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Abstract

Recent work on state sum models of quantum gravity in 3 and 4 dimensions
has led to interest in the ‘quantum tetrahedron’. Starting with a classical phase
space whose points correspond to geometries of the tetrahedron in R

3, we use
geometric quantization to obtain a Hilbert space of states. This Hilbert space
has a basis of states labeled by the areas of the faces of the tetrahedron together
with one more quantum number, e.g. the area of one of the parallelograms
formed by midpoints of the tetrahedron’s edges. Repeating the procedure for
the tetrahedron in R

4, we obtain a Hilbert space with a basis labelled solely by
the areas of the tetrahedron’s faces. An analysis of this result yields a geomet-
rical explanation of the otherwise puzzling fact that the quantum tetrahedron
has more degrees of freedom in 3 dimensions than in 4 dimensions.

Introduction

State sum models for quantum field theories are constructed by giving amplitudes for
the simplexes in a triangulated manifold. The simplexes are labelled with data from
some discrete set, and the amplitudes depend on this labelling. The amplitudes are
then summed over this set of labellings, to give a discrete version of a path integral.
When the discrete set is a finite set, then the sum always exists, and so this procedure
provides a bona fide definition of the path integral.

State sum models for quantum gravity have been proposed based on the Lie al-
gebra so(3) and its q-deformation. Part of the labelling scheme is then to assign
irreducible representations of this Lie algebra to simplexes of the appropriate dimen-
sion. Using the q-deformation, the set of irreducible representations becomes finite.
However, we will consider the undeformed case here as the geometry is more elemen-
tary.
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Irreducible representations of so(3) are indexed by a non-negative half-integers
j called spins. The spins have different interpretations in different models. In the
Ponzano-Regge model of 3-dimensional quantum gravity [26], spins label the edges
of a triangulated 3-manifold, and are interpreted as the quantized lengths of these
edges. In the Ooguri-Crane-Yetter state sum model [11, 24], spins label triangles of
a triangulated 4-manifold, and the spin is interpreted as the norm of a component of
the B-field in a BF Lagrangian [2]. There is also a state sum model of 4-dimensional
quantum gravity in which spins label triangles [8]. Here the spins are interpreted as
areas [8].

Many of these constructions have a topologically dual formulation. The dual 1-
skeleton of a triangulated surface is a trivalent graph, each of whose edges intersect
exactly one edge in the original triangulation. The spin labels can be thought of as
labelling the edges of this graph, thus defining a spin network [3, 4, 25, 28]. In the
Ponzano-Regge model, transition amplitudes between spin networks can be computed
as a sum over labellings of faces of the dual 2-skeleton of a triangulated 3-manifold
[15, 30]. Formulated this way, we call the theory a ‘spin foam model’.

A similar dual picture exists for 4-dimensional quantum gravity. The dual 1-
skeleton of a triangulated 3-manifold is a 4-valent graph each of whose edges intersect
one triangle in the original triangulation [21]. The labels on the triangles in the 3-
manifold can thus be thought of as labelling the edges of this graph. The graph is
then called a ‘relativistic spin network’. Transition amplitudes between relativistic
spin networks can be computed using a spin foam model. The path integral is then a
sum over labellings of faces of a 2-complex interpolating between two relativistic spin
networks [5].

In this paper we consider the nature of the quantized geometry of a tetrahedron
which occurs in some of these models, and its relation to the phase space of geome-
tries of a classical tetrahedron in 3 or 4 dimensions. Our main goal is to solve the
following puzzle: why does the quantum tetrahedron have fewer degrees of freedom in
4 dimensions than in 3 dimensions? This seeming paradox turns out to have a simple
explanation in terms of geometric quantization. The picture we develop is that the
four face areas of a quantum tetrahedron in four dimensions can be freely specified,
but that the remaining parameters cannot, due to the uncertainty principle.

In the rest of this section we briefly review the role of the triangle in 3-dimensional
quantum gravity and that of the tetrahedron in 4-dimensional quantum gravity. We
also sketch the above puzzle and its solution. In the following sections we give a more
detailed treatment.

0.1 The triangle in 3d gravity

In the Ponzano-Regge model, states are specified by labelling the edges of a trian-
gulated surface by irreducible representations of so(3). Using ideas from geometric
quantization, the spin-j representation can be thought of as the Hilbert space of states
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of a quantized vector of length j. Once spins j1, j2, j3 for the edges of a triangle are
specified, a quantum state of the geometry of the triangle is an element

ψ ∈ j1 ⊗ j2 ⊗ j3.

We require that this element satisfy a quantized form of the condition that the three
edge vectors for a triangle sum to zero. The quantization of this condition is that
ψ be invariant under the action of so(3). As long as the spins satisfy the Euclidean
triangle inequalities, there exists a unique element with this property, up to a constant
factor1. This reflects the fact that the geometry of a Euclidean triangle is specified
entirely by its edge lengths. This unique invariant element is denoted graphically by
the spin network

j1

j2

〉
j3 .

We call it a vertex because it corresponds to a vertex of the spin network dual to the
triangulation.

The uniqueness of the vertex can be explained in terms of geometric quantization.
This explanation serves as the prototype of the discussion below for the uniqueness of
the vertex in the 4-dimensional model. Any irreducible representation of so(3) can be
realised by an action of SU(2) on the space of holomorphic sections of some line bundle
over S2. Elements of the space j1 ⊗ j2 ⊗ j3 thus correspond to holomorphic sections
of the tensor product line bundle on S2 ×S2 ×S2. A vertex therefore corresponds to
an SU(2)-invariant section of this tensor product line bundle.

In general, invariant holomorphic sections of a line bundle over a Kähler manifold
correspond to sections of a line bundle over the symplectic reduction of this mani-
fold by the group action [13]. Moreover, symplectic reduction eliminates degrees of
freedom in conjugate pairs. Starting from the 6-dimensional manifold S2 × S2 × S2

and reducing by the action of the 3-dimensional group SU(2), we are thus left with a
0-dimensional reduced space, since 6 − 3 − 3 = 0.

In fact, when the spins ji satisfy the triangle inequality, the reduced space is just
a single point. To see this, think of a point in S2×S2×S2 as a triple of bivectors with
lengths equal to j1, j2, j3, respectively. The constraint generating the SU(2) action is
that these bivectors sum to zero. When this constraint holds, the bivectors form a
triangle in so(3)∗ with edge lengths j1, j2, j3. Since all such triangles are contained
in one orbit of SU(2), the reduced phase space is a single point. This explains why
the space of vertices is 1-dimensional: any vertex corresponds to a section of a line
bundle over this point.

1The normalisation of this element is fixed by the inner products on j1, j2 and j3. This fixes
a canonical element up to a phase. Its phase is fixed by a coherent set of conventions for planar
diagrams of spin networks [23].
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0.2 The tetrahedron in 4d gravity

A modification of the Ponzano-Regge model has been proposed to give a 4-dimensional
state sum model of quantum gravity [8]. In these models states are described by
labelling the triangles of a triangulated 3-manifold by irreducible representations of
so(4). However, not all irreducible representations are allowed as labels, only certain
ones called ‘balanced’ representations. This restriction can understood as follows.

In the Ponzano-Regge model, the basic idea was to describe triangles by labelling
their edges with vectors in R

3, and then to quantize this description. Similarly, in the
4-dimensional model we describe tetrahedra by labelling their faces with bivectors in
R4, and then we quantize this description. A bivector in R4 is just an element of the
second exterior power Λ2R4. Given an oriented triangle in R4 we may associate to
it the bivector formed as the wedge product of any two of its edges taken in cyclic
order.

