
The (True) Complexity of Statistical Zero Knowledge

(Extended Abstract)

Mihir Bellare� Silvio Micaliy Rafail Ostrovskyz

MIT Laboratory for Computer Science

545 Technology Square

Cambridge, MA 02139

Abstract

Statistical zero-knowledge is a very strong privacy con-
straint which is not dependent on computational limi-
tations. In this paper we show that given a complexity
assumption a much weaker condition su�ces to attain
statistical zero-knowledge. As a result we are able to
simplify statistical zero-knowledge and to better char-
acterize, on many counts, the class of languages that
possess statistical zero-knowledge proofs.

1 Introduction

An interactive proof involves two parties, a prover and
a veri�er, who talk back and forth. The prover, who
is computationally unbounded, tries to convince the
probabilistic polynomial time veri�er that a given the-
orem is true. A zero-knowledge proof is an interac-
tive proof with an additional privacy constraint: the
veri�er does not learn why the theorem is true [11].
That is, whatever the polynomial-time veri�er sees in
a zero-knowledge proof with the unbounded prover of a
true theorem x, can be approximated by a probabilistic,
polynomial-time machine working solely on input x.
A statistical zero-knowledge proof (SZK proof) is one

for which this approximate view cannot be distinguished
from the true view even when given unbounded compu-
tational resources (This will be made more precise in
x2).
Statistical zero-knowledge is indeed a strong privacy

requirement and designing protocols to meet it is a

� Supported in part by NSF grant CCR-87-19689.
y Supported in part by NSF grant DCR-84-13577 and ARO

grant DAALO3-86-K-0171.
z Part of this work was done at Boston University, Department

of Computer Science, partially supported by NSF grant DCR-86-

07492.

formidable task. In fact, we do not have too many ex-
amples of languages possessing SZK proofs. Moreover,
only few properties of this class of languages are known;
most notably the ones proved in [8],[1].

In this paper, we, under a complexity assumption,

(1) Present a simpler condition on a language L which
guarantees that L has a SZK proof, and thus re-
duce the complexity of designing SZK proofs, and

(2) Use this to prove various properties of the class of
languages that possess SZK proofs.

The second result has the form that if some function is
hard to compute, something about SZK proofs becomes
easier. The argument thus has the
avor of a reduction
\against-the-
ow" (an argument of similar
avor is the
one of Yao: if the discrete log problem is hard then RP
is contained in sub-exponential time).
Given that statistical zero-knowledge is a computa-

tionally independent notion, it is somewhat strange that
properties about it could be proved under a computa-
tional intractability assumption. We discuss this point
in x3.3.
In proving the second result above, we actually ex-

hibit a general paradigm for proving that the class of
languages possessing SZK proofs has a given property.
This paradigm is described in x4 and may be of inde-
pendent interest.

2 De�nitions

2.1 Probability Spaces and Algorithms

These notations and conventions for probabilistic algo-
rithms are derived from [12] and further extended.
We emphasize the number of inputs received by an al-

gorithm as follows. If algorithm A receives only one in-
put we write \A(�)"; if it receives two we write \A(�; �)",

1

and so on.
If A is a probabilistic algorithm then, for any input i

the notation A(i) refers to the probability space which
to the string � assigns the probability that A, on input
i, outputs �.
If S is a probability space we denote by PS(A) the

probability that S associates to the set A. If A con-
sists of the single element e we write PS(e) rather than
PS(feg). We denote by [S] the set of elements to which
S assigns positive probability.
If f(�) and g(�; � � �) are probabilistic algorithms then

f(g(�; � � �)) is the probabilistic algorithm obtained by
composing f and g (i.e. running f on g's output). For
any inputs x; y; : : : the associated probability space is
denoted f(g(x; y; � � �)).
If S is a probability space then x S denotes the

algorithm which assigns to x an element randomly se-
lected according to S (that is, x is assigned the value e
with probability PS(e)) (in the case that [S] consists of
only one element e we write x e rather than x feg).
For probability spaces S; T; : : :, the notation

P(p(x; y; � � �) : x S; y T ; � � �)

denotes the probability that the predicate p(x; y; � � �)
is true after the (ordered) execution of the algorithms
x S, y T , etc. The notation

f f(x; y; � � �) : x S; y T ; � � � g

denotes the probability space which to the string � as-
signs the probability

P(� = f(x; y; � � �) : x S; y T ; � � �) ;

f being some function.
If S is a �nite set we will identify it with the probabil-

ity space which assigns to each element of S the uniform
probability 1

jSj . (Then x S denotes the operation of

selecting an element of S uniformly at random).
We let PPT denote the set of probabilistic (expected)

polynomial time algorithms.

