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Summary

A data warehouse for the integrated storage and visualisation of genome and ex-
perimental transcriptome and proteome data of human-pathogenic fungi was es-
tablished. It provides tools for uploading images and corresponding data from
microarray experiments, two-dimensional (2D) gel experiments and mass spec-
trometry (MS) analyses. All data are cross-linked. A user can find out, on which
gels in the database an interesting protein was detected. Additionally, he can see
on which microarrays the corresponding mRNA had been spotted and whether
these spots show interesting intensity values. So the data warehouse enables an
integrated analysis of both transcriptome and proteome data.
Some of the uploaded data were transcriptome and proteome time series data of
temperature shift experiments obtained from Aspergillus fumigatus. Several pro-
teins were differentially regulated at different times after the temperature shift. For
a couple of them also the respective transcripts were found to be differentially ex-
pressed. For even more of those proteins the transcripts did not show differential
regulation and vice versa. So both kinds of data clearly complement each other
and should be analysed together.

1 Introduction

Today about 500 000 different variants of fungi have been described. Only about 100 of them
are known to be human pathogens. During the last decades these fungi became menacing as
opportunistic infectious microorganisms. Advances of modern medicine, including transplanta-
tions and other surgeries intensify this development. Additionally, the ageing of the population
and the growing amount of patients undergoing immunosuppressive therapies result in a higher
number of vulnerable persons [1]. In the majority of fungal infections patients are immuno-
compromised. This plays a major role in the type and course of the mycoses. From 1980 till
1990 the fraction of fungi causing nosocomial infections (i.e., infections acquired in hospitals)
rose from 6 % to 11% within the USA [2]. The most common causes of such infections are
Candida subspecies (in particular Candida albicans) and Aspergillus subspecies (mainly As-
pergillus fumigatus). Both are facultative pathogenic fungi within the Deuteromycota, which
are Ascomycota where no sexual life cycle is known. The infections caused by Aspergillus
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species nearly quadrupled in the USA in the 1980s. In Germany there are about 40 000 serious
invasive Candida infections per year and up to 10% of the patients die.
C. albicans is the most common fungal organism isolated from blood samples and one of the
main causes of infections in intensive-care units [3]. It is a commensal organism existing in
low densities in the intestinal environment of more than 50% of all humans. Most infections
with C. albicans are caused endogenously but contagion from human to human is also possi-
ble. Examples for diseases caused by this fungus are infections of skin and nails or the mucous
membrane of mouth, oesophagus and vagina. It can also be responsible for invasive infections
like pneumonia, blood poisoning or meningitis.
A. fumigatus is a ubiquitous mould. In contrast to C. albicans it is highly thermotolerant (the
fungus can live in up to 70°C) and its conidia (spores) survive long periods without water.
Nearly all infections with this fungus are caused by inhalation of conidia. A contagion from
human to human occurs only rarely. The conidia are gray-green and 2.5 - 3 µm in diameter,
so they can easily reach the lung alveoli. A. fumigatus is the germ of three types of diseases:
saprophytic aspergillosis (aspergillome), allergic aspergillosis and invasive aspergillosis. As-
pergillomes are ”balls” of mycelia in lung cavities of patients that formerly suffered from tuber-
culosis, pneumonia or other lung diseases. Allergic aspergillosis shows symptoms like asthma
and fibrotic changes of lung tissue which result in a reduced lung functionality. Invasive as-
pergillosis is a very dangerous disease for immunosuppressed patients with a mortality rate of
up to 90%. It mostly starts in the lung but the fungus can spread and is able to infect other
organs like heart, liver, kidneys or brain. A recent publication [4] reviews knowledge about A.
fumigatus and factors contributing to its virulence. More information on the fungus can also be
found at [5].

