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Abstract

The area under an ROC curve (AUC) is a aiterion used in many appli-
cdions to measure the quality of a dasdficaion agorithm. However,
the objedive function ogtimized in most of these dgorithmsis the aror
rate and nd the AUC value. We give adetail ed statisticd analysis of the
relationship between the AUC andthe aror rate, includingthefirst exad
expresson d the expeded value and the variance of the AUC for afixed
error rate. Our results how that the average AUC is monatonicdly in-
creaingas afunction o the dassdficationacaracy, but that the standard
deviation for uneven distributions and higher error rates is noticedle.
Thus, agorithms designed to minimize the eror rate may not lead to
the best passble AUC values. We show that, under certain condtions,
the global function ogimized by the RankBoost algorithm is exadly the
AUC. We report theresults of our experimentswith RankBoast in several
datasets demonstrating the benefits of an algorithm spedficdly designed
to globally optimizethe AUC over other existing algorithms optimizing
an approximation o the AUC or only locdly optimizingthe AUC.

1 Motivation

In many applications, the overall clasdficaion error rate is not the most pertinent perfor-
mance measure, criteriasuch as ordering or ranking seem more gopropriate. Consider for
example the list of relevant documents returned by a search engine for a spedfic query.
That list may contain several thousand dacuments, but, in pradice only the top fifty or so
are examined by the user. Thus, aseach engine'sranking o the documentsis more aitica
than the acaragy of its clasdficaion o all documents as relevant or not. More gener-
ally, for abinary classfier assgning ared-valued score to ead ohed, a better correlation
between ouput scores and the probability of corred clasgficaionis highly desirable.

A natural criterion ar summary statistic often used to measure theranking quelity of a das-

sifier is the area under an ROC curve (AUC) [8].1 However, the objedive function ofti-
mized by most classficaionagorithmsisthe aror rate and na the AUC. Recently, several
algorithms have been proposed for maximizing the AUC value locdly [4] or maximizing
some goproximations of the global AUC value[9, 15], but, in general, these dgorithmsdo
not obtain AU C values sgnificantly better than those obtained by an algorithm designed to
minimize the aror rates. Thus, it isimportant to determine the relationship between the
AUC values and the aror rate.

*This author’'s new address is. Goodge Labs, 1440 Broadway, New York, NY 10018
corinna@goode.com.

1The AUC value is equivalent to the Wil coxon-Mann-Whitney statistic [8] and closely related to
the Gini index [1]. It has been re-invented uncer the name of L-measure by [11], as already panted
out by [2], and slightly modified under the name of Linea Ranking by[13, 14].
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Figure1: Anexampleof ROC curve. Theline mnreding (0, 0) and(1, 1), correspondng to randam
clasdfication, isdrawn for reference The true paositive (negative) rate is ometimes referred to as the
sensitivity (resp. spedficity) in this context.

In the foll owing sedions, we give adetail ed statistica analysis of the relationship between
the AUC and the eror rate, including the first exad expresson o the expeded value and

the variance of the AUC for afixed error rate.> We show that, under certain condtions, the
global function ogtimized by the RankBoost algorithm is exadly the AUC. We report the
results of our experimentswith RankBoast in several datasets and demonstrate the benefits
of an algorithm spedficdly designed to globally optimize the AUC over other existing
algorithms optimizing an approximation o the AUC or only locdly optimizing the AUC.

2 Definition and properties of the AUC

The Recaver Operating Characteristics (ROC) curves were originally developed in signal
detediontheory [3] in conredionwith radio signals, and have been used sincethenin many
other applications, in particular for medicd dedsion-making. Over the last few yeas, they
have foundincreased interest in the machine leaning and data mining communities for
model evaluationand seledion[12, 10, 4, 9, 15, 2].

The ROC curvefor abinary classfication problem plotsthe true positive rate asafunction
of the false positive rate. The points of the aurve ae obtained by sweeping the dassfica
tion threshold from the most paositive dasdficaion value to the most negative. For afully
randam clasdficaion, the ROC curveisastraight line conredingtheoriginto (1,1). Any
improvement over randam classfication results in an ROC curve & least partially above
this graight line. Fig. (1) shows an example of ROC curve. The AUC is defined asthe aea
under the ROC curve and is closely related to the ranking quality of the dasdficaion as
shown more formally by Lemma 1 below.

Consider a binary classficaion task with m positive examples and n negative examples.
We will assume that a dasdfier outputs a strictly ordered list for these examples and will
denate by 1 x theindicaor function of aset X.

