STACKS, QUEUES, AND
LINKED LISTS

e Stacks

 Queues

 Linked Lists

* Double-Ended Queues

« Case Study: A Stock Analysis Applet

Stacks, Queues, and Linked Lists




Stacks

» A stackis a container of objects that are inserted and
removed according to thast-in-first-out(LIFO)
principle.

« Objects can be inserted at any time, but only the last
(the most-recently inserted) object can be removed.

 Inserting an item is known as “pushing” onto the
stack. “Popping” off the stack is synonymous with
removing an item.

A PEZ® dispenser as an analogy:

Stacks, Queues, and Linked Lists 2



The Stack Abstract Data Type

o A stack is arabstract data typ@ADT) that supports
two main methods:

- pushp): Inserts objecb onto top of stack
Input Object; Output none

- pop(): Removes the top object of stack and

returns it; if stack is empty an error occur
Input none; Output Object
* The following support methods should also be
defined:
- size(): Returns the number of objects in sta¢

Input none; Output integer

- ISEmpty(): Return a boolean indicating if stack i$

empty.
Input none; Output boolean

- top(): return the top object of the stack,
without removing it; if the stack is
empty an error occurs.

Input none; Output Object

J

Stacks, Queues, and Linked Lists 3



A Stack Interface in Java

 While, the stack data structure is a “built-in” class ¢

Java’sava.util package, it is possible, and sometime

preferable to define your own specific one, like th

public interface Stack {
/I accessor methods

public int size(); // return the number of
/Il elements in the stack

public boolean isEmpty(); // see if the stack
Il'is empty

public Object top() // return the top element
throws StackEmptyException; // if called on
[/ an empty stack
/[ update methods

public void push (Object element); // push an
// element onto the stack

public Object pop() // return and remove the
I/ top element of the stack

throws StackEmptyException; // if called on
I/l an empty stack

Stacks, Queues, and Linked Lists 4



An Array-Based Stack

» Create a stack using an array by specifying a
maximum sizeN for our stack, e.gN = 1,000.

* The stack consists of &ftelement arrays and an
Integer variable, the index of the top element in
arrayS.

o 1 2 t N-1
* Array indices start at 0, so we initializéo -1

 Pseudo-code

Algorithm size():
returnt +1

Algorithm isEmpty():
return (<0)

Algorithm top():
If iIsEmpty()then
throw a StackEmptyException
returngt]

Stacks, Queues, and Linked Lists 5




An Array-Based Stack (contd.)

* Pseudo-Code (contd.)

Algorithm push():
If size() =N then
throw aStackFullException
t—t+1

Jt] < 0

Algorithm pop():
If iIsEmpty()then
throw a StackEmptyException
e gt]
qt] < null
t—t-1
return e

 Each of the above method runs in constant time

(0(1))
* The array implementation is simple and efficient.

e There is an upper bounhl, on the size of the stack.
The arbitrary valué&l may be too small for a given
application, or a waste of memory.

Stacks, Queues, and Linked Lists 6




Array-Based Stack: a Java
Implementation

public class ArrayStack implements Stack {

/I Implementation of the Stack interface
/[ using an array.

public static final int CAPACITY = 1000; // default
I/ capacity of the stack

private int capacity; // maximum capacity of the
I stack.

private Object S[]; // S holds the elements of
Il the stack

private int top = -1, // the top element of the
I stack.

public ArrayStack() { // Initialize the stack
I/ with default capacity

this (CAPACITY);

}

public ArrayStack(int cap) { // Initialize the
Il stack with given capacity

capacity = cap;
S = new Obiject[capacity];

Stacks, Queues, and Linked Lists




Array-Based Stack in Java
(contd.)

public int size() { //Return the current stack
I size

return (top + 1);

}

public boolean isEmpty() { // Return true iff
I/ the stack is empty

return (top < 0);

}

public void push(Object obj) { // Push a new
/] object on the stack

if (size() == capacity)
throw new StackFullException(“Stack overflow.”);
S[++top] = obj;
}

public Object top() // Return the top stack
I/ element

throws StackEmptyException {
if (IsEmpty())
throw new StackEmptyException(“Stack is empty.”);
return S[top];