2.2 Stastical Indistinguishability of En-

sembles

De�nition 2.1 The probability spaces E1 and E2 are
statistically indistinguishable within � if

jPE1
(T) � PE2

(T)j < �

for all T � [E1] [[E2].

De�nition 2.2 Let L � f0; 1g�. An ensemble with in-
dex set L is a collection fE(x)gx2L of probability spaces,
one for each x 2 L.

De�nition 2.3 The ensembles fE1(x)gx2L
and fE2(x)gx2L are statistically indistinguishable (writ-
ten fE1(x)gx2L �= fE2(x)gx2L) if for any polynomial

p there exists an n such that for all x 2 L of length
at least n, the probability spaces E1(x) and E2(x) are
statistically indistinguishable within 1

p(jxj) .

2.3 Interactive Proof Systems and Zero

Knowledge

Full de�nitions of interactive Turing Machines (ITMs)
and protocols, interactive proof systems, and zero-
knowledge appear in [11]. We only summarize the no-
tation that we use.
The probability that (A;B) accepts the common in-

put x is denoted

P((A;B) accepts x) ;

and the probability space of all conversations between A
andB on input x is denoted (A$B)(x) (the probability
in both cases is taken over the random tapes of both A

and B).

De�nition 2.4 Let (P; V) be an interactive protocol.
If the function e satis�es

� For every x 2 L,

P((P; V) accepts x) � 1� e(jxj) :

� For every ITM bP and every x 62 L,

P((bP; V) accepts x) � e(jxj) :

then we say that the protocol has error probability e

with respect to the language L.

De�nition 2.5 Suppose (P; V) has error probability e
with respect to L. We call (P; V) an atomic proof system

for L if e(n) � 1
3
. We call (P; V) a proof system for L if

e(n) � 2�n.

The view of the veri�er during an interaction with the
prover is everything he sees: that is, his own coin tosses
and the conversation between himself and the prover.
Accordingly we de�ne

De�nition 2.6 Let (P; bV) be an interactive protocol

and let x 2 f0; 1g�. The view of bV on input x is the
probability space

View
(P;bV)(x) = f (R;C) : R f0; 1gp(jxj) ;

C (P$ bV (R))(x) g ;
where p is a polynomial bounding the running time ofbV .
De�nition 2.7 An interactive protocol (P; V) is a sta-

tistical zero knowledge protocol (SZK protocol) for

L if for every polynomial time ITM bV there exists
a PPT algorithm SbV (�) such that fSbV (x)gx2L �=
fView

(P;bV)(x)gx2L (this SbV is called the simulator).

2

Other types of zero-knowledge are de�ned in [11];
namely computational and perfect. The weaker com-
putational notion we will ignore in this paper. Perfect

zero-knowledge means that the ensembles fSbV (x)gx2L
and fView

(P;bV)(x)gx2L are more than statistically in-

distinguishable: they are actually equal. For our pur-
poses, perfect zero knowledge is covered as a special case
of statistical zero-knowledge.
When we say \zero-knowledge" in this paper we al-

ways mean statistical.
The machines P and V of the above de�nitions are

referred to as the prover and the veri�er respectively.
We denote by IP the class of languages possessing inter-
active proofs and SZK the class of languages possessing
statistical zero knowledge interactive proofs.

2.4 The Discrete Log Assumption

For p prime, Z�
p = f1; 2; : : : ; p� 1g forms a cyclic group

under multiplication mod p. For a generator g of this
group the map fp;g : Z�

p ! Z
�
p de�ned by

fp;g(x) = g
x mod p :

is a permutation on Z
�
p .

We let F (p) denote the prime factorization of p � 1.
We consider families of circuits fCkgwhich take as input
a k bit prime p, a generator g of Z�

p , F (p), and a y 2 Z
�
p ,

and output a x 2 Z�
p . The circuit family is of polynomial

size if there exists a polynomial p such that the size of
Ck is at most p(k) for all k.

Discrete log Assumption: Let fCkg be a polyno-
mial sized family of such circuits and p a polynomial.
Then there is a n such that the for all k � n the prob-
ability that Ck(p; g; F (p); y) = f

�1
p;g (y) is �

1
p(k)

when p

is a randomly selected k bit prime, g is a generator of
Z
�
p , and y is randomly selected from Z

�
p .

Note that the inverting circuit is given the prime fac-
torization of p � 1.