Lemma 1([8]) Let ¢ bea fixed classfier. Let x4, .. ., x,, bethe output of ¢ onthe positive
examplesandy;, . . ., y, itsoutput onthe negative examples. Then, the AUC, A, asociated
to cisgiven by:

o Z:il Z?:l 1Ei>yj

o mn
that is the value of the Wil coxon-Mann-Whitney statistic [8].
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Proof. Theproof isbased onthe observationthat the AU C valueis exadly the probability
P(X > Y) where X isthe randam variable correspondngto the distribution o the out-
puts for the positive examplesand Y the one aorrespondng to the negative examples [7].
The Wilcoxon-Mann-Whitney statistic is clealy the expresson o that probability in the
discrete case, which provesthe lemma|8]. O

Thus, the AUC can be viewed as ameasure based on pairwise comparisons between class-
ficaions of the two classes. With aperfed ranking, al positive examplesare ranked higher
than the negative onesand A = 1. Any deviation from this ranking deaeasesthe AUC.

2An attempt in that diredtion was made by [15], but, urfortunately, the aithors analysis and the
result are bath wrong
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Figure 2: For afixed number of errors k, there may be z, 0 < z < k, false negative examples.

3 TheExpeded Value of the AUC

In this dion, we compute exactly the expeded value of the AUC over all clasdficaions
with afixed number of errors and comparethat to the aror rate.

Different clasdfiers may have the same aror rate but different AUC values. Indedd, for a
given clasgficaionthreshad 0, an arbitrary reordering o the exampleswith outputs more
than 6 clealy does nat affed the eror rate but leals to different AUC values. Similarly,
one may reorder the exampleswith output lessthan 6 withou changingthe aror rate.

Asaume that the number of errors & is fixed. We wish to compute the average value of the
AUC over dl classficaions with k errors. Our model is based onthe simple assumption
that all classficaionsor rankingswith k errorsare equiprobable. One could perhapsargue
that errorsare not necessarily evenly distributed, e.g., exampleswith very high o very low
ranks are lesslikely to be erors, but we canna justify such biasesin general.

For a given classfication, theremay be 2,0 < x < k, false positive examples. Since the
number of errorsisfixed, there ae k — x false negative examples. Figure 3 shows the oor-
respondng configuration. The two regions of examples with clasgficdion ouputs above
and below the threshold are separated by a verticd li ne. For a given z, the computation o
the AUC, A, asgiven by Eq. (1) can be divided into the foll owing threeparts:

PR G s @
mn
Ay = thesum over al pairs (z;, y;) with z; andy; in distinct regions;
Ay = thesum over all pairs (z;, y;) with z; and y; in the region above the threshold;
As = thesum over al pairs (z;, y;) with ; and y; in the region below the threshald.

Thefirst term, A, is easy to compute. Sincethere ae (m — (k — z)) positive examples
abowe the threshold and n — = negative examples below the threshald, A; is given by

Ay = (m = (k- 2))(n —z) ©)

To compute Ay, we can asdgn to ead negative example aowve the threshold a position
based onits clasdfication rank. Let position ore be the first position abowve the threshold
andlet o < ... < a, denotethe postionsin increasing arder of the x negative examples
in the region abowe the threshald. The total number of examples classfied as paositive is
N =m — (k — x) + z. Thus, by definition of A,,

Ay =Y (N — o) — (z—1i) (4)

i=1
where the first term NV — «; represents the number of examples ranked higher than the ith
example and the secondterm x — ¢ discourts the number of negative examplesincorredly
ranked higher than the ith example. Similarly, let o} < ... < «},_, denotethe positions of

the k — x positive examples below the threshold, courting pgsitions in reverse by starting
from the threshald. Then, A3 isgiven by

’
x

Az =) (N'—af) = (&' - j) (5)
j=1
with N' =n —z + (k — z) andz’ = k — 2. Combining the expresgons of A;, A,, and
Az leasto:

_ A+ A+ As :1+(k—2x)2+k_ (i i+ 205, )

mn 2mn mn

A (6)



Lemma 2 For a fixed z, the average value of the AUC A is given by:

<A>w:1—ﬁTm )

Proof. The proof is based on the computation of the average values of Y 7 | «; and

Z;”,:l o’ for agiven ». We start by computing the average value < «; >, for a given
i, 1 <4 < z. Consider al the passble positionsfor oy ... ;1 anda; 41 . . . ay, When the
value of «; isfixed at say o; = 1. Wehavei <1 < N — (x — i) sincethereneed to be &
least i — 1 positionsbefore «; and N — (z — i) above. There ael — 1 passble positionsfor
a1 ...q;_1 and N — [ possble positionsfor a; 11 . .. a;.. Sincethe total number of ways

of chowsingthe 2 positionsfor «; . .. o, out of N is (N) the averagevalue < a; >, is.

