
1Stacks, Queues, and Linked Lists

STACKS, QUEUES, AND
LINKED LISTS

• Stacks

• Queues

• Linked Lists

• Double-Ended Queues

• Case Study: A Stock Analysis Applet

2Stacks, Queues, and Linked Lists

Stacks
• A stackis a container of objects that are inserted and

removed according to thelast-in-first-out (LIFO)
principle.

• Objects can be inserted at any time, but only the last
(the most-recently inserted) object can be removed.

• Inserting an item is known as “pushing” onto the
stack. “Popping” off the stack is synonymous with
removing an item.

• A PEZ® dispenser as an analogy:

3Stacks, Queues, and Linked Lists

The Stack Abstract Data Type
• A stack is anabstract data type (ADT) that supports

two main methods:

- push(o): Inserts objecto onto top of stack
Input: Object; Output: none

- pop(): Removes the top object of stack and
returns it; if stack is empty an error occurs
Input: none; Output: Object

• The following support methods should also be
defined:

- size(): Returns the number of objects in stack
Input: none; Output: integer

- isEmpty(): Return a boolean indicating if stack is
empty.
Input: none; Output: boolean

- top(): return the top object of the stack,
without removing it; if the stack is
empty an error occurs.
Input: none; Output: Object

4Stacks, Queues, and Linked Lists

A Stack Interface in Java
• While, the stack data structure is a “built-in” class of

Java’sjava.util package, it is possible, and sometimes
preferable to define your own specific one, like this:

public interface Stack {

 // accessor methods

public int size(); // return the number of
// elements in the stack

public boolean isEmpty(); // see if the stack
// is empty

public Object top() // return the top element

throws StackEmptyException; // if called on

// an empty stack

// update methods

public void push (Object element); // push an
// element onto the stack

public Object pop() // return and remove the
// top element of the stack

throws StackEmptyException; // if called on
// an empty stack

}

5Stacks, Queues, and Linked Lists

An Array-Based Stack
• Create a stack using an array by specifying a

maximum sizeN for our stack, e.g.N = 1,000.

• The stack consists of anN-element arrayS and an
integer variablet, the index of the top element in
arrayS.

• Array indices start at 0, so we initializet to -1

• Pseudo-code

Algorithm size():
returnt +1

Algorithm isEmpty():
return (t<0)

Algorithm top():
if isEmpty()then

throw a StackEmptyException
returnS[t]

...

S
0 1 2 N−1t

...

6Stacks, Queues, and Linked Lists

An Array-Based Stack (contd.)
• Pseudo-Code (contd.)

Algorithm push(o):
if size() =N then

throw aStackFullException
t ← t + 1
S[t] ← o

Algorithm pop():
if isEmpty()then

throw a StackEmptyException
e←S[t]
S[t]←null
t←t-1
return e

• Each of the above method runs in constant time
(O(1))

• The array implementation is simple and efficient.

• There is an upper bound,N, on the size of the stack.
The arbitrary value N may be too small for a given
application, or a waste of memory.

7Stacks, Queues, and Linked Lists

Array-Based Stack: a Java
Implementation

public class ArrayStack implements Stack {
 // Implementation of the Stack interface

// using an array.

public static final int CAPACITY = 1000; // default
// capacity of the stack

private int capacity; // maximum capacity of the
// stack.

private Object S[]; // S holds the elements of
 // the stack

private int top = -1; // the top element of the
// stack.

public ArrayStack() { // Initialize the stack
// with default capacity

this (CAPACITY);

 }

public ArrayStack(int cap) { // Initialize the
// stack with given capacity

 capacity = cap;

 S = new Object[capacity];

 }

8Stacks, Queues, and Linked Lists

Array-Based Stack in Java
(contd.)

public int size() { //Return the current stack
// size

 return (top + 1);

 }

public boolean isEmpty() { // Return true iff
// the stack is empty

return (top < 0);

 }

public void push(Object obj) { // Push a new
// object on the stack

if (size() == capacity)

throw new StackFullException(“Stack overflow.”);

 S[++top] = obj;

 }

public Object top() // Return the top stack
 // element

throws StackEmptyException {

if (isEmpty())

throw new StackEmptyException(“Stack is empty.”);

return S[top];

 }

9Stacks, Queues, and Linked Lists

Array-Based Stack in Java
(contd.)

public Object pop() // Pop off the stack element

 throws StackEmptyException {

 Object elem;

if (isEmpty())

throw new StackEmptyException(“Stack is Empty.”);

 elem = S[top];

 S[top--] = null ; // Dereference S[top] and

// decrement top

return elem;

 }

}

10Stacks, Queues, and Linked Lists

Casting With a Generic Stack
• Have an ArrayStack that can store only Integer

objects or Student objects.

• In order to do so using a generic stack, the return
objects must be cast to the correct data type.

• A Java code example:

public static Integer[] reverse(Integer[] a) {

ArrayStack S = new ArrayStack(a.length);

Integer[] b = new Integer[a.length];

for (int i = 0; i < a.length; i++)

S.push(a[i]);

for (int i = 0; i < a.length; i++)

b[i] = (Integer)(S.pop());

return b;

11Stacks, Queues, and Linked Lists

Stacks in the Java Virtual
Machine

• Each process running in a Java program has its own
Java Method Stack.

