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Abstract

The area under an ROC curve (AUC) is a criterion used in many appli -
cations to measure the quality of a classification algorithm. However,
the objective function optimized in most of these algorithms is the error
rate and not the AUC value. We give adetailed statistical analysisof the
relationship between theAUC andthe error rate, includingthefirst exact
expression of the expected value and thevarianceof theAUC for afixed
error rate. Our results show that the average AUC is monotonically in-
creasingasa function of the classificationaccuracy, but that thestandard
deviation for uneven distributions and higher error rates is noticeable.
Thus, algorithms designed to minimize the error rate may not lead to
the best possible AUC values. We show that, under certain conditions,
the global function optimized by the RankBoost algorithm is exactly the
AUC. Wereport theresultsof our experimentswith RankBoost in several
datasetsdemonstratingthebenefitsof an algorithm specifically designed
to globally optimizethe AUC over other existing algorithmsoptimizing
an approximation of theAUC or only locally optimizingtheAUC.

1 Motivation

In many applications, the overall classification error rate is not the most pertinent perfor-
mancemeasure, criteria such as ordering or ranking seem more appropriate. Consider for
example the list of relevant documents returned by a search engine for a specific query.
That list may contain several thousand documents, but, in practice, only the top fifty or so
are examined bytheuser. Thus, asearch engine’sranking of thedocumentsismore critical
than the accuracy of its classification of all documents as relevant or not. More gener-
ally, for a binary classifier assigninga real-valued score to each object, a better correlation
between output scoresandtheprobabilit y of correct classification ishighly desirable.
A natural criterion or summary statistic often used to measuretheranking quality of a clas-
sifier is the area under an ROC curve (AUC) [8].1 However, the objective function opti-
mized bymost classificationalgorithmsis the error rate and not theAUC. Recently, several
algorithms have been proposed for maximizing the AUC value locally [4] or maximizing
some approximationsof the global AUC value [9, 15], but, in general, these algorithmsdo
not obtain AUC values significantly better than thoseobtained byan algorithm designed to
minimize the error rates. Thus, it is important to determine the relationship between the
AUC valuesand the error rate.

∗This author’s new address is: Google Labs, 1440 Broadway, New York, NY 10018,
corinna@google.com.

1The AUC value is equivalent to the Wilcoxon-Mann-Whitney statistic [8] and closely related to
the Gini index [1]. It has been re-invented under the name of L-measure by [11], as already pointed
out by [2], and slightly modified under the name of Linear Ranking by[13, 14].
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Figure1: An exampleof ROCcurve. Theline connecting(0, 0) and(1, 1), corresponding to random
classification, isdrawn for reference. The true positive (negative) rate is sometimes referred to as the
sensitivity (resp. specificity) in this context.

In the followingsections, wegive adetailed statistical analysisof the relationship between
the AUC and the error rate, including the first exact expression of the expected value and
thevarianceof theAUC for afixed error rate.2 Weshow that, under certain conditions, the
global function optimized by the RankBoost algorithm is exactly the AUC. We report the
resultsof our experimentswith RankBoost in several datasetsand demonstratethebenefits
of an algorithm specifically designed to globally optimize the AUC over other existing
algorithmsoptimizingan approximation of theAUC or only locally optimizing theAUC.

2 Definition and properties of theAUC

TheReceiver OperatingCharacteristics (ROC) curveswereoriginally developed in signal
detectiontheory [3] in connectionwith radiosignals, and havebeen usedsincethen in many
other applications, in particular for medical decision-making. Over the last few years, they
have foundincreased interest in the machine learning and data mining communities for
model evaluationandselection [12, 10, 4, 9, 15, 2].
TheROC curvefor abinary classification problem plots the truepositiverate asa function
of the false positive rate. The points of the curve are obtained by sweeping the classifica-
tion threshold from the most positive classification value to the most negative. For a fully
random classification, theROC curve isa straight line connecting theorigin to (1, 1). Any
improvement over random classification results in an ROC curve at least partially above
this straight line. Fig. (1) showsan exampleof ROC curve. TheAUC isdefined as the area
under the ROC curve and is closely related to the ranking quality of the classification as
shown more formally by Lemma1 below.
Consider a binary classification task with m positive examples and n negative examples.
We will assume that a classifier outputs a strictly ordered list for these examples and will
denoteby 1X the indicator function of aset X .