ST ()

< >p= ™ )
Thus,
z (x—1) 7 /1—1\ (N—1 N-1
<Zaz >, = Zz 1Zl i (N) l(z 1)( ) Zl 1121(]1[)( )( ) (9)
Usingthe dasscd identity: >, ., _, (') () = (“17), we can write:
d _SLES) NN () e+
LT e om0
Simil arly, we have:
<Za >, = TAD) (11

Repladng < 7, a; >, and < ZFl o > in Eq. (6) by the expressons given by

Eq. (10) and Eq. (11) leads to:

(k—22)2+k—a(N+1)—2/(N' +1) 1
2mn B 2

which ends the proaf of the lemma. ]

Note that Eq. (7) shows that the arerage AUC vaue for agiven x is smply one minus the
average of the acarragy ratesfor the positive and regative dasses.

z k—x
4

<A>,=1+ . (12

Proposition 1 Asaume that a binary dasdfication task with m pasitive examples and n
negative examplesis given. Then, the expeded value of the AUC A over all classfications
with & errorsis given by:

Al _(n—m)2(m+n+1)< k Z’;é(’”j”)) (13
m+n 4dmn )

T

Proof. Lemma2 givesthe average value of the AUC for afixed value of x. To compute
the average over al possble values of x, we need to weight the expresson o Eq. (7) with
the total number of possble dassficaions for a given x. There ae ( ) possbleways of

choaosingthe positions of the 2 misclassfied negative examples, andsimil arly ( ) possble

ways of choasingthe positions of the 2’ = k — x misclassfied pasitive examples. Thus, in
view of Lemma 2, the average AUC is given by

k
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<A>= (149
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Figure 3: Mean (I&ft) and rel ative standard deviation (right) of the AUC asafunction o the aror rate.
Eadh curve corresponds to afixed ratio of » = n/(n + m). The average AUC value monaonicaly
increases with the acarragy. For n = m, as for the top curve in the left plot, the arerage AUC
coincides with the acarragy. The standard deviation deaeases with the acaragy, and the lowest
curve oorrespondston = m.

This expresson can be simplified into Eq. (13)° using the following nowel i dentiti es:

i(N)(N) B i(n—&-m—&-l) 9
Zk:r<]z><];],> - z’“:(k—x)(n;—n)+k<n+o:+1> 19

that we obtained by using Zeil berger’s algorithm?* and numerous combinatorial *tricks . [

From the expresdon o Eq. (13), it is clea that the average AUC value is identicd to the
acarragy of the dassfier only for even distributions (n = m). For n # m, the expeded
value of the AUC is a monaonic function o the acaracy, seeFig. (3)(left). For afixed
ratio of n/(n + m), the aurves are obtained by increasing the acaragy from n/(n + m)
to 1. The average AUC varies monaonicdly in the range of acaracy between 0.5 and
1.0. In other words, on average, there seams nothing to be gained in designing spedfic
leaning algorithms for maximizing the AUC: a dasdficaion algorithm minimizing the
error rate dso optimizes the AUC. However, this only holds for the average AUC. Inded,
we will show in the next sedionthat the varianceof the AUC valueisnat null for any ratio
n/(n+m)whenk # 0.

4 The Varianceof the AUC

Let D = mn + W, a=>7 0,0d = Z?l:l o, anda = a + a’. Then, by

Eg. (6), mnA = D — a. Thus, the varianceof the AUC, o2 (A), isgiven by:

(mn)’c*(A) = <(D—-a)’—-(<D>-<a>)’> 17
= <D’>—-<D>+4+<a’>-<a>20<aD>—-<a><D>)

As before, to compute the average of aterm X over al clasdficaions, we can first deter-
mineits average < X >, for afixed x, andthen use the function £ defined by.

k ’
2120 (]Z) (];[/) Y
k ’
2120 (];]) (];[/)
and< X >= F(< X >,). A crucial step in computingthe exad value of the variance of

the AUC isto determine the value of the terms of thetype < a? >,=< (3.7, a;)? >,.

F(Y) =

(18

3An esential difference between Eq. (14) and the expresson given by [15] is the weighting by
the number of corfigurations. The aithors' analysis leals them to the conclusion that the average
AUC isidenticd to the acaragy for al ratiosn/(n + m), which isfalse.

