2000 FP Suite)

179.art is a benchmark derived from an application that emulates a neural network and
attempts to recognize objects in a thermal image. In the captured trace for 179.art, 450
million simulated instructions were executed by the simulator over 14.2 billion simulated
processor cycles, and 90 million requests were captured in the trace. 179.art is extremely

memory intensive, and it generates almost two hundred memory requests per thousand

instructions. Figure A.9 shows that 179.art is dominated entirely by memory read
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Figure A.9: : 179.art trace overview.

transactions.
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A.2.8 183.equake: C Seismic Wave Propagation Simulation

183.equake ssimul ates the propagation of elastic waves in large, highly heterogeneous
valleys. Computations are performed on an unstructured mesh that locally resolves
wavelengths, using a finite element method. In the captured trace for 183.quake, 1.4
billion simulated instructions were executed by the simulator over 1.8 billion simulated

processor cycles, and 7.9 million requests were captured in the trace. Figure A.7 shows
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Figure A.10: : 172.mgrid trace overview.

that after along initialization period, 183.equake settlesinto arepetitive and predictable loop
behavior. Theloops are dominated by memory read requests, and memory write requests are
relatively fewer outside of the initialization phase. 183.equake is moderately memory

intensive, asit generates dmost six memory references per thousand instructions.
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A.2.9 188.ammp: C Computational Chemistry

188.ammp is benchmark in the SPEC CPU 2000 FP suite that runs molecular
dynamics on a protein-inhibitor complex embedded in water. unstructured mesh that
locally resolves wavelengths, using a finite element method. In the captured trace for
188.ammp, 4 billion simulated instructions were executed by the simulator over 10.5
billion simulated processor cycles, and 60 million requests were captured in the trace.

Figure A.11 shows that 188.ammp is moderately memory intensive. It generates
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Figure A.11: : 188.ammp trace overview.

approximately 15 memory references per thousand instructions. 188.ammp is somewhat
unique in that the rate of memory requests appears to follow a pattern, yet that pattern is
not readily discernible in the trace that captures 10.5 billion processor cycles of execution

time.
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A.2.10 JMark 2.0 - AWT, CPU and Complex Arithmetic

JMark 2.0 is a suite of benchmarks designed to test the performance of Java virtua
machine implementations. The CPU, AWT and Complex Mathematics benchmarks are
independent benchmarks in this suite of benchmarks. Compared to other workloads
examined in this work, the benchmarks in JMark 2.0 accesses memory only very
infrequently. Ordinarily, the relatively low access rate of these benchmarks would exclude
them as workloads of importance in a study of memory system performance characteritics.
However, the benchmarks in IMark 2.0 exhibit an interesting behavior in access memory in
that they repeatedly access memory with locked reads and locked write requests at the exact
same location. As a result, they are included for completeness to illustrate a type of

workload that performs poorly in DRAM memory systems regardless of system

configuration. Figure A.12 shows an overview of a trace segment from the Abstract
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Figure A.12: : JMark Abstract Windowing Toolkit Benchmark trace overview.

Windowing Toolkit (AWT) benchmark trace.
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A.2.11 3DWinbench - CPU
3D Winbench is another suite of benchmarks that is designed to test 3D graphics

capability of a system. The CPU component tests the processor capability and it is
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Figure A.13: : 3D Winbench trace overview.

Figure A.13 shows that 3D Winbench achieves sustained peak rate of approximately 5
transactions per microsecond during short bursts, and it sustains at least 1 transactions per

mi crosecond throughout the trace.
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A.2.12 SETI@Home - 3 Segments
SETI@Home is a popular program that allows the SETI institute to make use of spare
processng power on idle personad computers to search for signs of extraterrestria
intelligence. The SETI@HOME application performs a series of fast fourier transforms on
captured electronic signasto look for existence of extraterrestrial intelligence. The series of
FFT’sare performed on successively larger portions of the signd file. As aresult, the size of

the working set for the program changes as it proceeds through execution. Figure A.14
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Figure A.14: : Portions of SETI@QHOME Workload. Medium Memory Access Rate.

shows a portion of the SETI@HOME trace, and in this segment, the read and write
transactions have an gpproximate 1:1 ratio, and the memory reference rate is approximately

0.2 requests per microsecond. Figure A.15 shows a different portions of the SETI@QHOME
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Figure A.15: : Portions of SETI@QHOME Workload. Very High Memory Access Rate.
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workload. In this segment, the memory reference rate increases to approximately 12~14
transactions per microsecond. The workload also alternates between read to write
transaction ratios of 1:1 and 2:1. Finally, the effects of the disruption caused by the system

context switch can be seen in this trace segment.