Lemma 1([8]) Let c bea fixed classifier. Let x1, . . . , xm betheoutput of c onthepositive
examplesandy1, . . . , yn itsoutput onthenegative examples. Then, theAUC, A, associated
to c is given by:

A =

∑m

i=1

∑n

j=1 1xi>yj

mn
(1)

that is the valueof theWilcoxon-Mann-Whitney statistic [8] .

Proof. Theproof isbased ontheobservationthat theAUC valueisexactly theprobabilit y
P (X > Y ) where X is the random variable corresponding to the distribution of the out-
puts for the positive examples and Y the one corresponding to the negative examples [7].
The Wilcoxon-Mann-Whitney statistic is clearly the expression of that probabilit y in the
discrete case, which provesthe lemma[8].

Thus, theAUC can beviewed asameasurebased on pairwise comparisonsbetween classi-
ficationsof the two classes. With aperfect ranking, all positive examplesareranked higher
than thenegativeonesandA = 1. Any deviation from this ranking decreases theAUC.

2An attempt in that direction was made by [15], but, unfortunately, the authors’ analysis and the
result are both wrong.
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Figure2: For a fixed number of errorsk, there may bex, 0 ≤ x ≤ k, false negative examples.

3 The Expected Valueof the AUC

In this section, we compute exactly the expected value of the AUC over all classifications
with a fixed number of errorsandcomparethat to the error rate.
Different classifiers may have the same error rate but different AUC values. Indeed, for a
given classification threshold θ, an arbitrary reordering of the exampleswith outputsmore
than θ clearly does not affect the error rate but leads to different AUC values. Similarly,
onemay reorder the exampleswith output lessthan θ without changingthe error rate.
Assume that the number of errorsk is fixed. We wish to compute the average valueof the
AUC over all classifications with k errors. Our model is based on the simple assumption
that all classificationsor rankingswith k errorsare equiprobable. One could perhapsargue
that errorsarenot necessarily evenly distributed, e.g., exampleswith very high or very low
ranksare lesslikely to be errors, but we cannot justify such biases in general.
For a given classification, there may be x, 0 ≤ x ≤ k, false positive examples. Since the
number of errors is fixed, there arek − x false negative examples. Figure3 shows the cor-
responding configuration. The two regions of examples with classification outputs above
and below the threshold are separated by a vertical li ne. For a given x, the computation of
theAUC, A, asgiven byEq. (1) can bedivided into the following threeparts:

A =
A1 + A2 + A3

mn
, with (2)

A1 = thesum over all pairs (xi, yj) with xi andyj in distinct regions;
A2 = thesum over all pairs (xi, yj) with xi andyj in the regionabovethe threshold;
A3 = thesum over all pairs (xi, yj) with xi andyj in the region below the threshold.

The first term, A1, is easy to compute. Since there are (m − (k − x)) positive examples
abovethe threshold andn − x negative examplesbelow the threshold, A1 is given by:

A1 = (m − (k − x))(n − x) (3)

To compute A2, we can assign to each negative example above the threshold a position
based on its classification rank. Let position one be the first position above the threshold
and let α1 < . . . < αx denote the positions in increasing order of thex negative examples
in the region above the threshold. The total number of examples classified as positive is
N = m − (k − x) + x. Thus, by definition of A2,

A2 =
x
∑

i=1

(N − αi) − (x − i) (4)

where the first term N − αi represents the number of examples ranked higher than the ith
example and thesecondterm x − i discounts thenumber of negative examples incorrectly
ranked higher than the ith example. Similarly, let α′

1 < . . . < α′
k−x denotethepositionsof

the k − x positive examplesbelow the threshold, counting positions in reverse by starting
from the threshold. Then, A3 is given by:

A3 =

x′

∑

j=1

(N ′ − α′
j) − (x′ − j) (5)

with N ′ = n − x + (k − x) and x′ = k − x. Combining the expressions of A1, A2, and
A3 leads to:

A =
A1 + A2 + A3

mn
= 1 +

(k − 2x)2 + k

2mn
−

(
∑x

i=1 αi +
∑x′

j=1 α′
j)

mn
(6)



Lemma 2 For a fixed x, theaverage valueof theAUC A is given by:

< A >x= 1 −
x
n

+ k−x
m

2
(7)

Proof. The proof is based on the computation of the average values of
∑x

i=1 αi and
∑x′

j=1 α′
j for a given x. We start by computing the average value < αi >x for a given

i, 1 ≤ i ≤ x. Consider all thepossiblepositionsfor α1 . . . αi−1 andαi+1 . . . αx, when the
value of αi is fixed at say αi = l. We have i ≤ l ≤ N − (x − i) sincethere need to be at
least i−1 positionsbeforeαi andN − (x− i) above. There are l−1 possiblepositionsfor
α1 . . . αi−1 and N − l possible positions for αi+1 . . . αx. Sincethe total number of ways
of choosingthex positionsfor α1 . . . αx out of N is

(

N
x

)

, the averagevalue< αi >x is:

< αi >x=

∑N−(x−i)
l=i l

(

l−1
i−1

)(

N−l

x−i

)

(

N
x

) (8)

Thus,

<

x
∑

i=1

αi >x=

∑x

i=1

∑N−(x−i)
l=i l

(

l−1
i−1

)(

N−l
x−i

)

(

N

x

) =

∑N

l=1 l
∑x

i=1

(

l−1
i−1

)(

N−l
x−i

)

(

N

x

) (9)

Using the classical identity:
∑

p1+p2=p

(

u
p1

)(

v
p2

)

=
(

u+v
p

)

, we can write:

<

x
∑

i=1

αi >x=

∑N

l=1 l
(

N−1
x−1

)

(

N

x

) =
N(N + 1)

2

(

N−1
x−1

)

(

N

x

) =
x(N + 1)

2
(10)

Similarly, we have:

<

x′

∑

j=1

α′
j >x=

x′(N ′ + 1)

2
(11)

Replacing <
∑x

i=1 αi >x and <
∑x′

j=1 α′
j >x in Eq. (6) by the expressions given by

Eq. (10) andEq. (11) leads to:

< A >x= 1 +
(k − 2x)2 + k − x(N + 1) − x′(N ′ + 1)

2mn
= 1 −

x
n

+ k−x
m

2
(12)

which ends theproof of the lemma.

Note that Eq. (7) shows that the average AUC value for a given x is simply one minus the
averageof the accuracy rates for thepositive and negative classes.

Proposition 1 Assume that a binary classification task with m positive examples and n
negative examples is given. Then, the expected valueof the AUC A over all classifications
with k errors isgiven by:

< A >= 1 −
k

m + n
−

(n − m)2(m + n + 1)

4mn

(

k

m + n
−

∑k−1
x=0

(

m+n
x

)

∑k

x=0

(

m+n+1
x

)

)

(13)

Proof. Lemma 2 gives the average value of the AUC for a fixed value of x. To compute
the averageover all possible valuesof x, we need to weight the expression of Eq. (7) with
the total number of possible classifications for a given x. There are

(

N

x

)

possible ways of

choosingthepositionsof thex misclassified negative examples, andsimilarly
(

N ′

x′

)

possible
waysof choosingthepositionsof thex′ = k − x misclassified positive examples. Thus, in
view of Lemma2, the averageAUC isgiven by:

< A >=

∑k

x=0

(

N

x

)(

N ′

x′

)

(1 −
x
n

+ k−x
m

2 )
∑k

x=0

(

N
x

)(

N ′

x′

)
(14)
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Figure3: Mean (left) andrelativestandard deviation(right) of theAUCasafunction of the error rate.
Each curve corresponds to a fixed ratio of r = n/(n + m). The average AUC value monotonically
increases with the accuracy. For n = m, as for the top curve in the left plot, the average AUC
coincides with the accuracy. The standard deviation decreases with the accuracy, and the lowest
curve corresponds to n = m.

