
Design and Implementation of whirl2xaif and
xaif2whirl

Nathan Tallent Mike Fagan∗

November 2003

Abstract

In order to connect the Open64 Fortran front end to the xaifbooster differ-
entiation engine, one must develop bridging tools to translate between Open64’s
intermediate representation language (WHIRL) and xaifbooster’s intermediate rep-
resentation (XAIF). This report describes the design and implementation of these
translation tools: whirl2xaif and xaif2whirl.

1 Introduction

Modular source-to-source automatic differentiation (AD) tools use a three-component
design. These components are:

• A front-end to process user programs

• A differentiation engine

• A back-end to convert the differentiation engine output back into a user program

The front-end and the back-end are programming-language-dependent. The three-
component framework, however, permits the differentiation engine to be programming-
language-independent.

We are currently developing a three-component AD tool using the xaifbooster dif-
ferentiation engine. In particular, we are developing a Fortran 90 front/back-end and
the necessary bridging software to use xaifbooster.

To ensure robustness of the AD tool, we sought industrial strength programming-
language-dependent components. Recently, SGI made available the Open64 language
tool set. This tool set was originally intended to be a commercial product, meeting our
desires.

To connect the Open64 components to the xaifbooster differentiation engine, how-
ever, required bridging software. While the Open64 tool set used an intermediate rep-
resentation language named ‘WHIRL’, the xaifbooster engine used a different interme-
diate representation called ‘XAIF’. So, building the system required translation tools,
insightfully named whirl2xaif and xaif2whirl.

∗Thanks to ACTS and LACSI for funding this work

1

The remainder of this report describes various technical details of the design and
implementation of these bridging tools. We have divided it into five sections, excluding
appendices. First, we give some relevant background material on both WHIRL and
XAIF. Secondly we describe the overall design principles of whirl2xaif and xaif2whirl.
Next we devote two sections to describing technical issues involved in the design and
implementation of whirl2xaif and xaif2whirl, respectively. Finally, three appendices
provide more detailed information on selected topics.

2 Background on Intermediate Languages

2.1 WHIRL

WHIRL is the intermediate language of the Open64 compiler. It is generated by the
various front-ends and is used and transformed by the various back-end components.
WHIRL was designed to support such imperative languages as C, C++, Java, Fortran
77 and Fortran 90.

Generally speaking, WHIRL is an abstract syntax tree that targets an abstract C
machine. In order to support 1) compiler optimizations that may operate best on higher
or lower level code, 2) generation of assembly code and 3) generation of high-level
source code, WHIRL is actually classified into five levels, from ‘Very High’ to ‘Very
Low’. 1 ‘Very High’ WHIRL retains many of the properties of C or Fortran source
code while ‘Very Low’ WHIRL resembles assembly code. Because we are ultimately
interested in source-to-source transformations, we exclusively use and generate ‘Very
High’ WHIRL.

To get a sense of what WHIRL looks like, we include a sample. Here is a very
simple Fortran routine:

subroutine head(x, y, z)
double precision, intent(in) :: x,z
double precision, intent(inout) :: y

y=x*y*z

end subroutine

This is the corresponding ‘Very High’ WHIRL (Note that in WHIRL, assignments are
stores (STID) and variable references are loads (LDID).):

LOC 1 1 subroutine head(x, y, z)
FUNC_ENTRY <1,20,head_>

IDNAME 0 <2,1,X>
IDNAME 0 <2,2,Y>
IDNAME 0 <2,3,Z>

BODY
1Not surprisingly, the other levels are ‘High’, ‘Mid’, and ‘Low’.

2

BLOCK
PRAGMA 0 120 <null-st> 0 (0x0) # PREAMBLE_END
LOC 1 4
LOC 1 5 y=x*y*z
F8STID 0 <2,2,Y> T<11,.predef_F8,8>

F8MPY
F8F8LDID 0 <2,3,Z> T<11,.predef_F8,8>
F8MPY

F8F8LDID 0 <2,1,X> T<11,.predef_F8,8>
F8F8LDID 0 <2,2,Y> T<11,.predef_F8,8>

LOC 1 6
LOC 1 7 end subroutine
RETURN
END_BLOCK

For more information on WHIRL see the documentation located in

Open64/documentation

Also see section 8 for a primer on WHIRL symbol table types.

