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This is a tutorial on some basic non-asymptotic methods and concepts in random matrix
theory. The reader will learn several tools for the analysis of the extreme singular values
of random matrices with independent rows or columns. Many of these methods sprung
off from the development of geometric functional analysis since the 1970’s. They have
applications in several fields, most notably in theoretical computer science, statistics and
signal processing. A few basic applications are covered in this text, particularly for the
problem of estimating covariance matrices in statistics and for validating probabilistic
constructions of measurement matrices in compressed sensing. These notes are written
particularly for graduate students and beginning researchers in different areas, includ-
ing functional analysts, probabilists, theoretical statisticians, electrical engineers, and
theoretical computer scientists.

5.1 Introduction

Asymptotic and non-asymptotic regimes Random matrix theory studies proper-
ties of N × n matrices A chosen from some distribution on the set of all matrices. As
dimensions N and n grow to infinity, one observes that the spectrum of A tends to sta-
bilize. This is manifested in several limit laws, which may be regarded as random matrix
versions of the central limit theorem. Among them is Wigner’s semicircle law for the
eigenvalues of symmetric Gaussian matrices, the circular law for Gaussian matrices, the
Marchenko-Pastur law for Wishart matrices W = A∗A where A is a Gaussian matrix,
the Bai-Yin and Tracy-Widom laws for the extreme eigenvalues of Wishart matrices W .
The books [51, 5, 23, 6] offer thorough introduction to the classical problems of random
matrix theory and its fascinating connections.

The asymptotic regime where the dimensionsN,n→ ∞ is well suited for the purposes
of statistical physics, e.g. when random matrices serve as finite-dimensional models of
infinite-dimensional operators. But in some other areas including statistics, geometric
functional analysis, and compressed sensing, the limiting regime may not be very useful
[69]. Suppose, for example, that we ask about the largest singular value smax(A) (i.e. the
largest eigenvalue of (A∗A)1/2); to be specific assume that A is an n× n matrix whose
entries are independent standard normal random variables. The asymptotic random
matrix theory answers this question as follows: the Bai-Yin law (see Theorem 5.31)
states that

smax(A)/2
√
n→ 1 almost surely

as the dimension n→ ∞. Moreover, the limiting distribution of smax(A) is known to be
the Tracy-Widom law (see [71, 27]). In contrast to this, a non-asymptotic answer to the
same question is the following: in every dimension n, one has

smax(A) ≤ C
√
n with probability at least 1− e−n,

here C is an absolute constant (see Theorems 5.32 and 5.39). The latter answer is less
precise (because of an absolute constant C) but more quantitative because for fixed
dimensions n it gives an exponential probability of success.1 This is the kind of answer

1For this specific model (Gaussian matrices),Theorems 5.32 and 5.35 even give a sharp absolute
constant C ≈ 2 here. But the result mentioned here is much more general as we will see later; it only
requires independence of rows or columns of A.
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we will seek in this text – guarantees up to absolute constants in all dimensions, and
with large probability.

Tall matrices are approximate isometries The following heuristic will be our
guideline: tall random matrices should act as approximate isometries. So, an N × n
random matrix A with N ≫ n should act almost like an isometric embedding of ℓn2 into
ℓN2 :

(1 − δ)K‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)K‖x‖2 for all x ∈ R
n

where K is an appropriate normalization factor and δ ≪ 1. Equivalently, this says that
all the singular values of A are close to each other:

(1− δ)K ≤ smin(A) ≤ smax(A) ≤ (1 + δ)K,

where smin(A) and smax(A) denote the smallest and the largest singular values of A. Yet
equivalently, this means that tall matrices are well conditioned: the condition number of
A is κ(A) = smax(A)/smin(A) ≤ (1 + δ)/(1 − δ) ≈ 1.