Irreducible representations of so(4) ∼= so(3) ⊕ so(3) are indexed by pairs of spins
(j, k). The (j, k) representation can be thought of as the Hilbert space of states of a
quantized bivector in 4 dimensions whose self-dual and anti-self-dual parts have norms
j and k, respectively. Classically, a bivector in R4 comes from a triangle as above
if and only if its self-dual and anti-self-dual parts have the same norm. We impose
this restriction at the quantum level by labelling triangles only with representations
for which j = k. These are called balanced representations of so(4). When a triangle
is labelled by the balanced representation (j, j), the spin j specifies its area. Thus
in going from three to four dimensions, the geometric interpretation of a spin label
changes from the length of an edge to the area of a triangle.

Having labelled its faces by balanced representations, the quantum state of the
geometry of a tetrahedron in four dimensions is given by a vector

ψ ∈ (j1, j1) ⊗ (j2, j2) ⊗ (j3, j3) ⊗ (j4, j4).

As in the Ponzano-Regge model, we impose some conditions on this vector, motivated
by the geometry of the situation. First, we require that this vector be invariant
under the action of so(4). This is a quantization of the condition that the bivectors
associated to the faces of a tetrahedron must sum to zero. Second, we require that
given any pair of faces, e.g. 1 and 2, then in the decomposition

(j1, j1) ⊗ (j2, j2) ∼=
⊕

j,k

(j, k)

the components of ψ are zero except in the balanced summands, (j, j). There are
three independent conditions of this sort, one for the pair 1–2, one for the pair 1–3
and one for the pair 1–4. (Since the vector is invariant, the summands of the pair 3–4
which occur are exactly the same as for 1–2, and so on, so we do not need consider the
other three pairs.) This quantizes the condition that any pair of faces of a tetrahedron
must meet on an edge, geometrically a rather strong condition as a generic pair of
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planes in R
4 meet at a point, not a line. Vectors ψ meeting all these requirements

are called vertices, now corresponding to the vertices of the 4-valent relativistic spin
network dual to the triangulation of a 3-manifold.

Taking into account these conditions, the vertex is unique up to a constant factor.
The formula for the vertex was given by Barrett and Crane [8], and an argument for its
uniqueness was first given by Barbieri [7]. This argument depended on an assumption
that some associated 6j-symbols do not have too many ‘accidental zeroes’. A simpler
argument relying on the same assumption is given here. A proof of the uniqueness
without any assumptions has been given by Reisenberger [27].

A basis for the invariant vectors is given by

B12
jk =

j1

j2

〉
j

〈j3

j4

⊗ j1

j2

〉
k

〈j3

j4

.

Similar bases B13
jk and B14

jk are defined using the spin networks which couple the pairs
1–3 or 1–4 instead of 1–2. Any solution of the constraints for the quantum tetrahedron
must be

ψ =
∑

j

λjB
12
jj =

∑

k

µkB
13
kk =

∑

l

νlB
14
ll . (1)

In other words, ψ is a symmetric rank two tensor on the invariant subspace Inv(j1 ⊗
j2 ⊗ j3 ⊗ j4) which is diagonal in three different bases. The change of basis matrix
is, for each pair, a 6j-symbol. Since the 6j-symbol satisfies an orthogonality relation,
there is a canonical solution to these constraints, given by taking ψ to be (inverse of
the) inner product in the orthogonality relation, λj = (−1)2j dim j. This gives the
vertex described by Barrett and Crane [8].

Now suppose there is another solution λ′j. Then λ′j/λj are the eigenvalues of a
linear operator which is diagonal in each basis. It follows that the eigenspaces for
each distinct eigenvalue are preserved under the change of basis, so the 6j-symbol
must be zero for each choice of spin j corresponding to one eigenvalue in B12

jj and
spin k corresponding to a different eigenvalue in B13

kk. Assuming the 6j-symbol does
not have accidental zeroes in this way, there cannot be two distinct eigenvalues, so
the two solutions are just proportional to each other. Since accidental zeroes of the
6j symbols are rather sparse [9], we expect the vertex to be unique — as was indeed
shown by Reisenberger.

Still, from a geometrical viewpoint the uniqueness of the vertex is puzzling. After
all, labelling a triangle with a balanced representation of so(4) only specifies the area
of the triangle. Fixing the values of the areas of four triangles does not specify the
geometry of a tetrahedron uniquely. The geometry of a tetrahedron is determined by
its six edge lengths. Since the areas of the faces are only four parameters, there will
be typically a 2-dimensional moduli space of tetrahedra with given face areas. Why
then is a state of the quantum tetrahedron in four dimensions uniquely determined
by the areas of its faces?
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This puzzle is resolved here by developing a deeper understanding of the con-
straints, using geometric quantization. Essentially the issue is to understand the
difference between a tetrahedron embedded in R3 and a tetrahedron embedded in
R4. In classical geometry, these are not too different. In both cases we can describe
the tetrahedron using bivectors for faces that sum to zero. But in the 4-dimensional
situation there are also extra constraints implying that all four faces lie in a common
hyperplane. When these are satisfied we are essentially back in the 3-dimensional
situation.

Quantum mechanically, however, these extra constraints dramatically reduce the
number of degrees of freedom for the tetrahedron. This is a standard phenomenon in
quantum theory. A set of constraints introduced by operator equations

Ĥiψ = 0, i = 1, . . . , n

implies automatically that the quantum state vector ψ is invariant under the group
of symmetries generated by the set of operators Ĥi. The classical counterpart is
symplectic reduction, or more generally Poisson reduction [22], in which one restricts
the phase space to the subspace given by the constraints Hi = 0, and then passes to
the quotient space of orbits of the symmetry group generated by the constraints Hi.

Our explanation of the uniqueness of the vertex for the quantum tetrahedron in
four dimensions is as follows. The Hilbert space

(j1, j1) ⊗ (j2, j2) ⊗ (j3, j3) ⊗ (j4, j4)

corresponds to the classical phase space consisting of 4-tuples of simple bivectors
having norms given by the four spins ji. This phase space is 16-dimensional. The
subspace of quantum states invariant under so(4) corresponds to the classical phase
space of four such bivectors summing to zero, considered modulo the action of the
rotation group SO(4) on all four bivectors simultaneously. This phase space is a 4-
dimensional symplectic manifold (since 16 − 6 − 6 = 4). The constraints (1) which
force the triangles to intersect on edges are two independent equations. Symplectic
reduction with two constraints reduces the 4-dimensional manifold to a 0-dimensional
one (since 4 − 2 − 2 = 0), in fact just a single point. This explains why the space of
vertices is 1-dimensional.

This argument can also be phrased in terms of the uncertainty principle. There
are two constraint equations Hi = 0 that force the four faces of the tetrahedron to
lie in a common hyperplane. These variables Hi are canonically conjugate to the two
variables determining the shape of a tetrahedron with faces of fixed area. Therefore
by the uncertainty principle, the shape of the tetrahedron is maximally undetermined.

1 Quantum bivectors

By a bivector in n dimensions we mean an element of Λ2
R

n. A bivector records some
of the information of the geometry of a triangle in Rn. An oriented triangle has three
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edge vectors, e, f, g which cycle around the triangle in that order. Then the bivector
for the triangle is

E = e ∧ f = f ∧ g = g ∧ e.
These are equal due to the equation e + f + g = 0. Therefore b depends only on
the triangle and its orientation, not on a choice of edges. The bivector determines a
2-dimensional plane in Rn with an orientation, and the norm of the bivector is twice
the area of the triangle. However, no further details of the geometry of the triangle
are recorded.