}

Stacks, Queues, and Linked Lists 8




Array-Based Stack in Java
(contd.)

public Object pop() // Pop off the stack element
throws StackEmptyException {
Object elem;
if (IsEmpty())
throw new StackEmptyException(“Stack is Empty.”);

elem = S[top];

S[top--] = null ; // Dereference S[top] and

// decrement top
return elem;

}

Stacks, Queues, and Linked Lists 9




Casting With a Generic Stack

 Have an ArrayStack that can store only Integer
objects or Student objects.

 In order to do so using a generic stack, the return
objects must be cast to the correct data type.

« A Java code example:

public static Integer[] reverse(lnteger[] a) {
ArrayStack S = new ArrayStack(a.length);
Integer[] b = new Integer[a.length];
for (inti=0; i< alength; i++)
S.push(a[l]);
for (inti=0; i< alength; i++)
bl = (Integer)(S.pop());
return b;

Stacks, Queues, and Linked Lists 10



Stacks in the Java Virtual
Machine

e Each process running in a Java program has its @
Java Method Stack.

« Each time a method is called, it is pushed onto th
stack.

* The choice of a stack for this operation allows Jay
to do several useful things:

- Perform recursive method calls
- Print stack traces to locate an error

« Java also includes an operand stack which is use(
evaluate arithmetic instructions, i.e.

Integer addg, b):
OperandStack Op
Op.pushd)

Op.pushi)

templ— Op.pop()
temp2~ Op.pop()
Op.pushiempl + tempp
return Op.pop()

wWn

e

] to

Stacks, Queues, and Linked Lists 11



Java Method Stack

_ I
main () {
int iI=5;
0
0
()
14 cool(i);
fool: .
PC =320 .
m=7 }
cool: cool (int ) {
PC =216 int k=7;
=5 .
k=7 ¢
216 fool(k);
main: .
PC=14 "
=5 }
320 fool (int m) {
Java Stack Y
}
J
Java Program
Stacks, Queues, and Linked Lists 12




Queues

* A queue differs from a stack in that its insertion an
removal routines follows thirst-in-first-out(FIFO)
principle.

* Elements may be inserted at any time, but only th
element which has been in the gqueue the longest
may be removed.

* Elements are inserted at tf@ar (enqueuepand
removed from théront (dequeued)

Front Rear

Queue

Stacks, Queues, and Linked Lists 13



The Queue Abstract Data Type

* The queue supports two fundamental methods:

- enqueuad): Insert objecb at the rear of the queue
Input Object; Output none

- dequeue(): Remove the object from the front of
the queue and return it; an error
occurs if the queue is empty
Input none;  Output Object

* These support methods should also be defined:

- size(): Return the number of objects in the
queue
Input none;  Output integer

- iIsEmpty(): Return a boolean value that indicates
whether the queue is empty
Input none;  Output boolean

- front(): Return, but do not remove, the front
object in the queue; an error occurs if
the queue is empty
Input none;  Output Object

Stacks, Queues, and Linked Lists 14



An Array-Based Queue

» Create a queue using an array in a circular fashig
A maximum sizeN Is specified, e.gN = 1,000.

* The queue consists of &element array) and two
Integer variables:

- f, iIndex of the front element
- 1, Index of the element after the rear one

* “normal configuration”

0 1 2 f r N-1

* “wrapped around” configuration

01 2 r f N-1

 what doe$=r mean?

Stacks, Queues, and Linked Lists 15



An Array-Based Queue (contd.)

* Pseudo-Code (contd.)

