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Abstract

We present a new learning algorithm for Boltz-
mann machines that contain many layers of hid-
den variables. Data-dependent expectations are
estimated using a variational approximation that
tends to focus on a single mode, and data-
independent expectations are approximated us-
ing persistent Markov chains. The use of two
quite different techniques for estimating the two
types of expectation that enter into the gradient
of the log-likelihood makes it practical to learn
Boltzmann machines with multiple hidden lay-
ers and millions of parameters. The learning can
be made more efficient by using a layer-by-layer
“pre-training” phase that allows variational in-
ference to be initialized with a single bottom-
up pass. We present results on the MNIST and
NORB datasets showing that deep Boltzmann
machines learn good generative models and per-
form well on handwritten digit and visual object
recognition tasks.
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units (Hinton, 2002). Multiple hidden layers can be learned
by treating the hidden activities of one RBM as the data
for training a higher-level RBM (Hinton et al., 2006; Hin-
ton and Salakhutdinov, 2006). However, if multiple layers
are learned in this greedy, layer-by-layer way, the resgiti
composite model igiot a multilayer Boltzmann machine
(Hinton et al., 2006). It is a hybrid generative model called
a “deep belief net” that has undirected connections between
its top two layers and downward directed connections be-
tween all its lower layers.

In this paper we present a much more efficient learning
procedure for fully general Boltzmann machines. We also
show that if the connections between hidden units are re-
stricted in such a way that the hidden units form multi-
ple layers, it is possible to use a stack of slightly modified
RBM’s to initialize the weights of a deep Boltzmann ma-
chine before applying our new learning procedure.

2 Boltzmann Machines (BM’s)

A Boltzmann machine is a network of symmetrically cou-
pled stochastic binary units. It contains a set of visiblgsun
v € {0,1}”, and a set of hidden units € {0,1}7 (see
Fig. 1). The energy of the stafer, h} is defined as:

1T LT T
The original learning algorithm for Boltzmann machines E(v,h;0) = 3V Lv — §h Jh —v ' Wh, )

(Hinton and Sejnowski, 1983) required randomly initial-
ized Markov chains to approach their equilibrium distri-
butions in order to estimate the data-dependent and dat
independent expectations that a connected pair of binar
variables would both be on. The difference of these two ex- . C )
pectations is the gradient required for maximum IikelihoodmOOIeI assigns to a visible vectoris:

wheref = {W,L,J} are the model parametérsv, L, J
Jepresent visible-to-hidden, visible-to-visible, andden-
-hidden symmetric interaction terms. The diagonal ele-
ents ofL andJ are set to 0. The probability that the

learning. Even with the help of simulated annealing, this p*(v;0) 1 _

learning procedure was too slow to be practical. Learningp(v’ )= Z0) ~ Z(0) ZeXp (=E(v,h;0), ()

can be made much more efficient in a restricted Boltzmann h

machine (RBM), which has no connections between hidden Z(0) =YY exp(—E(v,h;0)), (3)
v h

Appearing in Proceedings of thet" International Confe-rence « . - .
on Artificial Intelligence and Statistics (AISTATS) 2009le@rwa- wherep” denotes unnormalized probability, anf{f) is

ter Beach, Florida, USA. Volume 5 of JMLR: W&CP 5. Copyright the partition function. Theonditional distributions over
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General Boltzmann Restricted Boltzmann

Machine Machine landscape. This is typical when modeling real-world dis-
tributions such as datasets of images in which almost all
of the possible images have extremely low probability, but
there are many very different images that occur with quite
similar probabilities.