There are lots of databases and data warehouse systems in many different disciplines of re-
search, especially in the fields of biology, molecular biology, medicine and of course bioinfor-
matics. In 2007 one can find about 968 different databases in the internet that are important
for biological research [6], a number which is growing fast. Some of them are well known, for
example those of the NCBI (National Center of Biotechnology, [7]) like GenBank or PubMed.
They are knowledge based, which means they store biological knowledge derived from differ-
ent sources and they cover many organisms. In contrast, the databases ArrayExpress [8] or
GEO (Gene Expression Omnibus, [9]) are storing experimental data. There are also databases
that gain access to very special information on only few organisms, organs or other sample
types. An example is EyeSite, which contains protein families of the eye. For the work with
pathogenic fungi the databases CADRE [10] and e-fungi [11] are especially important. Both
are maintained by the University of Manchester and collaborators. CADRE was built to store
and analyse the genome of A. fumigatus and subsequently of other Aspergillus subspecies like
A. nidulans. E-fungi stores genome and functional genomics data like protein interaction data
and metabolic pathways of several fungal species like A. fumigatus and C. albicans.

We established a new data warehouse for experimental data from different cellular levels of
human-pathogenic fungi. It stores datasets created by different working groups. This allows
other groups to reanalyse those data under new points of view. It also enables comparisons
between data from transcriptome and proteome. These integrated analyses will facilitate new
insights into internal processes of the fungi and reveal details that are relevant for fungal in-
fection. This will eventually lead to improved prevention, diagnosis and therapy of fungal
diseases.
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2 Methods

2.1 Schema

The new data warehouse at the Hans-Knoell-Institute (HKI) is based on Protecs (Decodon,
[12]). Protecs itself is based on the postrelational database system Caché by Intersystems.
Postrelational means that data are not only stored in tables but also in an object model. So
they can be accessed via SQL queries but also via their object ID, property or method. This al-
lows fast transactions and an easy development of user interfaces and application programmes.
The data warehouse can be accessed through a web interface and several Java-applications. Its
concept is shown in Figure 1. Genomic data of fungal pathogens are stored together with ex-
perimental transcriptomic and proteomic data and some microbiological information. Analyses
can be applied on them so new knowledge can be gained.

Figure 1: Concept of the data warehouse

Up to now data from three organisms, namely Aspergillus fumigatus, Aspergillus nidulans and
Candida albicans, are stored in the database. A. fumigatus and C. albicans are the most im-
portant fungal pathogens for humans and A. nidulans is the model organism for filamentous
fungi. All three species are main research topics of the Hans-Knoell-Institute. Hence, data are
easily available and appropriate to establish and test the functionalities of the data warehouse.
It is planned to include other pathogenic fungi as well as data from human as fungal host in the
future.

2.2 Implementation

The entire datasets in the data warehouse are based upon the NCBI data content. They con-
tain all the details provided by GenBank [13] like gene names, nucleotide sequence, protein
product, GO annotation [14], etc. The genomic data are inserted into the data warehouse by a
separate tool which only the administrator of the database is permitted to use. This is important
to maintain the consistency of all basic data without any uncertainties.
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This tool is also used for updates. Data in GenBank are updated regularly, for example when
new names or synonyms for genes are available. These modifications have to be reinserted
into the database. The import tool automatically updates only those data where it is necessary.
These changes are carried out on all database entries so that experimental data are still cross-
linked through the current genomic data.
All further data are built up hierarchically on that basis (Figure 2). The currently investigated
organism is always on top of the hierarchy. Before inserting experimental data, a project has
to be created. Within the project the user has to define some cultivations including descrip-
tions. Each cultivation can consist of one or several samples. For every sample one or more
microarrays or 2D gels can be defined and several scans of the same image can be included.
The hierarchy models the experimental structures very well.
Data from different cellular levels can be combined while creating this hierarchy. The data
warehouse provides the possibility to insert array and gel data obtained from the same sample.
This experimental setup is optimal to achieve highly comparable results. It is also possible to
work with data from a certain cellular level and to obtain corresponding data of other cellular
levels from other working groups. Then data will be represented as two different cultivations.
In summary, the hierarchical structure allows keeping the overview over all inserted data. In
addition, it helps scientists to understand the experiments of others. Hence, it minimises the
amount of necessary coordination and supports well documented work flows.
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Figure 2: Hierarchical structure of the data warehouse

