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Abstract

We present an approach to detect and track moving ob-
Jjects from a moving platform. Moreover, given a global
map, such as a satellite image, our approach can locate
and track the targets in geo-coordinates, namely longi-
tude and latitude. The map information is used as a global
constraint for compensating the camera motion, which is
critical for motion detection on a moving platform. In
addition, by projecting the targets’ position to a global
map, tracking is performed in coordinates with physical
meaning and thus the motion model is more meaningful
than tracking in image coordinate. In a real scenario,
targets can leave the field of view or be occluded. Thus
we address tracking as a data association problem at the
local and global levels. At the local level, the moving
image blobs, provided from the motion detection, are as-
sociated into tracklets by a MCMC (Markov Chain Monte
Carlo) Data Association algorithm. Both motion and ap-
pearance likelihood are considered when local data asso-
ciation is performed. Then, at the global level, tracklets
are linked by their appearance and spatio-temporal con-
sistence on the global map. Experiments show that our
method can deal with long term occlusion and segmented
tracks even when targets leave the field of view.

1 Introduction

One of the goals in video surveillance is to identify and
track all the relevant moving objects in the scene, and to
generate exactly one track per object. This may involve
detecting the moving objects, tracking them while they

are visible, and re-acquiring the objects once they emerge
from an occlusion to maintain identity. This is a very diffi-
cult problem, even more so when the sensor is moving, as
in aerial surveillance scenarios. To track from a moving
camera, we need to project targets at different times into a
common reference frame. Accumulated errors are intro-
duced when fixed coordinates are selected and no further
alignment is performed. Usually the first frame [4] or the
ground plane in the first frame [6] is selected as the refer-
ence frame. Moreover, due to scale change, image coordi-
nates of the targets are not meaningful. Here, we propose
to use a global map (a satellite image) as the reference
frame. By registering UAV (Unmanned Aerial Vehicles)
images with the satellite image, we can generate the ab-
solute geo-location of targets. Also, tracking is performed
in geo-coordinates, which have clear physical meaning.

In surveillance applications, occlusion is common. We
introduce a two-step procedure for tracking with occlu-
sion. The first step (called local association) links de-
tected regions within a sliding window and generates
tracklets. The second step (called global association)
links the tracklets to form longer tracks and maintain
tracks ID.

Local association is essential for successful tracking
since errors in local association are not rectified in the
global one. We formulate the local association as mul-
tiple targets tracking, in which the purpose is to find the
best partition of observation (i.e. detected moving re-
gions) graph. In the global association, by assuming the
maximum speed and acceleration of targets on the geo-
coordinates, we can define the compatibility of tracklets
and this reduces ambiguity in tracklet association. In ad-
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Figure 1: Overview of the tracking framework.

dition, we adopt rotation invariant appearance descriptors
[5] to represent both color and shape distribution of tar-
gets in each tracklets. The flowchart of our framework is
shown in Figure 1.

The paper is organized as follows: we introduce the
geo-registration and tracking coordinates in section 2; the
method to detect moving regions from a moving camera
is presented in section 3. The local data association algo-
rithm and global tracklets association in sections 4 and 5.
Section 6 provides experimental results on real UAV data
set.

1.1 Related work

Digital elevation model (DEM) is usually given in 3D
geo-registration approach [3, 2]. Kumar in [3] pro-
posed a coarse to fine approach for geo-registration. The
coarse initialization is implemented with local appearance
matching using normalized correlation. The fine geo-
registration is acquired by estimated the projection ma-
trix of camera given DEM. Here we assume the scene is
planar and only 2D geo-registration is considered. The
idea of tracklet was proposed in [6], in which a simple
single target tracker is used and the ground plane in the
first frame is used as the common coordinates in tracking.
Recently in [9], the authors introduced a MCMC based
sampling method to address the association of punctual
observations. The posterior distribution assume a prior
knowledge on the detection and the targets’ behavior and
consider only dynamics likelihood.