3 Main Theorem

Zero-knowledge protocols would be much easier to de-
sign under the restriction that the veri�er did not de-
viate from his prescribed program. Our main theorem
is that the simple condition that there exist a simula-
tor for the honest veri�er is enough, given a complexity
assumption, to attain statistical zero-knowledge.
The idea of reducing the problem of security for arbi-

trary parties to the case of honest parties comes from the
work in secure distributed computing [18],[15]. These
protocols however had computationally bounded par-
ties and only achieved computational zero-knowledge.

3.1 Honest Veri�er Zero Knowledge

Honest veri�er zero-knowledge is a much weaker notion
than zero-knowledge. It only asks that there exist a
simulator for the honest veri�er V . That is,

De�nition 3.1 An interactive protocol (P ; V) for L

is an honest veri�er statistical zero knowledge proto-
col (honest veri�er SZK protocol) for L if there ex-
ists a PPT algorithm S(�) such that fS(x)gx2L �=
fView(P;V)(x)gx2L (this S is called the honest simu-

lator).

3.2 Main Theorem

Our main result is that given a suitable complexity
assumptiony, honest veri�er zero knowledge is in fact
just as strong as zero-knowledge.

Theorem 3.2 Suppose L has an honest veri�er statis-
tical zero knowledge protocol. Then, under the discrete
log assumption, L has a statistical zero knowledge pro-
tocol.

Our proof of this theorem actually establishes something
much stronger. Below we list the properties we achieve.

Properties:

(1) Our proof is an e�ective transformation (what has
been called in the literature a \compiler"): it takes
an honest veri�er statistical zero knowledge proto-
col (P ; V) and returns a statistical zero knowledge
protocol (P; V).

(2) Error probabilities are preserved: if (P; V) had er-
ror probability �e with respect to L then so does
(P; V). In particular, if (P; V) was an (atomic)
proof system for L then so is (P; V).

(3) The cost in interaction is minimal: there is a con-
stant c such that if (P ; V) had m(jxj) rounds on
input x then (P; V) has cm(jxj) rounds on the same
input.

(4) The complexity of P is not much more than that
of P : P is a probabilistic polynomial time machine
that uses P as an oracle.

(5) (P; V) is a black box simulation SZK protocol (see
x4.2 for full de�nitions and discussion of this issue).

Note: We can show that our Theorem 3.2 also holds for
zero-knowledge arguments (the model of [5],[6] in which
the prover is restricted to polynomial time).

y In this paper we use the discrete log assumption. We have

also, however, been able to prove the theorem with a factoring

assumption.

3

3.3 Discussion and Comparison with

Previous Work

The fact that we are achieving statistical zero knowledge
although we have a complexity assumption is one of the
novelties of this work that needs some elaboration.

We have de�ned zero-knowledge interactive proof sys-
tems via three Turing machines: prover, veri�er, and
simulator. In order to better understand the zero-
knowledge notion, it is convenient to also imagine an-
other Turing machine whom we will call the judge. The
judge tries to tell apart the probability spaces SbV (x)
and View

(P;bV)(x). More speci�cally, the judge sees a

number of samples drawn at random from one of these
probability spaces. His job is to determine which space
they came from. Zero-knowledge means that the judge
cannot tell the two probability spaces apart with any
signi�cant probability.

Intuitively, then, the zero-knowledge is stronger if it
can tolerate more powerful judges.

In computational zero knowledge the judge is not
allowed to be more powerful than PPT. Such zero-
knowledge proof systems usually work by encrypting in-
formation securely based on a complexity assumption.
The two probability spaces SbV (x) and View

(P;bV)(x)
might actually consists of entirely di�erent elements: for
example the former might be encryptions of 1s while the
latter is encryptions of 0s. No polynomially bounded
judge can tell these apart. A computationally un-
bounded judge, however, certainly could.

Statistical zero-knowledge corresponds to the much
stronger notion of allowing the judge any amount of
computing power but restricting him to polynomial size
samples to work on. Since the judge is not computation-
ally restricted, it is not clear that complexity assump-
tions will help design such systems. We show, however,
that they do. Our simulator works by generating ex-
actly the correct conversation except on a small set of
bad instances on which it fails, as opposed to compu-
tational zero knowledge proofs, where every simulated
instance may be di�erent from any real conversation.

Statistical zero-knowledge arguments have been de-
signed before using complexity assumptions [5],[6]. In
this model, however, the prover is restricted to be PPT
and the assumption is used against the prover. That
is, if the prover can invert a one-way function, he can
convince the veri�er that some x 2 L belongs to L. We
stress that in our case the prover need not be computa-
tionally bounded.