Setting bothJ=0 and L=0 recovers the well-known re-
stricted Boltzmann machine (RBM) model (Smolensky,
1986) (see Fig. 1, right panel). In contrast to general BM’s,
inference in RBM's is exact. Although exact maximum
likelihood learning in RBM's is still intractable, learrgn

. , can be carried out efficiently using Contrastive Divergence
Figure 1: Left: A general Boltzmann machine. The top layer

represents a vector of stochastic binary “hidden” featued (CD) (_H'nton’ 20(_)2)1 It was further observed (V\_’e"'“g
the bottom layer represents a vector of stochastic binaigi-v @nd Hinton, 2002; Hinton, 2002) that for Contrastive Di-

ble” variables. Right: A restricted Boltzmann machine with no vergence to perform well, it is important to obtain exact
hidden-to-hidden and no visible-to-visible connections. samples from the conditional distributigiih|v; ), which
is intractable when learning full Boltzmann machines.

hidden and visible units are given by:

D P 2.1 Using Persistent Markov Chainsto Estimate the
p(h; =1|v,h_j) = U(ZWijvi + Z Timhs), (8) Model’s Expectations
=1 m=1\j

Instead of using CD learning, it is possible to make use of a
stochastic approximation procedure (SAP) to approximate

p(vi = 1h,v_;) = U(ZWi-jh-j + Z_Lik“j)’ () the model's expectations (Tieleman, 2008; Neal, 1992).
=1 k=1\i SAP belongs to the class of well-studied stochastic approx-

whereo(z) = 1/(1 + exp(—z)) is the logistic function. imation algorithms of the Robbins—Monro type (Robbins

The parameter updates, originally derived by Hinton anaand Monro, 1951; Younes, 1989, 2000). The idea behind

) . . §
Sejnowski (1983), that are needed to perform gradient ast_hese methods is straightforward. lend X" be the cur

cent in the log-likelihood can be obtained from Eq. 2: rent parameters and the state. Ttéhand¢, are updated
' sequentially as follows:

P D

AW = « (EPdata [VhT] - EPmodcl [VhT]) ) (6) X ) )
AL — E T _E T e GivenX?, a new stateY **! is sampled from a transi-
= a(Bru v ] = Eralvw']), tion operatofly, (X'+1; X*) that leavegy, invariant.
Al = « (EPdata [hhT] - EPrnodcl [hhT]) ;

e A new paramete#f; is then obtained by replacing
where o is a learning rate, E,, [-] denotes an expec- the intractable model’'s expectation by the expectation
tation with respect to the completed data distribution  Wwith respect taX*+*,

Pdata(ha \2) 9) = p(h|V, e)Pdata (V)r with Pdata(v) =

% >, 0(v — vy,) representing the empirical distribution, Precise sufficient conditions that guarantee almost sure
and Es__,.,[-] is an expectation with respect to the distri- convergence to an asymptotically stable point are given in
bution defined by the model (see Eq. 2). We will some-(Younes, 1989, 2000; Yuille, 2004). One necessary con-
times refer to k. [/] as thedata-dependent expectation,  dition requires the learning rate to decrease with time, i.e
and B, .., [] as themodel’s expectation. Yo oou = coand) ;° a? < co. This condition can be
trivially satisfied by settingy, = 1/¢. Typically, in prac-

Exact maximum likelihood learning in this model is in- . . .
. tice, the sequenc@,| is bounded, and the Markov chain,
tractable because exact computation of both the data- " ) .
overned by the transition kerné}, is ergodic. Together

dependent e_zxpectatmns. an_d the model's expe_ctatlons t.akgv?th the condition on the learning rate, this ensures almost
a time that is exponential in the number of hidden unlts.S
Hinton and Sejnowski (1983) proposed an algorithm that
uses Gibbs sampling to approximate both expectations. Farhe intuition behind why this procedure works is the fol-
each iteration of learning, a separate Markov chain is rudowing: as the learning rate becomes sufficiently small
for every training data vector to approximatg,E_[-],and  compared with the mixing rate of the Markov chain, this
an additional chain is run to approximate E, []. The “persistent” chain will always stay very close to the sta-
main problem with this learning algorithm is the time re- tionary distribution even if it is only run for a few MCMC
quired to approach the stationary distribution, espegciall updates per parameter update. Samples from the persistent
when estimating the model’s expectations, since the Gibbshain will be highly correlated for successive parameter up

chain may need to explore a highly multimodal energydates, but again, if the learning rate is sufficiently sniadl t

