
WHAT ARE MATHEMATICAL PROOFS AND WHY
THEY ARE IMPORTANT?

introduction

Many students seem to have trouble with the notion of a mathemat-
ical proof. People that come to a course like Math 216, who certainly
know a great deal of mathematics - Calculus, Trigonometry, Geometry
and Algebra, all of the sudden come to meet a new kind of mathemat-
ics, an abstract mathematics that requires proofs. In this document
we will try to explain the importance of proofs in mathematics, and
to give a you an idea what are mathematical proofs. This will give
you some reference to check if your proofs are correct. We begin by
describing the role of proofs in mathematics, then we define the logical
language which serves as the basis for proofs and logical deductions.
Next we discuss briefly the role of axioms in mathematics. Finally we
give several examples of mathematical proofs using various techniques.
There is also an excellent document on proofs written by Prof. Jim
Hurley (liknked to the course homepage), and I recommend to all of
you to read his document as well. You will find there more examples
and additional explanations. It is my hope that reading these docu-
ments will make your first steps in writing proofs easier.

1. The importance of Proofs in mathematics

It is difficult to overestimate the importance of proofs in mathemat-
ics. If you have a conjecture, the only way that you can safely be
sure that it is true, is by presenting a valid mathematical proof. For
example, consider the following well known mathematical theorem:

Theorem 1 (Euclid). There are infinitely many prime numbers.

For those of you who don’t remember, a prime number is a posi-
tive integer p > 1 that cannot be written as a product of two strictly
smaller positive integers a and b. For example, the number 91 is not
prime since it can be written as 91 = 13 ·7, but 67 is a prime. Although
most people have a hunch that there are infinitely many primes, it is
not obvious at all. Even today with the powerful computers, all we
can do is to verify that there are very large prime numbers, but we
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still can say nothing about the existence of prime numbers whom size
is beyond the ability of the current computers. The only reason that
we are one hundred percent sure that the theorem is true, is because a
mathematical proof was presented by Euclid some 2300 years ago. We
shall give his proof later.

Another importance of a mathematical proof is the insight that it
may offer. Being able to write down a valid proof may indicate that you
have a thorough understanding of the problem. But there is more than
this to it. The efforts to prove a conjecture, may sometimes require
a deeper understanding of the theory in question. A mathematician
that tries to prove something may gain a great deal of understanding
and knowledge, even if his/her efforts to prove that conjecture will
end with failure. The following theorem, is due to the giant German
Mathematician Karl Friedrich Gauss, and is called the Fundamental
Theorem of Algebra.

Theorem 2 (the Fundamental Theorem of Algebra). Let p(x) be a non
constant polynomial whose coefficients are complex numbers. Then the
equation f(x) = 0 has a solution in complex numbers.

In particular this means that equations like x6+x5−3x2+1 = 0 have
a complex solution, a non trivial fact. The proof that Gauss gave relies
heavily on the fact that the complex numbers form a two dimensional
plane. In fact, to understand the idea behind the theorem, we need to
incorporate knowledge from a seemingly unrelated area of mathemat-
ics – Topology. Topology, like usual geometry deals with shapes, but
unlike geometry, the shapes are not rigid and may be deforemd (This
is a very unproffesional definition). For example, a cube and a ball
are topologically equivalent, but both are not equivalent to a donut.
The topological fact used by the proof is that if you have two rubber
bands lying on a plain, one of them is surrounding a nail stuck in the
plane, and the other isn’t, then you cannot bring the first rubber band
to the situation of the second one without lifting it off the plane or
opening it. Using this fact in an ingenious way, where the plane is
the plane of complex numbers, gave a proof to the above algebraic.
What was demonstrated here is that trying to prove something may
lead to a deeper knowledge and to relations to other fields of mathe-
matics. Interestingly, there are additional proofs to the same theorem,
each coming from a completely different approach and mathematical
knowledge, and it is a challenge to try to understand them all as parts
of a bigger picture. The fundamental theorem itself can be used to give
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a complete explanation why people failed to create a three or more di-
mensional number system with the +,−, ·,÷ operations (what we will
call a ’Field’ later in the course). Understanding the ideas behind the
theorem lead to the understanding why the complex numbers are so
fundamental in mathematics (this was not recognized by the contem-
poraries of Gauss).