A.2.13 Quake 3 - 5 Segments

Quake 3 is a popular game for the personal computer. It is dso relatively memory

intensive. Figure A.16 shows a short segment of the Quake 3 processor bus trace, randomly
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Figure A.16: Quake 3: Random trace segment.

captured as the quake 3 game progressed on a personal computer system. Figure A.16 shows
that the processor bus activity of the game is very bursty. However, a cyclic behavior
appears in the trace with a frequency of approximately once every 70 milliseconds.
Interestingly, the frequency of the cyclic behavior coincides with the frame rate of the

Quake3 game on the host system.
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Figure A.17 shows another short segment of the Quake 3 game labelled as segment 4. In
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Figure A.17: : Quake 3: Random Segment 4.

Figure A.17 the cyclic pattern of bursts of instruction fetches remain, but the level of activity
on the processor bus is significantly higher than shown in segment 0. In Figure A.17, the
level of I/O transactions are also significantly higher. In this work, a total of 5 segments of

Quake 3 traces are used to examine the overall behavior of the workload.
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CHAPTER B GIossaryofTermnoIogy

BRR: Acronym Bank Round Robin; A scheduling algorithm that rotates scheduling priority
around different banks in a close-page memory system to optimize for maximum
tempora distance between accesses to the same bank. See page 188.

CAS: Column Access Strobe; Command to move a column of datain a DRAM memory
system. See page 71.

Close-Page policy: A row buffer management policy designed to optimize DRAM memory
bandwidth in a memory system, and typically supports applications that access data
in DRAM memory systems with very little spatial and temporal locality. The sense
amplifier isimmediately precharged after the column access command is processed.
See page 115.

CPRH: Command Pair Rank Hopping; a scheduling algorithm that alternately schedules
row activates to different ranks of DRAM devices and group schedules column
accesses to the same rank of memory to maximize DRAM bandwidth. See page 191.

DDR: Dual Data Rate SDRAM device. See page 107.

DDR2: Second Generation Dua Data Rate SDRAM device. See page 107.

DDR3: Third Generation Dual Data Rate SDRAM device. See page 107.

DDRx: Denotes DDR SDRAM, DDR2 SDRAM, DDR3 DRAM and future DDR SDRAM

variant devices.
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Differential Sense Amplifiers: Circuitry in DRAM devices that senses, amplifies arow of
data. Also referred to as arow buffer since it can hold the resolved row of data for a
lengthy period of time, until the next refresh command isissued. See page 15.

DIMM: Dual Inline Memory Module. See page 56.

Prechar ge: Command to prepare a given DRAM array for arow access. See page 19.

Open Page Policy: A row buffer management policy designed to optimize DRAM memory
bandwidth in a memory system, and typically supports applications that access data
in DRAM memory systems with high degrees of spatial and temporal locality. The
sense amplifier is kept active for aslong as possible. See page 114.

Rank: One or more DRAM devices that act as a single entity in reponse to a given DRAM
command. In essence, it is a “bank” of DRAM devices. However, since the
terminology of “bank” denotes separate DRAM arrays inside of a given DRAM
devices, a “bank of DRAM devices’ is now referred to as a rank of memory. See
page 48.

RAS. Row Access Strobe; Command to activate arow of DRAM cellsin amemory system.
See page 70.

Row Cycle Time: The amount of time it takes to access a row in a given bank of DRAM
array and restore the data to the DRAM array so that another row in the same bank
can be accessed. Seetable 4.1 on page 69.

Row Buffer: See Differentia Sense Amplifiers, page 15.

SDRAM: Synchronous DRAM device. See page 34.

Sense Amplifiers. See Differential Sense Amplifiers, page 15.

SIMM: Single Inline Memory Module. See page 55.
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