ure convergence.
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chain will mix before the parameters have changed enouglearning. Second, for applications such as the interpogtat
to significantly alter the value of the estimator. Many per-of images or speech, we expect the posterior over hidden
sistent chains can be run in parallel and we will refer to thestatesgiven the data to have a single mode, so simple and
current state in each of these chains as a “fantasy” particldast variational approximations such as mean-field should
be adequate. Indeed, sacrificing some log-likelihood in or-
2.2 A Variational Approach to Estimating the der to make the true posterior unimodal could be advan-
Data-Dependent Expectations tageous for a system that must use the posterior to con-

o , , _ trol its actions. Having many quite different and equally
In variational learning (Hinton and Zemel, 1994; Neal and g representations of the same sensory input increases

Hinton, 1998), the true posterior distribution over Iatemlog-likelihood but makes it far more difficult to associate

variabIeSp(h|\_7; 0) for each training vectoy, is replaced appropriate action with that sensory input.
by an approximate posterig(h|v; 1) and the parameters

are updated to follow the gradient of a lower bound on th
log-likelihood:

Boltzmann Machine L earning Procedure:

Given: a training set ofV data vectordv}A_,.

p(vi0) > S q(blvi)lp(v,hi0) +H(@) (1) | 1 Randomly initilize parametefd and A fantasy part
§ cles.{v>!,h®1}, . {vOM hOM}

2. Fort=0to T (# of iterations)

whereH(-) is the entropy functional. Variational learning (@) For each training exampie”, n=1toN

has the nice property that in addition to trying to max- . g;g‘;og"yg'“';ﬁ“gg# ;”‘énrgg mean-field up
imize the log-likelihood of the training data, it tries to . Set" _q'u unt verg '

find parameters that minimize th_e Kullback—LelbIer_ diver- (b) For each fantasy particle m=1 to M

gences between the approximating and true posteriors. U « Obtain a new staté"* '™ B*1™) by run-
ing a naive mean-field approach, we choose a fully factort ning a k-step Gibbs ;,ample} using qu 4.5 ini
ized distribut}ipon in order_to approximate the true pos_terio tialized at the previous samplé®™, flt,m)_’ '
q(h; ) = IT;—; (i), with g(h; = 1) = p; whereP is

= Inp(v;0) — KL[q(h|v; u)|[p(h|v;0)],

Uy
1

] . Updat

the number of hidden units. The lower bound on the log (c) Update | X
probability of the data takes the form: W =W+ o (N > ovium)’ -

1 1 n=1

Inp(v;0) > = Lixvivr + = Sim i m
p( ) B ; kUi Uk 2 zﬁ; jm g i i {’t+1,m(l’,‘1t+1,m)7
.’ ) M m=1 ‘
+ Z Wijvipj —InZ(6) Similarly update parametefsand.J.

2%

+ Z (b I gy + (1= 1) In (1 = p)]

(d) Decreasey;.

. . _ Deep Boltzmann Machines (DBM’s)
The learning proceeds by maximizing this lower bound

with respect to the variational parametergor fixed 9, N general, we will rarely be interested in learning a com-
which results in mean-field fixed-point equations: plex, fully connected Boltzmann machine. Instead, con-
sider learning a deep multilayer Boltzmann machine as

My — a(ZWijvi + Z ijum). (8) shown in Fig. 2, left panel, in which each layer captures

i m\j complicated, higher-order correlations between the activ

ties of hidden features in the layer below. Deep Boltzmann

rameters (Salakhutdinov, 2008). We emphasize that vari-maChme.S are interesting f,or several reasons. First, _I|ke
. L - . deep belief networks, DBM’s have the potential of learning
ational approximations cannot be used for approximatin

the expectations with respect to the model distribution ir?nternal representations that become increasingly comple

the Boltzmann machine learning rule because the minu\évhICh Is considered to be a promising way of solving object

sign (see Eq. 6) would cause variational learning to chang(aemd speech recognition problems. Second, high-level rep-

the parameters so as teaximize the divergence between resentatl_ons can be built f.rom a large supply of unlabeled
S o sensory inputs and very limited labeled data can then be
the approximating and true distributions. If, however, a

persistent chain is used to estimate the model’s expectallJ-SEd to only slightly fine-tune the model for a specific task

. o . . : at hand. Finally, unlike deep belief networks, the approxi-
tions, variational learning can be applied for estimatimg t . : " C
. mate inference procedure, in addition to an initial bottom-
data-dependent expectations. . )
up pass, can incorporate top-down feedback, allowing deep
The choice of naive mean-field was deliberate. First, theBoltzmann machines to better propagate uncertainty about,

convergence is usually very fast, which greatly facilisate and hence deal more robustly with, ambiguous inputs.