Part of the difficulties of people in understanding the notion of proofs
stem from the fact that people do not have the right picture of what
mathematics is. From elementary school through the first years of col-
lege we teach people that the goal is to solve an equation or to find
a minimum of a function or to find how much wheat we should grow.
This is of course something that mathematics can do, but it is not
what mathematics is about. Mathematics is about understanding the
laws behind numbers, algebra and geometry. It is about finding new
and non routine ways to look at these systems and to explain strange
phenomena that we may encounter. To make it more interesting, we
can even change the laws to create new systems and then study them.
An example for such a new system is the notion of a ’Group’, that
we shall study in this course. Some of these new systems, like groups,
shed light on the old ones. Groups have been found to be a necessary
utility in understanding questions in number theory, algebra, ,topology,
geometry, and modern physics. There is a whole new world of ideas,
understanding and discoveries that is invisible to people who only know
how to differentiate a function. To enter to this world, it is necessary
to use the ideas of abstraction and mathematical proof.

2. What are Mathematical Proofs?

2.1. The rules of the game. All of you are aware of the fact that
in mathematics ’we should follow the rules’. This is indeed the case of
writing a mathematical proof. Before we see how proofs work, let us
introduce the ’rules of the game’.

Mathematics is composed of statements. The Law of the excluded
middle says that every statement must be either true of false, never
both or none. If it is not true, then it is considered to be false. For
example, consider the statement y = x2. In real life’s terminology, like
with most statements, it is sometimes true and sometimes false. In
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mathematics it is false since it is not completely true. Take for exam-
ple y = 1 and x = 2.

We can make up new statements from old ones. If P and Q are
statements, then we have.

Statement Notation

P and Q P ∧Q (or P&Q)
P or Q P ∨Q
If P Then Q (or P implies Q) P =⇒ Q
P if and only if Q (or P and Q are equivalent) P ⇐⇒ Q
not P ¬P

The statement P ∧Q is true if and only if both P and Q are true. The
statement P ∨Q is true if and only if at least one of the statements P ,
Q is true. This is what we called the inclusive or as opposed to the
exclusive or that we use in everyday’s life. For example, the statement:
’We will have class in the morning or in the afternoon’ means in real
life that only one of the alternatives will take places (exclusive or).
In mathematics however, this includes the possibility that we will have
class in the morning as well as in the afternoon (inclusive or). P =⇒ Q
is considered to be false only in the case that P is true and Q is false.
Otherwise it is true. This is also in contrast to the plain English. For
example, a statement like: ’If it rains now then 2 is a prime number’ is
mathematically true, despite the fact that there is no relation between
the two parts of the statement, and regardless of whether the first part
is true or not.
The statement P ⇐⇒ Q is true if and only if P and Q have the same
truth values. We also say that P and Q are equivalent. Finally, ¬P is
true if and only if P is false.
Using the above operations we can make more complex statements like

((¬(P =⇒ Q) ∨ (T ∧ P ))⇐⇒ (R =⇒ ¬T ).

Two additional players in this game are the quantifiers, ∀ which
means ’for all’, and ∃ which means ’there exists’. For example, the
statement

∀x > 0 ∃y(y2 = x),

reads: For all x > 0 there exists y such that y2 = x. Let us denote
by Z+ the set of all positive integers. The following statement about
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p ∈ Z+ says that p is a prime:

∀a ∈ Z+∀b ∈ Z+[p = ab =⇒ (a = 1) ∨ (b = 1)].

2.2. Tautologies and Contradictions. Logical deductions are based
tautologies. If we try to give an informal definition, a tautology is a
general statement that is true under all possible circumstances. Exam-
ples are P =⇒ P , P ∨¬P , Modus Ponens : [P ∧ (P =⇒ Q)] =⇒ Q
or another form of Modus Ponens: [(P =⇒ Q) ∧ (Q =⇒ R)] =⇒
(P =⇒ R). Notice that the truth of each of these statements is
independent of whatever are P and Q and R and whether they are
true or false. We can establish a tautology by our understanding of the
statement or by constructing a truth table.

A logical deduction is obtained by substituting in a tautology. For
example, look at the following deduction:

All fish are living creatures; All living creatures can
move; Therefore all fish can move.

This logical deduction is a substitution in the second form of Modus
Ponens where P=’x is a fish’; Q=’x is an living creature’; R=’x can
move’.

On the other extreme of logical statements are the contradictions.
Contradictions are false under all circumstances. In fact every contra-
diction is the negation of a tautology, and conversely, every tautology
is the negation of a contradiction. A typical contradiction is P ∧ ¬P .
Try to think yourself of some other examples.