4 Applications

Theorem 3.2 yields a simple and e�ective two step
paradigm for proving properties of the class of statis-
tical zero-knowledge languages:

� Step 1: Show that a SZK protocol has the property
with respect to the honest veri�er

� Step 2: Transform this protocol via Theorem 3.2,
arguing that the transformation preserves the prop-
erty. The result is a SZK protocol with the property,
under the discrete log assumption.

We believe that this paradigm has wide applicability.
Below we present four examples which will clarify the
methodology.

4.1 Bounding the Complexity of the

Prover

The prover is a function which given a partial conversa-
tion computes his next message. As a function, he has
a certain complexity.
Paul Feldman observed that every language in IP pos-

sesses an interactive proof system whose prover runs
in PSPACE. As SZK � IP it might then seem that a
PSPACE prover is enough for a SZK proof. But in fact
the ZK constraint may require a prover to be more pow-
erful.
So how powerful should a prover be for giving a ZK

proof? This question was raised by Joe Kilian.
Feldman actually showed that a deterministic

PSPACE prover su�ces for IP. However Oren [17]
showed that coin tosses are necessary: only for lan-
guages in BPP do there exist SZK proof systems
with deterministic provers. A natural question then
is whether probabilistic PSPACE is enough. We show
(under a complexity assumption) that this is indeed the
case.
The prover's complexity should not be confused with

the complexity of the underlying language. Thus
the fact that a language possessing a statistical zero-
knowledge proof system lies in AM\ co-AM [8],[1] does
not say anything about the complexity of a SZK prover
for it.
The �rst step in our solution is

Lemma 4.1 Suppose (P 0
; V) is an honest veri�er SZK

protocol for L. Then there exists a probabilistic
PSPACE prover P such that (P ; V) is also an honest
veri�er SZK protocol for L.

Proof: Let S0 be the honest simulator for (P 0
; V). In

order to compute his response to a message from V we
have P use S0 to sample the space of all responses con-
sistent with the current partial conversation. Details
will be given in the �nal paper. 2

4

Remark: Both the error probability with respect to L
and the number of rounds remain the same for (P; V)
as they were for (P 0

; V).

Theorem 4.2 Suppose L has an (honest veri�er) SZK
protocol. Then, under the discrete log assumption, L
has a SZK protocol (P; V) with P of complexity proba-
bilistic PSPACE.

Proof: By Lemma 4.1, L has an honest veri�er SZK
protocol (P ; V) with P being of complexity probabilis-
tic PSPACE. By Theorem 3.2 L then has a SZK pro-
tocol (P; V) with P (by Proposition 4; see x3.2) being
probabilistic PSPACE. 2

Remark: By properties 2 and 3 of Theorem 3.2 and
the above remark, the error probability with respect to
L is the same for (P; V) as it was for the original protocol
while the number of rounds increases by only a constant
factor.

4.2 The Power of Black Box Simulation

The de�nition of zero-knowledge stipulates that for each
(cheating) veri�er there exist a simulator: the simulator

SbV for bV is allowed to depend arbitrarily on bV .
A simpler but more stringent condition would be to

require a single simulator for all veri�ers. To simulate
the view of a speci�c veri�er bV this simulator would usebV as a black box, setting bV 's random tape, giving it
inputs, and receiving outputs. This is known as black
box simulation; we will de�ne it more precisely below.
In principle it may be necessary to have a di�erent

simulator for each veri�er. A surprising fact, however,
is that black box simulation su�ces for all known zero-
knowledge proofs. This leads us to ask whether any
SZK language has a SZK proof of this form. That is
the question we address in this section.

Oren [17] formalized the black box notion by saying
that the simulator was a PPT oracle machine M who
when asked to simulate a particular veri�er bV was given
that veri�er as an oracle:

De�nition 4.3 An interactive protocol (P; V) for L is
a black box simulation statistical zero knowledge (black
box simulation SZK) protocol for L if there exists
a PPT oracle TM M (�) such that for every polyno-

mial time ITM bV it is the case that fMbV (x)gx2L �=
fView

(P;bV)
(x)gx2L (this M is called the black box sim-

ulator).

One has to be a little careful, however, about how one
de�nes the running time of the oracle machine M . M 's
running time is a function only of his input x and is
supposed to be a �xed polynomial p in the length of this

input. Suppose bV used q(jxj) coins on input x and q > p.
How can M even output a string of q(jxj) bits as part
of his simulation? In order to overcome this technical
di�culty we will let M have two random tapes. The
�rst is used by M in the usual fashion and the second
by bV . M can reset bV on its random tape, and can also,
in one step, output the entire string to the left of bV 's
position on this tape.