Algorithm size():

return (N - f+r) modN
Algorithm isEmpty():

return (f=r)
Algorithm front():

If iIsEmpty()then

throw a QueueEmptyException
return QJf]

Algorithm dequeue():
If iIsEmpty()then
throw a QueueEmptyException
temp — Q[f]
Q[f] « null
f « (f+ 1) modN
return temp

Algorithm enqueue):
If size =N - 1then
throw a QueueFullException
Q[r] ~ o
r — (r +1) modN

Stacks, Queues, and Linked Lists 16




Implementing a Queue with a

Singly Linked List

* nodes connected in a chain by links
head tail

N\ N\

( Rome) ( Seattle) ( Toron@

1T R [T & |* T

» the head of the list is the front of the queue, the t4

of the list is the rear of the queue

* why not the opposite?

Stacks, Queues, and Linked Lists

17



Removing at the Head

head tail

X N

A1 b B U o e W £ g B W L el B
( Rome) ( Seatt@ C Toron@

e advance head reference

head tail

//_—\\
[ \

r==rn"

) e 1e\9» o\ ——p o\ o——p o\ .____.>,[]

[T W S T |

| \ \
| \ |

\ |
\\\J ( Rome) ( Seatt@ ( Toron@

* inserting at the head is just as easy

Stacks, Queues, and Linked Lists

18




Inserting at the Tall

e create a new node

head tan

//_—\\
/ \
\

« [ \ s [F=0 1 o iel

I e |o|—\->|:|

_\_ —

l
|
|
|

|

\

Rome Seattle Toronto Zurlch |

e chain it and move the tail reference

head tail
N N
|

( Seattle) ( Toron@ ( Zurich)

* how about removing at the tail?

Stacks, Queues, and Linked Lists 19




Double-Ended Queues

* A double-ended queuer deque supports insertion
and deletion from the front and back.

 The Deque Abstract Data Type

- InsertFirstg): Insert e at the deginning of deque
Input: Object; Output: none

- insertLasté): Insert e at end of deque
Input: Object; Output: none

- removeFirst() Removes and returns first elemen
Input: none; Output: Object

- removelast() Removes and returns last elemen
Input: none; Output: Object

« Additionally supported methods include:
- first()
- last()
- size()
- ISEmpty()

Stacks, Queues, and Linked Lists 20




Implementing Stacks and
Queues with Deques

« Stacks with Deques:

Stack Method Deque :
Implementation
size() size()
ISEmpty() ISEmpty()
top() last()
push(e) iInsertLast(e)
pop() removelLast()
* Queues with Deques:
Deque
Queue Method Implementation
size() size()
ISEmpty() ISEmpty()
front() first()
enqueue() insertLast(e)
dequeue() removeFirst()

Stacks, Queues, and Linked Lists

21




The Adaptor Pattern

* Using a deque to implement a stack or queue is &g
example of thedaptor patternAdaptor patterns
Implement a class by using methods of another c

 In general, adaptor classes specialize general clg

e Two such applications:

- Specialize a general class by changing some
methods.

Ex: implementing a stack with a deque.

- Specialize the types of objects used by a general

class.

Ex: Defining anntegerArrayStacklass that
adaptsArrayStackto only store integers.

lass

ISSES

Stacks, Queues, and Linked Lists 22



Implementing Deques with
Doubly Linked Lists

* Deletions at the tall of a singly linked list cannot be
done in constant time.

* To implement a deque, we usda@ubly linked list
with special header and trailer nodes.

header trailer

| b‘ |~ b\.
.\Jb \ .‘\_’ \ .‘\_" \ .‘J

« A node of a doubly linked list hasn@xtandaprev
link. It supports the following methods:

setElement(Object e)
setNext(Object newNext)
setPrev(Object newPrgv
getElement()

- getNext()

- getPrev()

* By using a doubly linked list to, all the methods of a
deque have constant (that is, O(1)) running time.

Stacks, Queues, and Linked Lists 23



Implementing Deques with
Doubly Linked Lists (cont.)

 When implementing a doubly linked lists, we add

two special nodes to the ends of the lists: leader
andtrailer nodes.

- The header node goes before the first list eleme
It has a valid next link but a null prev link.

- The trailer node goes after the last element. It has a
valid prev reference but a null next reference.

A"

nt.