2.3. Axioms. As it turns out, to prove something requires the knowl-
edge of some previous truths. Logic just supplies the ways that we can
deduce a statement from others, but we need some statements to begin
with. These initial statements are called axioms. There are two layers
of axioms: The axioms of set theory, and the axioms of the mathemat-
ical theory in question.

Modern mathematics is based on the foundation of set theory and
logic. Most mathematical objects, like points, lines, numbers, func-
tions, sequences, groups etc. are really sets. Therefore it is necessary
to begin with axioms of set theory. Very fundamental to set theory
is the set of positive integers Z+, which has the natural order relation
on it. The Well ordering principle is an axiom which says that every
nonempty subset of Z+ has a smallest element. You will find it very
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difficult to resist to this statement, however, it is considered an axiom
without proof. This axiom turns out to be equivalent to the principle
of mathematical induction (cf. your textbook p. 4). The axioms of
set theory form the basic layer of axioms. It needs to be said that
some of the axioms of set theory, like the well ordering principle, are
accepted only for being highly intuitive, and have been debated among
mathematicians.

On top of this, we have the axioms that define the theory in ques-
tions. For example, in geometry we have the axiom which states that
one straight line and only one straight line can pass through two given
distinct points. In modern mathematics there is no point with arguing
with such an axiom. If it does not hold, we simply cannot call the
objects by the names ’straight line’ and ’point’. The axioms serve here
as definitions that characterize that mathematical system in question.
A mathematical theory is like a chess game and the axioms correspond
to the rules of the game. If you don’t accept a rule, this is not chess
any more. The only kind of debates is to whether the theory is math-
ematically fruitful or interesting.

2.4. Proofs. A proof of a theorem is a finite sequence of claims, each
claim being derived logically (i.e. by substituting in some tautology)
from the previous claims, as well as theorems whose truth has been
already established. The last claim in the sequence is the statement of
the theorem, or a statement that clearly implies the theorem. We wish
now to give some examples that will illustrate how this works in prac-
tice, as well as some techniques of proofs. You can find more examples
in the document of Prof. Hurley

Direct Proofs: Many theorems are of the form P =⇒ Q, that is,
of the form If . . . Then . . . . We begin by assuming P (as well as other
established truths) and proceed by using a sequence of Modus Ponenses
to derive new statements, the last statement being Q. Alternatively we
use the second form of Modus Ponens and a sequence of implications
to derive P =⇒ Q. Here is an example:

Theorem 3. For any two positive numbers x and y,

(∗) √xy ≤ x+ y

2
.

Proof. Suppose that x and y are positive numbers. Then (
√
x−√y)2 ≥

0. By algebra this implies that x + y − 2
√
x
√
y ≥ 0. Moving 2

√
x
√
y
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to the other side we get that x + y ≥ 2
√
xy. Dividing both sides by 2

yields the inequality (∗) of the theorem as desired. �

Notice that we have used implicitly some general truths from algebra,
like
√
x
√
y =

√
xy, in conjunction with the statements of the proofs.

The use of external knowledge becomes more and more necessary as
we go further in developing a theory.

More complex proofs require nested sequences of Modus Ponenses.

Theorem 4. Let A and B be two sets. If A∪B = A∩B then A ⊆ B.

Proof. Assume that A ∪ B = A ∩ B. We shall prove that x ∈ A =⇒
x ∈ B, which by definition is equivalent to the consequence of the
theorem. Assume that x ∈ A. Since A ⊆ A ∪ B, then x ∈ A ∪ B. We
assumed that A ∪ B = A ∩ B, so x ∈ A ∩ B. Finally, A ∩ B ⊆ B, so
consequently, x ∈ B. This concludes the proof �

Notice that we did not end the proof with the consequence of the
theorem, but rather with a statement that suffices to imply the theo-
rem by our earlier understanding. Here also we used implicitly some
definitions from set theory, like (x ∈ D) ∧ (D ⊆ C) =⇒ (x ∈ C).