A bivector formed as the wedge product of two vectors is called simple. By the
above remarks, we may think of any simple bivector as an equivalence class of triangles
in Rn. This interpretation becomes important in the next section, where we describe
tetrahedra in terms of bivectors.

In three dimensions or below every bivector is simple, but this is not true in higher
dimensions. For example, if a1, a2, a3, a4 are linearly independent, then a1∧a2+a3∧a4

is not a simple bivector. In general, a bivector E is simple if and only if E∧E = 0. In
four dimensions another criterion is also useful. The Euclidean metric and standard
orientation on R4 determine a Hodge star operator

∗: Λ2
R

4 → Λ2
R

4.

Since ∗2 = 1, we may decompose any bivector into its self-dual and anti-self-dual
parts:

E = E+ + E−, ∗E± = ±E±.

The bivector is simple if and only if its self-dual and anti-self-dual parts have the
same norm.

Using the Euclidean metric η on Rn we may identify bivectors with elements of
so(n)∗. Explicitly, this isomorphism β: Λ2

R
n → so(n)∗ is given by

β(e ∧ f)(l) = η(le, f)

for any bivector e ∧ f and any l ∈ so(n). As recalled below, the dual of any Lie
algebra has a natural Poisson structure. This allows us to treat the space of bivectors
as a classical phase space. Using geometric quantization, we can quantize this phase
space and construct a Hilbert space which we call the space of states of a ‘quantum
bivector’. While this construction works in any dimension, we initially concentrate
on dimension three. Then we turn to dimension four. In this case, the Hilbert space
we construct has a subspace representing the states of a ‘simple’ quantum bivector.

1.1 Kirillov-Kostant Poisson structure

As shown by Kirillov and Kostant [18, 19], the dual of any Lie algebra g is a vector
space with an additional structure that makes it a Poisson manifold. This is a mani-
fold with a Poisson bracket on its algebra of functions. We are mainly interested in
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the Lie algebra so(3) here, but so(4) is also important to us, so we briefly recall the
general construction.

Elements l,m of the Lie algebra determine linear functions on the dual vector
space g

∗. The Lie bracket [l,m] can likewise be thought of as a function on g
∗.

This defines a Poisson bracket on the linear functions, and this extends uniquely to
determine a Poisson bracket on the algebra of all smooth functions. Indeed, there is
a bivector field Ω on the manifold g

∗ such that

[l,m] = Ω(dl, dm)

Then the Poisson bracket in general is

{f, g} = Ω(df, dg).

Since this formula is linear in dg, it is given by the evaluation of dg on a vector field
f# on g

∗

{f, g} = dg(f#) = f#g.

In particular, each Lie algebra element l determines a vector field l#. If x ∈ g
∗, then

the value of l#m at x is
(l#m)(x) = 〈x, [l,m]〉.

Thus if g is the Lie algebra of a Lie group G, the vector fields l# are given by the
natural action of G on g

∗, the coadjoint action.
Coordinate formulae are sometimes illuminating for the above. Pick a basis xi

for g, which gives coordinate functions on g
∗. Then [l,m] = [lix

i, mjx
j ] = limjc

ij
k x

k,
where cijk are the structure constants of the Lie algebra. Then Ωij = cijk x

k, and
lj# = liΩ

ij .
A 2-form ω is compatible with the Poisson structure if

ω(l#, m#) = {l,m}.

This only determines ω on the span of the l#, namely the tangent space to the
coadjoint orbit. Therefore, ω is defined as a 2-form on each orbit, called a symplectic
leaf of the Poisson manifold. The Poisson bivector Ω is tangent to each leaf and non-
degenerate as a bilinear form on the cotangent bundle of each leaf. The symplectic
form ω is the inverse of this.

In the case of so(3), the Lie algebra can be identified with R3 with its standard
vector cross product, the dual space can also be identified with R3, and then dual
pairing 〈·, ·〉 becomes the Euclidean inner product. Then

{l,m}(x) = 〈x, [l,m]〉

which looks the same as before, but now the right-hand side is the triple scalar product
of vectors in R3. The 2-form is

ω(a, b) =
1

x2
〈x, [a, b]〉.
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In this case, the coadjoint action is the familiar action of rotations on the vector
space of angular momenta, and so the symplectic leaves are spheres centered at the
origin. The integral of ω over one of these spheres of Euclidean radius r is ±4πr,
the sign depending on the chosen orientation of the sphere. This differs from the
Euclidean area due to the scaling factors in the formulae.

1.2 Quantization

Throughout this paper we quantize Poisson manifolds by constructing a Hilbert space
for each symplectic leaf and then forming the direct sum of all these Hilbert spaces.
We construct the Hilbert space for each leaf using geometric quantization, or more
precisely, Kähler quantization [12, 29, 31]. For this we need to introduce some extra
structure on each leaf. First we choose a complex structure J on the leaf that preserves
the symplectic form ω, making the leaf into a Kähler manifold. Then we choose a
holomorphic complex line bundle L over the leaf, called the prequantum line bundle

equipped with a connection whose curvature equals ω:

ω(ξ, η)s = i
(
∇ξ∇η −∇η∇ξ −∇[ξ,η]

)
s.

For this, the symplectic leaf must be integral: the closed 2-form ω/2π must define an
integral cohomology class. In this case, we define the Hilbert space for the leaf to be
the space of square-integrable holomorphic sections of L. For nonintegral leaves, we
define the Hilbert space to be 0-dimensional.

In the case of so(3)∗, the integral symplectic leaves are the spheres centered at
the origin for which the integral of ω is 2π times an integer. These are spheres Sj

with radii given by nonnegative half-integers j — honest 2-spheres for j > 0, and
a single point for j = 0. Each sphere Sj with j > 0 has a complex structure J
corresponding to the usual complex structure on the Riemann sphere. Explicitly,
using the identification of so(3)∗ and so(3), the formula for J at a point x

J(a) =
1

|x| [x, a].

In other words, J rotates tangent vectors a quarter turn counter-clockwise. Clearly
J is a complex structure preserving the symplectic form ω. The sphere thus becomes
a Kähler manifold with Riemannian metric given by

g(a, b) = ω(a, Jb) =
1

|x| 〈a, b〉.

Like the symplectic structure itself, this differs from the standard induced metric by
a scale factor.

When j = 0, Sj is trivially a Kähler manifold. In this case the prequantum
line bundle is trivial and the Hilbert space of holomorphic sections is 1-dimensional.
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When j = 1
2
, we may choose the prequantum line bundle to be the spinor bundle over

Sj . The Hilbert space of holomorphic sections is then isomorphic to C2. For other
values of j we choose L to be the 2jth tensor power of the spinor bundle over Sj. The
Hilbert space of holomorphic sections is then isomorphic to the 2jth symmetrized
tensor power SnC2, which is (2j + 1)-dimensional. We may associate to any Lie
algebra element l ∈ so(3) a self-adjoint operator l̂ on this Hilbert space, given by

l̂: s 7→ i∇l#s− ls

On the right hand side, l is regarded as a function on the coadjoint orbit, and mul-
tiplies the section s pointwise. This formula gives a representation of so(3) which is
just the usual spin-j representation.

Taking the sum over all symplectic leaves, we obtain the Hilbert space of a quantum

bivector in 3 dimensions,

H =
⊕

j

j.

This is the basic building-block of all the more complicated quantized geometrical
structures appearing in state sum models of quantum gravity [5]. Let Ei be a basis
of so(3) satisfying the Poisson bracket relations

{E1, E2} = E3, {E2, E3} = E1, {E3, E1} = E2.

when thought of as coordinate functions on so(3)∗. Then by the above we obtain
self-adjoint operators Êi on H satisfying the usual angular momentum commutation
relations:

[Ê1, Ê2] = iÊ3, [Ê2, Ê3] = iÊ1, [Ê3, Ê1] = iÊ2.