2.2 XAIF

XAIF – XML Abstract Interface Form – provides a language-independent representa-
tion of constructs common in imperative languages, such as C and Fortran. The main
role of the XAIF is to define a layer of abstraction, so that various automatic differen-
tiation algorithms can be expressed in a language-independent manner.

XAIF programs, making common compiler analyses explicit, are written in terms
of call graphs and control flow graphs. Each node in the call graph is a control flow
graph; each node in the control flow graph is a basic block. Basic blocks contain state-
ments; variable references within statements refer to entries in the program’s scoped
symbol table. It should be noted that XAIF constructs such as call graphs and control
flow graphs may notexactlycorrespond to their compiler counterparts. For example,
XAIF basic blocks include subroutine calls and are not necessary of maximal length.

It is important to realize that XAIF was designed to represent only thenumerical
coreof a program: it is self-consciously not the union of common imperative program-
ming languages. For example, it is not possible to represent a Fortran I/O statement in
XAIF. This fact has major ramifications for the design of the bridging tools.

Below is the XAIF of the small Fortran example above, with several elisions.2

<xaif:CallGraph ...>

<!-- ...scoped symbol table removed... -->

2Notice that we did not say “thesmallXAIF of the small Fortran example”!

3

<xaif:ControlFlowGraph vertex_id="1" symbol_id="head" ...>
<!-- ...argument list removed... -->

<xaif:Entry vertex_id="1"/>

<xaif:BasicBlock vertex_id="2" scope_id="2">

<xaif:Assignment statement_id="ass1">
<xaif:AssignmentLHS>

<xaif:SymbolReference ... symbol_id="y" .../>
</xaif:AssignmentLHS>
<xaif:AssignmentRHS>

<xaif:VariableReference vertex_id="1">
<xaif:SymbolReference ... symbol_id="x" .../>

</xaif:VariableReference>
<xaif:VariableReference vertex_id="2">

<xaif:SymbolReference ... symbol_id="y" .../>
</xaif:VariableReference>
<xaif:VariableReference vertex_id="3">

<xaif:SymbolReference ... symbol_id="z" .../>
</xaif:VariableReference>
<xaif:Intrinsic vertex_id="4" name="mul_scal_scal"/>
<xaif:Intrinsic vertex_id="5" name="mul_scal_scal"/>
<xaif:ExpressionEdge ... source="1" target="4" position="1"/>
<xaif:ExpressionEdge ... source="2" target="4" position="2"/>
<xaif:ExpressionEdge ... source="3" target="5" position="1"/>
<xaif:ExpressionEdge ... source="4" target="5" position="2"/>

</xaif:AssignmentRHS>
</xaif:Assignment>

</xaif:BasicBlock>

<xaif:Exit vertex_id="3"/>

<xaif:ControlFlowEdge edge_id="1" source="1" target="2"/>
<xaif:ControlFlowEdge edge_id="2" source="2" target="3"/>

</xaif:ControlFlowGraph>

</xaif:CallGraph>

For more information on XAIF see http://www-unix.mcs.anl.gov/xaif/.

4

3 Principles behind whirl2xaif and xaif2whirl

We have divided the AD task into several discrete steps:

1. Open64’s Fortran 90 front-end (mfef90) produces a WHIRL file

2. whirl2xaif translates the WHIRL into an XAIF file

3. xaifbooster creates a new XAIF file, introducing code to compute derivatives

4. xaif2whirl generates WHIRL from the new XAIF code

5. Open64’s whirl2f back-end generates Fortran source code from the new WHIRL
file.

6. A Fortran post-processor expands certain special tags (produced by xaif2whirl)
in the new Fortran output.

This report is concerned especially with items two and four.
While several technical issues in the WHIRL↔ XAIF translation processes relate

exclusively to WHIRL or XAIF, we first discuss two more broadly important consid-
erations. The first is that WHIRL expresses more information than can be represented
in XAIF. The second is that we use an abstract analysis engine to create things like call
graphs and control flow graphs.

