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Abstract

In this paper, we consider an indefinite Sturm-Liouville operator with eigenparameter-dependent boundary conditions and
transmission conditions. In an appropriate space K, we define a new self-adjoint operator A such that the eigenvalues of
A coincide with those of such a problem and obtain asymptotic approximation for its eigenvalues and eigenfunctions.
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1. Introduction

In recent years, more and more researchers are interested in the discontinuous Sturm-Liouville problem for its application
in physics (Demirci M., 2004, p.101-113 and Buschmann D., 1995, p.169-186). The various physics applications of this
kind of problem are found in many literature, including some boundary value with transmission conditions that arise in
the theory of heat and mass transfer (Aiping W., 2006, p.66-74 and Akdogan Z., 2007, p.1719-1738).

Here we consider a discontinuous Sturm-Liouville problem with the indefinite weight function r(x). By using the technics
of (Kadakal M., 2005, p.229-245 and Kadakal M., 2006, p.1519-1528) and some new approaches, we define a new linear
operator A associated with the problem on an appropriate Krein space K. We discuss its eigenvalues and eigenfunctions,
and derive asymptotic approximation formulas for eigenvalues and eigenfunctions.

In this study, we consider a discontinuous eigenvalue problem consisting of indefinite Sturm-Liouville equation
lu = —(a(x)u’'(x)) + g(xX)u(x) = Ar(x)u(x), x €I (1)
where I = [-1,0) U (0, 1], a(x) = a% for x € [-1,0) and a(x) = a% for x € (0,1], a;, a» are positive real constants,

xr(x) > 0 a.e., r(x),q(x) € L'[I,R], and A € C is a complex eigenparameter; with the eigenparameter-dependent boundary
conditions at the endpoints

L = A u(=1) — a4 (—1)) — (@yu(=1) — apu' (=1)) = 0 )
hu = AB u(l) = By’ (1) + (Bru(l) = Bou’ (1)) = 0 (3)
and the transmission conditions at the point of discontinuity
lsu := u(0+) — azu(0-) — B3u'(0-) = 0 (4)
Lyt := 1 (0+) — aqu(0—) — Bart' (0=) = 0 (5)

where the coefficients «;, 3;, a/} and ,B’j (i= 1,4 and j = 1,2) are real numbers. Throughout this paper, we assume that
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We define the inner product in Lf(l ) as
0 (0 _ 1o 5
[f.gh = —zf figrdx + —zf grdx, Vf, g GLM(I)
al -1 az 0

where fi(x) = f(x)li-1,0) and f2(x) = f(X)l,11. Obviously (L}(D), [-,-]) is a Krein space.
2. An operator formulation in the adequate Krein space

In this section, we introduce the special inner product in Krein space K := LZ(I) & C,, @ C,, and a symmetric operator A
defined on K such that (1)-(5). Namely, we define an inner product on K by

o (. 1o 0 1
[F,G] := —2f f1g rdx + —zf frgordx + —(h,ky + —(q, s) (6)
ay J-1 ay Jo P1 P2

for F := (f,h,q),G := (g,k, 5) € K. Then (LX(I)®C,, ®C,,, [*,-]) is a Krein space, which we denote by L>(1)®C,, & C,,.
A fundamental symmetry on the Krein space is given by

Jo 0 0
J:=| 0 sgnp; 0
0 0 sgno;

where sgnp; € {=1,1},(i = 1,2) and Jy : L2(I) — L*(I) is defined by

(JoNH)(x) = f(x)sgn(r(x)), x € [-1,1]

Let (:,-) = [J:,-], then (-, -) is a positive definite inner product which turns K into a Hilbert space H = (L\2r|(1) eCyp o
Cpos I+, D).
We define the operator A in K as follows:

D(A) = {(f(x).h, q) € K|fi. f] € ACioc((=1,0)), 5. f3 € ACie((0, 1)), 1f € L}(I)
Lf=Lf=0h=a\f(-1)-a)f'(-1), ¢ =B f(1) - Bof" (D}
AF = (If, a1 f(=1) = aaf'(=1), =B f(1) = Bof"(1))) for F = (f, ) f(=1) —ar f'(=1), B (1) = B5f' (1)) € D(A)
For convenience, for (f, h, g) € D(A), set
Ni(f) = a1 f(=1) —aaf'(=1), N{(f) = &  f(=1) = a5 f'(-=1)
No(f) = Buf(1) = Bof (1), Ni(f) = B1f(1) = B5f'(1)
Now we can rewrite the considered problem (1)-(5) in the operator form AF = ArF.