We think of these operators as observables measuring the 3 components of the quan-
tum bivector. This interpretation is justified by the fact that these operators can
also be obtained by geometrically quantizing the 3 coordinate functions on the space
of bivectors. Their failure to commute means that the components of a quantum
bivector cannot in general be measured simultaneously with complete precision.

1.3 The 4-dimensional case

In any dimension, starting from the Kirillov-Kostant Poisson structure on the dual of
so(n), one can use geometric quantization to construct a Hilbert space describing the
states of a quantum bivector. By the Bott-Borel-Weil theorem [10], this Hilbert space
always turns out to be the direct sum of all the irreducible unitary representations
of so(n). The 4-dimensional case is particularly simple, since we can reduce it to the
previously treated 3-dimensional case using the isomorphism so(4) ∼= so(3) ⊕ so(3).
This isomorphism corresponds to the splitting of a bivector into its self-dual and
anti-self-dual parts.
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Using this isomorphism, it follows that so(4)∗ with its Kirillov-Kostant Poisson
structure is the product of two copies of the Poisson manifold so(3)∗. In particular,
any symplectic leaf is of the form Sj × Sk, that is, the product of a sphere of radius
j and a sphere of radius k, where j, k are independent arbitrary spins. We can make
this symplectic leaf into a Kähler manifold by taking the product of the previously
described Kähler structures on Sj and Sk. Similarly, we can equip the leaf with a
line bundle given by the tensor product of the previously described line bundles over
Sj and Sk. As a result, when we geometrically quantize the leaf, we obtain a Hilbert
space equal to the tensor product of the spin-j representation of the ‘left-handed’
copy of so(3) and the spin-k representation of the ‘right-handed’ copy. Taking the
direct sum over all leaves, we thus obtain the Hilbert space

H⊗H =
⊕

j,k

j ⊗ k.

This is just the direct sum of all irreducible representations (j, k) of so(4).
However, so(4)∗ has another Poisson structure, obtained by reversing the sign

of the Poisson structure on the anti-self-dual summand in so(3)∗ ⊕ so(3)∗. We call
this the flipped Poisson structure. It turns out that the flipped Poisson structure is
the right one for our purposes, as with this Poisson structure the quantum theory
determines the chirality of the tetrahedron correctly, as is discussed in Section 3.2.
The issue is to use the correct Poisson structure on Λ2R4, which we identified with
so(4)∗ using the isomorphism β described at the beginning of this section. We could
achieve the same Poisson structure on Λ2R4 by starting with the standard Poisson
structure on so(4)∗ and instead using the isomophism β◦∗, which differs by the Hodge
dual ∗ acting on the bivectors. We return to this issue in Section 4.

With its flipped Poisson structure, so(4)∗ again has integral symplectic leaves of
the form Sj × Sk; the only difference now is that the sign of the symplectic structure
is reversed on Sk. We can thus make Sk into a Kähler manifold with the Riemannian
metric of the previous section but with the opposite complex structure. Proceeding
as before, but with this modification, we can geometrically quantize so(4)∗ and obtain
the Hilbert space of a quantum bivector in 4 dimensions

H⊗H∗ ∼=
⊕

j,k

j ⊗ k∗

where starring stands for taking the complex conjugate Hilbert space, which is canon-
ically isomorphic to the dual.

Using the splitting of so(4)∗ into self-dual and anti-self-dual copies of so(3)∗, we
can put coordinate functions E+i, E−i on so(4)∗ whose Poisson brackets with respect
to the flipped Poisson structure are:

{E+i, E+j} = ǫijkE+k, {E−i, E−j} = −ǫijkE−k, {E+i, E−j} = 0.
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The minus sign is the result of using the flipped Poisson structure. Using the recipe
discussed in the previous section, we thus obtain self-adjoint operators Ê±i on H⊗H∗

satisfying the following commutation relations:

[Ê+i, Ê+j] = iǫijkÊ+k, [Ê−i, Ê−j] = −iǫijkÊ−k, [Ê+i, Ê−j] = 0.

As already noted, a bivector b in 4 dimensions is simple if and only if its self-dual
and anti-self-dual parts have the same norm. We may impose this constraint at the
quantum level, obtaining the subspace of H⊗H∗ consisting of states ψ for which the
Casimir operators

K± =

3∑

k=1

(Ê±k)2

are equal:
K+ψ = K−ψ.

Alternatively, we may impose the constraint classically and then use geometric quan-
tization to obtain a Hilbert space from the resulting Poisson manifold. Either way,
we obtain the Hilbert space of a simple quantum bivector in 4 dimensions,

⊕

j

j ⊗ j∗ ⊂ H⊗H∗.

2 The Quantum Tetrahedron in 3 Dimensions

A tetrahedron in Rn with labelled vertices, modulo translations, is determined by
three vectors e1, e2, e3, which are the edge vectors for three edges pointing out from a
common vertex. The three triangular faces of the tetrahedron meeting at this vertex
have bivectors

E1 = e2 ∧ e3, E2 = e3 ∧ e1, E3 = e1 ∧ e2,
while the bivector for the fourth face is

E4 = −E1 − E2 −E3.

If the vectors ei are linearly dependent, then the E’s are all multiples of each other
or zero. But in dimensions three or more, the vectors are generically linearly inde-
pendent. From now on, we only consider this generic situation.

The map from triples of vectors to triples of bivectors is generically two-to-one,
because if all three vectors are replaced by their negatives, then the bivectors are
unchanged. Moreover, when the vectors ei are linearly independent, this operation
is the only operation possible that changes the vectors but not the corresponding
bivectors.

In dimension three, the map is also generically ‘half-onto’, in the sense that all
positively oriented triples of bivectors E1, E2, E3 arise, but never negatively-oriented
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ones. In three dimensions Λ2
R

3 ∼= R
3. With this identification the ∧ operation is the

vector cross product ×, so one can compute that

E1 · (E2 ×E3) = V 2 ≥ 0

where V = e1 · (e2 × e3) is 6 times the oriented volume of the tetrahedron. One also
has

E1 × E2 = V e3

etc., so that from a positively oriented triple E1, E2, E3 one can compute the original
e’s up to sign, i.e., obtaining either (e1, e2, e3) or (−e1,−e2,−e3). The distinction
between these two triples of e’s is the orientation of the tetrahedron.

To summarise, a non-degenerate tetrahedron in 3 dimensions can be described by
4 bivectors, satisfying the closure constraint

E1 + E2 + E3 + E4 = 0

together with the positivity constraint

E1 · (E2 ×E3) > 0.

The positivity constraint can be written in a number of equivalent ways by applying
an even permutation to the 4 numbers 1234. For example, the permutation (14)(23)
changes this formula to

E4 · (E3 × E2) > 0

which is equivalent, using the closure constraint. Geometrically, the different formu-
lae correspond to calculating V 2 using different vertices of the tetrahedron as the
distinguished vertex.

2.1 Poisson structure

By the above we may describe a tetrahedron in 3 dimensions using a 4-tuple of
bivectors E1, . . . , E4 satisfying the closure and positivity constraints. In this section
we think of these bivectors as elements of so(3)∗. To obtain a Poisson structure on the
space of geometries of a tetrahedron in 3 dimensions, we start by taking the product
of 4 copies of so(3)∗ with its Kirillov-Kostant Poisson structure, obtaining a Poisson
structure on (so(3)∗)4. Then we perform Poisson reduction with respect to the closure
constraint, as follows.