 The header and trailer nodes are sentinel or
“dummy” nodes because they do not store elements.

e Here’s a diagram of our doubly linked list:

header trailer

<5 <5 45 4N
JEAN  [IEAP & [N ¢ [

Stacks, Queues, and Linked Lists 24



Implementing Deques with
Doubly Linked Lists (cont.)

» Let's look at some code for removeLast()
public class MyDeque implements Deque{
DLNode header , trailer ;
Int size_;

public Object removeLast() throws
DequeEmptyException{
if iIsEmpty())

throw new DequeEmptyException(“llegal
removal request.”);

DLNode last = trailer _.getPrev();
Object o = last.getElement();
DLNode secondtolast = last.getPrev();
trailer_.setPrev(secondtolast),
secondftolast.setnext(trailer );
size  --;
return o;

}

Stacks, Queues, and Linked Lists




Implementing Deques with
Doubly Linked Lists (cont.)

* Here’s a visualization of the code femovelast().

header secondtolast last trailer

v

CED R D (5o e

b\ hb A"\.
1" YY1 LYo

) a
.‘\-"

|~
g

last

header secondtolast Atrailer
Ve N

|~ | |~ ” o \
S NP P P A

header trailer

A—\b b‘ " A——\.
SN—L L USY~—" ¢ YT Yo

\

(New York) (Providenc}

Stacks, Queues, and Linked Lists 26




A Stock Analysis Applet

* The span of a stock’s price on a certain diys the
maximum number of consecutive days (up to the
current day) the price of the stock has been less than
or equal to its price odq.

» Below, letp; ands be the span on day

So=1
— S5=6
~ N
51=1
— S5=
f T
S3=2
T
S=1 sp=1
— —

Po P1 P2 P3 P4 Ps5 Pe

Stacks, Queues, and Linked Lists 27



A Case Study: A Stock Analysis
Applet (cont.)

e Quadratic-Time Algorithm: We can find a
straightforward way to compute the span of a stoq
on a given day fon days:

Algorithm computeSpansBj:
Input: Ann-element array’ of numbers
Output: Ann-element arrays of numbers such that
gi] is the span of the stock on day
Let Sbe an array of n numbers
for i=0to n-1do
K <0
done- false
repeat
if P[i-k] <PJi] then
K—k+1
else
done-true
until (k=1) or done
Si] <k

return arrayS

« The running time of this algorithm is (ugh!) Gfn
Why?

\J
x

Stacks, Queues, and Linked Lists 28



A Case Study: A Stock Analysis
Applet (cont.)

 Linear-Time Algorithm: We see that si on day i can
be easily computed if we know the closest day
preceding i, such that the price is greater than on that
day than the price on day i. If such a day exists let's
call it h(i).

* The span is now defined as si =1 -h(i)

Po P1 P2 P3 P4 Ps Pe
The arrows point to h(i)

Stacks, Queues, and Linked Lists 29



A Case Study: A Stock Analysis
Applet (cont.)

* The code for our new algorithm:

Algorithm computeSpan®).
Input: Ann-element array’ of numbers
Output: Ann-element arrays of numbers such that
gi] is the span of the stock on day
Let Sbe an array oh numbers an® an empty stack
for i=0to n-1do
done- false
while not(D.isEmpty()or dong do
if P[i]=P[D.top()] then
D.pop()
else
done—true
if D.isEmpty()then
he -1
else
h— D.top()
i] <i-h
D.push()
return arrayS

» Let's analysize computeSpan2’s run time...

Stacks, Queues, and Linked Lists 30




A Case Study: A Stock Analysis
Applet (cont.)

e The total running time of the while loop is

-1 |:|
ODI Zo(ti + 1)D

« However, once an element is popped off the stack

IS never pushed on again. Therefore:
n—-1
3 ti <n
i =0

e The total time spent in the while loop is O(n).

e The run time of computeSpan2 is the summ of thry
O(n) terms. Thus the run time of computeSpan?2 |
O(n).

It

ce
S

Stacks, Queues, and Linked Lists 31