In the asymptotic regime and for random matrices with independent entries, our
heuristic is justified by Bai-Yin’s law, which is Theorem 5.31 below. Loosely speaking,
it states that as the dimensions N,n increase to infinity while the aspect ratio N/n is
fixed, we have √

N −√
n ≈ smin(A) ≤ smax(A) ≈

√
N +

√
n. (5.1)

In these notes, we study N×n random matrices A with independent rows or independent
columns, but not necessarily independent entries. We develop non-asymptotic versions
of (5.1) for such matrices, which should hold for all dimensions N and n. The desired
results should have the form

√
N − C

√
n ≤ smin(A) ≤ smax(A) ≤

√
N + C

√
n (5.2)

with large probability, e.g. 1−e−N , where C is an absolute constant.2 For tall matrices,
where N ≫ n, both sides of this inequality would be close to each other, which would
guarantee that A is an approximate isometry.

Models and methods We shall study quite general models of randommatrices – those
with independent rows or independent columns that are sampled from high-dimensional
distributions. We will place either strong moment assumptions on the distribution (sub-
gaussian growth of moments), or no moment assumptions at all (except finite variance).
This leads us to four types of main results:

1. Matrices with independent sub-gaussian rows: Theorem 5.39

2. Matrices with independent heavy-tailed rows: Theorem 5.41

3. Matrices with independent sub-gaussian columns: Theorem 5.58

4. Matrices with independent heavy-tailed columns: Theorem 5.62

2More accurately, we should expect C = O(1) to depend on easily computable quantities of the
distribution, such as its moments. This will be clear from the context.



5

These four models cover many natural classes of random matrices that occur in ap-
plications, including random matrices with independent entries (Gaussian and Bernoulli
in particular) and random sub-matrices of orthogonal matrices (random Fourier matrices
in particular).

The analysis of these four models is based on a variety of tools of probability theory
and geometric functional analysis, most of which have not been covered in the texts on
the “classical” random matrix theory. The reader will learn basics on sub-gaussian and
sub-exponential random variables, isotropic random vectors, large deviation inequalities
for sums of independent random variables, extensions of these inequalities to random ma-
trices, and several basic methods of high dimensional probability such as symmetrization,
decoupling, and covering (ε-net) arguments.

Applications In these notes we shall emphasize two applications, one in statistics and
one in compressed sensing. Our analysis of random matrices with independent rows
immediately applies to a basic problem in statistics – estimating covariance matrices of
high-dimensional distributions. If a random matrix A has i.i.d. rows Ai, then A∗A =∑
iAi ⊗ Ai is the sample covariance matrix. If A has independent columns Aj , then

A∗A = (〈Aj , Ak〉)j,k is the Gram matrix. Thus our analysis of the row-independent and
column-independent models can be interpreted as a study of sample covariance matrices
and Gram matrices of high dimensional distributions. We will see in Section 5.4.3 that for
a general distribution in Rn, its covariance matrix can be estimated from a sample of size
N = O(n log n) drawn from the distribution. Moreover, for sub-gaussian distributions
we have an even better bound N = O(n). For low-dimensional distributions, much fewer
samples are needed – if a distribution lies close to a subspace of dimension r in R

n, then
a sample of size N = O(r logn) is sufficient for covariance estimation.

In compressed sensing, the best known measurement matrices are random. A suffi-
cient condition for a matrix to succeed for the purposes of compressed sensing is given by
the restricted isometry property. Loosely speaking, this property demands that all sub-
matrices of given size be well-conditioned. This fits well in the circle of problems of the
non-asymptotic random matrix theory. Indeed, we will see in Section 5.6 that all basic
models of random matrices are nice restricted isometries. These include Gaussian and
Bernoulli matrices, more generally all matrices with sub-gaussian independent entries,
and even more generally all matrices with sub-gaussian independent rows or columns.
Also, the class of restricted isometries includes random Fourier matrices, more generally
random sub-matrices of bounded orthogonal matrices, and even more generally matri-
ces whose rows are independent samples from an isotropic distribution with uniformly
bounded coordinates.

Related sources This text is a tutorial rather than a survey, so we focus on explaining
methods rather than results. This forces us to make some concessions in our choice of
the subjects. Concentration of measure and its applications to random matrix theory
are only briefly mentioned. For an introduction into concentration of measure suitable
for a beginner, see [9] and [49, Chapter 14]; for a thorough exposition see [56, 43];
for connections with random matrices see [21, 44]. The monograph [45] also offers an
introduction into concentration of measure and related probabilistic methods in analysis
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and geometry, some of which we shall use in these notes.
We completely avoid the important (but more difficult) model of symmetric random

matrices with independent entries on and above the diagonal. Starting from the work
of Füredi and Komlos [29], the largest singular value (the spectral norm) of symmetric
random matrices has been a subject of study in many works; see e.g. [50, 83, 58] and
the references therein.