When inserting the different steps of the hierarchy into the database, the user has the possibility
to define numerous parameters (Table 1). Therefore, users can store information about every
experimental step in great detail. This accuracy again aids the efficient reuse of data by other
scientists. Names and meanings of the parameters were chosen according to the Microarray
Gene Expression Data Ontology (MO, [15]). The MGED Society defines standards for work-
ing with microarrays. For proteomic data such a widely accepted standard is still missing. The
Proteomics Standards Initiative (PSI) is developing standards for several parts of proteomics
experiments. They work closely together with MGED. In the future there might be a standard
for storing data from both cellular levels. This standard will be adopted by our data warehouse
as soon as it is published. At least on the first three hierarchical steps, parameters are very
similar for transcriptomic and proteomic data. So MO can be applied to proteomic data in this
context as well.
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Some of the parameters can only contain numerical values, are strings or represent dates. Others
are implemented as string lists. These lists represent the most common experimental conditions
and were created according to the needs of microbiologists. This method assures that the most
important values are included. It also helps to keep the database entries homogeneous. This
is a further step to make reanalyses of data more efficient for other researchers. For further
projects new parameters and new list values can be added. Additionally, on every hierarchical
level information about the generation of a certain piece of data is stored. Author, date and time
are recorded, so every user can see by whom and when a sample was made or a gel was run.

Table 1: Parameters of the top three steps of the hierarchy
Project Cultivation Sample
Date ended (date) Incubate (str) Amount of applied protein (µg)

(num)
Date started (date) IndividualGeneticCharacteristics (str) Fractionate (str list)
Goal (str) MediumType (str list) LabelCompound (str list)
Sponsor (str) Number of with MS identified spots LabID (str)

(num)
Perturbation (str) LysisBuffer (str list)
SubstrateType (str list) Purify (str list)

Temperature (°C) (num)
TimePoint (min) (num)

All parameters of one hierarchical level are collected in parameter sheets. Several sheets can be
organised into a topic. This topic can be selected immediately after logging into the database.
So a user does not have to see all parameters. One rather can simply choose the topic appro-
priate to an experimental setup. The division of parameters into different topics will become
especially important when first human data are inserted into the database. Experiments made
with samples from humans are very different from those made with fungi. Hence, lots of new
parameters will emerge. For this reason, the data warehouse structure was built to be highly
adaptable.

2.3 Visualisation

One very important functionality of the data warehouse is the visualisation of data. This works
in two different ways. First, a user can search for a special gene or protein of an organism
and view the arrays or gels on which it was detected. The search functionality can be used by
entering a name, synonym name or ID of an external database for a gene or protein. All these
information have to be inserted into the data warehouse via GenBank files or manual annotation
beforehand. In this way, one can directly compare the different values of a gene on different
arrays or view time-courses in different arrays or gels of a project. This is especially suited for
researchers interested in one particular gene or protein who look for additional information to
own experiments. Another way is to browse within the hierarchy of a project and view a special
array or gel. If part of the array or gel name is known, direct searching is possible again. Else
the user has to select the project level to find the right project. Subsequently, he has to choose
a cultivation and then a sample. For the selected sample all corresponding arrays and gels are
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listed. Their images can be inspected and data can be compared to other samples. This is very
helpful when one is interested in the overall behaviour of several genes or proteins at one spe-
cial experimental setup or in comparison to other experimental setups.
The result of searches are array or gel images which display the regulation of genes or proteins
of one sample under special experimental conditions.

(a) (b)

Figure 3: Clickable view of a microarray (a) and a 2D gel (b)

By clicking on an image, spot information are displayed as lists and can easily be used for ana-
lyses. All information imported from several image analysis programmes can be seen. Figure
3a shows array data from GenePix [16]. All data that are usable for further analyses are stored
and displayed in a table at click on an array image. Figure 3b displays the view on 2D gel data.
Again by clicking on a gel spot the user gets information about protein identifications or post-
translational modifications. Also mass spectra, peak lists and hit lists can be stored allowing to
trace protein identifications back to the raw data.
To make further information on genes and proteins available, the data warehouse stores ac-
cession numbers of external databases. It can translate between different accession number
systems and even between several versions of one external database. This allows to view spots
with current names of proteins that were annotated with other names several months ago. That
way, the data warehouse displays all experiments where a certain protein was found indepen-
dent of the timeliness of the name used for searching.

