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Introduction 

The VSIPL++ standard is designed to provide high 

programmer productivity and program portability, while 

maintaining high performance.  We have successfully shown 

that it can be applied to a Synthetic Aperture Radar benchmark 

program and obtain high performance on a wide range of target 

platforms. 

In this paper, we consider a different application of speech 

recognition, showing that the VSIPL++ API is useful beyond 

radar applications.  We also focus on programmer productivity 

and source-code complexity in this paper, as there are mature 

open-source speech-recognition toolkits that provide a realistic 

basis for comparison. 

The VSIPL++ API 

The VSIPL++ standard [1] defines a C++ library API for 

developing high-performance signal and image-processing 

programs in a portable high-level manner.  It provides an 

interface for multi-dimensional array data, as well as common 

operations (FFTs, convolutions, linear-algebraic operations 

and solvers, elementwise operations, and so forth) on that array 

data. 

The high level of the functions and operations in VSIPL++ has 

advantages in programmer productivity, but it also is important 

for achieving high performance in a portable manner.  When 

an algorithm can be expressed as a small number of compute-

intensive function calls, the library implementation has 

freedom to implement these functions in ways that effectively 

use the parallel capabilities of a wide range of hardware.  In 

previous papers [3, 4] we have demonstrated the effectiveness 

of this in practice, showing how Sourcery VSIPL++ can 

achieve high performance from the same program on both 

Cell/B.E. and NVIDIA CUDA hardware. 

Thus, an important criterion for the applicability of VSIPL++ 

to a computational algorithm is how well the algorithm can be 

expressed in terms of large compute-intensive operations that 

are supported in the VSIPL++ API. 

Existing Speech Recognition Implementations 

To measure the effectiveness of VSIPL++ in representing 

speech-recognition algorithms, we need a basis for 

comparison.  In this study, we consider two: the Hidden 

Markov Model Toolkit (HTK) [5], and the Probabilistic 

Modeling Toolkit for Matlab/Octave (pmtk3) [6]. 

HTK is a research implementation, written in C for high 

performance.  As such, it represents a real-world example of 

production code, and illustrates both the complexity of the 

algorithms to be implemented and the complexity of program 

required to obtain high performance in a low-level language. 

By contrast, ptmk3 contains reference implementations of the 

algorithms in Matlab, optimized for readability – and thus 

represent an ideal high-level expression with regards to 

simplicity rather than performance. 

The ideal, then, would be to obtain performance comparable to 

the hand-optimized low-level code of HTK with the readability 

of the high-level ptmk3 code, and these two packages provide 

a good basis for comparing how close we can come to that 

ideal with VSIPL++. 

Basics of Automated Speech Recognition 

In a Hidden-Markov-Model–based automated speech 

recognition system, parts of speech – either whole words or 

phonemes, depending on the target application – are modeled 

as Markov processes that progress through a sequence of 

hidden states and produce output sound characteristics in a 

probabilistic manner.  Thus, the recognition process involves 

computing for each part of speech the probability that the 

measured sound characteristics were generated by the 

corresponding Markov model. 

The first step is to reduce the incoming audio stream into a 

discrete sequence of characteristics, ideally in a way such that 

the characteristics are small yet retain the data critical to 

distinguishing different phonemes.  Typically, this is done by 

separating the audio stream into short windowed samples (e.g., 

5ms long) and computing the mel-frequency cepstral 

coefficients (MFCCs) of the samples.  The MFCCs are 

computed by taking a cosine transform of the power spectrum 

over a non-linear mel-scale of frequencies – thus, in effect, a 

spectrum of a spectrum. 

More precisely, the power spectrum is first computed with a 

Fourier transform of the input signal, and this is binned into 

mel-scale frequency bins using what amounts to a sequence of 

bandpass filters: 

               

               

where x is the (windowed) input signal,    are the filter 

coefficients for the ith frequency bin in the mel scale, and   is 

the power spectrum over the frequency bins.  The MFCC 

coefficients c are then computed with a discrete cosine 

transform of the power spectrum: 

              

In a typical case, the overall characteristic vector for each 

sample might be a small number of frequency bins along with 

the first- and second-order differences of these bins in time. 