We also did not even attempt to discuss sharp small deviation inequalities (of Tracy-
Widom type) for the extreme eigenvalues. Both these topics and much more are discussed
in the surveys [21, 44, 69], which serve as bridges between asymptotic and non-asymptotic
problems in random matrix theory.

Because of the absolute constant C in (5.2), our analysis of the smallest singular
value (the “hard edge”) will only be useful for sufficiently tall matrices, where N ≥
C2n. For square and almost square matrices, the hard edge problem will be only briefly
mentioned in Section 5.3. The surveys [76, 69] discuss this problem at length, and they
offer a glimpse of connections to other problems of random matrix theory and additive
combinatorics.

Many of the results and methods presented in these notes are known in one form
or another. Some of them are published while some others belong to the folklore of
probability in Banach spaces, geometric functional analysis, and related areas. When
available, historic references are given in Section 5.7.

Acknowledgements The author is grateful to the colleagues who made a number of
improving suggestions for the earlier versions of the manuscript, in particular to Richard
Chen, Subhroshekhar Ghosh, Alexander Litvak, Deanna Needell, Holger Rauhut, S V
N Vishwanathan and the anonymous referees. Special thanks are due to Ulas Ayaz and
Felix Krahmer who thoroughly read the entire text, and whose numerous comments led
to significant improvements of this tutorial.

5.2 Preliminaries

5.2.1 Matrices and their singular values

The main object of our study will be an N × n matrix A with real or complex entries.
We shall state all results in the real case; the reader will be able to adjust them to the
complex case as well. Usually but not always one should think of tall matrices A, those
for which N ≥ n > 1. By passing to the adjoint matrix A∗, many results can be carried
over to “flat” matrices, those for which N ≤ n.

It is often convenient to study A through the n× n symmetric positive-semidefinite
matrix the matrix A∗A. The eigenvalues of |A| :=

√
A∗A are therefore non-negative real

numbers. Arranged in a non-decreasing order, they are called the singular values3 of
A and denoted s1(A) ≥ · · · ≥ sn(A) ≥ 0. Many applications require estimates on the
extreme singular values

smax(A) := s1(A), smin(A) := sn(A).

3In the literature, singular values are also called s-numbers.
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The smallest singular value is only of interest for tall matrices, since for N < n one
automatically has smin(A) = 0.

Equivalently, smax(A) and smin(A) are respectively the smallest number M and the
largest number m such that

m‖x‖2 ≤ ‖Ax‖2 ≤M‖x‖2 for all x ∈ R
n. (5.3)

In order to interpret this definition geometrically, we look at A as a linear operator
from Rn into RN . The Euclidean distance between any two points in Rn can increase
by at most the factor smax(A) and decrease by at most the factor smax(A) under the
action of A. Therefore, the extreme singular values control the distortion of the Euclidean
geometry under the action of A. If smax(A) ≈ smin(A) ≈ 1 then A acts as an approximate
isometry, or more accurately an approximate isometric embedding of ℓn2 into ℓN2 .

The extreme singular values can also be described in terms of the spectral norm of
A, which is by definition

‖A‖ = ‖A‖ℓn
2
→ℓN

2

= sup
x∈Rn\{0}

‖Ax‖2
‖x‖2

= sup
x∈Sn−1

‖Ax‖2. (5.4)

(5.3) gives a link between the extreme singular values and the spectral norm:

smax(A) = ‖A‖, smin(A) = 1/‖A†‖

where A† denotes the pseudoinverse of A; if A is invertible then A† = A−1.

5.2.2 Nets

Nets are convenient means to discretize compact sets. In our study we will mostly need
to discretize the unit Euclidean sphere Sn−1 in the definition of the spectral norm (5.4).
Let us first recall a general definition of an ε-net.