Proteomic and transcriptomic data can be compared because they are cross-linked within the
data warehouse. If in an experiment a special protein shows significant changes in its abun-
dance, the user can investigate, whether this protein shows interesting regulation in other ex-
periments of this project, too. One can also find out whether this protein plays an important role
within one of the other projects. Additionally, there is a link from the protein to its gene. Here,
the user can check whether the according mRNA had been spotted on any array within the data
warehouse and if there are any interesting changes in its intensities. This is especially impor-
tant when transcriptomic and proteomic experiments have been made using the same organism
and the same experimental conditions. Thus, direct comparisons between transcriptomic and
proteomic data are possible.
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2.4 Security

The management of users and their access rights is very important for every database. When
a user inserts some data, he has to define access rights to every other user concerning his data.
To simplify the handling of access rights, users can be grouped into roles. Access rights can be
assigned to those roles instead of defining them for every single user. This way it is possible to
define who is allowed to read data and who should be permitted to edit them. Every part of a
project can be made available to different subsets of registered users or can be kept completely
private. The user can decide which data of a project can be viewed by the public, which data
should be available to collaborators and which should be visible only to himself. This way,
one can easily protect data and assure that nobody changes data by mistake. This is especially
important when the database will be made fully available via the internet because nobody wants
ongoing work to be seen by everyone and an internet user should have no more than read-only
privileges.

2.5 Import of experimental data

The last step of the inserting process after defining experimental structure and access rights is
the import of the data themselves. The data warehouse is meant for the storage of experimental
data, like scanned images and raw quantitation data analysed by image analysis software. Array
and gel images can be imported from all major file formats, including TIFF and JPG. So it
nearly does not matter by which scanner and in which format an image was produced. Images
of 2D gels can be viewed as clickable web images. The image can be downloaded in its original
form as well as a tiled image which is advantageous for image processing software. Array
images of a single-channel array are treated like gel images. For dual-channel images it is
necessary to upload the image of every channel separately. The data warehouse calculates
a composed image where both channels are overlaid by using an internal processing method
specially adapted to such images. This overlaid image can be viewed as web image and can be
downloaded like the original single images.
The import of corresponding quantitation data is more complex. Data formats of six different
image analysis programs can be imported at present. These are tab-delimited text files formatted
according to GenePix Array List (GAL), formats of ArrayVision (GAL and SG), as well as
Affymetrix CDF for microarray data. Exported data of 2D gel image analysis software such as
Delta2D as well as XML exports of DeCyder and ImageMaster 2D Platinum can be inserted for
proteomic data. Image analysis with Delta2D can be tightly integrated with the data warehouse:
all data such as analysis setups, spot quantities, and warpings can directly be transferred into
the database. The data warehouse will be extended to support other data formats in the future.

2.6 Standardised export

The export functionality of the data warehouse is also extremely important for the reanalysis of
data. All experimental data that have been uploaded once can be downloaded again in appro-
priate formats.
The export of array data is made according to Minimum Information About a Microarray Ex-
periment (MIAME, [17]) guidelines using MicroArray Gene Expression - Markup Language
(MAGE-ML, [18]). This microarray data exchange format was chosen as a standard for gene
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expression and is supported by the MGED. It is build up according to the MicroArray Gene
Expression - Object Model (MAGE-OM). This is a model for data exchange that has been
formulated using the Unified Modelling Language (UML). UML is the industry-standard, ob-
ject oriented modelling language. MAGE-ML has been implemented using eXtensible Markup
Language (XML). MGED ontology is closely linked to MIAME and enables unmistakably
interpretation of microarray annotations, as well as searches in microarray databases. Some
journals today require that papers reporting microarray experiments must be accompanied by
MIAME. Data have to be be stored in a MIAME accepting database such as ArrayExpress as
standard part of the publication process.
The export of 2D gel data at present is carried out as specified within the Proteomics Experiment
Data Repository schema (PEDRo, [19]). This schema is a starting point for the development
of a standardised data format similar to MAGE-ML. It provides possibilities to store proteomic
data and information about their creation in a standardised manner. The according data in-
terchange format is the Proteomics Experiment Markup Language (PEML). It is formulated
using UML and implemented in XML with eXtensible Stylesheet Language Transformations
(XSLT). XSLT transforms PEML files to be readable as HyperText Markup Language (HTML)
by standard web browsers. It also translates old-format PEML files into new-format ones when
the schema is modified. PEDRO is not further developed now, it will be replaced by PSI stan-
dards in the near future. We will switch to these standards as soon as they are established.
Via these two models, data formats are standardised and can then be imported into other
databases or into appropriate analysis programmes like R [20] for further investigation. This
facilitates the communication between this data warehouse and external tools or even other data
warehouses. It allows other researchers to make their own analyses of existing data without the
time and money consuming process of repeating the experiments.