Lemma 2.1 The eigenvalues and eigenfunctions of the problem (1)-(5) are defined as the eigenvalues and the first com-
ponents of the corresponding eigenelements of the operator A, respectively.

Lemma 2.2 The domain D(A) is dense in H.
Proof: Let F = (f(x),h,q) € H, F L D(A) and ESO be a functional set such that

_ ‘,D]()C),)CE[—I,O)
“”‘{¢xmxemJ]

where ¢;(x) € CP[-1,0) and ¢>(x) € C3(0,1]. Since CF ® 0@ 0 ¢ D(A) (0 € C), any U = (u(x),0,0) € CT ® 0 0 is
orthogonal to F, namely

0 ° _ |
r.vy="5 [ pardave = [ pidx= g
al -1 a2 0
This implies that f(x) is orthogonal to 6;0 in L‘zrl(l) and hence f(x) = 0. Next suppose that G; = (g(x), k,0) € D(A), then
(F,Gy) = ﬁh%, so h = 0. Similarly we have ¢ = 0. So F' = (0,0, 0). Hence, D(A) is dense in H.
Theorem 2.3 The linear operator A is self-adjoint in K.

Proof: The operator A is self-adjoint in Krein space K if and only if the operator JA is self-adjoint in Hilbert space H.
For all F,G € D(A). By two partial integrations we obtain

[AF,G] = [F,AG] + 6W(f,8:0-) —OW(f,g:=1) + W(f,g: 1) — W(f,g:0+)
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0 1 — S
+p—1(N1 (/IN{ () = N{(fIN1(g)) + p—z(Né(f)Nz(g) — N2(fIN3(8))

where, as usual, by W(f, g; x) we denote the Wronskians f(x)g’(x) — f'(x)g(x).

Since f and g satisfy the boundary conditions (2)-(3) and transmission conditions (4)-(5), we get

_ 0 — —
oW (f.g:-1) = p—l(Nl(f)N{(g) = N{(/IN1())

1 — —
W(f.g: 1) = p—z(Nz(f)Né(g) = N3 (/IN2(8))

W(f,g;0+) = 0W(f,g;0-)
Then we have [AF, G] = [F,AG] (F,G € D(A)), so A is symmetric, JA is also symmetric.
Let JA = B, Jol = L. If p; <0, then

Liu = Aju(=1) — o5u' (1)) + (@ju(-1) — axt/(-1)) = 0
If p; > 0, then Lyu = [ u. Similarly, if p, < 0, then
Lou := ABju(l) = gou’ (1)) — (Bru(1l) = Bou' (1)) = 0

If p» > 0, then Lyu := Lu. And L3u := lsu, Lyu := lyu. For simplicity, we set p; > 0 and p, > 0.

In the following, we show that for all F' = (f, N{(f),N5(f)) € D(A), s.t. (BF,W) = (F,U). Then W € D(A) and
BW = U, here W = W(x),h,q), U = (u(x),k, 5), i.e. (i) wi,w| € ACioc((=1,0)), wa, W) € ACioe((0, 1)), bw € L7, (I); (i)
h = ayw(=1) = a)w'(-1), g = Byw(1) = Bow'(1); (ii) Zw = Lw = 0; (iv)u(x) = lw; (v) k = ayw(=1) — ;xw'(=1), s =

Biw(l) = Bow'(1).
Forall F € C, ®0&0 C D(A), we obtain

o 1 0 1
= f (Afwlrldx + — f (Afwirldx = = | fulrldx + — f fulrldx
ay J-i a; Jo ay J-1 a; Jo

namely, ({f,w) = (f,u). Hence, by standard Sturm-Liouville theory, (i) and (iv) hold. By (iv), the equation (AF, W) =

(F, U) becomes

(s

Pz_

1 h i 0 ! ON' (kN
i fQ(lf)erIdx+ lf (fwlrldx + ON\ (PR _ NolH)r _ ﬁf Falrldx + lf Flilrdx + 1Nk
a% -1 a% 0 P1 a% -1 a% 0 01

Then _ B B
Afowy = oy + A OV N7 U
L1 P1 P2 P2
However
Afswir =(folw)r + OW(f, w;0-) —OW(f, w; —1) + W(f, w; 1) — W(f, w; 0+)
So

LD _ BNk | NPT sz(f L R

P1 P1 P2
=0(f(=Dw'(=1) = f'(=Dw(=D) + (f(HW' (1) = f(Hw(1)) = (f(O+)W'(0+) — f"(0+)w(0+))
By Naimarks Patching Lemma (Naimark M.A. (1968)) that there exists an F' € D(A) such that
f(0-) = f/(0-) = f(0+) = f'(0+) = 0, f(=1) =), f'(=D) =aj, f(1)=p5 f(1)=6
Thus N{(f) = 0, Ni(f) = 0. Then from (7), (ii) be true. Similarly (v) is proved.