Definition 5.1 (Nets, covering numbers). Let (X, d) be a metric space and let ε > 0.
A subset Nε of X is called an ε-net of X if every point x ∈ X can be approximated to
within ε by some point y ∈ Nε, i.e. so that d(x, y) ≤ ε. The minimal cardinality of an
ε-net of X, if finite, is denoted N (X, ε) and is called the covering number4 of X (at
scale ε).

From a characterization of compactness we remember that X is compact if and only
if N (X, ε) < ∞ for each ε > 0. A quantitative estimate on N (X, ε) would give us a
quantitative version of compactness of X .5 Let us therefore take a simple example of
a metric space, the unit Euclidean sphere Sn−1 equipped with the Euclidean metric6

d(x, y) = ‖x− y‖2, and estimate its covering numbers.

4Equivalently, N (X, ε) is the minimal number of balls with radii ε and with centers in X needed to
cover X.

5In statistical learning theory and geometric functional analysis, logN (X, ε) is called the metric

entropy of X. In some sense it measures the “complexity” of metric space X.
6A similar result holds for the geodesic metric on the sphere, since for small ε these two distances

are equivalent.
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Lemma 5.2 (Covering numbers of the sphere). The unit Euclidean sphere Sn−1 equipped
with the Euclidean metric satisfies for every ε > 0 that

N (Sn−1, ε) ≤
(
1 +

2

ε

)n
.

Proof. This is a simple volume argument. Let us fix ε > 0 and chooseNε to be a maximal
ε-separated subset of Sn−1. In other words, Nε is such that d(x, y) ≥ ε for all x, y ∈ Nε,
x 6= y, and no subset of Sn−1 containing Nε has this property.7

The maximality property implies that Nε is an ε-net of Sn−1. Indeed, otherwise
there would exist x ∈ Sn−1 that is at least ε-far from all points in Nε. So Nε ∪ {x}
would still be an ε-separated set, contradicting the minimality property.

Moreover, the separation property implies via the triangle inequality that the balls of
radii ε/2 centered at the points in Nε are disjoint. On the other hand, all such balls lie in
(1+ε/2)Bn2 where Bn2 denotes the unit Euclidean ball centered at the origin. Comparing
the volume gives vol

(
ε
2B

n
2

)
· |Nε| ≤ vol

(
(1 + ε

2 )B
n
2

)
. Since vol

(
rBn2

)
= rn vol(Bn2 ) for

all r ≥ 0, we conclude that |Nε| ≤ (1 + ε
2 )
n/( ε2 )

n = (1 + 2
ε )
n as required.

Nets allow us to reduce the complexity of computations with linear operators. One
such example is the computation of the spectral norm. To evaluate the spectral norm by
definition (5.4) one needs to take the supremum over the whole sphere Sn−1. However,
one can essentially replace the sphere by its ε-net:

Lemma 5.3 (Computing the spectral norm on a net). Let A be an N × n matrix, and
let Nε be an ε-net of Sn−1 for some ε ∈ [0, 1). Then

max
x∈Nε

‖Ax‖2 ≤ ‖A‖ ≤ (1− ε)−1 max
x∈Nε

‖Ax‖2

Proof. The lower bound in the conclusion follows from the definition. To prove the
upper bound let us fix x ∈ Sn−1 for which ‖A‖ = ‖Ax‖2, and choose y ∈ Nε which
approximates x as ‖x − y‖2 ≤ ε. By the triangle inequality we have ‖Ax − Ay‖2 ≤
‖A‖‖x− y‖2 ≤ ε‖A‖. It follows that

‖Ay‖2 ≥ ‖Ax‖2 − ‖Ax−Ay‖2 ≥ ‖A‖ − ε‖A‖ = (1− ε)‖A‖.

Taking maximum over all y ∈ Nε in this inequality, we complete the proof.

A similar result holds for symmetric n× n matrices A, whose spectral norm can be
computed via the associated quadratic form: ‖A‖ = supx∈Sn−1 |〈Ax, x〉|. Again, one can
essentially replace the sphere by its ε-net:

Lemma 5.4 (Computing the spectral norm on a net). Let A be a symmetric n × n
matrix, and let Nε be an ε-net of Sn−1 for some ε ∈ [0, 1). Then

‖A‖ = sup
x∈Sn−1

|〈Ax, x〉| ≤ (1− 2ε)−1 sup
x∈Nε

|〈Ax, x〉|.

