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1. INTRODUCTION

Suppose we have n measurements on each of taking m variables. Collect these
measurements in an n×m matrix Y . In this introductory section we briefly review
two classical factor analysis models, more precisely linear common factor models.
For a more comprehensive discussion we refer to Anderson and Rubin [1956] and
to Anderson [1984].

In common factor analysis we suppose that Y is the sum of a common part and
a unique part. This is analogous to discussing data as composed of a signal and
a noise part (or a fit and error part) in other data analysis contexts. We write the
model, informally, in algebraic form1 as

Y
n×m

= F
n×m

+ U
n×m

,

F
n×m

= H
n×p

A
p×m

,

U
n×m

= E
n×q

D
q×m

.

Thus the common part consists of linear combinations of p common factors, and
the unique part of linear combinations of q unique factors. The model basically
says that both common and unique parts are of low rank. There is also a notion that
the common and unique parts are orthogonal in some sense.
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2. FACTOR ANALYSIS MODELS

There are various ways in which the general idea of factor analysis can be made
more precise by formulating it as an explicit statistical model.

2.1. Random Factor Model. The matrix Y is supposed to be a realization2 of a
matrix-valued random variable Y .

In random score factor analysis we assume that the random variable Y has a random
common part F and a random unique part U . Thus

Y
n×m

= F
n×m

+ U
n×m

.

The common part is a linear combination of a number, say p, of common factors
H, i.e.

F
n×m

= H
n×p

A′
p×m

.

The unique part is a linear combination of a number, say q, of unique factors E.

U
n×m

= E
n×q

D′
q×m

.

The rows of Y , corresponding with the different individuals, are assumed to be
independent. Moreover we assume the specific parts are uncorrelated with the
common factors, and with the other specific parts. For simplicity we assume all
variables are centered, i..e have expectation zero.

2.2. Fixed Factor Model. This, at least, is what the random factor model says.
There is also a fixed factor model, which assumes

Y = F +E.

Now the common part is a bilinear combination of a number of common factor
loadings a js and common factor scores uis, i.e.

F = UA′.

In the fixed model we merely assume the specific parts are uncorrelated with the
other specific parts.

2We use the convention of underlining random variables.
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2.3. Mixed models. The random factor model explained above was criticized
soon after it was formally introduced by Lawley.

The point is that in factor analysis different individuals are re-
garded as drawing their scores from different k-way distributions,
and in these distributions the mean for each test is the true score
of the individual on that test. Nothing is implies about the dis-
tribution of observed scores over a population of individuals, and
one makes assumptions only about the error distributions [Young,
1940, pag. 52].

This quotation suggests the random factor model Y = UA′+E, where E(U) = U .
Let H = U−U , then Y = UA′+HA′+E.

2.4. Bilinear Models.

2.5. Covariance Form. and it follows that if Σ = E(yy′) then

Σ = AΩA′+∆
2,

where Ω = E(tt ′), and where ∆2, the covariance matrix of the specifics, is diagonal.
We see that we can formulate the model as one in which a number random variables
are decomposed, and as a parametric model for the covariance matrix of these
random variables.

The next step is to connect the population model to observations following the
model. The standard approach is to assume we have n repeated independent trials.

2.6. Data Model. So far, we have looked at models of the form Y = F + E or
Y = F +E. This follows the standard statistical practice of embedding our data in
a replication framework by assuming they are realizations of random variables. We
then make calculations on and statements about the random variables, hoping that
we will get back to our data eventually.

Instead of taking this circuitous route, we can also look directly at Y = F +E, with
F =UA′. and U ′U = I,E ′E = D2, and U ′E = 0. This formulates the model directly
in terms of the data. We cannot falsify the model by standard statistical methods,
because there is no replication framework, but the general notions of stability and
fit continue to apply.
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3. ESTIMATION

3.1. Covariance Matrix Methods. The dominant estimation method in factor
analysis is multinormal maximum likelihood for the random factor model. It was
first proposed by Lawley [1939], and then popularized and programmed by Jöreskog
[1967]. The negative log-likelihood measure the distance between the sample and
population covariance model, and we must minimize

L (A,D) = n log |Σ|+n tr Σ
−1S,

with S the sample covariance matrix of Y , and with Σ = AΩA′+∆2.

In Anderson and Rubin [1956] the impressive machinery developed by the Cowles
Commission was applied to both the fixed and random factor analysis model. Max-
imum likelihood was applied to the likelihood function of the covariance matrix,
assuming multivariate normality.