2 Geo-Registration

In our UAV environment, we assume the scene can be
approximated as a plane. This assumption is reasonable
when the structure on the ground plane is relatively small
compared with the camera height to ground plane. We use
amap M to represent the ground plane. Making this pla-
nar assumption, the transformation between a UAV image
and the map can be represented as a homography, H; s,
namely H,j;I; = M. The transformation between two
UAV images I; and I; can be represented as H,;, i.e.
H;;I; = I;. For the tracking task, we need to define the
targets’ state (position, velocity, dimension, etc.) of dif-
ferent times in a common reference frame, where we can
introduce the motion model of targets, such as constant
velocity motion. The first frame could be selected as the
reference coordinates. However accumulated errors are
then introduced since the Hyo = H;(;_1) - - - Hio need to
be computed. Here we use the map M as the common
coordinates, and each UAV image I; is registered with
M with the homography H, ;. The accumulated error is
reduced by registering the UAV images with the global
map. In addition, it makes more sense to define the mo-
tion kinematics since the geo-coordinates have physical
meaning.

To compute the homography H;,;, we propose a two-
step procedure to register a UAV image sequence to the
global map. In the first step, we compute H;(; 1) reg-
ister consecutive frames using RANSAC to estimate the
best homography to align the feature points in each frame.
Given the homography between two consecutive frames,
the homography H; ; between any two frames can be rep-
resented as follows.

j—1

jH Hygpr1 1<y
Hij = *=t 7 i (D

(Hj)™' i>j
Given an initialization Hy; and the homography H,;q ob-
tained from Eq.1, we roughly align the UAV image with
the global map. In the second step, we refine the reg-
istration by computing the homography between roughly
aligned UAV image and the map. Since UAV images are
captured at different times and in different views with the
satellite image, the color, illumination, and the dynamic
content (such as vehicles, trees and shadow and so on)
could be very different. Thus to find the correspondence



from such two images, we apply mutual information [12]
to establish patch-based correspondence.

Given the correspondence between the roughly aligned
UAV image and the map, again we apply RANSAC to
compute a refined homography. By linking the refined
homography and the initialized homography from the first
step, we can register the UAV image with the map without
incremental accumulated registration error. The detail of
this Geo-registration method can be found in [8]. Figure 2
shows 2000 geo-mosaiced frames overlayed on top of the
map. We can see even after 2000 frames, the registration
is still maintained within a small error bound.

Figure 2: Geo-mosaicing 2000 consecutive frames on top
of the reference frame.

3 Detecting Moving Regions

In a stationary camera, motion in the image sequence is
modeled at the pixel level and a background model is
defined for each pixel using statistical-based techniques.
The concept of background model can be extended to
non-stationary cameras by compensating for the camera
motion before estimating of the background model. We
adopt the sliding window method in [4]. The sliding win-
dow contains W = 2w + 1 frame. We typically use
W = 91. The center frame [. of the sliding window is
selected as the reference frame. The homographies be-
tween consecutive frames can be concatenated to register
the current frame to the selected frame in 1. Every frames
in the sliding window is registered to the reference frame
using H; .. For each pixel p on the reference frame, the
background model is established by computing the mode

of a histogram (size of W) {I;(H.p)},i € [c—w, c+w].
Then The moving region in the reference frame can be
acquired by thresholding the residual image against back-
ground. The sliding window method keeps the accumu-
lation within the half size of sliding window. Erroneous
registrations do not influence the quality of the motion de-
tection for the whole sequence but only the frames within
the sliding window.