7One can in fact construct Nε inductively by first selecting an arbitrary point on the sphere, and at
each next step selecting a point that is at distance at least ε from those already selected. By compactness,
this algorithm will terminate after finitely many steps and it will yield a set Nε as we required.



9

Proof. Let us choose x ∈ Sn−1 for which ‖A‖ = |〈Ax, x〉|, and choose y ∈ Nε which
approximates x as ‖x− y‖2 ≤ ε. By the triangle inequality we have

|〈Ax, x〉 − 〈Ay, y〉| = |〈Ax, x − y〉+ 〈A(x − y), y〉|
≤ ‖A‖‖x‖2‖x− y‖2 + ‖A‖‖x− y‖2‖y‖2 ≤ 2ε‖A‖.

It follows that |〈Ay, y〉| ≥ |〈Ax, x〉| − 2ε‖A‖ = (1 − 2ε)‖A‖. Taking the maximum over
all y ∈ Nε in this inequality completes the proof.

5.2.3 Sub-gaussian random variables

In this section we introduce the class of sub-gaussian random variables,8 those whose
distributions are dominated by the distribution of a centered gaussian random variable.
This is a convenient and quite wide class, which contains in particular the standard
normal and all bounded random variables.

Let us briefly recall some of the well known properties of the standard normal ran-
dom variable X . The distribution of X has density 1√

2π
e−x

2/2 and is denoted N(0, 1).

Estimating the integral of this density between t and ∞ one checks that the tail of a
standard normal random variable X decays super-exponentially:

P{|X | > t} =
2√
2π

∫ ∞

t

e−x
2/2 dx ≤ 2e−t

2/2, t ≥ 1, (5.5)

see e.g. [26, Theorem 1.4] for a more precise two-sided inequality. The absolute moments
of X can be computed as

(E|X |p)1/p =
√
2
[Γ((1 + p)/2)

Γ(1/2)

]1/p
= O(

√
p), p ≥ 1. (5.6)

The moment generating function of X equals

E exp(tX) = et
2/2, t ∈ R. (5.7)

Now let X be a general random variable. We observe that these three properties are
equivalent – a super-exponential tail decay like in (5.5), the moment growth (5.6), and
the growth of the moment generating function like in (5.7). We will then focus on the
class of random variables that satisfy these properties, which we shall call sub-gaussian
random variables.

Lemma 5.5 (Equivalence of sub-gaussian properties). Let X be a random variable.
Then the following properties are equivalent with parameters Ki > 0 differing from each
other by at most an absolute constant factor.9

8It would be more rigorous to say that we study sub-gaussian probability distributions. The same
concerns some other properties of random variables and random vectors we study later in this text.
However, it is convenient for us to focus on random variables and vectors because we will form random
matrices out of them.

9The precise meaning of this equivalence is the following. There exists an absolute constant C such
that property i implies property j with parameter Kj ≤ CKi for any two properties i, j = 1, 2, 3.
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1. Tails: P{|X | > t} ≤ exp(1− t2/K2
1) for all t ≥ 0;

2. Moments: (E|X |p)1/p ≤ K2
√
p for all p ≥ 1;

3. Super-exponential moment: E exp(X2/K2
3) ≤ e.

Moreover, if EX = 0 then properties 1–3 are also equivalent to the following one:

4. Moment generating function: E exp(tX) ≤ exp(t2K2
4 ) for all t ∈ R.

Proof. 1. ⇒ 2. Assume property 1 holds. By homogeneity, rescaling X to X/K1 we can
assume that K1 = 1. Recall that for every non-negative random variable Z, integration
by parts yields the identity EZ =

∫∞
0 P{Z ≥ u} du. We apply this for Z = |X |p. After

change of variables u = tp, we obtain using property 1 that

E|X |p =
∫ ∞

0

P{|X | ≥ t} ptp−1 dt ≤
∫ ∞

0

e1−t
2

ptp−1 dt =
(ep
2

)
Γ
(p
2

)
≤

(ep
2

)(p
2

)p/2
.

