
1Stacks, Queues, and Linked Lists

STACKS, QUEUES, AND
LINKED LISTS

• Stacks

• Queues

• Linked Lists

• Double-Ended Queues

• Case Study: A Stock Analysis Applet



2Stacks, Queues, and Linked Lists

Stacks
• A stackis a container of objects that are inserted and

removed according to thelast-in-first-out (LIFO)
principle.

• Objects can be inserted at any time, but only the last
(the most-recently inserted) object can be removed.

• Inserting an item is known as “pushing” onto the
stack. “Popping” off the stack is synonymous with
removing an item.

• A PEZ® dispenser as an analogy:
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The Stack Abstract Data Type
• A stack is anabstract data type (ADT) that supports

two main methods:

- push(o): Inserts objecto onto top of stack
Input: Object; Output: none

- pop(): Removes the top object of stack and
returns it; if stack is empty an error occurs
Input: none; Output: Object

• The following support methods should also be
defined:

- size(): Returns the number of objects in stack
Input: none; Output: integer

- isEmpty(): Return a boolean indicating if stack is
empty.
Input: none; Output: boolean

- top(): return the top object of the stack,
without removing it; if the stack is
empty an error occurs.
Input: none; Output: Object
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A Stack Interface in Java
• While, the stack data structure is a “built-in” class of

Java’sjava.util package, it is possible, and sometimes
preferable to define your own specific one, like this:

public interface Stack {

    // accessor methods

public int size(); // return the number of
// elements in the stack

public boolean isEmpty(); // see if the stack
// is empty

public Object top() // return the top element

throws StackEmptyException; // if called on

// an empty stack

// update methods

public void push (Object element); // push an
// element onto the stack

public Object pop() // return and remove the
// top element of the stack

throws StackEmptyException; // if called on
// an empty stack

}
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An Array-Based Stack
• Create a stack using an array by specifying a

maximum sizeN for our stack, e.g.N = 1,000.

• The stack consists of anN-element arrayS and an
integer variablet, the index of the top element in
arrayS.

• Array indices start at 0, so we initializet to -1

• Pseudo-code

Algorithm  size():
returnt +1

Algorithm  isEmpty():
return (t<0)

Algorithm  top():
if  isEmpty()then

throw a StackEmptyException
returnS[t]

...

S
0 1 2 N−1t

...
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An Array-Based Stack (contd.)
• Pseudo-Code (contd.)

Algorithm  push(o):
if  size() =N then

throw aStackFullException
t ← t + 1
S[t] ← o

Algorithm  pop():
if  isEmpty()then

throw a StackEmptyException
e←S[t]
S[t]←null
t←t-1
return e

• Each of the above method runs in constant time
(O(1))

• The array implementation is simple and efficient.

• There is an upper bound,N, on the size of the stack.
The arbitrary value N may be too small for a given
application, or a waste of memory.
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Array-Based Stack: a Java
Implementation

public class  ArrayStack implements  Stack {
  // Implementation of the Stack interface

// using an array.

public static final int CAPACITY = 1000; // default
// capacity of the stack

private int  capacity; // maximum capacity of the
// stack.

private  Object S[]; // S holds the elements of
 // the stack

private  int top = -1; // the top element of the
// stack.

public  ArrayStack() { // Initialize the stack
// with default capacity

this (CAPACITY);

    }

public  ArrayStack(int  cap) { // Initialize the
// stack with given capacity

        capacity = cap;

        S = new  Object[capacity];

    }
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Array-Based Stack in Java
(contd.)

public int  size() { //Return the current stack
// size

 return  (top + 1);

    }

public boolean  isEmpty() { // Return true iff
// the stack is empty

return (top < 0);

    }

public void push(Object obj) { // Push a new
// object on the stack

if  (size() == capacity)

throw new  StackFullException(“Stack overflow.”);

        S[++top] = obj;

    }

public  Object top() // Return the top stack
 // element

throws  StackEmptyException {

if  (isEmpty())

throw new StackEmptyException(“Stack is empty.”);

return  S[top];

    }
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Array-Based Stack in Java
(contd.)

public  Object pop() // Pop off the stack element

 throws  StackEmptyException {

    Object elem;

if  (isEmpty())

throw new StackEmptyException(“Stack is Empty.”);

    elem = S[top];

    S[top--] = null ; // Dereference S[top] and

// decrement top

return  elem;

    }

}
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Casting With a Generic Stack
• Have an ArrayStack that can store only Integer

objects or Student objects.

• In order to do so using a generic stack, the return
objects must be cast to the correct data type.