3.1 WHIRL, XAIF and Information Loss

Because XAIF was designed to express only the numerical core of imperative pro-
grams, WHIRL contains much information that cannot be expressed within XAIF.
Some examples include:

• certain control flow constructs such as GOTO, RETURN, SWITCH/CASE

• PRAGMA statements

• IO statements (representing Fortran I/O)

• expressions involving references to structure members

• source code comment tables

• initialization tables; consider the differences between the following Fortran frag-
ments:

! ‘2’ is stored in WHIRL AST (as a constant node)
real :: x
x = 2

! ‘2’ is stored in the WHIRL initialization table
real :: x = 2

5

Because XAIF is ‘lossy’ with respect to WHIRL – and because this lost informa-
tion is crucial both from a correctness and practical viewpoint – we needed to find
some way to preserve the WHIRL information that could not be translated into XAIF.
We chose to cope with this problem by not constructing a completely new WHIRL in-
termediate representation from xaifbooster’s XAIF. Instead, because xaifbooster only
added or replaced new statements and expressions within basic blocks, we decided that
xaif2whirl wouldreuse the originalWHIRL file, generating new WHIRL from the new
XAIF, all at the block and statement level.

In order for this to work – i.e., in order to make use of theoriginal WHIRL file
when generatingnewWHIRL from xaifbooster’s output – we needed a mechanism for
correlating the original WHIRL representation with the XAIF. To illustrate, consider
an example where xaif2whirl reads its inputs – a WHIRL file (from whirl2xaif) and
the xaifbooster XAIF file – and begins translating a node in the XAIF call graph.3

xaif2whirl needs to somehow locate the WHIRL function that corresponds to this call
graph node (or control flow graph). In other words, as xaif2whirl descends into basic
blocks of the control flow graph, it is ready to create new WHIRL statements for the
whole block. But in order to know where to place these statements, it needs to know
where the statements are located in the original WHIRL function. If this information is
known, xaif2whirl can simply delete the statements corresponding to the original block
and replace them with new statements. The modified WHIRL file may than be saved
to disk and translated to new Fortran source code.

There was still another issue, however. xaifbooster operated at the basic block
– not the statement – level, which meant that while the correctness of the original
computation would be preserved, it might generate completely new statements for the
entire basic block. We therefore needed some mechanism for knowing that certain
statements that could not be represented in XAIF would still be preserved. Consider
the case of a basic block that contains a WHIRL RETURN statement. The RETURN
statement cannot be directly represented in XAIF, but removing it from the (original)
WHIRL tree is almost certainly incorrect. The same is true for other items in the above
list, such as WHIRL IO statements. Thus, we needed some way of knowing that a
statement should be preserved even though XAIF could not represent it. Moreover,
we needed to represent this in XAIF in order to instruct xaifbooster to preserve the
relative ordering between the numerical code and these unknown statements. In other
words, it would be incorrect for xaifbooster to reorder a collection of statements by
placing something representing a WHIRL RETURN statement before the derivative
accumulation code for the basic block.

To resolve both of the problems above we introduced two new XAIF constructs.
First, to enable general correlation between WHIRL and XAIF, we added an ‘anno-
tation’ attribute to XAIF nodes. whirl2xaif could fill these attributes with persistent
IDs to various WHIRL constructs such as symbol tables, symbols, functions and nodes
in the function’s WHIRL tree. Second, in order to represent WHIRL statements such
as RETURN and IO, we introduced a new XAIF element, ‘xaif:Marker’. This ele-
ment could represent anything whirl2xaif defined it to mean. Moreover, we changed

3We intentionally omit for now discussion of a most necessary step: inserting the new symbols xaif-
booster creates in the WHIRL symbol table.

6

xaifbooster to view xaif:Marker statements as ‘partitions’ that essentially created mini-
basic blocks: xaifbooster would never change the order of statements with respect to
any surrounding xaif:Marker statements.

To summarize, creating annotation attributes and xaif:Marker elements gave whirl2xaif
the ability to generate persistent IDs for important components of the WHIRL data.
xaif2whirl then was able to use these IDs to locate the original WHIRL information,
and remove, modify or extend it. (See section 6 for more details on the persistent
IDs.) Because xaifbooster only modified code at the basic block level, leaving the call
graph and control flow graphs intact, much of the original WHIRL information could
be successfully reused.