3.2. Data Matrix Methods. Lawley’s maximum likelihood procedures were crit-
icized soon after they appeared by Young [1940].

Such a distribution is specified by the means and variances of each
test and the covariances of the tests in pairs; it has no parameters
distinguishing different individuals. Such a formulation is there-
fore inappropriate for factor analysis, where factor loadings of the
tests and of the individuals enter in a symmetric fashion in a bilin-
ear form [Young, 1940, pag. 52].

Young proposed to minimize the log-likelihood of the data

L = n log |D|+m log |E|+ tr (Y −UA′)′E−1(Y −UA′)D−1

where D and E are known diagonal matrices with column (variable) and row (indi-
vidual) weights. The solution is given by a weighted singular value decomposition
of Y .

The basic problem with Young’s method is that it supposes the weights to be
known. One solution, suggested by Lawley [1942], is to estimate them along with
the loadings and scores. In the more common case, in which there are no person-
weights, we have

L (U,A,D) = n log |D|+ tr (Y −UA′)D−1(Y −UA′)′.
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Lawley suggests to alternate minimization over (U,A), which is done by weighted
singular value decomposition, and minimization over diagonal D, which simply
amounts to computing the average sum of squares of the residuals for each variable.
Iterating these two minimizations produces an algorithm intended to minimize the
likelihood. But unfortunately it does not work.

A rather disconcerting feature of the new method is, however, that
iterative numerical solutions of the estimation equations either fail
to converge, or else converge to unacceptable solutions in which
one of more of the measurements have zero error variance. It is
apparently impossible to estimate scale as well as location param-
eters when so many unknowns are involved [Whittle, 1952, pag.
224]

In fact, if we look at the loss function we can see it is unbounded below. We
can choose loadings to fit one variable perfectly, and then let the corresponding
variance term approach zero [Anderson and Rubin, 1956].

Several other remedies have been proposed to rescue the weighted least squares
methods. Whittle [1952] suggested to take D proportional to the variances of the
variables. This amounts to doing a singular value decomposition of the standard-
ized variables. Jöreskog [1962] makes the more reasonable choice of setting D
proportional to the reciprocals of the diagonals of the inverse of the covariance ma-
trix of the variables (i.e. to the residual variances when regressing each variable on
the others). Of course in these approaches the weights themselves depend on the
data Y , which means that simple weighted least squares theory does not apply.

An original approach was suggested by McDonald [1979]. Also see Etezadi-Amoli
and McDonald [1983]. He proposes to maximize the determinant of the correlation
matrix of the matrix of residuals R = Y −UA′. This criterion can be derived by
using the fact that if we minimize over diagonal D, then

min
D

L (U,A,D) = n log |diagR′R|,

while if we minimize over unrestricted S we have

min
S

L (U,A,S) = n log |R′R|,

The difference of the two is the logarithm of the determinant of the correlation
matrix of the residuals. The approach is clearly scale-free, and the maximum of
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zero is attained if we can make the residuals exactly uncorrelated. Computational
and statistical properties of this so-called maximum likelihood ratio method are
quite complicated, however.

4. A NEW APPROACH

In this paper we introduce a new approach to simultaneous least squares estimation
of both loadings and scores, which moves away even further from the standard
Lawley-Joreskog approach, and is formulated even more directly in terms of the
data.

We simply write

Y = UA′+ED,

and we minimize

σ = tr(Y −UA′−ED)′(Y −UA′−ED)

over (U,E,A,D), requiring U ′U = I,E ′E = I, and U ′E = 0.

The method may seem to be quite similar to the approach proposed by Paul Horst
in his book [Horst, 1965]. Where we differ from Horst is in our additional as-
sumptions that D is diagonal and that E has the same size as the data Y . This puts
us solidly in the common factor analysis framework. Horst, on the contrary, only
makes the assumption that there is a small number of common and residual factors,
and he then finds them by truncating the singular value decomposition. Separat-
ing common and unique factors can be done later by using rotation techniques.
For Horst factor analysis is just principal component analysis with some additional
interpretational tools.

The algorithm to minimize our loss function is of the alternating least squares type.
We start with an initial estimate A(0) and D(0) and then alternate[

U (k) | E(k)
]
∈ procrustus

[
YA(k) | Y D(k)

]
,

A(k+1) = Y ′U (k),

D(k+1) = diag(Y ′E(k)).