Taking the p-th root yields property 2 with a suitable absolute constant K2.
2. ⇒ 3. Assume property 2 holds. As before, by homogeneity we may assume that

K2 = 1. Let c > 0 be a sufficiently small absolute constant. Writing the Taylor series of
the exponential function, we obtain

E exp(cX2) = 1 +

∞∑

p=1

cpE(X2p)

p!
≤ 1 +

∞∑

p=1

cp(2p)p

p!
≤ 1 +

∞∑

p=1

(2c/e)p.

The first inequality follows from property 2; in the second one we use p! ≥ (p/e)p. For
small c this gives E exp(cX2) ≤ e, which is property 3 with K3 = c−1/2.

3. ⇒ 1. Assume property 3 holds. As before we may assume that K3 = 1. Expo-
nentiating and using Markov’s inequality10 and then property 3, we have

P{|X | > t} = P{eX2 ≥ et
2} ≤ e−t

2

EeX
2 ≤ e1−t

2

.

This proves property 1 with K1 = 1.
2. ⇒ 4. Let us now assume that EX = 0 and property 2 holds; as usual we

can assume that K2 = 1. We will prove that property 4 holds with an appropriately
large absolute constant C = K4. This will follow by estimating Taylor series for the
exponential function

E exp(tX) = 1 + tEX +

∞∑

p=2

tpEXp

p!
≤ 1 +

∞∑

p=2

tppp/2

p!
≤ 1 +

∞∑

p=2

(e|t|√
p

)p
. (5.8)

The first inequality here follows from EX = 0 and property 2; the second one holds since
p! ≥ (p/e)p. We compare this with Taylor’s series for

exp(C2t2) = 1 +
∞∑

k=1

(C|t|)2k
k!

≥ 1 +
∞∑

k=1

(C|t|√
k

)2k

= 1 +
∑

p∈2N

( C|t|√
p/2

)p
. (5.9)

10This simple argument is sometimes called exponential Markov’s inequality.
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The first inequality here holds because p! ≤ pp; the second one is obtained by substitution
p = 2k. One can show that the series in (5.8) is bounded by the series in (5.9) with large
absolute constant C. We conclude that E exp(tX) ≤ exp(C2t2), which proves property 4.

4. ⇒ 1. Assume property 4 holds; we can also assume that K4 = 1. Let λ > 0 be a
parameter to be chosen later. By exponential Markov inequality, and using the bound
on the moment generating function given in property 4, we obtain

P{X ≥ t} = P{eλX ≥ eλt} ≤ e−λtEeλX ≤ e−λt+λ
2

.

Optimizing in λ and thus choosing λ = t/2 we conclude that P{X ≥ t} ≤ e−t
2/4.

Repeating this argument for −X , we also obtain P{X ≤ −t} ≤ e−t
2/4. Combining these

two bounds we conclude that P{|X | ≥ t} ≤ 2e−t
2/4 ≤ e1−t

2/4. Thus property 1 holds
with K1 = 2. The lemma is proved.

Remark 5.6. 1. The constants 1 and e in properties 1 and 3 respectively are chosen
for convenience. Thus the value 1 can be replaced by any positive number and the
value e can be replaced by any number greater than 1.

2. The assumption EX = 0 is only needed to prove the necessity of property 4; the
sufficiency holds without this assumption.

Definition 5.7 (Sub-gaussian random variables). A random variable X that satisfies
one of the equivalent properties 1 – 3 in Lemma 5.5 is called a sub-gaussian random
variable. The sub-gaussian norm of X, denoted ‖X‖ψ2

, is defined to be the smallest K2

in property 2. In other words,11

‖X‖ψ2
= sup

p≥1
p−1/2(E|X |p)1/p.

The class of sub-gaussian random variables on a given probability space is thus a
normed space. By Lemma 5.5, every sub-gaussian random variable X satisfies:

P{|X | > t} ≤ exp(1 − ct2/‖X‖2ψ2
) for all t ≥ 0; (5.10)

(E|X |p)1/p ≤ ‖X‖ψ2

√
p for all p ≥ 1; (5.11)

E exp(cX2/‖X‖2ψ2
) ≤ e;

if EX = 0 then E exp(tX) ≤ exp(Ct2‖X‖2ψ2
) for all t ∈ R, (5.12)

where C, c > 0 are absolute constants. Moreover, up to absolute constant factors, ‖X‖ψ2

is the smallest possible number in each of these inequalities.