4 Local Data Association

Given a set of observations Y over time 7', the local data
association problem is formulated as maximizing a pos-
terior (MAP) of a partition w = {79, 71, T2, ..., Tk } such
that:

2

where 7 is the set of false alarms, 75 is the track k
among K tracks from the given partition. We use a graph
representation of all measurements within the time frame
[0,T]. Lety = {y; : @ = 1,...,n;} denote the obser-
vations at time ¢, Y = U1, 7y is the set of all the
observations during [0,7]. The partition can be explic-
itly drawn from this measurement graph (V, E), where
each measurement ! is represented by a node in V, and
each edge corresponds to a temporal association reflect-
ing spatial properties such as spatial overlap between de-
tected regions. We define a neighborhood in the graph
(V, E) where edges are defined between any two neigh-
boring nodes:

w" = argmax(p(w|Y))

N ={W,vh,) v, — v, || <t vmax)} 3
where v,,,4, 1S the maximum speed of targets.

The posterior distribution for the partition with un-
known number of targets and observations over 1" frames

can be modeled as:

K
P|Y) o [T o) [T ¢(re,75) Q)
k=1 JF#k

where 1 (7y)is the temporal compatibility within one
track, and ¢(7, 7;) is the spatial compatibility between
different tracks respectively. The posterior distribution in
Eq. 4 can be viewed as having two distinct components:
(i) ¥ (73 ) controls the inner-smoothness for each track en-
coded by the joint motion and appearance likelihood (ii)
o (7, 7;) encodes the interaction between different tracks.
We will now discuss each one of these in turn.



4.1 Motion and Appearance Model

Here targets are represented by image blobs. Once a par-
tition w is chosen, the tracks {1, ..., 7x } and false alarms
Tp are determined and for each track the assigned obser-
vations are determined.

To make full use of the observations for target tracking,
we consider a joint probability framework for incorporat-
ing both motion and appearance information. Therefore
1(7y) in Eq. 4 can be represented as follows.

|7 =1
() = [] Pmot(e(tir1) |7 (t1)) Papp (i (ti41]t2)) (5)

Given the geo-registration result, we can map an image
blob from UAV image to the map. We denote xf the state

vector of the target k at time ¢ to be {ZI, ly,w,h, iI, iy
(centroid’s position, width, height and velocity in the 2D
map). We consider a linear kinematic model of constant
velocity dynamics:

k k_k k
ri1 = Az +w

(6)

where A* is the transition matrix, and we assume w*

to be a normal probability distribution, w* ~ N (0, Q¥).
The observation y = (I, l,, w, h] contains the measure-
ment of a target position and size in 2D map. Since obser-
vations often contain false alarms, the observation model
is represented as:

k HFzF + % if it belongs to a target
Ve = { 0t false alarm 7
where y¥ represents the measurement which may arise
either from a false alarm or from the target. We assume
v* to be normal probability distributions, v* ~ N (0, R).
d¢ is a 2D random variable with uniform distribution on
the map.

Let 7 (t;) and P;(73,) denote the posterior estimated
states (i.e. x}, in Eq.6) and posterior covariance matrix of
the estimated error at time ¢ of 7. 74(¢) is the associated
observation (i.e. yz in Eq.7) for track k at time ¢. The mo-
tion likelihood of track 75, of one edge (7% (t1), Tk (t2)) €
E,ty <ty can be represented as Py oion (7x (t2)|7x (1))
Given the transition and observation model in a Kalman
filter, the motion likelihood then can be written as:

T pH-1
1 exp (e i? (Tk)e) @®)

Prot(") = (27)2 det( Py, (70)) ’

where e = 7 (ty) — HA™ 17, (t,) andP,, (71 )can be
computed recursively by a Kalman filter as P, (1x) =
H(APy, 1(m)AT + Q)HT + R.

In order to model the appearance of each detected re-
gion, we adopt a histogram-based appearance of the im-
age blobs. All RGB bins are concatenated to form a one-
dimension histogram. The appearance likelihood between
two connected image blobs (7x(t1), Tk (t2)) € E,t1 < to
in track k, is measured using the symmetric Kullback-
Leibler Distance (KL) is defined as follows, where P(c)
is the bin value of normalized histogram.

g

(C)]

c=r,g,b

4.2 Interaction model

The motion and appearance likelihood models provide
the inner-smoothness constraint for each track indepen-
dently. However, without an a priori knowledge of the
number of targets, the inner-smoothness constraint favors
shorter paths, and therefore tends to split a trajectory into
a large number of sub-tracks. To overcome this overfit-
ting problem, commonly a prior knowledge on the detec-
tion and the targets’ behavior (such as detection and false
alarm rate, termination and birth rate etc.) is assumed
known [9, 1].