Next choose function F' € D(A) and satisfies
f)y =)= fD)=f(=1) = f(0+) =0, f(0-) = =p3, f'(0-) = —a3, f'(0+) =6
Thus N{(f) = Ni(f) = Ni(f) = N2(f) = 0. Then from (7), we can have

w(0+) = azw(0-) + 3w (0-)
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Similarly we can have
w (0+) = agw(0-) + B4w'(0-)

Corollary 2.4 All eigenvalues of the operator JA are real, and if 1; and A, be the two different eigenvalues of the problem
(1)-(5), then the corresponding eigenfunctions f(x) and g(x) are orthogonal in the sense of

0 1! 0 — 1
_zfﬂfZ'IrIJr—zf f3lrl+ — (@ f(=D) +a f (=)@, 3(=1) - a4g’ (=1) + — (B} f(1) =B f (1))(B18(1) - B58' (1)) = 0
ay J-i as Jo o1l o2

3. Asymptotic approximations of fundamental solutions

Let ¢1,1(x) be the solution of equation (1) on the interval [—1, 0), satisfying the initial conditions
e(=1) = —ay + A}, ¢],(=1) = —a; + Aa] (8)
After defining this solution we can define the solution ¢,,(x) of equation (1) on the interval (0, 1] by the initial conditions
©2(=1) = a3¢12(0) + B3¢7,(0), @5,(=1) = a4912(0) + Bag’ ,(0) 9
Analogously we shall define the solutions y2,(x), x11(x) by initial conditions
x2(1) = o + B3, x5,(1) = Bi + 4B, (10)

Bax24(0) ; B3 X;A(O)’ (0 = 4)21(0) ; asx’,(0)

Let us consider the Wronskians w;(1) := W, (¢;, x;; x) (i = 1,2) which are independent of x € ; and are entire functions,
where Q; = [-1,0) and Q, = (0, 1]. This sort of calculation gives w>(1) = 6w;(1). Now we introduce the characteristic
function w(A) as w(A) := wy(A).

(an

x120) =

Theorem 3.1 The eigenvalues of the problem (1)-(5) consist of the zeros of function w(A).

Proof: Let uy(x) be any eigenfunction corresponding to eigenvalue Ay. Then the function u((x) may be represented in the
form
o(x) = { C112,(x) + Cax1,(x), x € [-1,0)
C30225(%) + Cax240(x), x € (0, 1]

where at least one of the constants ¢; (i = m) is not zero.

Consider the true function /,(ug(x)) = 0,v = 1,4 as the homogenous system of linear equations in the variables ¢; (i = 1,4)
and talking into account (8)-(11), it follows that the determinant of this system is

0 (,L)](/l()) 0 0
0 0 w1(Ap) 0 _w()? 0
5,0 x5, 0) ©21,(0) x2,,0) |7 o

_‘70/2/10 (0) _/\/2,10 (0) ‘10/2,10 (0) X’Z/IO(O)

2

Lemma 3.2 Let Asgnx = s, s = o + it. Then the following integral equations hold for k = 0, 1

k

, s(x+1) a
ﬁ‘ﬁu(x) = (~ay—5’a}) ]

d

2 7 .

+—(—a;—s5°a))— sin
s 1 dxk

sx+1) 1 Cdk o s(x—
+ sin

— | = D sendy (12)
ai ars J_y dx aj

dk
— COS
dx*

d* , d* sX  ap , d* . sx
ﬁﬁé’u(x) = (a3¢12(0) +ﬁ3¢u(0))ﬁ cos " + ?(0!4%/1(0) +ﬁ4‘ﬁu(0))ﬁ sin .