First we form the constraint submanifold

C = {E1 + E2 + E3 + E4 = 0} ⊂ (so(3)∗)4.

The closure constraint generates the diagonal SO(3) action on (so(3)∗)4, which pre-
serves C. To obtain the reduced space, we take the quotient of C by this SO(3)
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action. We denote this quotient by T , and call it the phase space of a tetrahedron in

3 dimensions. Perhaps strictly speaking we should reserve this name for the subset
of T where the positivity constraint holds. However, this smaller phase space is hard
to quantize, so it is more convenient to quantize all of T and impose the positivity
constraint at the quantum level. In fact, in applications to quantum gravity it may
be best not to impose the positivity constraint at all. For more discussion of this
issue see Section 4.

Any SO(3)-invariant function on (so(3)∗)4 determines a function on T . We use
this to define the following functions on T :

Ai = |Ei|,

Aij = |Ei + Ej |,
and

U = E1 · (E2 × E3).

These quantities have nice geometrical interpretations. The positivity constraint is
U > 0. Thus if U > 0 there is a tetrahedron corresponding to the vectors Ei, while
if U < 0 there is a tetrahedron corresponding to the vectors −Ei. In either case, |U |
is 36 times the square of the volume of this tetrahedron. The quantity Ai is twice
the area of the ith face of the tetrahedron. Similarly, the quantity Aij is 4 times
the area of the parallelogram with vertices given by the midpoints of the edges of the
tetrahedron that are contained in either the ith or jth face of the tetrahedron, but not
both. (See Fig. 1.) Alternatively, Aij is equal to |u ∧ v|, where u is the displacement
vector for the edge common to the ith and jth faces, and v the displacement vector
for the edge common to the other two faces.

As noted in our earlier work, these quantities satisfy some relations [5]. In partic-
ular, if ijkl is any permutation of 1234 we have

Aij = Akl.

We also have
A2

12 + A2
23 + A2

31 = A2
1 + A2

2 + A2
3 + A2

4.

The map from SO(3)-invariant functions on (so(3)∗)4 to functions on T preserves
Poisson brackets. Since the functions |Ei| are constant on the symplectic leaves of
(so(3)∗)4, it follows that the functions Ai have vanishing Poisson brackets with all
functions on T . The functions Aij do not. In particular, for any even permutation
ijkl of 1234, we have

{A2
ij , A

2
ik} = 4U.

When we quantize, this nonzero Poisson bracket leads to an uncertainty relation
between the areas of the different parallelograms formed by midpoints of the tetra-
hedron’s edges. This is closely related to the ‘noncommutativity of area operators’ in
loop quantum gravity [1], which has similar classical origins.
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Figure 1: Parallelogram formed by midpoints of the tetrahedron’s edges

To prepare for geometric quantization, let us study the symplectic leaves of T .
These are obtained from the leaves of (so(3)∗)4 by symplectic reduction with respect
to the closure constraint. To visualize the situation it is best to think of the Ei as
vectors in R3. The constraint submanifold C then consists of configurations of 4
vectors that close to form the sides of a (not necessarily planar) quadrilateral in R3.
This description in terms of quadrilaterals allows us to apply the results of Kapovich,
Millson [17], Hausmann and Knutson [16]. However, for the sake of a self-contained
treatment we redo some of their work. Consider a symplectic leaf

Λ = {|Ei| = ri}

in (so(3)∗)4. Its intersection with C consists of all quadrilaterals with sides having
fixed lengths r1, . . . , r4. The corresponding leaf of T , namely (Λ ∩ C)/SO(3), is thus
the space of such quadrilaterals modulo rotations.

Generically, the leaves of T are 2-spheres. In showing this, we shall exclude cases
where SO(3) fails to act freely on Λ ∩ C. These cases occur when Λ ∩ C contains a
one-dimensional configuration, i.e., one in which the Ei are all proportional to one
another. This happens when r1 + r2 = r3 + r4, r1 = r2 + r3 + r4, or permutations of
these. We shall also exclude cases where the quotient (Λ∩C)/SO(3) is a single point.
These cases occur when one or more of the ri vanish, and also when r1 = r2 + r3 + r4
or permutations thereof.

Apart from these nongeneric cases, the leaf (Λ ∩ C)/SO(3) is a 2-sphere. To
see this, note first that the level sets of the function A12 give a single point of this
leaf at its maximum and minimum values. This is because at these points two of
the Ei are proportional, so the quadrilateral they form reduces to a triangle in R3.
The triangle is rigid when its edge lengths are specified, so the set of such triangles
modulo rotation is just one point. Next, note that when A12 is neither a minimum or
maximum, its level sets give circles in the leaf, parametrised by the angle θ between
the plane spanned by E1 and E2 and the plane spanned by E3 and E4. (See Fig. 2.)
It follows that the leaf is a 2-sphere.

On this 2-sphere, the meridians θ = 0 and θ = π correspond to quadrilaterals that
lie in a plane in R3. In terms of tetrahedra, points on these meridians correspond
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Figure 2: Circle formed by rotating E1 and E2 about E1 + E2

to degenerate tetrahedra of zero volume, for which U = 0. The two hemispheres
0 < θ < π and π < θ < 2π correspond to the regions where U > 0 and U < 0.
Which hemisphere corresponds to which sign of U is a matter of convention in the
definition of θ. We can fix this convention by demanding that the Hamiltonian vector
field generated by A12 be ∂θ. The reason we can demand this is that A12 generates
rotations of the vectors E1 and E2 about the axis E1 + E2, while leaving E3 and E4

fixed. With this convention A12 and θ are canonically conjugate variables, so the
symplectic structure on the 2-sphere is ω = dA12 ∧ dθ.

2.2 Quantization

There are two strategies for constructing the space of states of the quantum tetra-
hedron in 3 dimensions. The first is to geometrically quantize (so(3)∗)4 and impose
the closure constraint at the quantum level. The second is to impose the closure con-
straint at the classical level and geometrically quantize the resulting reduced space T .
If the SO(3) action generated by the closure constraint were free, we could carry out
both strategies and use a result of Guillemin and Sternberg [13] to show that they
give naturally isomorphic vector spaces. In short, quantization would commute with
reduction.

Unfortunately, as we saw in previous section, the SO(3) action generated by the
closure constraint is not free. This complicates the second strategy. Generically SO(3)
acts freely on the symplectic leaves of (so(3)∗)4, but there are also leaves on which
the action is not free. In these nongeneric cases, the corresponding reduced leaf in T
has singular points where it is not a Kähler manifold. This presents an obstacle to
geometric quantization.

With enough cleverness one could probably overcome this obstacle and generalize
Guillemin and Sternberg’s result to cover this situation. Instead, we take a less
ambitious approach. We carry out the first quantization strategy completely, carry
out the second one for generic leaves of (so(3)∗)4, and show that the two strategies
give naturally isomorphic vector spaces in the generic case.

In the first approach we start by geometrically quantizing (so(3)∗)4. Since geo-
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metric quantization takes products to tensor products, we obtain the Hilbert space
H⊗4, where H is the Hilbert space of a quantum bivector in 3 dimensions, as defined
in Section 1.2. Quantizing the coordinate functions Ei

1, . . . , E
i
4 on (so(3)∗)4, we obtain

operators Êi
1, . . . , Ê

i
4 on H⊗4. Explicitly, we have

Êi
1 = Êi ⊗ 1 ⊗ 1 ⊗ 1

Êi
2 = 1 ⊗ Êi ⊗ 1 ⊗ 1

Êi
3 = 1 ⊗ 1 ⊗ Êi ⊗ 1

Êi
4 = 1 ⊗ 1 ⊗ 1 ⊗ Êi

where i = 1, 2, 3. We then impose the closure constraint at the quantum level. This
gives us the subspace of H⊗4 consisting of states ψ with

(Êi
1 + Êi

2 + Êi
3 + Êi

4)ψ = 0.