In this connection, we should make explicit some implications that follow from
this design. First, xaif2whirl cannot arbitrarily change or create new control flow. (At
present, xaif2whirl cannot change or createany control flow, but it should be able
to handle a few certain well-defined and simple transformations that may be needed
for reverse-mode AD.) Secondly, because XAIF requires tools to define the precise
meanings of the annotation attribute and xaif:Marker element, XAIF data files become
tool-dependent. While xaifbooster can work with any XAIF file, xaif2whirl willonly
work with XAIF data originally generated by whirl2xaif. We can note, though, that
this is not simply a limitation of xaif2whirl: because the extra information that cannot
be encoded in XAIF must be preserved in some fashion, all front-ends to xaifbooster
will need to generate some sort of tool-specific data.

3.2 OpenAnalysis

OpenAnalysis (OA) is an open source analysis engine for imperative/procedural lan-
guages such as a compiler’s intermediate language. OA defines a generic, abstract
interface for representing constructs and information in the language. When an OA
user couples the abstract OA interface to a particular language, OA can perform certain
inter-procedural, control flow and data-flow analyses. Until recently, OpenAnalysis has
largely been a nice concept, based on assumptions that significantly limited its practical
use. See the OpenAnalysis README for more information.

Because Open64’s analysis code was (and is) not cleanly compartmentalized, it
was not possible, for example, to use Open64 to create a control flow graph without
also dealing with most of the rest of the analysis code. For this reason, and because we
also wanted an abstract analysis engine that could be used by another group working
on a C front-end to xaifbooster, we chose to begin devoting the resources necessary to
transform OA into something that could be used by full-scale compiler intermediate
languages.

We extended some work begun by Jason Eckhardt in order to create an OA ab-
stract interface for WHIRL. With this, we could use OA’s control flow graph builder,
the most robust of its analysis engines. We later extended OA to create simple call
graphs (assuming no function parameters or pointers). Work is presently underway to
significantly improve OA’s data flow analysis.

Because OA’s analysis engines performed compiler-targeted analysis, they did not
always exactly conform to what we needed. For example, XAIF control flow graphs
had some peculiar characteristics. This required us to have a ‘post-processing’ pass to

7

perform the minor transformations necessary for converting the graph into XAIF. See
section 7 for more details on this.

4 Design and Implementation of whirl2xaif

whirl2xaif was derived from Open64’s whirl2f, though by now it has been significantly
modified.

Here is a big-picture sketch of the translation process:

Create global persistent ID maps (SymTab, PU)
Create an OA call graph
Create and emit XAIF ScopeHeirarcy for XAIF CallGraph
For each OA call graph vertex that represents a function definition

Translate the WHIRL function into XAIF
Create local persistent ID maps (WHIRL nodes)
Create an OA control flow graph
For every basic block in the OA control flow graph

For every statement in the OA basic block
Emit XAIF for the statement

Instead of creating a complete XAIF internal representation (such as a DOM Tree),
we decided that whirl2xaif would construct only a minimal set of ancillary data struc-
tures. In order to translate WHIRL’s PU-forest into XAIF, we created a call graph and
control flow graphs using OpenAnalysis. However, these two graphs merely guided
the order of translation. Because translation was strictly sequential, it was easy to use
stream output. All important translation context information was stored in an ‘Xla-
tionContext’ object which maintained an internal stack of translation contexts and was
passed by reference to nearly all routines involved in the translation. The ‘Xlation-
Context’ both stored data structure pointers (such as persistent id maps) and provided
useful contextual information (indicating, e.g., that the current expression was part of
an xaif:VariableReference). Generally speaking, the ‘XlationContext’ was designed
to represent the translated XAIF content instead of the source WHIRL content. We
imposed the convention that a function would assume that its caller provided all the
context it needed within the passed ‘XlationContext’. Moreover, a function would as-
sume that the passed output stream was ready to accept whatever output it was assigned
to emit. This, of course implied that callers would prepare both the ‘XlationContext’
and output stream for any callees.

In XAIF, expressions are represented as DAG’s. However, instead of creating ex-
plicit graph structures to guide the translation – as we did with the control flow graph
– we exploited the DAG property and created the graphs implicitly while recursively
traversing the WHIRL tree. In order for this to work, we imposed the convention that
all functions involved in the translation would emit the XAIF expression graphs as if
they were nodes in a top-down expression tree. When this convention was followed,
the translation could safely emit the XAIF graph edges for nodes generated earlier in
the recursion stack.

8

5 Design and Implementation of xaif2whirl

Translation from XAIF to WHIRL is harder than the reverse and is conceptually similar
to a compiler’s front end.