As shown in Appendix A, the Procrustus transformation is a set of matrices. We
choose any one of its elements.
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5. BLOCK FACTOR ANALYSIS

The analysis in the previous se3ction can be extended easily to a factor analysis of
sets of variables. Suppose Yj are n×m j matrices, normalized such that Y ′jYj = I.
The loss function we minimize is

σ =
m

∑
j=1

tr (Yj−E0A′j−E jD j)′(Yj−E0A′j−E jD j)

for all A j and D j, and over all E j with E ′jE` = δ j`I for all j and `.

If we define the matrices

Y =
[
Y1 Y2 · · · Ym

]
,

E =
[
E0 E1 · · · Em

]
,

A′ =



A′1 A′2 · · · A′m
D1 0 · · · 0
0 D2 · · · 0
...

...
. . .

...
0 0 · · · Dm


,

then the loss is
σ = tr (Y −EA′)′(Y −EA′),

where E ′E = I.
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APPENDIX A. AUGMENTED PROCRUSTUS

Suppose X is an n×m matrix of rank r. Consider the problem of maximizing
tr U ′X over the n×m matrices U satisfying U ′U = I. This is known as the Pro-
crustus problem, and it is usually studied for the case n ≥ m = r. We want to
generalize to n≥ m≥ r. For this, we use the singular value decomposition

X =
[

K1
n×r

K0
n×(n−r)

] Λ
r×r

0
r×(m−r)

0
(n−r)×r

0
(n−r)×(m−r)


 L′1

r×m

L′0
(m−r)×m

 .

Theorem A.1. The maximum of tr U ′X over n×m matrices U satisfying U ′U = I
is tr Λ, and it is attained for any U of the form U = K1L′1 +K0V L′0, where V is any
(n− r)× (m− r) matrix satisfying V ′V = I.

Proof. Using a symmetric matrix of Lagrange multipliers leads to the stationary
equations X = UM, which implies X ′X = M2 or M = ±(X ′X)1/2. It also implies
that at a solution of the stationary equations tr U ′X = ±tr Λ. The negative sign
corresponds with the minimum, the positive sign with the maximum.

Now

M =
[

L1
m×r

L0
m×(m−r)

] Λ
r×r

0
r×(m−r)

0
(m−r)×r

0
(m−r)×(m−r)


 L′1

r×m

L′0
(m−r)×m

 .

If we write U in the form

U =
[

K1
n×r

K0
n×(n−r)

] U1
r×m

U0
(n−r)×m


then X = UM can be simplified to

U1L1 = I,

U0L1 = 0,

with in addition, of course, U ′1U1 +U ′0U0 = I. It follows that U1 = L′1 and

U0
(n−r)×m

= V
(n−r)×(m−r)

L′0
(m−r)×m

,

with V ′V = I. Thus U = K1L′1 +K0V L′0. �
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APPENDIX B. THE FUNDAMENTAL THEOREM OF FACTOR ANALYSIS

There is a closely related theorem which is known, or used to be known, as the
fundamental theorem of factor analysis. It took the cumulative efforts of many
fine minds, starting with Spearman, about 25 years to come up with a proof of
this theorem. The fact that it follows easily from the singular value decomposition
shows the power of modern matrix algebra tools.

Theorem B.1. Suppose X
n×m

and A
m×p

are such that X ′X = AA′. Then there is an

U
n×p

such that U ′U = I and X = UA′.

Proof. From X ′X = AA′ we know that A has singular value decomposition

A =
[

L1
m×r

L0
m×(m−r)

] Λ
r×r

0
r×(p−r)

0
(m−r)×r

0
(m−r)×(p−r)


 V ′1

r×p

V ′0
(p−r)×p

 ,

where r ≤ p is the rank of both X and A. Observe that the left singular vectors of
A are the right singular vectors of X .

Now we still have to solve X = UA′. Write

U =
[

K1
n×r

K0
n×(n−r)

] U1
r×p

U0
(n−r)×p

 .

Then X = UA′ simplifies to

I = U1V1,

0 = U0V1,

with in addition, of course, U ′1U1 +U ′0U0 = I. It follows that U1 = V ′1 and

U0
(n−r)×p

= W
(n−r)×(p−r)

V ′0
(p−r)×p

,

with W ′W = I. Thus U = K1V ′1 +K0WV ′0. �
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