Such states are precisely those that are invariant under the action of SU(2). We
call this subspace the Hilbert space of the quantum tetrahedron in 3 dimensions, and
denote it by T . Thus we have

T = Inv(H⊗4) ∼=
⊕

j1,...,j4

Inv(j1 ⊗ · · · ⊗ j4)

where ‘Inv’ denotes the invariant subspace.
In the second approach, we start by noting that each integral symplectic leaf of

(so(3)∗)4 is a product of 4 integral symplectic leaves of so(3)∗. Thus it is of the form

Λ = {|Ei| = ji}

for some spins j1, . . . , j4. As a product of Kähler manifolds, it acquires the product
Kähler structure. The closure constraint generates an SO(3) action which preserves
this Kähler structure. As long as the spins ji do not satisfy j1 + j2 = j3 + j4,
j1 = j2 + j3 + j4 or any permutations of these, this action is free. In this case,
the reduced leaf (Λ ∩ C)/SO(3) becomes a Kähler manifold as well. Geometrically
quantizing this reduced leaf, we obtain a space of states. By the result of Guillemin
and Sternberg, this vector space is naturally isomorphic to the space

Inv(j1 ⊗ · · · ⊗ j4) ⊂ T .

We can also see this last fact directly without using much machinery. The map
from invariant states on Λ to the state space for (Λ ∩ C)/SO(3) is an injection. But
we can see that these spaces have the same dimension, as follows. The dimension of
the space of invariant states on Λ is

dim(Inv(j1 ⊗ · · · ⊗ j4) = min{|j1 + j2|, |j3 + j4|} − max{||j1| − |j2|| , ||j3| − |j4||} + 1
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On the other hand, the Riemann-Roch theorem implies that the dimension of the state
space for (Λ ∩ C)/SO(3) is 1

2π
times its symplectic volume plus 1. The symplectic

volume was computed by Hausmann and Knutson [16] to be 2π(Amax −Amin), where
Amin and Amax are the minimum and maximum values of A12. This is easy to see for
generic leaves using the results of the previous section:

∫

(Λ∩C)/SO(3)

ω =

∫ Amax

Amin

∫ 2π

0

dA12 ∧ dθ = 2π(Amax −Amin)

The dimension of the state space for (Λ ∩ C)/SO(3) is thus Amax − Amin + 1. But
since A12 = |E1 + E2| = |E3 + E4|, we have

Amin = max{||j1| − |j2|| , ||j3| − |j4||},

Amax = min{|j1 + j2|, |j3 + j4|}.
Thus the two dimensions are equal.

The phase space discussed so far includes both genuine tetrahedra and their neg-
atives, which do not satisfy the positivity constraint U > 0. In a slightly different
context, the implications of this issue for quantum gravity were addressed by Loll
[20]. More recently, Barbieri [6] studied the obvious quantization of U , the Hermitian
operator

Û =
∑

i,j,k

ǫijkÊ
i
1Ê

j
2Ê

k
3 ,

He showed that if u is an eigenvalue, so is −u. This arises because the natural
antilinear structure map P for representations of SU(2) acts on the quantum state
space T , and obeys the relations PÛ = −ÛP , P 2 = 1. Thus P is a symmetry which
interchanges eigenvectors of U with opposite eigenvalues.

3 The Quantum Tetrahedron in 4 Dimensions

We now turn to the 4-dimensional case. As already noted, a tetrahedron in R4 with la-
belled vertices, modulo translations, is determined by 3 vectors e1, e2, e3. Associating
bivectors to the faces of the tetrahedron in the usual way:

E1 = e2 ∧ e3, E2 = e3 ∧ e1, E3 = e1 ∧ e2,

E4 = −E1 − E2 −E3,

we obtain a 4-tuple of simple bivectors E1, . . . , E4 that sum to zero, with all their
pairwise sums Ei + Ej also being simple. The bivectors Ei are simple because they
come from triangles. Their pairwise sums are simple because these triangles lie in
planes that pairwise span 3-dimensional subspaces of R

4 — or equivalently, that
intersect pairwise in lines.
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As before, the map from the vectors ei to the bivectors Ei is generically two-to-one:
when the vectors ei are linearly independent, the Ei uniquely determine the vectors ei

up to sign. However, not every collection of simple bivectors E1, . . . , E4 summing to
zero with simple pairwise sums come from a tetrahedron this way. Generically there
are 4 possibilities:

1. The bivectors Ei come from a tetrahedron.

2. The bivectors −Ei come from a tetrahedron.

3. The bivectors ∗Ei come from a tetrahedron.

4. The bivectors −∗Ei come from a tetrahedron.

The proof is as follows. Recall that any nonzero simple bivector e∧f determines a
plane through the origin, namely that spanned by e and f , and note that conversely,
this plane determines the simple bivector up to a scalar multiple. Generically the
bivectors E1, E2, E3 are nonzero, and thus determine three planes P1, P2, P3 ⊂ R4.
Since the pairwise sums of the Ei are simple, these three planes generically intersect
pairwise in lines. There are two cases:

(a) P1 ∩ P2 6= P1 ∩ P3. In this case P1 is spanned by the lines P1 ∩ P2 and P1 ∩ P3.
Thus it lies in the span of P2 and P3, which is a 3-dimensional subspace of
R4. Since all three planes lie in this subspace, the problem reduces to the 3-
dimensional case discussed in Section 2: either the bivectors Ei come from a
tetrahedron, or the bivectors −Ei come from a tetrahedron.

(b) P1 ∩ P2 = P1 ∩ P3. In this case all three planes Pi share a common line, but
generically they pairwise span three different subspaces, so the span of P1 and
P2 differs from that of P1 and P3. Taking orthogonal complements, we thus
have P⊥

1 ∩ P⊥
2 6= P⊥

1 ∩ P⊥
2 . Thus all the hypotheses of the previous case hold,

but with the planes Pi replaced by the planes P⊥
i . The planes P⊥

i correspond
to the bivectors ∗Ei, so the argument in the previous case implies that either
the bivectors ∗Ei come from a tetrahedron, or −∗Ei come from a tetrahedron.

This proof makes no use of the bivector E4, but of course the situation is perfectly
symmetrical. If one forms planes corresponding to all 4 bivectors E1, . . . , E4, one can
check that in case (a), all 4 planes lie in the same 3-dimensional subspace of R4, while
in case (b), all 4 planes contain the same line. The two cases are dual to each other
in the sense of projective geometry.

One can easily distinguish between the cases 1-4 listed above using the self-dual
and anti-self-dual parts E±

i of the bivectors Ei. Thinking of these bivectors as ele-
ments of so(4), we can define the quantities

U± = ±〈E±
1 , [E

±
2 , E

±
3 ]〉,
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using the Killing form and Lie bracket in so(4). (Just as in 3 dimensions, we can
equivalently define these quantities using any 3 of the bivectors E1, . . . , E4.) Then
cases 1-4 correspond to the following 4 cases, respectively:

1. U+ > 0, U− < 0.

2. U+ < 0, U− > 0.

3. U+ > 0, U− > 0.

4. U+ < 0, U− < 0.

Moreover, in all of these cases we have |U+| = |U−|. To prove this, we consider the
4 cases in turn:

1. If the bivectors Ei come from a tetrahedron, there is a 3-dimensional subspace
V ⊂ R4 such that all the Ei lie in so(V ) ⊂ so(4). The results of Section 2
thus imply that 〈E1, [E2, E3]〉 > 0. Note that we can choose a Lie algebra iso-
morphism α: so(4) → so(3)⊕ so(3) mapping so(V ) to the ‘diagonal’ subalgebra
consisting of elements of the form (x, x). We can also choose α so that self-dual
elements of so(4) are mapped to the first so(3) summand, while anti-self-dual
elements are mapped to the second. Writing α(Ei) = (xi, xi), we thus have

〈E1, [E2, E3]〉 = 〈(x1, x1), [(x2, x2), (x3, x3)]〉 = 2〈x1, [x2, x3]〉

while
U+ = 〈(x1, 0), [(x2, 0), (x3, 0)]〉 = 〈x1, [x2, x3]〉

and
U− = −〈(0, x1), [(0, x2), (0, x3)]〉 = −〈x1, [x2, x3]〉.