Notice that we have made a substential use of the English language.
To be absolutely sure that our proofs are valid, we must use the sym-
bolic language and list down all the claims that we used, including the
knowledge from algebra or set theory, and to check that the implica-
tions really follow from tautologies. This however, will make the proofs
cumbersome and more difficult to understand. We choose to resolve
this dilemma by using the English language, but in a very limited way,
so that the deductions will include only the necessary ’logical’ words
like ’if’,’then’, ’suppose’, ’consequently’,’or’ etc. This, together with
some intelligence, makes us quite convinced that our proofs are with-
out flaws, and that if we wish, it would be possible to rewrite the proof
in the symbolic structural language.

Proofs by Negation: This is another strategy of proving a theorem
P =⇒ Q. We begin by assuming that P is true and Q is false i.e. we
assume P ∧ ¬Q. The proof proceeds until we derive contradiction F .
This completes the proof, since something must be wrong and the only
questionable thing was our assumption P ∧ ¬Q. Thus if P is true, Q
must be true too. Technically, we have based our proof scheme on the
tautology:

[(P ∧ ¬Q) =⇒ F ] =⇒ [P =⇒ Q],

where F is a contradiction. Here is an example:
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Theorem 5. There are infinitely many prime numbers

Notice that we can view the theorem as an If-Then theorem by claim-
ing that if S is the set of prime numbers then S is an infinite set.

Proof. Suppose, by negation, that the set S of prime numbers is finite.
Then we can write it as the set {p1, p2, . . . pn} where p1, p2, . . . , pn are
distinct numbers. The product N = p1p2 · · · pn is clearly a multiple
of each of the numbers p1, p2, . . . , pn. Therefore, the number N + 1
is not a multiple of neither p1, p2, . . . , pn. On the other hand, by the
fundamental theorem of arithmetic (see textbook p. 6), N + 1 is a
product of prime numbers so it is a multiple of at least one prime
number. This is a contradiction because N + 1 is not a multiple of
p1, p2, . . . , pn which are all the prime numbers. The proof is complete.

�

Mathematical Induction Suppose that we have a sequence of
claims P (1), P (2), . . . and we wish to prove them all at once. This
amounts to the claim ∀nP (n) (i.e. For all n, P (n) is true). Rather
then proving this directly, we can use the principle of mathematical
induction:

P (1) ∧ ∀n[P (n) =⇒ P (n+ 1)] =⇒ ∀nP (n).

In words, this means as follows:
Suppose that we have proved the following two statements:

(1) [The induction basis] P (1) is true, and
(2) [The induction step] For all n, if P (n) is true, then P (n + 1)

is true

Then for all n, P (n) is true.
The induction principle makes sense because upon establishing the

statements P (1), P (1) =⇒ P (2), P (2) =⇒ P (3), etc., we can use a
sequence of Modus Ponenses to establish P (2), P (3) and so on.

As we mentioned above, the principle of mathematical induction may
be seen as a consequence of the well ordering principal. It turns out
that the converse is also true, namely, that the well ordering principal
can be proved from mathematical induction. In some mathematical
literature the induction principle is taken to be an axiom rather than
the equivalent well ordering principle.

We shall now give an example. Suppose that we want to show that
for every n ∈ Z+, the number 17n−10n is divisible by 7. We will prove
this by induction. Let P (n) be the claim that 17n− 10n is divisible by
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7. First, if n = 1, then 171− 101 = 7 so P (1) is true. Secondly, assume
that P (n) is true. We shall now prove that this implies that P (n+ 1)
is true. We compute:

17n+1 − 10n+1 = 17 · 17n − 10 · 10n = (7 + 10) · 17n − 10 · 10n =

= 7 · 17n + 10 · 17n − 10 · 10n = 7 · 17n + 10 · (17n − 10n).

Now, 7 · 17n is clearly divisible by 7. By the induction hypothesis,
17n− 10n and so 10 · (17n− 10n) is divisible by 7. By the computation
above we have shown that 17n+1 − 10n+1 is divisible by 7. By the in-
duction principle we are done.

There is a slightly different version of induction, where the induction
step (2) is replaced with
(2)’ If P (k) is true for all k ≤ n, then P (n+ 1) is true
In some situations like the following one, the latter version applies
rather than the usual version. Suppose that we play the following
game. You are given a pile of N matches. You break the pile into two
smaller piles of m and n matches. Then you form the product 2mn
and remember it. Next, you take one of the piles and break it into
two smaller piles (if possible), say of m′ and n′ matches. You form the
product 2m′n′ and add it to the 2mn that you had before, so now you
have 2mn+ 2m′n′. You proceed again by breaking one of the piles into
two and adding the resulting product. The process is finished when
you finally have N piles of one match in each. By convention, if N = 1
then you don’t do anything and the result is 0. Try to take a pile of five
matches and play this game several times, each time breaking to piles
in a different way. What do you see? In fact the following theorem is
true:

Theorem 6. If you start from a pile of N matches, no matter how
you break it, the sum of the computed products will always be N2 −N .