3 Application

Time series data of a temperature-shift experiment on Aspergillus fumigatus were analysed in
an integrated way for the first time. In this experiment liquid cultures of the fungus cultivated
at 30°C were shifted to 48°C. The aim was to identify genes and proteins that play a role in
the thermotolerance of the fungus. Additionally, we wanted to find similarities and differences
between transcriptome and proteome level of the cells.
The transcriptomic data have been described previously [21] and were obtained from Array-
Express [22] in a preprocessed form. They have already been subject of a reverse engineering
approach to reconstruct the underlying genetic network [23]. The proteomic data were pro-
duced by Kniemeyer et al. using an optimised protocol [24] and are still unpublished. Gel
images were analysed by the software package DeCyder [25] and raw data from this software
were further processed and analysed using R. Proteins and transcripts were regarded as differ-
entially expressed when they satisfied the following criterion: The logarithmised ratio of the
normalised intensities of two different time points in the time course must have a higher abso-
lute value than 90% of all intensities. That means that this ratio must be outside of the range of
[m-1.645∗sd; m+1.645∗sd] of all intensities, where m is the mean and sd is the standard devi-
ation. These values can be computed by using Z-ratios [26]. Doing so, only a p-value of 0.1 is
achieved. Because the analyses are still ongoing we kept this value to get a broader overview
over the cellular processes. The exact procedure of creating and analysing the proteomic data
and their comparison with the transcriptomic data will be reported elsewhere.
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Proteomic and transcriptomic data were connected via the data warehouse. Both types of data
were imported. The data warehouse provides the possibility to get gene names, protein names
and functional information within a table (Figure 4). So one can find differentially regulated
proteins and corresponding genes in one step. Then the user can make comparisons between
regulation on both cellular levels. With the additional information about the putative function
of proteins including some GO data, the user can get insights into the cellular processes that
were affected in an experiment. A rough clustering of interesting genes and proteins into dif-
ferent categories is also possible.

Figure 4: Connection between genes and proteins via the data warehouse; gene name = Afu...,
[LOCUS] meaning that there is no actual gene name in GenBank so it was extracted out of the
locus tag; protein name = EAL...; putative function = product:...

In this case study transcripts and proteins of the temperature shift experiment were analysed
separately. Differentially expressed proteins and corresponding genes were found using the
data warehouse. Subsequently, their time courses were compared.

We found 16 differentially regulated proteins for which the transcripts also showed differen-
tial expression. Many of them are heat shock proteins and chaperones. As it was expected,
they are clearly upregulated on both cellular levels (e.g., 30 kDA heat shock protein, Figure
5, solid). Other upregulated proteins belong to several metabolic pathways, like the pyruvate
metabolism or are regulators of the cell cycle. Here, the upregulation on transcriptomic level
is still clearly visible, whereas on proteomic level it is less clear, but still apparent (e.g., myo-
inositol-phosphate synthase, putative, dashed in Figure 5). Four proteins and their correspond-
ing transcripts were found to be downregulated (e.g., 5- methyltetrahydropteroyltriglutamate-
homocysteine S-methyltransferase, pointed in Figure 5). They are involved in biosyntheses or
assembly of ribosomes, respectively.
In addition, 23 differentially regulated proteins were found for which the transcripts did not
show remarkable changes. About 580 transcripts were found for which the associated proteins
did not show such changes or could not be detected on any gel.
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(a) (b)

Figure 5: Time courses of selected transcripts (a) and proteins (b); black (solid) =
30 kDA heat shock protein; red (dashed) = myo-inositol-phosphate synthase, putative; green
(pointed) = 5-methyltetrahydropteroyltriglutamate–homocysteine S-methyltransferase

Figure 5 also shows that the maximal differential expression on proteomic level is delayed in
comparison to the transcriptomic level. This is plausible, because transcription occurs before
translation. So transcripts have to accumulate first before their protein products can be synthe-
sised.