It follows that U+ > 0 and U− = −U+.

2. If the bivectors −Ei come from a tetrahedron, since multiplying the Ei by −1
reverses the sign of both U+ and U−, the above argument implies that U+ < 0
and U− = −U+.

3. If the bivectors ∗Ei come from a tetrahedron, since applying the Hodge star
operator to the Ei reverses the sign of U− but leaves U+ unchanged, the above
argument implies that U+ > 0 and U− = U+.

4. Similarly, if the bivectors −∗Ei come from a tetrahedron, we have U− < 0 and
U− = U+.
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The remaining, non-generic, cases correspond to situations where both U+ and U−

vanish.
We may visualize the results of this section as follows. Suppose the bivectors

E1, . . . , E4 come from a nondegenerate tetrahedron τ in 4 dimensions. Then the
bivectors E+

i come from a unique nondegenerate tetrahedron τ+ with positive oriented
volume

√
U+ in the 3-dimensional space of self-dual bivectors. Similarly, the E−

i

come from a unique nondegenerate tetrahedron τ− with positive oriented volume√
−U− in the space of anti-self-dual bivectors. Since |E+

i | = |E−

i | and |E+
i + E+

j | =
|E−

i + E−

j |, the tetrahedra τ+ and τ− differ only by a rotation. Conversely, any pair
of tetrahedra τ+, τ− with these properties determines a nondegenerate tetrahedron
τ in 4 dimensions, unique up to the transformation x 7→ −x.

3.1 Poisson structure

We obtain the phase space of the tetrahedron in 4 dimensions by starting with phase
space of 4-tuples of bivectors and then imposing suitable constraints. The phase space
of 4-tuples of bivectors is the product of 4 copies of so(4)∗ with the ‘flipped’ Poisson
structure described in Section 1.1. This space has coordinate functions E±j

1 , . . . , E±j
4

where j = 1, 2, 3, satisfying the Poisson bracket relations:

{E+j
i , E+k

i } = ǫjklE+l
i

{E−j
i , E−k

i } = −ǫjklE−l
i

{E+j
i , E−k

i } = 0

{E±j
i , E±k

i′ } = 0 i 6= i′.

To obtain the phase space of a tetrahedron in 4 dimensions, we do Poisson reduc-
tion using the following constraints:

1. The closure constraint E1 + E2 + E3 + E4 = 0.

2. The simplicity constraints |E+
i |2 = |E−

i |2.

3. The simplicity constraints |E+
i + E+

j |2 = |E−

i + E−

j |2.

4. The chirality constraint U+ + U− = 0.

The last constraint eliminates the fake tetrahedra of types 3 and 4, leaving genuine
tetrahedra (type 1) and their negatives (type 2).

First we deal with the closure constraint. This is equivalent to separate closure
constaints for the self-dual and anti-self-dual parts of the Ei:

E+
1 + · · · + E+

4 = 0, E−
1 + · · ·+ E−

4 = 0

Thus Poisson reduction by this constraint takes us from the 24-dimensional space
(so(4)∗)4 down to 12-dimensional space T+ × T−, where T+ is a copy of the phase
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space for a tetrahedron in 3 dimensions, and T− is another copy, but with minus the
standard Poisson structure.

By the results of Section 2.1, the functions |E±

i |2 push down to smooth functions
on T+ × T−, and the symplectic leaves of T+ × T− are the sets on which all 8 of
these functions are constant. Generically these leaves are of the form S2 × S2. The
following functions also push down to smooth functions on T+ × T−:

Ci = |E+
i |2 − |E−

i |2,

Cij = |E+
i + E+

j |2 − |E−

i + E−

j |2.
The Ci have vanishing Poisson brackets with every function on T+ × T−. The Cij do
not, and in particular, taking ijkl to be any even permutation of 1234, we have

{Cij, Cik} = 4(U+ + U−).

Next we deal with the simplicity constraints Ci = 0. Since the Ci have vanish-
ing Poisson brackets with every function, they generate trivial flows, so in this case
Poisson reduction merely picks out the 8-dimensional subspace

{Ci = 0} ⊂ T+ × T−.

A point (t+, t−) of T+×T− corresponds to a pair of tetrahedra or negative tetrahedra
modulo rotations in 3 dimensions. When we refer to t+, for example, as a tetrahedron,
this means the geometrical tetrahedron formed either by the vectors t+ if U+ ≥ 0 or
that formed by −t+ if U+ ≤ 0.

A point in the subspace {Ci = 0} corresponds to such a pair whose corresponding
faces have equal areas. The symplectic leaves L of this subspace are again generically
of the form S2 × S2, and consist of the pairs of tetrahedra in 3 dimensions for which
the common values for their four face areas are constants. Recall that each S2 is
divided into two hemispheres on which U ≥ 0 and U ≤ 0. The equator {U = 0} is
the circle of degenerate tetrahedra.

Now we consider the simplicity constraints Cij = 0 and the chirality constraint
U+ + U− = 0. On the subspace {Ci = 0} only two of the constraints Cij = 0 are
independent, since for any permutation ijkl of 1234 we have

Cij = Ckl,

and we also have
C12 + C23 + C31 = C1 + C2 + C3 + C4.

Thus the subspace
{Ci = Cij = 0} ⊂ T+ × T−

is generically 6-dimensional. To describe its structure, it is easiest to consider its
intersection with a particular symplectic leaf L.
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The constraints Cij = 0 imply that the two tetrahedra t+, t− are isometric. Then
t+ = t− or t+ = −t−, and these are both true if and only if U+ = U− = 0. This
means that the constraints are satisfied on two copies of S2 embedded in L which
intersect in the circle {U+ = U− = 0}. These embedded spheres, which we denote by
X and X̄, satisfy the equations U+ + U− = 0 and U+ − U− = 0 respectively.

The surfaces X and X̄ differ markedly with respect to the symplectic structure.
It is worth comparing the situation with the Kähler reduction by a group action.
In the latter, the reduced phase space is the space of orbits of the group action
in the constraint surface. The constraint surface is coisotropic, i.e., the tangent
space contains its symplectic complement, and the tangents to the orbits are in this
symplectic complement. This means that if v is tangent to the orbit and u is tangent
to the constraint surface, then ω(v, u) = 0. The wavefunctions which are invariant
under the group action localise to a small region around the constraint surface and
are determined by their values on it.

The situation we have here with the constraints Cij = 0 differs in that they do not
form a Lie algebra. However X is coisotropic (in fact Lagrangian) and the fact that
the commutator of two of the Cij vanishes on X implies that the Hamiltonian vector
fields they generate are tangent to X. Thus the situation is in most respects similar
to the group case. On the other hand, X̄ is not coisotropic, and the Hamiltonian
vector fields are not tangent to it. Thus there is no sensible reduction procedure for
wavefunctions based on X̄.