This is followed by applying SAP to update the model pa-
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Figure 2:Left: A three-layer Deep Belief Network and a three-layer DeejtZBtann MachineRight: Pretraining consists of learning
a stack of modified RBM’s, that are then composed to createp Beltzmann machine.

Consider a two-layer Boltzmann machine (see Fig. 2, rightAfter learning the first RBM in the stack, the generative
panel) with no within-layer connections. The energy of themodel can be written as:
state{v, h', h?} is defined as:

E(v,h',h%0) = —v W'h! — h'TW?h2, ©) p(v;i0) = > p(h'; Whp(v[h'; W), (14)
hl

whered = {W! W?} are the model parameters, repre-
senting visible-to-hidden and hidden-to-hidden symroetri \where p(hh W = S p(ht,v; W) is an implicit
interaction terms. The probability that the model assigns t prior over h' defined by the parameters. The second
a visible vectow is: RBM in the stack replaces(h'; W') by p(h!; W?) =
1 Lo > nz p(h!, h? W?). If the second RBM is initialized cor-
p(vi6) = Z(0) > exp(~E(v,h',h%0)).  (10) rectly (Hinton et al., 2006),(h'; W2) will become a bet-
h1;h? ter model of the aggregated posterior distribution dver
The conditional distributions over the visible and the twoWhere the aggregated posterior is simply the non-factorial
sets of hidden units are given by logistic functions: _rmxture of the factorial poster_|ors for all the training eas
i.e. 1/N > p(h'|v,; W'). Since the second RBM is re-
p(h} =1|v,h?) = o( Z Wkv + Z W2,h%), (11) placingp(h'; W1) by a better model, it would be possible
' : o toinferp(h'; W', W?) by averaging the two models hf
: ) 1
B2 — 1|h!) — 2 1 12 which can be done approxmately by usirigW* bottom-
Pl = 1[0 G(Z Winhi), (12) up and!/2W?2 top-down. UsingW! bottom-up andw?
. ! . top-down would amount to double-counting the evidence
plvi = 1|b') = (> Wih;). (13)  sinceh? is dependent ow.
j

To initialize model parameters of a DBM, we propose
For approximate maximum likelihood learning, we could greedy, layer-by-layer pretraining by learning a stack of
still apply the learning procedure for general BoltzmannrBM's, but with a small change that is introduced to elim-
machines described above, but it would be rather slow, paiinate the double-counting problem when top-down and
ticularly when the hidden units form layers which becomepottom-up influences are subsequently combined. For the
increasingly remote from the visible units. There is, how-|ower-level RBM, we double the input and tie the visible-
ever, a fast way to initialize the model parameters to sensito-hidden weights, as shown in Fig. 2, right panel. In this
ble values as we describe in the next section. modified RBM with tied parameters, the conditional distri-

butions over the hidden and visible states are defined as:

(S Who + 3 Wi, (15)
(S Whhy). (16)