Thisexpressioncan besimplified into Eq. (13)3 using the following novel identities:

k
X

x=0

 

N

x

! 

N ′

x′

!

=
k
X

x=0

 

n + m + 1

x

!

(15)

k
X

x=0

x

 

N

x

! 

N ′

x′

!

=
k
X

x=0

(k − x)(m − n) + k

2

 

n + m + 1

x

!

(16)

that we obtained by usingZeilberger’salgorithm4 and numerouscombinatorial ’ tricks’ .

From the expression of Eq. (13), it is clear that the average AUC value is identical to the
accuracy of the classifier only for even distributions (n = m). For n 6= m, the expected
value of the AUC is a monotonic function of the accuracy, seeFig. (3)(left). For a fixed
ratio of n/(n + m), the curves are obtained by increasing the accuracy from n/(n + m)
to 1. The average AUC varies monotonically in the range of accuracy between 0.5 and
1.0. In other words, on average, there seems nothing to be gained in designing specific
learning algorithms for maximizing the AUC: a classification algorithm minimizing the
error rate also optimizes the AUC. However, this only holds for the averageAUC. Indeed,
wewill show in thenext section that thevarianceof theAUC value isnot null for any ratio
n/(n + m) when k 6= 0.

4 The Var ianceof the AUC

Let D = mn + (k−2x)2+k

2 , a =
∑x

i=1 αi, a′ =
∑x′

j=1 α′
j , and α = a + a′. Then, by

Eq. (6), mnA = D − α. Thus, thevarianceof theAUC, σ2(A), isgiven by:

(mn)2σ2(A) = < (D − α)2 − (< D > − < α >)2 > (17)

= < D2 > − < D >2 + < α2 > − < α >2
−2(< αD > − < α >< D >)

As before, to compute the average of a term X over all classifications, we can first deter-
mine itsaverage< X >x for afixed x, and then use the functionF defined by:

F (Y ) =

∑k

x=0

(

N

x

)(

N ′

x′

)

Y
∑k

x=0

(

N
x

)(

N ′

x′

)
(18)

and< X >= F (< X >x). A crucial step in computingthe exact valueof thevarianceof
theAUC is to determinethevalueof the termsof the type< a2 >x=< (

∑x

i=1 αi)
2 >x.

3An essential difference between Eq. (14) and the expression given by [15] is the weighting by
the number of configurations. The authors’ analysis leads them to the conclusion that the average
AUC is identical to the accuracy for all ratiosn/(n + m), which is false.

4We thank Neil Sloane for having pointed us to Zeilberger’s algorithm andMaple package.



Lemma 3 For a fixed x, theaverageof (
∑x

i=1 αi)
2 is given by:

< a2 >x=
x(N + 1)

12
(3Nx + 2x + N) (19)

Proof. By definition of a, < a2 >x= b + 2c with:

b =<

x
∑

i=1

α2
i >x c =<

x
∑

1≤i<j≤x

αiαj >x (20)

Reasoningas in theproof of Lemma2, we can obtain:

b =

∑x

i=1

∑N−(x−i)
l=i l2

(

l−1
i−1

)(

N−l
x−i

)

(

N

x

) =

N
∑

l=1

l2
(

N−1
x−1

)

(

N

x

) =
(N + 1)(2N + 1)x

6
(21)

To computec, westart by computingthe averagevalueof < αiαj >x, for agiven pair (i, j)
with i < j. As in the proof of Lemma2, consider all thepossible positionsof α1 . . . αi−1,
αi+1 . . . αj−1, and αj+1 . . . αx when αi is fixed at αi = l, and αj is fixed at αj = l′.
There are l − 1 possible positions for the α1 . . . αi−1, l′ − l − 1 possible positions for
αi+1 . . . αj−1, andN − l′ possiblepositions for αj+1 . . . αx. Thus, we have:

< αiαj >x=

∑

i≤l<l′≤N−(x−j) ll′
(

l−1
i−1

)(

l′−l−1
j−i−1

)(

N−l′

x−j

)

(

N

x

) (22)

and

c =

∑

l<l′ ll′
∑

m1+m2+m3=x−2

(

l−1
m1

)(

l′−l−1
m2

)(

N−l′

m3

)

(

N
x

) (23)

Using the identity
∑

m1+m2+m3=x−2

(

l−1
m1

)(

l′−l−1
m2

)(

N−l′

m3

)

=
(

N−2
x−2

)

, we obtain:

c =
(N + 1)(3N + 2)x(x − 1)

24
(24)

CombiningEq. (21) andEq. (24) leads to Eq. (19).