We propose to use an interaction model that penal-
izes object overlapping based on Markov random fields
(MRFs) [7, 11] defined on the neighborhood graph. The
joint interaction between all existing nodes over time is
factored as the product of local potential functions at each
node. In this MRF, the cliques are pairs of nodes that are
connected in the graph (V, E). The interaction potential
between 7, and 7; is defined by:

[7p = 1] |75 — 1]

o) = [T I exp(=Do(m (1), m3(m))

=1

(10)

m=1

where p is the spatial overlap between two observa-
tion nodes. The interacting potential is minimum when
the observations have a large spatial overlap and max-
imum when they do not overlap. The introduction of
the inter-track exclusion will prevent from splitting tracks
into smaller tracks when a good overlapping of the regions
exists.



4.3 MCMUC Data association Algorithm

We use a data-driven MCMC for estimating the best par-
tition of the space (). The sampling is guided by the pos-
terior distribution defined in Eq. 4. Here the sampling is
similar in [9]. The difference is that we propose to drive
the sampler, in a probabilistic manner, using both motion
and appearance likelihoods. Moreover, in order to make
the sampler more efficient, we draw samples in both tem-
poral directions: looking forward and backward in time.
This bidirectional sampling gives more flexibility and re-
duces significantly the total number of samples in terms
of convergence.

We use the following notations on the graph structure:
N {(-) is the neighbor set of an observation, i.e. N(y; ) =
{vl,,(yi ,yl,) € E}; Observation y{, € N(y; ) belongs
to the parent set N°(y;, ), child set N?(y; ) exclusively,
when ty < tq or ty > 1.

Extension/Reduction: The purpose of the exten-
sion/reduction move is to extend or shorten the estimated
trajectories given a new set of observations. For the for-
ward extension, we select uniformly at random (u.a.r) a
track 7, from K available tracks, 71, ..., Tx. Let 7 (end)
denote the last node in the track 7. For each node

y € N¢(7x(end)), we have the association probability

_ _pWlTe(end))
P) = S50 (end):

cording to this normalized probability, and then append
the new observation y to 7, with a probability ~, where
0 < v < 1. Similarly, for a backward extension, we con-
sider anode y € NP? (7 (start)) and use reverse dynamics
for estimating the association probability p(y).

The reduction move consists of randomly shortening
a track 7 (u.a.r from K available tracks, 71, ..., Tk ), by
selecting a cutting index r w.a.r from 2, ..., || — 1. In
the case of a forward reduction the track 73 is shortened
to {7%(t1), ..., 7 (t) }, while in a backward reduction we
consider the sub-track {7y (t,.), ..., T (t|r, |) }-

Birth/Death: This move controls the creation of new
track or termination of an existing trajectory. In a birth
move, we select u.a.r anode y € 7p, associate it to a new
track and increase the number of tracks K/ = K + 1.

The birth move is always followed by a extension
move. From the node y we select the extension direc-
tion forward or backward u.a.r to extend the track 7x.
Similarly, in a death move we choose u.a.r a track 7, and
delete it. The nodes belonging to the deleted track are

We associate y and track 7 ac-

added to the unassigned set of measurements 7.
Split/Merge: In a split move, we u.a.r select
a track 75, and a split point t5, which is selected
according to the normalized joint probability be-
tween two consecutive connected nodes in the track:

|7 |—1
(1 = p(7(tig1) |7 (t:))) / 21 (1 = p(7(tig1) 175 (t:))-
And we split T ilnto two new  tracks
To, = {7(t1),,7(ts) } and 7o, = {7 (ts1), 0, T(t)r ) }-
Often, due to missing detection or erroneous detection,
trajectories of objects are fragmented. The merge move
provides the ability to link these fragmented sub-tracks
according to their joint likelihood of appearance and mo-
tion and the interaction based on spatial overlapping. The
merge move operates on the candidate set of track pairs,
for which the start node of one track is the child node of

the end node of the other track and is defined by the set:

Crtnerge = {(Tk177—]€2) * Thy (start) € NC(Tkl (end))}
We select u.a.r pairs of tracks from C}, . . and merge

the two tracks into a new track 7, = {75, } U {7%, }

Switch: In a switch move, we are probing the solution
space for better labeling of nodes that belong to multiple
tracks. We consider the following candidate set of track
pairs.

Cluwiten ={(Thy (t), Ths (tq))  Thy (tp) € NP (7 (ta1)),

Tkz(tq) S Np(Tk’l (tp-‘rl)):kl # kQ}- (11)
We u.a.r select a candidate node from Céwitch and define

two new tracks as:
Tl;1 = {Tkl (t1)7 o0y They (tp)v Tho (thrl)v 05 Tho (tl‘l'k2 \)} and
Thy = {Tha (81), o0y Tho (B), Thy (Ep1) s iy (B, ) -
Online Processing: The complexity of local data as-
sociation depends on the size of the observation graph.
Moreover, the algorithm is performed in a deferred logic
way. The decision is made when all observations in the
graph are available. Thus we implemented the proposed
association algorithm as an online one within a sliding
window which contains the latest 45 frames and only ob-
servations within this sliding window are stored in the
measurement graph. When the sliding window moves,
the partition of the graph at the previous time is used as
initialization.

5 Global Tracklets Association

Although merge/split operation in local data association
can deal with missing detection, local data association



only considers observations within a short time span.
Some situations, such as long occlusions, may cause the
tracker to lose target identification. Increasing the size of
sliding window cannot solve the problem all the time and
increases the complexity. Thus we introduce the global
data association algorithm to associate tracklets to main-
tain track identification.

5.1 Spatio-temporal Consistency

First we define the consistency of in temporal and spatial
relationship between tracklets. Given two tracklets 7, and
T9, which start at time sj, s and terminate at time ¢q,
to. If the condition s; > ty or so > t1 holds, the two
tracklets are temporally consistent. For two temporally
consistent tracklets 7; and 79, say so > t1, the terminating
position and velocity of 71 on the global map is P, and
V4, The starting position and velocity of 7o on the global
map is Ps, and V,. If the || Py, — Py, || < Umaz X (S2—11)
and ||Vz, = Vi, || < amaz X (82 —t1), the two are spatially
consistent as well, where v, and a,,q, represent the
maximum speed and acceleration of targets on the map.

5.2 Tracklet Descriptor

In order to associate the temporally and spatially consis-
tent tracklets, we adopt the appearance model proposed
in [5]. This descriptor is invariant to 2D rotation and scale
change, and tolerates small shape variations. Instead of
applying this descriptor on a single image blob, we use
the descriptor on a tracklet, which contains a sequence of
image blobs.

For each detected moving blob within a tracklet, the
reference circle is defined as the smallest circle contain-
ing the blob. The reference circle is delineated as the 6
bin images in 8 directions depicted in Figure 3. For each
bin 7, a Gaussian color model is built on all the pixels lo-
cated in bin ¢ for all 8 directions and for all image blobs
within the tracklet. Thus the color model for each tracklet
is then defined as a 6D vector by summing the contribu-
tion of each bin image in all 8 directions and for all image
blobs. We can similarly encode the shape properties of
each blob by using a uniform distribution of the number
of edge pixels within each bin, namely a normalized vec-
tor [El(T>7 EQ(T), <o ,EG(T)}.

The appearance likelihood between two compatible

(b) Appearance Shape Model

Figure 3: Appearance descriptor of tracklets

tracklets can be defined:

Papp(Ti; 75) = exp (= A (deotor (Ti, 75) + dedge (73, 7))
(12)
where 7;, 7; are tracklets on which the appearance prob-
ability model is defined.