1 T dh . s(x—y)
— — sin
ars Joy dxk ar

qO)p2(y)dy 13)

Proof: Regard ¢;,(x) as the solution of the following non-homogeneous Cauchy problem

aju’ (x) + s*u(x) = g(x)@1(x)
pu(-1) = ~a2 — 0. @], (-1) = ~a1 - £’
Using the method of constant changing, ¢;,(x) satisfies

+1 +1 1 * -
s+ D) + L ay - s*a}) sin sar 1 o f sin =) Meia(x)dy
a; s ap as J-i ai

e1(x) = (s — s%ab) cos

164 ISSN 1916-9795  E-ISSN 1916-9809



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 2, No. 3; August 2010

Then differentiating it with respect to x, we have (12). The proof for (13) is similar.

Lemma 3.3 Let Asgnx = 52, Ims = ¢. Then for a, #0

d* d* s(x+1) s
T = - SZW cos +O(|s| ey (14)
d* N $3 Jd*
P = 183(12 sin ai_dxk cos — + O(sl2er+an)) 15)
1 I
while if @}, = 0
d* d . s(x+1) w1
- _ , . +0 kg 16
P00 = —aals o sin = (Isle) (16)
dr dr L
—@(x) = —B3a] 5% cos 4 cos il + 0(|s|k+1e‘ll(“]1 +“2)) (17
1
dxk a, dx* a

k = 0, 1. Each of this asymptotic equalities hold uniformly for x as |1| — oco.
Theorem 3.4 Let Asgnx = 52, Ims = ¢. Then the characteristic function w(2) has the following asymptotic representations:

Casel a, #0, 8, #0

’ / 6
W) = PP S G 5L oA
apa 29 aq an
Case2 a, #0,8,=0
’ / 5
o) = PPN S Gn S 4 ogspttEE
29 a @
Case3 a5, =0,8,#0
’ 5
(0% 1 _ 1
w(d) = '8361 25 sin 2 cos 2 + 0(|s|4e|’|(“12 a ))
ai ai a
Case4 a,=0,p,=0
1A
s
w(d) = ﬂ3ﬁ19 " cos 2 cos + 0(|s|3 Gy =, ))
a

Proof: The proof is obtained by substituting (15) into the representation

() = Br + ABDe2a(1) = (B2 + AB3)@5,(1)

Corollary 3.5 The eigenvalues of the problem (1)-(5) are semibounded below.
Theorem 3.6 The following asymptotic formulae hold for the real eigenvalues of the problem (1)-(5) with r(x) = sgnx:
Casel a;, #0, 8, #0

V-2, = ai(n—r + 0(%), VA = ax(n— D+ 0(%)
Case2 =0, 8, #0

V=2, = a(n - %)ﬂ + 0(%), VA = ax(n— D+ 0(%)
Case3 a;, #0, 5, =0

V-2, =ai(n— D + 0(%), VA7 = ar(n - %)n + 0(%)
Case4 a;,=0,5,=0

V=2, = ai(n - %)ﬂ+ 0(%), VA = ar(n - %)n + 0(%)
Proof: By applying the known Rouche theorem, we can obtain these conclusions.

4. More accuracy asymptotic formulae for eigenvalues and eigenfunctions

In this section, for the sake of simplicity we assume that a; = a; = 1, aa = 3 = 0, a3 = B4 and the weight function
r(x) = sgnx. We will use the following method to obtain more accurate conclusions.

Similarity with the third section, we can get the following three conclusions:
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Lemma 4.1 Let Asgnx = s%, Ims = ¢. Then @, # 0

k dk dk X gk )
ﬁtpu(x) af’zszﬁ coss(x+1)— a’lsﬁ sins(x+ 1) + < f:l e sin s(x — Y)g(y)@11(y)dy + O(|s* D)
dk dk dk 0 dk
wgoy(x) = —a'zagszw coss(x+1)— a’la3sﬁ sins(x+1) + % Il e sin s(x — y)g(»)1,(y)dy

1 de .
+— f — sin s(x — Y)g()e21()dy + O(lsf e+ D)
s Jo dx

while if a’2 =0

dx d- dc . 1 do k2 1
wgou(x) = —azﬁ cos s(x+ 1) — ] sﬁ sins(x+ 1)+ 3 f} T sin s(x — Y)g)e1.(n)dy + O(|s|*~ Mot ))

d w - d‘ D o ans he® [Td
Ir () = —@@3 7 COS s(x + )—alagsﬁ sins(x+ 1) + S Tk Sin s(x = y)g)e1a(y)dy

f —— sins(x = Y)g(gaa(y)dy + O(|s 21Dy

k = 0, 1. Each of this asymptotic equalities hold uniformly for x as [1] — co.
Theorem 4.2 The characteristic function w(A) has the following asymptotic representations:

Casel a, #0,8,#0

1
w(d) = —a’2a3ﬁ"2s5 sin2s + (@] a3ﬁ'2s4 — a3 sY)cos2s + a/’2cz3,8’2s4 f cos s(1 — y)cos s(1 + y)q(y)dy
0

0
+abasf st f cos s(1 —y)cos s(1 + y)g(y)dy + O(s] ™
-1
Case2 a5, =0,p8,#0

0

wd) =a a3,8’2s cos2s — (azozgﬁzs +a a3ﬁ] s )sm 25+« 013/32 f cos s(1 —y)sins(1 + y)g(y)dy
-1

1
+a) a3 s’ f cos s(1 — y)sin s(1 + y)g(y)dy + O(|s]>*™)
0

Case3 a, #0,5,=0

0
w(d) = —a5a3B] s*cos2s + (a'za3ﬂ2s3 —ajasf) $%)sin2s — aya3f3) s f sin s(1 — y) cos s(1 + y)g(y)dy
-1

1
—dsasf) s f sin s(1 — y) cos s(1 + y)g(y)dy + O(|s|>e*")
0

Case4 a, =0, B, =

0
w(A) = - a3, s°sin2s — (a) @3fos® + a3 s%)cos2s — )i 5 f sin s(1 — y) sin s(1 + y)g(y)dy
-1

1
- a3f 2 f sin s(1 — y) sin s(1 + y)g(y)dy + O(|s|e*™
0

Theorem 4.3 The following asymptotic formulas hold for the real eigenvalues and eigenfunctions of the boundary value
transmission problem (1)-(5):

Caselaé;tO,IB’Z;tO

(=D -G 4“ 7r2a"2 cos L2 1 O(n), x € [-1,0)
Sn = 2 ( ) p(x, ) = _ =12 1) (n=Dr(x+1)
@) 2 (1203 cos —>—+0(n),x € (0, 1]
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Case2cx’2=0, ,8’2;&0

_1y2 _1
_(n— %)ﬂ . 0(1) (r ) = 2 42) 2@, cos (o rtwtl) 2);(“1) + 0(n),x € [-1,0)
Sy = —2 n) ©X, Ap) = (n_%)z 5 (n—%)lr(x+1)
———maaz cos —5—— + O(n), x € (0, 1]

Case3a, #0, 8,=0
_ (oo 2 + 0(1) o(x,A,) = { —("-4%>2nza,2 cos W%)TWH) +0(n),x € [-1,0)

5, = — T2 -1 1
7 . ~82 R0 0 cos 22D L oy, x € (0, 1]

2

Case4a, =0, 8,=0

nm <l) (5. )_{ —ﬂzazcosw +0(1),x € [-1,0)
n ) stn) —

Sp=—+0 2
"2 —Z s cos T+ O(L), x € (0,1]

Theorem 4.4 The following more accuracy asymptotic formulas hold for the real eigenvalues of the boundary value
transmission problem (1)-(5):

Casela, 20, B, #0

GRS V. S L

n + — = =+
s 2 -

1
w7 3)JFO(E) (18)

Case2 =0, 8, #0

_1 #
5 = (- 1 (% B %)+0(’%) (19)

Case3a, #0,8,=0

(n_j)ﬂ 1 0/1 B2 (0] 1
Sy = + — - =+ =)+ 0(= 20
2 (n—%)n(a’z ] 2) (-3) (20)
Case4a,=0,p8,=0
s :E_i(%+@_g)+0(i> Q21
"2 nnl\e] T2 n?

where Q := f_ 01 q(y)dy + fol qy)dy.

Proof: Let us consider Case 1 only.

Putting s, = @r + %,6,1 = O(%) in the equality w(1). We find that

S By 0 ! -
cosdy B Q0 O(Z)) +O(Isal %) (22)

sing, = y v
o By 2

Sn

where Q = f_ 0] q(y)dy + fol q(y)dy. Consequently, from (22) it follows that

2 o B0 1
= el T 2) T OGR) 23)

substituting (23) in 5, = 5 + %, we have (18).
The proof of other cases are similar.
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