“We thank Neil Sloane for having pdnted us to Zeil berger’s agorithm and Maple pacage.
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Lemma 3 For a fixed z, theaverage of (}~7_, «;)? isgiven by:

N+1
<a?>,= %(3]\7:0 + 22+ N) (19)
Proof. By definition of a, < a? >,= b+ 2c with:
b=< Zaf > =< Z i >, (20)
i=1 1<i<j<z

Reasoning asin the proof of Lemma 2, we can oltain:

x N—(w—l) 12 I-1y (N—I N N-1 T
_ Zz:l Zl:z (N) (171)(m71) _ 212( 1) _ (N+ 1)(2N+ 1) (21)

(%) 6
To compute ¢, we start by computingthe averagevaueof < a;a; >, for agiven pair (4, j)
withi < 5. Asinthe proof of Lemma2, consider all the possjbli positionsof o ... a1,
Qg1 .- 1, and Qg1 ... Oy when o is fixed at a; = |, and (o7 is fixed at o = .
There ae | — 1 possble positions for the oy ... a;_1, I’ — | — 1 possble positions for
Qit1...a5-1,and N — [’ possblepostionsfor a1 . . . . Thus, we have:

Yicreren—@_p WD 2D (D

b

< Qi >g= N (22)
(=)
and -1\ (U'—1—1\ (N-U
= Zl<l/ ll/ Zm1+m2+m3(—;)2 (m1 )( mo )( ms ) (23)
Usjngtheidentity Zm1+m2+m3:m72 (ln;l) (l,;nl;l) (Nn:gll) = (];]:22)’ we obtain:
LW+ 1)(3]\721— 2)a(z — 1) 24
Combining Eq. (21) and Eq. (24) leadsto Eq. (19). O

Proposition 2 Assume that a binary dassfication task with m pasitive examples and n
negative examplesis given. Then, the variance of the AUC A over all classfications with
k errorsisgiven by:

z 4 k- z | k—z
P(A) = F((1 - BT F((1 - ) 29
F(mac2 +nk—2)2+ (mm+Dz+nn+1)(k—2) —22(k —x)(m +n+ 1))
12m?2n?

Proof. Eg. (18) can be developed and expreseed interms of F', D, a, anda’:
(mn)?0?(A) = F([D— <a+ad >,*)— F(D- <a+ad >,)*+

F(<a®>>, —<a>2)+F(<a?>, —<d >2) (26
The expressons for < a >, and < a’ >, were given in the proof of Lemma 2, and
that of < a? >, by Lemma 3. The following formula can be obtained in a similar
way: < a’? >,= WQNW + 22’ + N'). Repladng these expressons in Eg. (26)
and further simplifications give exadly Eq. (25) and prove the propasiti on. ]
The expresson o the varianceis ill ustrated by Fig. (3)(right) which shows the value of
one standard deviation of the AUC divided by the correspondng mean value of the AUC.
Thisfigure is parall el to the one shawing the mean of the AUC (Fig. (3)(left)). Eadh line
is obtained by fixing the ratio n/(n + m) and varying the number of errors from 1 to the
size of the smallest class The more uneven classdistributions have the highest variance,
the varianceincreases with the number of errors. These observations contradict the inexad

claim of [ 15] that the varianceis zero for al error rates with even distributionsn = m. In
Fig. (3)(right), the even distributionn = m correspondsto the lowest dashed line.



Dataset Size | #of | P AU Csplit[4] RankBoast
Attr, (%) Acauragy (%) | AUC (%) Acauragy (%) | AUC (%)

Breast-Wphc 194 33 237 69.5 £ 10.6 59.3 £ 16.2 65.5 + 13.8 80.4 + 8.0
Credit 653 15 453 81.0+7.4 94.5 + 2.9
loncsphere 351 34 35.9 89.6 + 5.0 89.7 £ 6.7 83.6 £ 10.9 98.0 + 3.3
Pima 768 8 34.9 725+ 5.1 76.7 £ 6.0 69.7 £ 7.6 84.8 + 6.5
SPECTF 269 43 204 67.3 934
Page-blocks 5473 10 102 96.8 + 0.2 95.1 £6.9 92.0 £ 2.5 98.5+ 1.5
Yeast (CYT) 1484 8 312 71.1 + 3.6 73.3 £ 4.0 45.3 +£ 3.8 78.5 + 3.0

Table 1: Accuragy and AUC values for several datasets from the UC Irvine repasitory. The values
for RankBoost are obtained by 10fold crossvalidation. The values for AUCsplit are from [4].