3.1 Greedy Layerwise Pretraining of DBM's
p(h; =1|v)

Hinton et al. (2006) introduced a greedy, layer-by-layer un

supervised learning algorithm that consists of learning a
stack of RBM’s one layer at a time. After the stack of p(vi = 1|h")
RBM’s has been learned, the whole stack can be viewed

as a single probabilistic model, called a “deep belief net-

work”. Surprisingly, this model isiot a deep Boltzmann Contrastive divergence learning works well and the modi-
machine. The top two layers form a restricted Boltzmannfied RBM is good at reconstructing its training data. Con-
machine which is an undirected graphical model, but therersely, for the top-level RBM we double the number of
lower layers form alirected generative model (see Fig. 2). hidden units. The conditional distributions for this model
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take the form: we can easily drawi.d. samples. AIS estimates the ratio
Zp/Z4 by defining a sequence of intermediate probabil-
p(hj = 1h?) = U(ZWJthﬁ Zmehfn (A7) ity distributions: po, ..., px, With po = pa andpx = pp.
For each intermediate distribution we must be able to easily
p(hZ, =1h') =0 Z W3 hj). (18)  evaluate the unnormalized probabiliff(x), and we must
also be able to sample’ givenx using a Markov chain

transition operatofy (x’; x) that leavegy, (x) invariant.
When these two modules are composed to form a single

system, the total input coming into the first hidden layer isUsing the special layer-by-layer structure of deep Boltz-
halved which leads to the following conditional distrimrti ~ mann machines, we can derive a more efficient AIS scheme

overh!: for estimating the model’s partition function. Let us
again consider a two-layer Boltzmann machine defined by
p(h; =1|v,h?) = Z Whos + Z W},hz). (19)  Eq. 10. By explicitly summing out the visible unitsand

the 27d-layer hidden unitsh?, we can easily evaluate an
unnormalized probability* (h'; §). We can therefore run
AIS on a much smaller state space= {h'} with v and

h? analytically summed out. The sequence of intermediate
Observe that the conditional distributions defined by thedistributions, parameterized I} is defined as follows:
composed model are exactly the same conditional dlstrl Z v,h!, h?) =

butions defined by the DBM (Egs. 11, 12, 13). Therefore” »(

greedily pretraining the two modified RBM’s leads to an
undirected model with symmetric weights — a deep Boltz- — L H(l 4 B h;”’?ﬁ) H(1 4+ B 325 W k))
mann machine. When greedily training a stack of more ; i

than two RBM’s, the modification only needs to be used
for the first and the last RBM’s in the stack. For all the
intermediate RBM'’s we simply halve their weights in both
directions when composing them to form a deep Boltzman
machine.

The conditional distributions over and h? remain the
same as defined by Egs. 16, 18.

v,h?

This approach closely resembles simulated annealing. We
gradually change, (or inverse temperature) from 0 to 1,
rg;mneallng from a simple “uniform” model to the final com-
plex model. Using Eqgs. 11, 12, 13, it is straightforward
to derive an efficient block Gibbs transition operator that
Greedily pretraining the weights of a DBM in this way leavesp,(h') invariant.

SErVes two purposes. First, as we show in the experimen%nce we obtain an estimate of the global partition function
results section, it initializes the weights to sensiblaieal 7 timate. f ¢ tg A tE tional
Second, it ensures that there is a very fast way of perform- we can esfimate, for a given test casgthe variationa

ing approximate inference by a single upward pass througH)Wer bound of Eq. 7:

the stack of RBM's. Given a data vector on the visible In p(v*; ) > — Z (h; ) E(v*,h;0) + H(q) —In Z(0)
units, each layer of hidden units can be activated in a single

bottom-up pass by doubling the bottom-up input to com- _ Z (v¥,1;0) + H(q) — In 2,
pensate for the lack of top-down feedback (except for the

very top layer which does not have a top-down input). This

fast approximate inference is used to initialize the meanwhere we defineth = {h', h®}. For each test vector, this
field method, which then converges much faster than witHower bound is maximized with respect to the variational
random initialization. parameterg using the mean-field update equations.

Furthermore, by explicitly summing out the states of the
hidden unitsh?, we can obtain a tighter variational lower
Recently, Salakhutdinov and Murray (2008) showed thabound on the log-probability of the test data. Of course, we
a Monte Carlo based method, Annealed Importance Sanean also adopt AlS to estimaEhl,h2 p*(v,h! h?), and
pling (AlIS) (Neal, 2001), can be used to efficiently estimatetogether with an estimate of the global partition function
the partition function of an RBM. In this section we show we can actually estimate the true log-probability of thé tes
how AIS can be used to estimate the partition functions ofdata. This however, would be computationally very expen-
deep Boltzmann machines. Together with variational infersive, since we would need to perform a separate AlS run
ence this will allow us obtain good estimates of the lowerfor each test case.

bound on the log-probability of theest data.