4 Conclusions

This publication shows that an integrated analysis of time series data from transcriptome and
proteome level is necessary to get new insights into fungal pathogenesis. This comprehensive
view can only be achieved by using both types of data. They clearly complement each other
and provide additional information. It is shown that a data warehouse can be helpful in such an
integrative approach by providing the possibility to store those data and to visualise them using
cross-links.

5 Discussion

For some differentially regulated proteins the corresponding transcripts were differentially ex-
pressed, too. But for some more differentially regulated proteins the transcripts did not show
differentiall regulation and vice versa. So by using only data from one cellular level, researchers
might miss interesting genes or proteins that could shed new light on a scientific question. In
the future, when more datasets will be included into the data warehouse, it will also be interest-
ing to compare genes and proteins of this temperature shift experiment with other experimental
conditions. This will help to learn more about their functions and regulation. Hence, a data
warehouse for the storage of a diverse set of experimental data assures that all interesting facts
are accessible and knowledge can be extracted.
In many cases transcripts showed the same tendency in regulation as their proteins (i.e., up or
down), but the time courses often showed big differences (Figure 5). This implies that in fur-
ther investigations the time courses have to be analysed in detail to find the direct connection
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between transcriptome and proteome.
Also the integration of data from both cellular levels is very simple at present. Data are analysed
separately and after finding proteins which seem to be differentially expressed the correspond-
ing genes are examined and then the regulation is compared. First attempts were made to bring
both types of data together by using biplots [27] (data not shown). This is part of a collabo-
ration with the Fraunhofer Institute for Interfacial Engineering and Biotechnology in Stuttgart
and the German Cancer Research Center (DKFZ) in Heidelberg. The data warehousing system
MCHiPS [28] in Heidelberg is able to store transcriptomic and proteomic data and applies Cor-
respondence Analysis (CA, [29]) on them. We will establish a permanent connection from our
data warehouse to MCHiPS, so all users can take advantage of the CA tool.
All analyses to select differentially expressed genes and proteins have to be made outside of
the database environment at the moment. A user has to export data from the data warehouse to
analyse it by some external tools. It is planned to include such tools into the data warehouse
to advance the visualisation and analysis of the data within the database. This should be possi-
ble in an easy and comfortable way because of the object oriented access provided by Caché.
Mostly R scripts will be used because it is open source and provides a Java interface which can
be used to connect to the database.
At present only microarray data, 2D gel data and mass spectrometry data can be inserted into
the data warehouse. In the future it is planned to support gel free proteomics like LC-MALDI-
MS and LC-ESI-MS/MS. These and related approaches to analyse proteomic data can be an
alternative to the classical 2D gels for some special research topics. Also other kinds of data
may play an important role in investigations of human-pathogenic fungi and will have to be
included into the data warehouse in the future. Examples are fungal growth kinetics or micro-
scopic images of nucleophiles or macrophages interacting with fungal spores or hyphae.
A data warehouse is most beneficial when many researchers are using it. Then lots of data are
available through it. So this data warehouse will be opened to collaborators first and later also
to the public. This includes cooperations with other groups and the connection of some other
data warehouses to this one. Important partners are two data warehouses for fungi maintained
in Manchester, CADRE and e-fungi. Another collaboration is the work within Eurofungbase
[30]. This concerted action wants to build up and maintain an integrated, durable European
genomic database required for innovative research on filamentous fungi. This database will
become a centre for related systems and could be integrated and preserved in a centralised Eu-
ropean genomic database. For all collaborations the importing and exporting functionality of
the data warehouse will be improved so that the exchange of data is made easy and as complete
as possible.
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