Here is a big-picture sketch of the translation process:

Create global persistent ID maps (SymTab, PU)
Enter new symbols from XAIF ScopeHeirarcy into WHIRL symbol tables
For each XAIF call graph vertex

Translate the XAIF control flow graph into WHIRL
Create local persistent ID maps (WHIRL nodes)
For every basic block in the XAIF control flow graph

Remove corresponding statements in WHIRL tree
Create new WHIRL statements from XAIF and insert into WHIRL tree

As was previously indicated, we decided that xaif2whirl would not create a com-
pletely new WHIRL file. Rather, it would reuse the original WHIRL information,
replacing only blocks of statements. As was also mentioned above, we decided that it
would use persistent the ID information embedded in annotation attributes and xaif:Marker
elements to correctly modify the WHIRL symbol table and to remove and replace
WHIRL statement. Also, as in whirl2xaif, we developed a version of ‘XlationContext’
to conveniently communicate contextual information and facilitate the translation.

One of the most important parts of translation was correctly defining and correlating
statement intervals between XAIF and WHIRL. Because xaifbooster could potentially
replace all statements between xaif:Markers and because xaif:Markers were used to
represent only certain statements, we stored a list of persistent statement IDs in the
enclosing xaif:BasicBlock element. This list of persistent IDs precisely defined what
original WHIRL statements were part of the basic block. When combined with the in-
formation within xaif:Markers – which represented statement that should be preserved
– we could precisely define the statement interval sets that were to be replaced.

In order to mitigate some of the difficulties of creating WHIRL from a language like
XAIF, we allowed xaif2whirl to employ two moderating assumptions. First, the critical
standard by which xaif2whirl would be judged was the unparsed source code that the
whirl2f back-end generated (excluding back-end bugs!). The significance of this was
that while xaif2whirl was required to create correct WHIRL, it did not necessarily need
to create efficient or fully complete WHIRL. For example, when creating assignment
statements, xaif2whirl could always use the more general (and possibly less efficient)
ISTORE node, instead selecting between ISTORE and STID. When creating subrou-
tine or function calls, it could conservatively tag all arguments as pass-by-reference
(even if the called function might allow for pass-by-value). Finally, when creating ar-
ray references, there was no need to specify extent information for each dimension. (If
known at compile time, this information would already be in the symbol table, enabling
generation of correct declarations by whirl2f.)

The second moderating assumption we employed was that, if convenient, we would
allow a Fortran post-processor to expand special tags inserted by xaif2whirl and pre-
served by whirl2f. In order to compute derivatives, xaifbooster would turn all appro-

9

priate variables into structures that contained on one hand the original variable and on
the other hand the derivative of that variable. This meant that wherever this structure
was used, the variable’s Fortran type declaration needed to change. Instead of forcing
xaif2whirl to change the WHIRL symbol table and also to turn scalar references into
structure member references, we decided to simply generate special tags around the ref-
erences and require that the post-processor both change the types and the references.
Because a scheme like this was used in the original Adifor, we knew that it would work.
More importantly, we already had a post-processor that needed only minimal changes.
In the future, however, we may try to shift the burden of the post-processor’s work onto
xaif2whirl and make all necessary changes in WHIRL.

6 Appendix A: WHIRL Persistent IDs

xaif2whirl relies on the following WHIRL persistent IDs.

Symbol tables (‘STTAB’) Symbol table IDs are guaranteed to be unique among all
program units (the PU-forest). They can be simply and safely generated because
the order of PUs remains the same between whirl2xaif and xaif2whirl.

Symbols Symbol IDs simply correspond to the STTAB indices embedded within a
ST IDX. These are guaranteed to be unique within the STTAB.

Program Units (‘PU’) Program unit IDs are guaranteed to be unique among all pro-
gram units (the PU-forest). They can be simply and safely generated because the
order of PUs remains the same between whirl2xaif and xaif2whirl.

WHIRL nodes (‘WN’) Created by a depth first search numbering, guaranteed to be
unique within the WHIRL PU.

7 Appendix B: OpenAnalysis Post-Processor

At present, the OpenAnalysis post-processor only manipulates the OA’s control flow
graph.