5 Experimental Results

Propasition 2 above demonstrates that, for uneven distributions, classfiers with the same
fixed (low) acaracgy exhibit noticealy different AUC values. This motivates the use of
algorithms diredly optimizing the AU C rather than dang so indiredly viaminimizing the
error rate. Under certain condtions, RankBoost [5] can be viewed exadly as an algorithm
optimizing the AUC. In this ®dion, we make the mnredion between RankBoost and
AUC optimizaion, and compare the performance of RankBoost to two recent algorithms
proposed for optimizing an approximation[15] or locdly optimizingthe AUC [4].

The objedive of RankBoost is to produce aranking that minimizes the number of incor-
recdly ordered pairs of examples, posshbly with diff erent costs assgned to the mis-rankings.
When the examplesto be ranked are simply two digoint sets, the objedive function mini-

mized by RankBoost is
rloss=» ) — 1oy, 27)

i=1 j=1

which is exadly one minus the Wil coxon-Mann-Whitney statistic. Thus, by Lemma 1, the
objedive function maximized by RankBoost coincides with the AUC.

RankBoost's optimization is based on combining a number of we& rankings. For our
experiments, we chose as week rankings threshold rankers with the range {0, 1}, similar
to the boosted stumps often used by AdaBoost [6]. We used the so-cdl ed Third Method of
RankBoost for seleding the best weak ranker. Accordingto this method at ead step, the
wedk threshold ranker is ®leded so asto maximizethe AUC of the weighted distribution.
Thus, with this method, the global objedive of obtaining the best AUC is obtained by
seleding the weak ranking with the best AUC at ead step.

Furthermore, the RankBoast algorithm maintains a perfed 50-50% distribution o the
weights on the positive and negative examples. By Propasition 1, for even distributions,
the mean of the AUC isidenticd to the dassficaion acarracy. For threshold rankers like
step functions, or stumps, thereisno varianceof the AUC, so the mean of the AUC isequal
to the observed AUC. That is, instead of viewing RankBoost as €leding the wegk ranker
with the best weighted AUC value, one can view it as sleding the week ranker with the
lowest weighted error rate. Thisis dmilar to the choiceof the best weak leaner for boosted
stumps in AdaBoost. So, for stumps, AdaBoost and RankBoost differ only in the updat-
ing scheme of the weights: RankBoost updates the paositive examples diff erently from the
negative ones, while AdaBoost uses one common scheme for the two groups.

Our experimental results corrobarate the observation that RankBoost is an algorithm op-
timizing the AUC. RankBoost based on boated stumps obtains AUC values that are sub-
stantialy better than those reported in the literature for algorithms designed to locdly or
approximately optimizethe AUC. Table 1 compares the results of RankBoaost on a number
of datasets from the UC Irvine repository to the results reported by [4]. The results for
RankBoost are obtained by 10fold crossvalidation. For RankBoost, the acarracy and the
best AU C values reported onead line of the table aorrespondto the same boasting step.

RankBoost consistently outperforms AU Csplit i n a comparison based onAUC values, even
for the datasets auch as Breast-Wpbc and Pimawhere the two algorithms obtain similar ac
curades. The table dso lists results for the UC Irvine Credit Approval and SPECTF heat
dataset, for which the authors of [ 15] report results correspondngto their AUC optimiza-
tion algorithms. The AUC values reported by [15] are no ketter than 92.5% for the Credit



Approval dataset and orly 87.5% for the SPECTF dataset, which is aubstantially lower.
From the table, it is also clea that RankBoost is nat an error rate minimizaion algorithm.
The acaragy for the Yeast (CYT) dataset isas low as 45%.

6 Conclusion

A statisticd analysis of the relationship between the AUC value and the aror rate was
given, including the first exad expresson o the expeded value and standard deviation of
the AUC for afixed error rate. The results offer a better understanding o the dfed onthe
AUC value of algorithms designed for error rate minimization. For uneven distributions
and relatively high error rates, the standard deviation o the AUC suggests that algorithms
designed to optimize the AUC value may leal to substantially better AUC values. Our
experimental results using RankBoost corrobarate this claim.

In separate experiments we have observed that AdaBoost achieves sgnificantly better er-
ror rates than RankBoost (as expeded) but that it also leads to AUC values close to those
adhieved by RankBoost. It isatopic for further study to explain and understand this prop-
erty of AdaBoost. A partial explanation could be that, just like RankBoost, AdaBoost
maintains at ead boasting roundan equal distribution of the weights for positive and neg-
ative examples.
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