The second step is to compute the best match between the 

computed sequence of characteristics and the Markov models 

for the parts of speech, using a Viterbi algorithm.  The models 

each consist of a small number of states (six is a typical 

number), transition probabilities between these states, and 

probabilities that a given output characteristic vector will be 

produced by a given state.  Thus, for a sequence of states 



               and a sequence of observations   
            , the joint probability that the sequence of 

observations is generated by state sequence X for model   is 

given by 

            
   

         
   

              
   

     

where    are the initial probabilities of state i,       are the 

probabilities of state i producing observation o, and     are the 

probabilities of transitioning from state i to state j. 

The Viterbi algorithm computes the probability         

associated with the most likely sequence of hidden states.  For 

each observed sample t in the sequence, the probability       

of the most likely sequence that ends in state j can be 

computed as 

           
 

       
            

This is then iterated over the observed samples up to time T, 

and the final probability for the most likely sequence is then 

           
 

        

The models are then ranked according to the    values, 

potentially with additional weighting from linguistic analysis, 

and the highest-ranked model determines the recognized part 

of speech. 

Implementing Speech Recognition in VSIPL++ 

The MFCC algorithm fits very well into VSIPL++; the 

primitive operations are FFTs, dot products, and elementwise 

logarithms – all of which are expressed as VSIPL++ 

primitives.  Moreover, there is an inherent data parallelism in 

the MFCC computations, which can also be expressed in 

VSIPL++.  If the incoming signal is stored in a two-

dimensional matrix, with each windowed sample stored in a 

row of the matrix, the VSIPL++ Fftm and vmmul operators 

can be used to apply the FFTs and dot products to all rows of 

the matrix in a single operation. 

The Viterbi algorithm, which is the most computationally-

intensive portion of the speech recognition process, fits less-

well into VSIPL++.  There are three levels of data parallelism 

– the inherent fine-grained parallelism in computing the 

products and maximum value, the parallelism in computing the 

best-path probability for each state, and the coarse-grained 

parallelism in computing the best-path probability for each 

model.  Only the finest level of parallelism, in computing the 

        values, can be expressed in terms of VSIPL++ 

operations.  Unlike with the MFCC computation, there are no 

operators for computing the necessary maximum values on 

multiple rows of a matrix simultaneously, and so the higher 

levels of parallelism must be expressed in necessarily-serial 

loops. 

Thus, we anticipate that a VSIPL++ implementation of the 

Viterbi algorithm will provide reasonably good performance 

on platforms which exploit fine-grained parallelism, such as a 

single-core CPU, but it will not be able to effectively use 

platforms such as GPUs or multi-core CPUs which exploit 

coarse-grained parallelism. 

Enhancements to VSIPL++ 

In the MFCC computation, we saw that the existence of 

VSIPL++ operators that apply the same operation to each row 

(or column) of a matrix are very powerful in expressing the 

parallelism of the computation in a way that the library can 

take advantage of to enable high performance. We have been 

experimenting with extensions to the VSIPL++ API that 

generalize this concept to other operators and combinations of 

operators, so that algorithms such as the Viterbi calculation 

may be expressed in a similar manner.  In our presentation, we 

will describe these extensions and the results of applying them 

in this case. 

Anticipated Results and Conclusions 

We will compare line-count, code complexity, and 

performance of the C, Matlab, and VSIPL++ implementations 

of the speech processing algorithms, illustrating the strengths 

and weaknesses of the VSIPL++ API in these cases, and 

contrasting it to the ideal of Matlab simplicity with optimized-

C performance.  We will also discuss a programming model in 

which the bulk of the program is written in VSIPL++, and then 

a few small key inner loops are rewritten in low-level code to 

obtain maximum performance. 

We expect that, in doing so, we will show that VSIPL++ is 

effective as an API in these real-world applications, and that it 

can significantly improve readability and programmer 

productivity. 
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