Proof. We will use the second version of induction on N . First, if N = 1
then the resulting sum is 0 = N2 − N . If N = 2 then there is only
one way to break it, namely to m = 1 and n = 1 so that we end up
with 2mn = 2 = N2−N . Assume that N ≥ 2 and the theorem is true
for all k ≤ N . To prove the theorem for N + 1, we begin with a pile
of N + 1 matches and break it into two plies of m and n matches, so
that N + 1 = m + n. By the induction hypothesis, breaking up the
m pile will contribute to the sum m2 − m, and similarly the second
pile will contribute n2 − n, no matter how we continue to break them.
Therefore the total sum is 2mn+ (n2−n) + (m2−m). A little algebra
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shows that this equals to (m+ n)2 − (m+ n) = (N + 1)2 − (N + 1) as
desired. �

The Pigeon Hole Principle: is a frequently used principle in fi-
nite mathematics and is often used in proofs of existence. To illustrate
the principle (and explain its name), suppose that you have n pigeon
holes, but more than n pigeons. If you are to put all your pigeons
in the holes, then the pigeon hole principle says that in at least one
pigeon hole you will have to put more than one pigeon. To state this
in a more mathematical language, recall that if A is a finite set, then
the order of A, which is denoted by |A|, is the number of elements in
A. The pigeon hole principle will say that if A and B are finite sets
with |A| > |B| and f : A→ B is a function, then f is not one to one,
i.e. there exist x, y ∈ A, x 6= y, such that f(x) = f(y).

Here is an example. Suppose that you take the numbers 1, 2, . . . , 10
and rearrange them as you like. As you know there are 10! = 3, 628, 800
different rearrangements. After you have rearranged, you look for the
longest partial sequence, which is rearranged by ascending or descend-
ing order. For example, if you have rearranged the numbers to have
4, 3, 6, 5, 9, 10, 1, 7, 2, 8 you notice that the partial sequence 4, 3, 5, 7, 8
is in ascending order. If you look hard enough you will not find a
longer ascending/descending partial sequence. Your goal is to rear-
range the numbers in the ’most effective way’ so that the longest as-
cending/descending partial sequence is the shortest possible. How well
can you do? The following theorem gives the answer:

Theorem 7. In any rearrangement of the numbers 1, 2, . . . , 10, there
is always a partial sequence of four numbers which is ordered in an
ascending or descending order.

Proof. We will prove this existence theorem using the pigeon hole prin-
ciple. Pick up any rearrangement and let the rearranged numbers be
x1, . . . , x10. To each index 1 ≤ i ≤ 10, let a(i) be the length of the
longest ascending partial sequence that ends with xi, and let d(i) be
the length of the longest descending partial sequence that begins with
xi.

We claim that if for two indices i and j, a(i) = a(j) and d(i) = d(j),
then necessarily i = j. Indeed suppose by negation that i 6= j. Then
of course xi 6= xj and there are two cases: (i) xi < xj, in which we
could append xj to the longest ascending sequence ending in xi and
thus get yet a longer ascending sequence ending in xj which shows that
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a(j) > a(i). In case (ii), xi > xj and a similar argument shows that
now d(i) > d(j). In either cases there is a contradiction to our assump-
tion that a(i) = a(j) and d(i) = d(j).

Suppose by negation that in our rearrangement the longest ascend-
ing/descending partial sequence consists of less than 4 numbers. Then
clearly for each i, a(i) and d(i) can only have the values of 1 or 2 or 3.
Then we have a function

f : {1, . . . , 10} → {(1, 1), (1, 2), (1, 3), . . . , (3, 2), (3, 3)},
given by f(i) = (a(i), d(i)). Now f is a function from a set of 10
elements to a set of 9 elements. By the pigeon hole principle, f is not
one to one, and there exist indices i 6= j such the pairs (a(i), d(i)) =
f(i) = f(j) = (a(j), d(j)). As explained above this is impossible. �

Exercise. Try to find a rearrangement of the numbers 1, . . . , 10, such
that the longest ascending/descending partial sequence is of length 4.