• A Java code example:

public static  Integer[] reverse(Integer[] a) {

ArrayStack S = new  ArrayStack(a.length);

Integer[] b = new  Integer[a.length];

for  (int i = 0; i < a.length; i++)

S.push(a[i]);

for  (int i = 0; i < a.length; i++)

b[i] = (Integer)(S.pop());

return b;
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Stacks in the Java Virtual
Machine

• Each process running in a Java program has its own
Java Method Stack.

• Each time a method is called, it is pushed onto the
stack.

• The choice of a stack for this operation allows Java
to do several useful things:
- Perform recursive method calls
- Print stack traces to locate an error

• Java also includes an operand stack which is used to
evaluate arithmetic instructions, i.e.

Integer add(a, b):
OperandStack Op
Op.push(a)
Op.push(b)
temp1← Op.pop()
temp2← Op.pop()
Op.push(temp1 + temp2)
return  Op.pop()



12Stacks, Queues, and Linked Lists

Java Method Stack

Java Program

main () {

cool(i);

int i=5;

}

cool (int j) {

fool(k);

}

14

216

int k=7;

fool:
PC = 320

fool (int m) {

}

320

m = 7

cool:
PC = 216
j = 5
k = 7

main:
PC = 14
i = 5

Java Stack
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Queues
• A queue differs from a stack in that its insertion and

removal routines follows thefirst-in-first-out(FIFO)
principle.

• Elements may be inserted at any time, but only the
element which has been in the queue the longest
may be removed.

• Elements are inserted at therear (enqueued) and
removed from thefront (dequeued)

...a0 a1 a2 an-1

Front Rear

Queue
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The Queue Abstract Data Type
• The queue supports two fundamental methods:

- enqueue(o): Insert objecto at the rear of the queue
Input: Object; Output: none

- dequeue(): Remove the object from the front of
the queue and return it; an error
occurs if the queue is empty
Input: none; Output: Object

• These support methods should also be defined:

- size(): Return the number of objects in the
queue
Input: none; Output: integer

- isEmpty(): Return a boolean value that indicates
whether the queue is empty
Input: none; Output: boolean

- front(): Return, but do not remove, the front
object in the queue; an error occurs if
the queue is empty
Input: none; Output: Object
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An Array-Based Queue
• Create a queue using an array in a circular fashion

• A maximum sizeN is specified, e.g.N = 1,000.

• The queue consists of anN-element arrayQ and two
integer variables:
- f, index of the front element
- r, index of the element after the rear one

• “normal configuration”

• “wrapped around” configuration

• what doesf=r mean?

N−10 1 2

Q ...

rf

...Q

N−10 1 2 fr



16Stacks, Queues, and Linked Lists

An Array-Based Queue (contd.)
• Pseudo-Code (contd.)

Algorithm  size():
return  (N - f + r) mod N

Algorithm  isEmpty():
return  (f = r)

Algorithm  front():
if  isEmpty()then

throw a QueueEmptyException
return Q[f]

Algorithm  dequeue():
if  isEmpty()then

throw a QueueEmptyException
temp← Q[f]
Q[f] ← null
f ← (f + 1) modN
return temp

Algorithm  enqueue(o):
if  size =N - 1 then

throw a QueueFullException
Q[r] ← o
r ← (r +1) modN
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Implementing a Queue with a
Singly Linked List

• nodes connected in a chain by links

• the head of the list is the front of the queue, the tail
of the list is the rear of the queue

• why not the opposite?

head

Rome Seattle Toronto

∅

tail
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Removing at the Head

• advance head reference

• inserting at the head is just as easy

head

Baltimore Rome Seattle Toronto

∅

tail

head

Baltimore Rome Seattle Toronto

∅

tail
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Inserting at the Tail
• create a new node

• chain it and move the tail reference

• how about removing at the tail?

head

Rome Seattle Toronto

∅

tail

Zurich

∅

head

Rome Seattle Toronto Zurich

∅

tail
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Double-Ended Queues
• A double-ended queue, ordeque, supports insertion

and deletion from the front and back.

• The Deque Abstract Data Type
- insertFirst(e): Insert e at the deginning of deque.

Input: Object; Output: none
- insertLast(e): Insert e at end of deque

Input: Object; Output: none
- removeFirst(): Removes and returns first element

Input: none; Output: Object
- removeLast(): Removes and returns last element

Input: none; Output: Object

• Additionally supported methods include:
- first()
- last()
- size()
- isEmpty()
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Implementing Stacks and
Queues with Deques

• Stacks with Deques:

• Queues with Deques:

Stack Method
Deque

Implementation

size()
isEmpty()
top()
push(e)
pop()

size()
isEmpty()
last()
insertLast(e)
removeLast()

Queue Method
Deque

Implementation

size()
isEmpty()
front()
enqueue()
dequeue()

size()
isEmpty()
first()
insertLast(e)
removeFirst()
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The Adaptor Pattern
• Using a deque to implement a stack or queue is an

example of theadaptor pattern. Adaptor patterns
implement a class by using methods of another class

• In general, adaptor classes specialize general classes

• Two such applications:
- Specialize a general class by changing some

methods.
Ex: implementing a stack with a deque.