3.2 Quantization

Finally, let us quantize the tetrahedron in 4 dimensions. As in 3 dimensions, there
are two strategies. The first is to geometrically quantize (so(4)∗)4 and impose the
closure, simplicity and chirality constraints at the quantum level. The second is to
impose these constraints at the classical level and geometrically quantize the resulting
reduced space. As we have already seen, there is a problem with the second approach:
the simplicity constraints Cij do not generate a Lie group action on the symplectic
leaf L. Thus we can only carry out the second strategy in a rather ad hoc way. If we
do so, we obtain a 1-dimensional space of states for each generic integral leaf L. In
some sense this explains the uniqueness of the vertex. Unfortunately, we cannot apply
the results of Guillemin and Sternberg to rigorously conclude that the first strategy
also gives a 1-dimensional state space for a tetrahedron with faces of fixed area.

In the first strategy, we start by geometrically quantizing the product of four
copies of so(4)∗ with its flipped Poisson structure. By the results of Section 1.2 we
obtain the Hilbert space (H⊗H∗)⊗4, together with operators Ê±j

i on this space which
satisfy the following commutation relations:

[Ê+j
i , Ê+k

i ] = iǫjklÊ+l
i

[Ê−j
i , Ê−k

i ] = −iǫjklÊ−l
i
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[Ê+j
i , Ê−k

i ] = 0

[Ê±j
i , Ê±k

i′ ] = 0 i 6= i′.

Geometrically quantizing the closure constraint we obtain the operators

Ê±
1 + · · · + Ê±

4 ,

while quantizing the simplicity constraints gives the operators

Ĉi =
3∑

k=1

(Êk
i )2, Ĉij =

3∑

k=1

(Êk
i + Êk

j )2.

The states annihilated by the quantized closure constraint form the subspace

T ⊗ T ∗ ⊂ (H⊗H∗)⊗4

where T ⊂ H⊗4 is the Hilbert space of the quantum tetrahedron in 3 dimensions.
Among these states, those that are also annihilated by the simplicity constraints Ĉi

form the subspace

⊕

j1,j2,j3,j4

Inv((j1, j1) ⊗ · · · ⊗ (j4, j4)) ⊂ T ⊗ T ∗.

The operators Ĉij map each of these summands to itself, and as shown by Reisenberger
[27], each nonzero summand has a 1-dimensional subspace that is annihilated by all
these operators. We call the direct sum of all these 1-dimensional spaces the Hilbert

space of the quantum tetrahedron in four dimensions.
The reader may wonder why we have not dealt with the chirality constraint. If

we geometrically quantize this constraint we obtain the operator Û+ + Û−, where

Û± =
∑

i,j,k

ǫijk Ê
±i
1 Ê±j

2 Ê±k
3 .

Barbieri [7] has shown that

4i[Ĉij, Ĉik] = Û+ + Û−.

Thus any solution ψ of the simplicity constraints automatically satisfies the chirality
constraint

(Û+ + Û−)ψ = 0.

In other words, fake tetrahedra of types 3 and 4 do not occur in the quantum theory.
In the second strategy, we attempt to impose all the constraints at the classical

level and then quantize. We did most of the work for this in the previous section.
Starting from (so(4)∗)4 and doing symplectic reduction using the closure constraint,
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we obtained the space T+ × T−. Imposing the simplicity constraints Ci = 0 we
obtained an 8-dimensional space with symplectic leaves L generically of the form
S2 × S2. Recall that any point in L corresponds to a pair (t+, t−) of tetrahedra in 3
dimensions (modulo rotations) such that the ith face of both t+ and t− has area ji. If
at this stage we geometrically quantized an integral generic leaf L, we would obtain
the Hilbert space of states

Inv((j1, j1) ⊗ · · · ⊗ (j4, j4)),

which is one of the summands mentioned above. We could then impose the remaining
simplicity constraints at the quantum level as before. However, let us impose the
simplicity constraints Cij = 0 at the classical level. We obtain a union of two spheres
X ∪ X̄. The chirality constraint holds only on X, so we restrict attention to this
space.

As already noted, the constraints Cij do not generate a Lie group action on L.
However, they generate flows that act transitively on the sphere X, in the sense that
all smooth functions invariant under all these flows are constant on X. Thus we may
say, in a somewhat ad hoc way, that the symplectic reduction of the leaf L by the
constraints Cij is a single point. Geometrically quantizing this point, we obtain a
1-dimensional space of states, in accord with Reisenberger’s result. Alternatively, we
may think of this 1-dimensional space as the space of constant functions on X. This
makes the uniqueness of the vertex much less mysterious.

Unfortunately, we cannot use this to give a new proof of Reisenberger’s result,
because we do not know that quantization commutes with reduction in this case.
The reason is that the constraints Cij do not generate a Lie group action on L.
Moreover, the flows they generate do not preserve the Kähler structure on L. A
complete proof of the uniqueness of the vertex using geometrical quantization will
apparently require new ideas. Flude has studied some similar constraints which give
results in this direction which hold in the asymptotic limit of large spin [14].

4 Considerations from Quantum Gravity

The action for Riemannian general relativity in 4 dimensions, expressed in terms of
a linear connection and an R4-valued one-form e, can be written as:

∫
〈F, ∗(e ∧ e)〉

where F is the so(4)-valued 2-form giving the curvature, e∧e is the induced bivector-
valued 2-form, and ∗ the Hodge star. The brackets 〈· , ·〉 denote the standard pairing
of so(4) with Λ2R4 introduced in section 1, extended to differential forms by using the
exterior product of forms. The inner product 〈· , ∗ ·〉 is exactly the one that leads to
the flipped Poisson structure we introduced. This means that the Poisson structure we
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introduced so that the quantization leads to real tetrahedra, and not fake tetrahedra,
is exactly the one relevant for the quantization of the Einstein action.

A further issue is the negative tetrahedra, the ones of type 2 for which the bivec-
tors −E come from a tetrahedron. These configurations make up half of the phase
space X. There is a classical symmetry E 7→ −E, and a corresponding quantum
operator, P ⊗ P , with P the antilinear operator discussed in Section 2.2. Since this
commutes with the quantum constraints, (P ⊗ P )ψ = cψ, with c a complex number
of unit modulus. The interpretation of this is that the quantum tetrahedron in four
dimensions contains both tetrahedra and negative tetrahedra in equal measure. It
does not seem that one can easily exclude the negative tetrahedra. There is a natural
interpretation which may provide an explanation. One can change the sign of the
isomorphism β: Λ2Rn → so(n)∗ by replacing the Euclidean metric η by −η. Thus
the negative tetrahedra have an interpretation as genuine tetrahedra for the opposite
signature of the space-time metric.

Finally, there remains the question of the implication of our results to the nature
of quantum geometry. An approach based on areas is in many ways a natural ex-
tension of 3-dimensional quantum gravity based on lengths. However it differs rather
substantially from a naive expectation of a 4-dimensional approach based on lengths.
As we have seen, a quantum tetrahedron does not appear to have a unique metric
geometry. This means that in a state-sum approach based on gluing 4-simplexes to-
gether across a common tetrahedron, as outlined in [8], the metric of the tetrahedron
does not transmit across from one 4-simplex to another. Rather, the parallelogram
areas are randomised as one crosses from one 4-simplex to another. As we have shown
here, this is a direct consequence of the uncertainty principle.

Acknowledgments

We would like to thank Andrea Barbieri, Laurent Freidel, Allen Knutson, Kirill Kras-
nov, Michael Reisenberger, Alan Weinstein, and José-Antonio Zapata for useful dis-
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