Under the discrete log assumption we show that black
box simulation is not a restriction on zero-knowledge:

Theorem 4.4 Suppose L has an (honest veri�er) SZK
protocol. Then, under the discrete log assumption, L
has a black box simulation SZK protocol.

Proof: By assumption L has an honest veri�er SZK
protocol. By Theorem 3.2 (Proposition 5; see x3.2) L
then has a black box simulation SZK protocol. 2

The remark made following Theorem 4.2 again applies.

4.3 One-Sided Zero Knowledge

A question that has attracted much research in complex-
ity theory is whether one-sidedness is a restriction for
probabilistic computation. For polynomial time com-
putation the question is whether RP = BPP, and it
remains open.
In the interactive scenario, on the other hand, Gol-

dreich, Mansour and Sipser [13] show that one-sidedness
is not a restriction. They de�ne

De�nition 4.5 An atomic proof system (P; V) for L is
one-sided if P((P; V) accepts x) = 1 for all x 2 L.

and prove that any language in IP has a one-sided
atomic proof system.
But is one-sidedness a restriction when zero-

knowledge is involved? Goldreich, Mansour and Sipser
prove their theorem by showing how to transform a
given proof system for L into another which is one-sided.
The transformation does not preserve zero knowledge:
even if the original protocol had been zero knowledge,
the transformed one may not be. The question that
remained (and was raised in [13]) was: suppose L has
a SZK proof system. Then does L have a SZK proof
system which is one-sided?
As our next application we answer this question in the

a�rmative, under a complexity assumption. We use the
fact that the transformation of [13] does preserve statis-
tical zero-knowledge with respect to the honest veri�er:

Lemma 4.6 [13] Suppose L has an honest veri�er SZK
atomic proof system. Then L has an honest veri�er SZK
one-sided atomic proof system.

5

and our general transformation then enables us to derive

Theorem 4.7 Suppose L has an (honest veri�er) SZK
(atomic) proof system. Then, under the discrete log as-
sumption, L has a SZK one-sided atomic proof system.

Proof: By Lemma 4.6 L has an honest veri�er SZK
atomic proof system (P ; V). By Theorem 3.2 L then
has a SZK atomic proof system with (by Proposition 2;
see x3.2)

P((P; V) accepts x) = P((P; V) accepts x) = 1

for all x 2 L. 2

4.4 Parallelization

The core of almost all known zero-knowledge proof sys-
tems consists of an atomic zero-knowledge proof system
which is then repeated serially, many times, in order to
reduce the error probability to 2�jxj. This serial repeti-
tion maintains zero knowledge. The question of whether
such a price in rounds must be paid in order to reduce
the error probability while maintaining zero-knowledge
has attracted a great deal of research e�ort.
For computational zero-knowledge, it has been shown

that the zero-knowledge does not require a great price
in rounds: one has constant round proofs for NP and
a constant plus m(n) round proofs for languages with
m(n) round proof systems [9], [16].
For statistical and perfect zero-knowledge however,

the research has concentrated on designing round e�-
cient zero-knowledge protocols for particular problems.
For example [3] provides constant round perfect zero-
knowledge proofs for any random self-reducible lan-
guage such as graph isomorphism or quadratic residuos-
ity. In the theorem that follows we, on the other hand,
provide a general mechanism for parallelizing statistical
zero-knowledge proof systems.

Theorem 4.8 Suppose L has an (honest veri�er) SZK
atomic proof system of m(n) rounds. Then, under the
discrete log assumption, L has a SZK proof system of
O(m(n)) rounds.

Proof: Let (P; V) be the protocol which on input x
consists of 6jxj versions of the original SZK atomic proof
system run in parallel. Now observe that (P; V) is an
honest veri�er SZK proof system for L and is of m(n)
rounds. By Theorem 3.2 L then has a SZK protocol
which (by Proposition 2) is a proof system for L and
(by Proposition 3) has O(m(n)) rounds. 2

We actually prove something much stronger. Namely,
we provide a mechanism for running several (potentially
di�erent) zero-knowledge protocols in parallel, under
the assumption that the discrete log problem is hard.
That is, given a collection of zero-knowledge protocols

we show how to compile the entire collection into a sin-
gle protocol which essentially executes all the original
protocols side by side. Thus, whenever many ZK proofs
are used as primitives in some other protocol, our tech-
nique allows us to signi�cantly reduce the number of
rounds of interaction.
We stress that the above results also apply to the

model of zero-knowledge arguments of [5],[6].