- Specialize the types of objects used by a general
class.

Ex: Defining anIntegerArrayStack class that
adaptsArrayStack to only store integers.
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Implementing Deques with
Doubly Linked Lists

• Deletions at the tail of a singly linked list cannot be
done in constant time.

• To implement a deque, we use adoubly linked list.
with special header and trailer nodes.

• A node of a doubly linked list has anextand aprev
link. It supports the following methods:
- setElement(Object e)
- setNext(Object newNext)
- setPrev(Object newPrev)
- getElement()
- getNext()
- getPrev()

• By using a doubly linked list to, all the methods of a
deque have constant (that is, O(1)) running time.

header trailer

New York ProvidenceBaltimore
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Implementing Deques with
Doubly Linked Lists (cont.)

• When implementing a doubly linked lists, we add
two special nodes to the ends of the lists: theheader
andtrailer nodes.
- The header node goes before the first list element.

It has a valid next link but a null prev link.
- The trailer node goes after the last element. It has a

valid prev reference but a null next reference.

• The header and trailer nodes are sentinel or
“dummy” nodes because they do not store elements.

• Here’s a diagram of our doubly linked list:

header trailer

New York ProvidenceBaltimore
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Implementing Deques with
Doubly Linked Lists (cont.)

• Let’s look at some code for removeLast()
public class  MyDeque implements  Deque{

DLNode header_, trailer_;

int size_;

...

public  Object removeLast() throws

DequeEmptyException{

if (isEmpty())

throw new  DequeEmptyException(“Ilegal

removal request.”);

DLNode last = trailer_.getPrev();

Object o = last.getElement();

DLNode secondtolast = last.getPrev();

trailer_.setPrev(secondtolast);

secondtolast.setnext(trailer_);

size_ --;

return o;

}

...

}
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Implementing Deques with
Doubly Linked Lists (cont.)

• Here’s a visualization of the code forremoveLast().

header trailer

New York Providence San FranciscoBaltimore

header trailer

New York ProvidenceBaltimore

secondtolast

last

header trailer

New York Providence San FranciscoBaltimore

secondtolast last
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A Stock Analysis Applet
• The span of a stock’s price on a certain day,d, is the

maximum number of consecutive days (up to the
current day) the price of the stock has been less than
or equal to its price ond.

• Below, letpi andsi be the span on dayi

s6=6

s5=4

s2=1

s3=2

p0 p1 p2 p3 p4 p5 p6

s1=1

s0=1

s4=1
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A Case Study: A Stock Analysis
Applet (cont.)

• Quadratic-Time Algorithm: We can find a
straightforward way to compute the span of a stock
on a given day forn days:

Algorithm  computeSpans1(P):
Input: Ann-element arrayP of numbers
Output: Ann-element arrayS of numbers such that

S[i] is the span of the stock on dayi.
Let S be an array of n numbers
for i=0 to n-1 do

k ←0
done←false
repeat

if P[i-k] ≤P[i] then
k←k+1

else
done←true

until  (k=i) or done
S[i]←k

return  arrayS

• The running time of this algorithm is (ugh!) O(n2).
Why?



29Stacks, Queues, and Linked Lists

A Case Study: A Stock Analysis
Applet (cont.)

• Linear-Time Algorithm: We see that si on day i can
be easily computed if we know the closest day
preceding i, such that the price is greater than on that
day than the price on day i. If such a day exists let’s
call it h(i).

• The span is now defined as si = i -h(i)

The arrows point to h(i)

p0 p1 p2 p3 p4 p5 p6
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A Case Study: A Stock Analysis
Applet (cont.)

• The code for our new algorithm:

Algorithm  computeSpan2(P):
Input: Ann-element arrayP of numbers
Output: Ann-element arrayS of numbers such that

S[i] is the span of the stock on dayi.
Let S be an array ofn numbers andD an empty stack
for i=0 to n-1 do

done←false
while not(D.isEmpty()or done) do

if P[i]≥P[D.top()] then
D.pop()

else
done←true

if D.isEmpty()then
h← -1

else
h←D.top()

S[i]←i-h
D.push(i)

return  arrayS

• Let’s analysize computeSpan2’s run time...
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A Case Study: A Stock Analysis
Applet (cont.)

• The total running time of the while loop is

• However, once an element is popped off the stack, it
is never pushed on again. Therefore:

• The total time spent in the while loop is O(n).

• The run time of computeSpan2 is the summ of three
O(n) terms. Thus the run time of computeSpan2 is
O(n).
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