3.2 EvaluatingDBM'’s

When learning a deep Boltzmann machine with more than
Suppose we have two distributions defined on some spadwo layers, and no within-layer connections, we can explic-
X with probability density functiongp 4 (x) = p* (x)/Z 4 itly sum out either odd or even layers. This will result in a
andpg(x) = pj(x)/Zp. Typically pa(x) is defined to be  better estimate of the model’s partition function and tight
some simple distribution with know# 4, and from which  lower bounds on the log-probability of the test data.
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( 1000 units )
( 1000 units ) (' 500 units )

Figure 4:Left: Two deep Boltzmann machines used in experimeRtght: Random samples from the training set, and samples gen-
erated from the two deep Boltzmann machines by running tbesGampler for 100,000 steps. The images shown argrobebilities
of the binary visible units given the binary states of thedleid units.

© output mini-batches, each containing 100 cases, and updated the
weights after each mini-batch. The number of fantasy par-
) ticles used for tracking the model’s statistics was alstoset
h 10C°. For the stochastic approximation algorithm, we al-
WZT ways used 5 Gibbs updates of the fantasy particles. The ini-
tial learning rate was set 0.005 and was gradually decreased

TOOOOO ht T to 0. For discriminative fine-tuning of DBM’s we used
w2 wt the method of conjugate gradients on larger mini-batches
OCOOOO0) OOOO0) of 5000 with three line searches performed for each mini-
g(h?3v) v batch in each epoch.
Figure 3: After learning, DBM is used to initialize a multilayer
neural network. The marginals of approximate postey(dm? = 41 MNIST
1|v) are used as additional inputs. The network is fine-tuned by
backpropagation. The MNIST digit dataset contains 60,000 training and
10,000 test images of ten handwritten digits (0 to 9), with
3.3 Discriminative Fine-tuning of DBM’s 28x 28 pixels. In our first experiment, we trained two deep

After learning, the stochastic activities of the binary-fea BOltzmann machines: one with two hidden layers (500 and
tures in each layer can be replaced by deterministic, reaif000 hidden units), and the other with three hidden lay-

valued probabilities, and a deep Boltzmann machine can bg's (500, 500, and 1090 hidden units), as shown in Fig. 4.
used to initialize a deterministic multilayer neural netiwo 10 estimate the model's partition function we used 20,000

in the following way. For each input vecter, the mean- Bk spaped uniformly from 0 to 1.0. Table 1 shows that
field inference is used to obtain an approximate posteriof® estimates of the lower bound on the average test log-
distribution g(h|v). The marginalsq(hf = 1Jv) of this probability were—84.62 and—85.18 for the 2- and 3-layer

approximate posterior, together with the data, are used t§M'S respectively. This result is slightly better compared

create an “augmented” input for this deep multilayer neu-0 the lower bound o-85.97, achieved by a two-layer deep

ral network as shown in Fig. 3. Standard backpropagatiof€ief network (Salakhutdinov and Murray, 2008).
can then be used to discriminatively fine-tune the model. Qpserve that the two DBM's, that contain over 0.9 and

The unusual representation of the input is a by-product of--15 Million parameters, do not appear to suffer much from
converting a DBM into a deterministic neural network. In ©Verfitting. The difference between the estimates of the

general, the gradient-based fine-tuning may choose to igt_raining and test log-probabilities was about 1 nat. Fig. 4
noreq(h2|v), i.e. drive the first-layer connectiod? to ~ Shows samples generated from the two DBM's by ran-
zero, which will result in a standard neural network net,domly initializing all binary states and running the Gibbs

Conversely, the network may choose to ignore the input byp@mpler for 100,000 steps. Certainly, all samples look
driving the first-layerW! to zero. In all of our experi- like the real handwritten digits. We also note that without

ments, however, the network uses the entire augmented igféedy pretraining, we could not successfully learn good
put for making predictions. DBM models of MNIST digits.