5 Proof of Main Theorem

5.1 An Overview

Our solution essentially forces the veri�er to be honest.
The very basic idea is for the veri�er to prove to the
prover , in \zero knowledge," that he is doing at every
stage exactly what the honest veri�er would do. Simu-
lating this transformed protocol involves a combination
of using the simulator for the honest veri�er and simu-
lating the overhead.
What gives a cheating veri�er more power? It is not

just the fact that he can deviate from the program of
the honest veri�er and execute his own protocol. A more
subtle point is that instead of using unbiased coin
ips
fromhis random tape, he may use di�erently distributed
coin
ips. To overcome these di�culties, we begin by
modifying the prover:

(1) the prover will force the veri�er to use truly ran-
dom bits. An immediate di�culty is that the
prover must not know the contents of the ran-
dom tape of the veri�er. How can he force him
to use truly random bits, without the knowledge
as to what they are? The idea is to use something
analogous to \coins
ips into the well" protocol
[4]. However the original \coin
ips into the well"
protocol does not work for our purposes and we
introduce a modi�cation of it. The extra compli-
cation which we encounter here, is the fact that
the conversation must be simulatable in statistical
Zero-Knowledge.

(2) After the prover has \blindly" provided the veri�er
a truly random tape, the veri�er must essentially
\prove" to the prover that he is \behaving hon-
estly". That is, he must convince the prover not
only that he is running the program of the hon-
est veri�er, but also that he is using the random
tape provided to him by the prover. Needless to
say, the veri�er must nonetheless be assured that
the prover cannot cheat. Moreover, the \proving
to the prover" stage must also be simulatable in
statistical zero-knowledge.

At �rst glance, it seems that we are making our life
even more di�cult { we are making the prover more

6

complicated, thus also making the job of the simula-
tor potentially harder. This is actually not the case.
The extra complexity of the protocol will be carefully
exploited by the simulator.
Clearly, our simulator would have to use the simulator

for the honest veri�er as a subroutine. The simulator
for the honest veri�er requires a random tape. Giving
the random tape which the cheating veri�er is using
will not work. The extra complication introduced in
the previous step now comes to our rescue: our simula-
tor will behave like the prover and \blindly" provide a
random tape to the (cheating) veri�er. Then, \rewind-
ing" the cheating veri�er, the simulator will be able to
extract the random tape provided \blindly" in the pre-
vious step. Now, our simulator will be able to call the
simulator for the honest veri�er as a subroutine, with
the knowledge of the coin tosses the cheating veri�er
must use. The intuitive idea is that the cheating veri-
�er will now be forced to behave like an honest veri�er
on the random tape known to our simulator. Thus, our
simulator will perform careful interaction between the
cheating veri�er and an honest simulator and construct
an almost perfect (i.e. statistical) simulation of the de-
sired conversation.

5.2 Witness Independent Proofs for NP

Our protocol requires the ability of the PPT veri�er to
give \proofs of knowledge of a witness" to the in�nitely
powerful prover.

Why are the veri�er's proofs to the prover useful? If
the prover is in�nitely-powerful and the veri�er is poly-
bounded, clearly the veri�er cannot help the prover to
compute anything that the prover could not compute
by himself: after all, the in�nitely powerful prover can
compute anything he wants. However, what the prover
may not know is the state of knowledge of the veri�er. In
essence, using witness-independent proofs, the veri�er
can convince the prover that he knows a witness to some
NP problem without revealing which witness it is that
he knows, out of all the possible ones.
For x 2 L let Wx denote the set of witnesses for x

with some �xed representation. We then de�ne

De�nition 5.1 Let (A;B) be a bounded prover A, in-
�nitely powerful veri�er B interactive proof system for L
which also demonstrates possession of information. We
say that (A;B) is witness independent if for all (com-

putationally unbounded) B̂, for all x 2 L, and for all
w1; w2 2Wx we have

View(A(w1);B̂)
(x) = View(A(w2);B̂)

(x) :

Here A(w) denotes the interactive Turing machine A
which begins with w on its private tape.

For our purposes we require that the protocol be of a
constant number of rounds and simulatable from A's
point of view. Another requirement is that the simulator
should be capable of extracting the exact witness which
A is trying to hide.
We note that [7],[5] and [6] present essentially the

same notion. Although they state it with respect to
a PPT veri�er, it can be extended to work with un-
bounded veri�ers. Note that in our case, the veri�er
plays the role of A and the prover plays the role of B!
To implement a witness independent protocol, we

note that it is enough to execute in parallel zero-
knowledge proofs for NP statements in �xed number
of envelopes. We stress that this protocol is not neces-
sarily zero knowledge in the usual sense. This, however
will not harm our simulation, since the directionality is
reversed. We will elaborate more on this in the �nal
paper.