• Each time a method is called, it is pushed onto the
stack.

• The choice of a stack for this operation allows Java
to do several useful things:
- Perform recursive method calls
- Print stack traces to locate an error

• Java also includes an operand stack which is used to
evaluate arithmetic instructions, i.e.

Integer add(a, b):
OperandStack Op
Op.push(a)
Op.push(b)
temp1← Op.pop()
temp2← Op.pop()
Op.push(temp1 + temp2)
return Op.pop()

12Stacks, Queues, and Linked Lists

Java Method Stack

Java Program

main () {

cool(i);

int i=5;

}

cool (int j) {

fool(k);

}

14

216

int k=7;

fool:
PC = 320

fool (int m) {

}

320

m = 7

cool:
PC = 216
j = 5
k = 7

main:
PC = 14
i = 5

Java Stack

13Stacks, Queues, and Linked Lists

Queues
• A queue differs from a stack in that its insertion and

removal routines follows thefirst-in-first-out(FIFO)
principle.

• Elements may be inserted at any time, but only the
element which has been in the queue the longest
may be removed.

• Elements are inserted at therear (enqueued) and
removed from thefront (dequeued)

...a0 a1 a2 an-1

Front Rear

Queue

14Stacks, Queues, and Linked Lists

The Queue Abstract Data Type
• The queue supports two fundamental methods:

- enqueue(o): Insert objecto at the rear of the queue
Input: Object; Output: none

- dequeue(): Remove the object from the front of
the queue and return it; an error
occurs if the queue is empty
Input: none; Output: Object

• These support methods should also be defined:

- size(): Return the number of objects in the
queue
Input: none; Output: integer

- isEmpty(): Return a boolean value that indicates
whether the queue is empty
Input: none; Output: boolean

- front(): Return, but do not remove, the front
object in the queue; an error occurs if
the queue is empty
Input: none; Output: Object

15Stacks, Queues, and Linked Lists

An Array-Based Queue
• Create a queue using an array in a circular fashion

• A maximum sizeN is specified, e.g.N = 1,000.

• The queue consists of anN-element arrayQ and two
integer variables:
- f, index of the front element
- r, index of the element after the rear one

• “normal configuration”

• “wrapped around” configuration

• what doesf=r mean?

N−10 1 2

Q ...

rf

...Q

N−10 1 2 fr

16Stacks, Queues, and Linked Lists

An Array-Based Queue (contd.)
• Pseudo-Code (contd.)

Algorithm size():
return (N - f + r) mod N

Algorithm isEmpty():
return (f = r)

Algorithm front():
if isEmpty()then

throw a QueueEmptyException
return Q[f]

Algorithm dequeue():
if isEmpty()then

throw a QueueEmptyException
temp← Q[f]
Q[f] ← null
f ← (f + 1) modN
return temp

Algorithm enqueue(o):
if size =N - 1 then

throw a QueueFullException
Q[r] ← o
r ← (r +1) modN

17Stacks, Queues, and Linked Lists

Implementing a Queue with a
Singly Linked List

• nodes connected in a chain by links

• the head of the list is the front of the queue, the tail
of the list is the rear of the queue

• why not the opposite?

head

Rome Seattle Toronto

∅

tail

18Stacks, Queues, and Linked Lists

Removing at the Head

• advance head reference

• inserting at the head is just as easy

head

Baltimore Rome Seattle Toronto

∅

tail

head

Baltimore Rome Seattle Toronto

∅

tail

19Stacks, Queues, and Linked Lists

Inserting at the Tail
• create a new node

• chain it and move the tail reference

• how about removing at the tail?

head

Rome Seattle Toronto

∅

tail

Zurich

∅

head

Rome Seattle Toronto Zurich

∅

tail

20Stacks, Queues, and Linked Lists

Double-Ended Queues
• A double-ended queue, ordeque, supports insertion

and deletion from the front and back.

• The Deque Abstract Data Type
- insertFirst(e): Insert e at the deginning of deque.

Input: Object; Output: none
- insertLast(e): Insert e at end of deque

Input: Object; Output: none
- removeFirst(): Removes and returns first element

Input: none; Output: Object
- removeLast(): Removes and returns last element

Input: none; Output: Object

• Additionally supported methods include:
- first()
- last()
- size()
- isEmpty()

21Stacks, Queues, and Linked Lists

Implementing Stacks and
Queues with Deques

• Stacks with Deques:

• Queues with Deques:

Stack Method
Deque

Implementation

size()
isEmpty()
top()
push(e)
pop()

size()
isEmpty()
last()
insertLast(e)
removeLast()

Queue Method
Deque

Implementation

size()
isEmpty()
front()
enqueue()
dequeue()

size()
isEmpty()
first()
insertLast(e)
removeFirst()

22Stacks, Queues, and Linked Lists

The Adaptor Pattern
• Using a deque to implement a stack or queue is an

example of theadaptor pattern. Adaptor patterns
implement a class by using methods of another class

• In general, adaptor classes specialize general classes

• Two such applications:
- Specialize a general class by changing some

methods.
Ex: implementing a stack with a deque.