. %It may seem that 100 particles is not nearly enough to rep-
4 Experimental Results resent the model’s distribution which may be highly multirab
. However, experience has shown that the fantasy particle® mo
In our experiments we used the MNIST and NORB zround rapidly because the learning algorithm increasesth
datasets. To speed-up learning, we subdivided datasets ingrgy at the location of each fantasy particle.
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Deep Boltzmann Machine

Training Samples Generated Samples

( 4000 units )
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Figure 5: Left: The architecture of deep Boltzmann machine used for NORBht: Random samples from the training set, and
samples generated from the deep Boltzmann machines byngutiveé Gibbs sampler for 10,000 steps.

_— » . 42 NORB
Table 1:Results of estimating partition functions of BM models,

along with the estimates of lower bound on the average trgini Results on MNIST show that DBM’s can significantly out-
and test log-probabilities. For all BM's we used 20,0001ime-  perform many other models on the well-studied but rela-
diate distributions. Results were averaged over 100 AlS.run tively simple task of handwritten digit recognition. In shi
section we present results on NORB, which is consider-
Estimates Avg. log-prob. ably more difficult dataset than MNIST. NORB (LeCun
nZ In(Z +6) Test Train et al., 2004) contains images of 50 different 3D toy ob-
2layer BM_ 356.18  356.06,356.20 8462 —83.61 jects with 10 objegts in each of five generic clas.ses:. cars,
3-layer BM  456.57 456.34 456.75 —85.10 —84.49 trucks, planes, animals, and humans. Each object is cap-
tured from different viewpoints and under various lighting
conditions. The training set contains 24,300 stereo image
To estimate how loose the variational bound is, we ranpairs of 25 objects, 5 per class, while the test set contains
domly sampled 100 test cases, 10 of each class, and ra#,300 stereo pairs of the remaining, different 25 objects.
AIS to estimate the true test log-probabififpr the 2-layer ~ The goal is to classify each previously unseen object into
Boltzmann machine. The estimate of the variational boundts generic class. From the training data, 4,300 were set
was -83.35 per test case, whereas the estimate of the traside for validation.
test log-probability was -82.86. The difference of about
0.5 nats shows that the bound is rather tight.

Each image has 9696 pixels with integer greyscale values

in the range [0,255]. To speed-up experiments, we reduced
For a simple comparison we also trained several mixthe dimensionality of each image from 9216 down to 4488
ture of Bernoullis models with 10, 100, and 500 compo-by using larger pixels around the edge of the infageran-
nents. The corresponding average test log-probabilitiedom sample from the training data used in our experiments
were —168.95, —142.63, and —137.64. Compared to is shownin Fig. 5.

DBM'’s, a mixture of Bernoullis performs very badly. The

. _ - To model raw pixel data, we use an RBM with Gaussian
difference of over 50 nats per test case is striking.

visible and binary hidden units. Gaussian-binary RBM'’s
Finally, after discriminative fine-tuning, the 2-layer BM have been previously successfully applied for modeling
achieves an error rate of 0.95% on the full MNIST testgreyscale images, such as images of faces (Hinton and
set. This is, to our knowledge, the best published resulfalakhutdinov, 2006). However, learning an RBM with
on the permutation-invariant version of the MNIST task. Gaussian units can be slow, particularly when the input di-
The 3-layer BM gives a slightly worse error rate of 1.01%. mensionality is quite large. In this paper we follow the
This is compared to 1.4% achieved by SVM'’s (Decoste andipproach of (Nair and Hinton, 2008) by first learning a
Scholkopf, 2002), 1.6% achieved by randomly initialized Gaussian-binary RBM and then treating the the activities
backprop, and 1.2% achieved by the deep belief networkgf its hidden layer as “preprocessed” data. Effectivelg, th
described in Hinton et al. (2006). learned low-level RBM acts as a preprocessor that converts

3Note that computationally, this is equivalent to estimgtin “The resulting dimensionality of each training vector, eepr
100 partition functions. senting a stereo pair, wax2488 = 8976.
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