5.3 Our Protocol

We give just the basic intuition of the proof of
Theorem 3.2. Given (P ; V), we have to construct an-
other prover/veri�er pair (P; V) such that

� (P; V) is also an interactive proof system for L

� For any (cheating) veri�er bV there exists a simulator
SbV .

Our protocol begins with P dealing V a secret random
string. That is, P does not know the string but can
ensure that it is random. However, we do this in such
a way that the simulator can later control this random
string. We proceed as follows, where x of length n is the
common input, and t(n) is a polynomial which bounds
the running time of V :

Step 1:
P generates a random prime number p together with

the prime factorization of p�1. He does this via Bach's
algorithm [2]: he keeps picking random numbers in fac-
tored form until he gets one whose successor is a prime.
He then picks a generator g of Z�

p and a random element
s 2 Z

�
p . he sends p; g; s and the prime factorization of

p� 1 to V .

Step 2:
V checks that p is prime, and using the prime factor-

ization of p� 1 he checks that g is a generator. He now
picks a sequence a1; : : : ; at of random bits, and commits
to them. He does this by picking wi 2 f0; : : : ; p� 2g at
random, and for each i sending the prover

commit(ai) = zi =

�
g
wi mod p if ai = 0
sg

wi mod p if ai = 1

This committal gives P no information since zi is ran-
dom regardless of ai. On the other hand, V cannot later

7

decommitt to a value other than the one he committed
without �nding the discrete log of s.

Step 3:

At this point, we add a \dummy" step. We have V
give P a witness independent proof that he \knows"
how to decommit each of the zi, without revealing any
information about the committed bits. This basic idea
appeared �rst in [11] in the context of quadratic residu-
osity. The proof, however, must be in constant rounds,
and must be from the polynomially bounded veri�er to
the in�nitely powerful prover. The crucial fact about
witness independent proof, is that the simulator will be
able to extract a witness (i.e. decommital of the com-
mitted bits) with overwhelming probability, while it re-
veals absolutely nothing to the prover.

Step 4:

P now picks t bits b1; : : : ; bt at random and sends
them to V . V lets ci = bi � ai for each i = 1; : : : ; t. His
secret random string is then

C = c1c2c3 : : : ct :

The string C is unknown to P because, as pointed out
before, he learns nothing from the committals. More-
over, if either P or V is honest, the string is random.

The next stage of the protocol consists of running the
old (P ; V) protocol (with V playing V and P playing
P) for L on input x, with two modi�cations:

� V , in running V , uses as coins the secret random
string C that he was dealt above

� Every message sent from V to P is accompanied by a
witness independent proof that V would really have
sent this message if his coins were C.

That is, V begins by sending the message �1 that would
have been the �rst message V sent on coins C, and
proves that he did indeed do this. The prover checks
this proof, and if it is incorrect he aborts. Otherwise
he sends whatever response �1 the old prover P would
have sent. And so on.

The witness independent proof that bV sends needs
some elaboration. For example, consider the �rst mes-
sage �1 that he sends P . The statement he will prove,
written out in all its gory detail, is:

9w1 : : :9wt 9a1 : : :9at 9c1 : : :9cthVt

i=1((zi = g
wi) ^ (ai = 0))

_ ((zi = sg
wi) ^ (ai = 1))

^
Vt

i=1 (ci = bi � ai) ^ V (c1c2 : : : ct; �) = �1]

5.4 The Simulator

We now describe the simulator. Recall that by the hy-
pothesis of Theorem 3.2 we are given a simulator SV
for the interaction between P and V . Let bV be any
cheating veri�er for the above protocol. We must now
construct a simulator SbV .
The �rst step of this simulator is to run SV to obtain

a pair (C;�1�1 : : :�m�m) consisting of V 's coin tosses
C = �c1�c2 : : : �ct and the transcript �1�1 : : :�m�m of the
conversation between him and P in which that latter
had C as coin tosses.
SbV now �xes bV 's random tape; that is, he �lls it with

coin tosses from his own random tape. He will now
proceed to generate a simulation of the �rst stage of the
protocol in such a way that the secret random string
dealt to bV will end up being the string C he obtained
above. He does this as follows:

(1) He acts as P would for step 1

(2) He runs bV for step 2 to get his committals
z1; : : : ; zt.