The OA control flow graph post-processor contains two passes.
First, OpenAnalysis creates basic blocks with labels at the beginning and branches

at the end. For example, for ‘TWOWAYCONDITIONAL’ statements (an OA classifi-
cation), OA may generate basic blocks (BBs) such as:

Code: | BBs:
x = 5 | x = 5
if (x .eq. 5) then | if (x .eq. 5)

x = 6 | _______/_________
else | / \

x = 7 | x = 6 x = 7
... | \------- ---------/

| \/

10

|

While OA creates correct BBs, in order to create valid XAIF, the first BB must be
split so that the if condition can be placed within xaif:If. We create a new BB here so
that the translation into XAIF is easy:

<xaif:BasicBlock>
<xaif:Assignment...
</xaif:Asignment>

</xaif:BasicBlock>

<xaif:If>
<xaif:Condition...
</xaif:Condition>

</xaif:If>

Second, OA places the initialization and update nodes of WHIRL DOLOOPs
in the appropriate basic block: they are virtually (but not really) spliced out of the
DO LOOPs. For example an DOLOOP node with initialization, condition, update,
and a block of statements may become:

....
DO_LOOP initialization

|
v

DO_LOOP condition <--------------|
_______/________ |

/ \ |
| DO_LOOP statements |
| DO_LOOP update ---|
v

.....

Because XAIF can preserve and exploit high level control structures such as DOLOOP,
we want toremovethe initialization and update statement so they can be placed in the
special ‘xaif:ForLoop’ construct. More importantly, xaif2whirl also depends on this
transformation.

8 Appendix C: WHIRL Symbol Table types primer

WHIRL’s symbol table can be difficult to work with. What follows are some important
things we have learned about it. As always, see the WHIRL symbol table documenta-
tion for more information.

11

First, it is implemented in C++ (templates and classes) with a C function wrappers
for an interface! Most likely (or one hopes!) this has something to do with code reuse,
where the symbol table implementation was rewritten but its interface was preserved.

Secondly, WHIRL’s scoped symbol table works as advertised for intra-procedural
operations. However, once one desires examine symbol tables in an inter-procedural
fashion, the full moon rises and the werewolf starts to howl. Or at least it seems that
way.

Most significantly in this connection, it is important to realize that a WHIRL PU
– program unit, representing a procedure or function – isnot a self-contained encap-
sulation. Instead, it is a wrapper for a WHIRL tree and some PU specific symbol
tables. However, nodes in the WHIRL tree contain symbol table references that donot
point directly into these tables, but refer to tables within the global Scopetab[] (Scope
Table), the table of thecurrent visible lexical scopes. Consequently, while multiple
WHIRL trees and symbol table can reside in memory, the only way to access the sym-
bols for a PU is when it is within thecurrent lexical scope. Hence all the symbol table
references in other WHIRL trees effectively point to junk. The global ‘current’ point-
ers must be updatedeach timeone moves to a different PU. Because Open64 did not
provide a good way of switching between PUs during inter-procedural algorithms, we
developed a tolerable way of doing so.

Thirdly, types in the WHIRL symbol table are sometimes difficult to keep straight.
The following is a symbol table types primer (that might nicely supplement the WHIRL
symbol table documentation).

SYMTAB Not actually a type, but refers to all of the tables at a particular level/scope.
Besides a global scope, there is a local scope for each nested PU. Each scope
contains a number of different tables, some of which are common to all levels
(e.g. STTAB) and some of which are specific to global (e.g. PUTAB) or local
levels (e.g. LABELTAB).

SYMTAB IDX The type of an index into the scope table Scopetab[]. The global
scope is always at the index GLOBALSYMTAB; the scope for the current lex-
ical PU is at index CURRENTSYMTAB. (This is set by the WHIRL reader
function ReadLocal Info().)

ST TAB The type of the symbol table proper, a table that appears at all lexical levels.

ST IDX A two-part index into any STTAB within the Scopetab[]. The two-part bit
field contains an index into the STTAB at a certain lexical level.

ST The type of a STTAB entry.

Scopetab[] An array of SCOPEs, indexed by SYMTABIDX, the lexical level. A
SCOPE contains pointers to all the tables for a lexical level, including a STTAB.

St Table[] Essentially a class wrapper for Scopetab[] with member functions for
indexing both the Scopetab[] and the appropriate STTAB with a ST IDX. (TA-
BLE INDEXED BY LEVEL8 AND INDEX24)

12