- Specialize the types of objects used by a general
class.

Ex: Defining anIntegerArrayStack class that
adaptsArrayStack to only store integers.

23Stacks, Queues, and Linked Lists

Implementing Deques with
Doubly Linked Lists

• Deletions at the tail of a singly linked list cannot be
done in constant time.

• To implement a deque, we use adoubly linked list.
with special header and trailer nodes.

• A node of a doubly linked list has anextand aprev
link. It supports the following methods:
- setElement(Object e)
- setNext(Object newNext)
- setPrev(Object newPrev)
- getElement()
- getNext()
- getPrev()

• By using a doubly linked list to, all the methods of a
deque have constant (that is, O(1)) running time.

header trailer

New York ProvidenceBaltimore

24Stacks, Queues, and Linked Lists

Implementing Deques with
Doubly Linked Lists (cont.)

• When implementing a doubly linked lists, we add
two special nodes to the ends of the lists: theheader
andtrailer nodes.
- The header node goes before the first list element.

It has a valid next link but a null prev link.
- The trailer node goes after the last element. It has a

valid prev reference but a null next reference.

• The header and trailer nodes are sentinel or
“dummy” nodes because they do not store elements.

• Here’s a diagram of our doubly linked list:

header trailer

New York ProvidenceBaltimore

25Stacks, Queues, and Linked Lists

Implementing Deques with
Doubly Linked Lists (cont.)

• Let’s look at some code for removeLast()
public class MyDeque implements Deque{

DLNode header_, trailer_;

int size_;

...

public Object removeLast() throws

DequeEmptyException{

if (isEmpty())

throw new DequeEmptyException(“Ilegal

removal request.”);

DLNode last = trailer_.getPrev();

Object o = last.getElement();

DLNode secondtolast = last.getPrev();

trailer_.setPrev(secondtolast);

secondtolast.setnext(trailer_);

size_ --;

return o;

}

...

}

26Stacks, Queues, and Linked Lists

Implementing Deques with
Doubly Linked Lists (cont.)

• Here’s a visualization of the code forremoveLast().

header trailer

New York Providence San FranciscoBaltimore

header trailer

New York ProvidenceBaltimore

secondtolast

last

header trailer

New York Providence San FranciscoBaltimore

secondtolast last

27Stacks, Queues, and Linked Lists

A Stock Analysis Applet
• The span of a stock’s price on a certain day,d, is the

maximum number of consecutive days (up to the
current day) the price of the stock has been less than
or equal to its price ond.

• Below, letpi andsi be the span on dayi

s6=6

s5=4

s2=1

s3=2

p0 p1 p2 p3 p4 p5 p6

s1=1

s0=1

s4=1

28Stacks, Queues, and Linked Lists

A Case Study: A Stock Analysis
Applet (cont.)

• Quadratic-Time Algorithm: We can find a
straightforward way to compute the span of a stock
on a given day forn days:

Algorithm computeSpans1(P):
Input: Ann-element arrayP of numbers
Output: Ann-element arrayS of numbers such that

S[i] is the span of the stock on dayi.
Let S be an array of n numbers
for i=0 to n-1 do

k ←0
done←false
repeat

if P[i-k] ≤P[i] then
k←k+1

else
done←true

until (k=i) or done
S[i]←k

return arrayS

• The running time of this algorithm is (ugh!) O(n2).
Why?

29Stacks, Queues, and Linked Lists

A Case Study: A Stock Analysis
Applet (cont.)

• Linear-Time Algorithm: We see that si on day i can
be easily computed if we know the closest day
preceding i, such that the price is greater than on that
day than the price on day i. If such a day exists let’s
call it h(i).

• The span is now defined as si = i -h(i)

The arrows point to h(i)

p0 p1 p2 p3 p4 p5 p6

30Stacks, Queues, and Linked Lists

A Case Study: A Stock Analysis
Applet (cont.)

• The code for our new algorithm:

Algorithm computeSpan2(P):
Input: Ann-element arrayP of numbers
Output: Ann-element arrayS of numbers such that

S[i] is the span of the stock on dayi.
Let S be an array ofn numbers andD an empty stack
for i=0 to n-1 do

done←false
while not(D.isEmpty()or done) do

if P[i]≥P[D.top()] then
D.pop()

else
done←true

if D.isEmpty()then
h← -1

else
h←D.top()

S[i]←i-h
D.push(i)

return arrayS

• Let’s analysize computeSpan2’s run time...

31Stacks, Queues, and Linked Lists

A Case Study: A Stock Analysis
Applet (cont.)

• The total running time of the while loop is

• However, once an element is popped off the stack, it
is never pushed on again. Therefore:

• The total time spent in the while loop is O(n).

• The run time of computeSpan2 is the summ of three
O(n) terms. Thus the run time of computeSpan2 is
O(n).

O ti 1+()
i 0=

n 1–

∑ 
 

ti n≤
i 0=

n 1–

∑