(3) At this point, the simulator uses the \dummy" step
to learn the values w1; : : : ; wt. Informally, he must
�rst run the entire proof once, and then back up
and run it again. It is not a trivial task to show
that this leads to an expected polynomial time al-
gorithmwhich extracts the the witnesses with over-
whelming probability, but it can be done with ar-
guments similar to those used for [14]'s zero knowl-
edge proof of graph non-isomorphism.

(4) Having the wi, the simulator can compute the ai.
He now picks bi = ai � �ci for all i = 1; : : : ; t as
being the prover's response of step 4, and has thus
succeeded in his goal of having C be the secret
random string.

We now come to the stage of the simulation in which
we really capitalize on the honesty we have enforced
on the veri�er. Recall that the simulator has in his
possession the conversation �1�1 : : :�m�m of P and V

when the latter's coins are C. He runs bV and gets what
is supposed to be V 's �rst message if he had C, together
with a proof that this is indeed the case. He examines
the proof and if it is incorrect he aborts as the prover
would have. But if not, then with very high probability,
the message bV sent is really the message �1 that the
simulator expected at this stage. And this message he
can respond to: he just has to send �1.

Continuing in this way the simulator soon has a tran-
script of the entire conversation.

Why is this statistical zero knowledge? The reason is
that the simulator generates exactly the correct conver-
sation except on a certain set of bad instances on which

8

he fails. The latter could happen either if bV managed
to �nd the discrete log of s or if he was able to cheat
the prover in a witness independent proof. The set of
bad instances thus has a total probability that is smaller
than the reciprocal of any polynomial in jxj. Notice how
the way in which the hardness of discrete log is used dif-
fers from the way it is used in [14] where every simulated
instance di�ers from the real conversation.

Full proofs will appear in the �nal paper.

Acknowledgements

We thank Oded Goldreich for helpful comments.

References

[1] Aiello W., and J. Hastad \Perfect Zero-Knowledge
can be Recognized in Two Rounds" FOCS 87.

[2] Bach, E., \How to Generate Factored Random
Numbers," SIAM Journal on Computing 17(2),
179-193 (April 1988).

[3] Bellare, M., S. Micali and R. Ostrovsky, \Perfect
Zero-Knowledge in Constant Rounds," STOC 90.

[4] Blum, M., \Coin Flipping over the Telephone,"
IEEE COMPCON 1982, 133-137.

[5] Brassard, G. and C. Cr�epeau, \Non-transitive
Transfer of Con�dence: A perfect Zero-knowledge
Interactive protocol for SAT and Beyond,"
FOCS 86.

[6] Brassard, G., C. Cr�epeau, and M. Yung, \Every-
thing in NP can be Argued in Perfect Zero Knowl-
edge in a Bounded Number of Rounds," ICALP 89.

[7] Feige, U. and A. Shamir, \Witness Indistinguisha-
bility and Witness Hiding," STOC 90.

[8] Fortnow, L., \The Complexity of Perfect Zero-
Knowledge" STOC 87.

[9] Goldreich, O. and A. Kahn, personal communica-
tion.

[10] Goldreich, O., and H. Krawczyk, \On the Com-
position of Zero Knowledge Proof Systems,"
ICALP 90.

[11] Goldwasser, S., S. Micali, and C. Racko�, \The
Knowledge Complexity of Interactive Proofs,"
SIAM J. Comput., 18(1), 186-208 (February
1989).

[12] Goldwasser, S., S. Micali, and R. Rivest, \A
Digital Signature Scheme Secure Against Adap-
tive Chosen-Message Attacks," SIAM J. Comput.,

17(2), 281-308 (April 1988).

[13] Goldreich, O., Y. Mansour, and M. Sipser, \Inter-
active Proof Systems: Provers that never Fail and
Random Selection," FOCS 87.

[14] Goldreich, O., S. Micali, and A. Wigderson,
\Proofs that Yield Nothing but their Validity",
FOCS 86.

[15] Goldreich, O., S. Micali and A. Wigderson, \A
Completeness Theorem for Protocols with Honest
Majority," STOC 87.

[16] Naor, M. and M. Yung, \Universal One-Way Hash
Functions and their Cryptographic Applications,"
STOC 89.

[17] Oren Y., \On The Cunning Power of Cheating Ver-
i�ers: Some Observations About Zero Knowledge
Proofs", FOCS 87.

[18] Yao, A.C., \How to Generate and Exchange Se-
crets," FOCS 86.

9