Proposition 2 Assume that a binary classification task with m positive examples and n
negative examples is given. Then, the varianceof the AUC A over all classifications with
k errors isgiven by:

σ2(A) = F ((1 −
x
n

+ k−x
m

2
)2) − F ((1 −

x
n

+ k−x
m

2
))2 + (25)

F (
mx2 + n(k − x)2 + (m(m + 1)x + n(n + 1)(k − x)) − 2x(k − x)(m + n + 1)

12m2n2
)

Proof. Eq. (18) can bedeveloped andexpressed in termsof F , D, a, anda′:

(mn)2σ2(A) = F ([D− < a + a′ >x]2) − F (D− < a + a′ >x)2+

F (< a2 >x − < a >2
x) + F (< a′2 >x − < a′ >2

x) (26)

The expressions for < a >x and < a′ >x were given in the proof of Lemma 2, and
that of < a2 >x by Lemma 3. The following formula can be obtained in a similar
way: < a′2 >x= x′(N ′+1)

12 (3N ′x′ + 2x′ + N ′). Replacing these expressions in Eq. (26)
and further simplificationsgive exactly Eq. (25) and provethe proposition.

The expression of the variance is ill ustrated by Fig. (3)(right) which shows the value of
one standard deviation of the AUC divided by the correspondingmean value of the AUC.
This figure is parallel to the one showing the mean of the AUC (Fig. (3)(left)). Each line
is obtained by fixing the ratio n/(n + m) and varying the number of errors from 1 to the
sizeof the smallest class. The more uneven classdistributions have the highest variance,
thevarianceincreaseswith thenumber of errors. Theseobservationscontradict the inexact
claim of [15] that the varianceis zero for all error rates with even distributionsn = m. In
Fig. (3)(right), the even distributionn = m correspondsto the lowest dashed line.



Dataset Size # of n
n+m

AUCsplit [4] RankBoost
Attr. (%) Accuracy (%) AUC (%) Accuracy (%) AUC (%)

Breast-Wpbc 194 33 23.7 69.5 ± 10.6 59.3 ± 16.2 65.5 ± 13.8 80.4 ± 8.0
Credit 653 15 45.3 81.0 ± 7.4 94.5 ± 2.9
Ionosphere 351 34 35.9 89.6 ± 5.0 89.7 ± 6.7 83.6 ± 10.9 98.0 ± 3.3
Pima 768 8 34.9 72.5 ± 5.1 76.7 ± 6.0 69.7 ± 7.6 84.8 ± 6.5
SPECTF 269 43 20.4 67.3 93.4
Page-blocks 5473 10 10.2 96.8 ± 0.2 95.1 ± 6.9 92.0 ± 2.5 98.5 ± 1.5
Yeast (CYT) 1484 8 31.2 71.1 ± 3.6 73.3 ± 4.0 45.3 ± 3.8 78.5 ± 3.0

Table 1: Accuracy and AUC values for several datasets from the UC Irvine repository. The values
for RankBoost are obtained by 10-fold cross-validation. The values for AUCsplit are from [4].