The appearance distance between two compatible
tracklets is computed using the Kullback-Leibler (KL) di-
vergence. For the color descriptor, since each bin is mod-
eled by a Gaussian model, the KL distance is reduced to:

1 11 o? o}
) = gy S () + 5+ G
(13)
where 113, 115, 0; and o; are the parameters of the color
Gaussian model. For the edge descriptor we use the fol-

lowing similarity measure:

E (1

> (Er(7:) = Er(7))) log =% (14)

N[ =

dedge (Ti, 7j) = Erry)
In the global association, two compatible tracklets will
be assigned the same ID if the distance between the two
tracklets’ appearance is smaller than a threshold. Due to
the existence of both target motion and camera motion,
the target’s orientation could be quite different in differ-
ent tracklets, thus the rotation-invariant property of the
descriptor is quite important for our tracklets association.
In Figure 4, we show the confusion matrix of the sev-
eral tracklets. From the confusion matrix the rotation-
invariant descriptor works very well when tracklets un-
dergo obvious rotation. In addition, illumination may vary



for tracklets acquired at different time. Since the appear-
ance considers the edge information, the appearance can
partially deal with illumination changing.
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Figure 4: (a) represents the first blob of different tracklets
(b) the confusion matrix of tracklets

6 Experimental Results

We show the tracking results on the following two UAV
sequences. Using the longitude and latitude information
coming with image sequences, the map is acquired from
Google Earth. The homography between the first frame
and the map Hy,s is manually selected offline. Figure 5
shows the tracking result on a sequence with one mov-
ing object. Considering the computation cost, the geo-
registration refinement with the map is performed every
50 frames. Figure 5(c) and Figure 5(d) display the track-
ing result on the map. The trajectory of tracklets in Fig-
ure 5(c) is generated using the initial homography be-
tween UAV image and map without refinement. Fig-
ure 5(d) is generated using our geo-registration. It is clear
that the trajectories of tracklets without geo-registration
are out of the road boundary. Since the target is fully oc-
cluded by the shadows of trees, the trajectory of the single
target breaks into tracklets. In real scenarios, the mov-
ing shadow may affect the target’s appearance. We apply
the deterministic nonmodel-based method [10] working
in HSV space to remove the strong moving shadow. How-
ever, due to the noisy moving shadow removal, the target
identity is not fully maintained.

Figure 6 shows the tracking result on the sequence with
multiple moving targets. Again when targets are occluded
by shadows, local data association may lose the track
identification and thus tracklets are formed. The missing
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(c) Trajectory of tracklets (d) Trajectory of tracklets
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Figure 5:
registratoin

Comparison of with and without geo-

detection caused by occlusion even lasts for longer than
the sliding window of local data association (45 frames).
However in global data association, the tracklets are asso-
ciated with correct ID throughout the video. The different
tracks are listed in the Z direction in different colors. Fig-
ure 6(b), 6(c), 6(d) and 6(e) show the beginning frame of
the tracklets of the red truck. Although the appearance of
the white van and the white SUV in 6(b) is quite simi-
lar, the temporal and spatial constraint on the global map
prevents from associating them together.

7 Conclusions and future work

We have proposed a framework to detect and track mov-
ing objects from a moving platform. The geo-registration
with a global map provides us reference coordinates
to geo-locate targets with physical meaning. In geo-
coordinates, correlation between tracklets produced in the
local data association algorithm is evaluated using spatio-
temporal consistency and similarity of appearance. Ex-
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Figure 6: The tracklets and tracks obtained using the local and global data association framework. The UAV image

sequence is overlayed on top of the satellite image.

periments show the local and global association can main-
tain the track ID across long term occlusion.

In the future, we expect to use a discriminative combi-
nation of local features to reacquire targets against long
occlusions. Also, we will investigate the scene under-
standing using the map to reduce false alarms caused by
noisy motion detection.
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