5 Experimental Results

Proposition 2above demonstrates that, for uneven distributions, classifiers with the same
fixed (low) accuracy exhibit noticeably different AUC values. This motivates the use of
algorithmsdirectly optimizing theAUC rather than doingso indirectly viaminimizing the
error rate. Under certain conditions, RankBoost [5] can be viewed exactly as an algorithm
optimizing the AUC. In this section, we make the connection between RankBoost and
AUC optimization, and compare the performanceof RankBoost to two recent algorithms
proposed for optimizingan approximation[15] or locally optimizing theAUC [4].
The objective of RankBoost is to produce aranking that minimizes the number of incor-
rectly ordered pairsof examples, possibly with different costsassigned to themis-rankings.
When the examples to be ranked are simply two disjoint sets, the objective functionmini-
mized byRankBoost is

rloss=
m
∑

i=1

n
∑

j=1

1

m

1

n
1xi≤yj

(27)

which is exactly oneminus the Wilcoxon-Mann-Whitney statistic. Thus, by Lemma1, the
objective functionmaximized byRankBoost coincideswith theAUC.
RankBoost’s optimization is based on combining a number of weak rankings. For our
experiments, we chose as weak rankings threshold rankers with the range {0, 1}, similar
to the boosted stumpsoften used byAdaBoost [6]. We used theso-called Third Methodof
RankBoost for selecting the best weak ranker. According to this method, at each step, the
weak threshold ranker is selected so as to maximizetheAUC of theweighted distribution.
Thus, with this method, the global objective of obtaining the best AUC is obtained by
selecting theweak rankingwith thebest AUC at each step.
Furthermore, the RankBoost algorithm maintains a perfect 50-50% distribution of the
weights on the positive and negative examples. By Proposition 1, for even distributions,
the mean of the AUC is identical to the classification accuracy. For threshold rankers like
step functions, or stumps, thereisno varianceof theAUC, so themean of theAUC isequal
to the observed AUC. That is, instead of viewing RankBoost as selecting the weak ranker
with the best weighted AUC value, one can view it as selecting the weak ranker with the
lowest weighted error rate. Thisis similar to the choiceof thebest weak learner for boosted
stumps in AdaBoost. So, for stumps, AdaBoost and RankBoost differ only in the updat-
ing scheme of the weights: RankBoost updates the positive examplesdifferently from the
negativeones, whileAdaBoost usesone commonschemefor the two groups.
Our experimental results corroborate the observation that RankBoost is an algorithm op-
timizing the AUC. RankBoost based on boosted stumps obtains AUC values that are sub-
stantially better than those reported in the literature for algorithms designed to locally or
approximately optimizetheAUC. Table1 comparesthe resultsof RankBoost onanumber
of datasets from the UC Irvine repository to the results reported by [4]. The results for
RankBoost are obtained by 10-fold cross-validation. For RankBoost, the accuracy and the
best AUC values reported oneach lineof the table correspondto thesame boostingstep.
RankBoost consistently outperformsAUCsplit i n a comparison based onAUC values, even
for thedatasets such asBreast-Wpbc andPimawherethetwo algorithmsobtain similar ac-
curacies. The table also lists results for the UC Irvine Credit Approval and SPECTF heart
dataset, for which the authors of [15] report results corresponding to their AUC optimiza-
tion algorithms. The AUC values reported by [15] are no better than 92.5% for the Credit



Approval dataset and only 87.5% for the SPECTF dataset, which is substantially lower.
From the table, it is also clear that RankBoost is not an error rate minimizationalgorithm.
The accuracy for theYeast (CYT) dataset isas low as45%.

6 Conclusion

A statistical analysis of the relationship between the AUC value and the error rate was
given, including the first exact expression of the expected value and standard deviation of
the AUC for a fixed error rate. The resultsoffer a better understanding of the effect on the
AUC value of algorithms designed for error rate minimization. For uneven distributions
and relatively high error rates, the standard deviation of the AUC suggests that algorithms
designed to optimize the AUC value may lead to substantially better AUC values. Our
experimental resultsusingRankBoost corroboratethis claim.
In separate experiments we have observed that AdaBoost achieves significantly better er-
ror rates than RankBoost (as expected) but that it also leads to AUC values close to those
achieved by RankBoost. It is a topic for further study to explain and understand thisprop-
erty of AdaBoost. A partial explanation could be that, just like RankBoost, AdaBoost
maintainsat each boostingroundan equal distribution of theweights for positive and neg-
ative examples.
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