Example 5.8. Classical examples of sub-gaussian random variables are Gaussian, Bernoulli
and all bounded random variables.

1. (Gaussian): A standard normal random variableX is sub-gaussian with ‖X‖ψ2
≤

C where C is an absolute constant. This follows from (5.6). More generally, if X is
a centered normal random variable with variance σ2, then X is sub-gaussian with
‖X‖ψ2

≤ Cσ.

11The sub-gaussian norm is also called ψ2 norm in the literature.



12

2. (Bernoulli): Consider a random variable X with distribution P{X = −1} =
P{X = 1} = 1/2. We call X a symmetric Bernoulli random variable. Since
|X | = 1, it follows that X is a sub-gaussian random variable with ‖X‖ψ2

= 1.

3. (Bounded): More generally, consider any bounded random variableX , thus |X | ≤
M almost surely for some M . Then X is a sub-gaussian random variable with
‖X‖ψ2

≤M . We can write this more compactly as ‖X‖ψ2
≤ ‖X‖∞.

A remarkable property of the normal distribution is rotation invariance. Given a
finite number of independent centered normal random variables Xi, their sum

∑
iXi

is also a centered normal random variable, obviously with Var(
∑

iXi) =
∑

iVar(Xi).
Rotation invariance passes onto sub-gaussian random variables, although approximately:

Lemma 5.9 (Rotation invariance). Consider a finite number of independent centered
sub-gaussian random variables Xi. Then

∑
iXi is also a centered sub-gaussian random

variable. Moreover, ∥∥∑

i

Xi

∥∥2

ψ2

≤ C
∑

i

‖Xi‖2ψ2

where C is an absolute constant.

Proof. The argument is based on estimating the moment generating function. Using
independence and (5.12) we have for every t ∈ R:

E exp
(
t
∑

i

Xi

)
= E

∏

i

exp(tXi) =
∏

i

E exp(tXi) ≤
∏

i

exp(Ct2‖Xi‖2ψ2
)

= exp(t2K2) where K2 = C
∑

i

‖Xi‖2ψ2
.

Using the equivalence of properties 2 and 4 in Lemma 5.5 we conclude that ‖∑iXi‖ψ2
≤

C1K where C1 is an absolute constant. The proof is complete.

The rotation invariance immediately yields a large deviation inequality for sums of
independent sub-gaussian random variables:

Proposition 5.10 (Hoeffding-type inequality). Let X1, . . . , XN be independent cen-
tered sub-gaussian random variables, and let K = maxi ‖Xi‖ψ2

. Then for every a =
(a1, . . . , aN ) ∈ RN and every t ≥ 0, we have

P

{∣∣∣
N∑

i=1

aiXi

∣∣∣ ≥ t
}
≤ e · exp

(
− ct2

K2‖a‖22

)

where c > 0 is an absolute constant.

Proof. The rotation invariance (Lemma 5.9) implies the bound ‖∑i aiXi‖2ψ2
≤ C

∑
i a

2
i ‖Xi‖2ψ2

≤
CK2‖a‖22. Property (5.10) yields the required tail decay.
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Remark 5.11. One can interpret these results (Lemma 5.9 and Proposition 5.10) as
one-sided non-asymptotic manifestations of the central limit theorem. For example, con-
sider the normalized sum of independent symmetric Bernoulli random variables SN =
1√
N

∑N
i=1 εi. Proposition 5.10 yields the tail bounds P{|SN | > t} ≤ e · e−ct2 for any

number of terms N . Up to the absolute constants e and c, these tails coincide with those
of the standard normal random variable (5.5).

Using moment growth (5.11) instead of the tail decay (5.10), we immediately obtain
from Lemma 5.9 a general form of the well known Khintchine inequality:

Corollary 5.12 (Khintchine inequality). Let Xi be a finite number of independent sub-
gaussian random variables with zero mean, unit variance, and ‖Xi‖ψ2

≤ K. Then, for
every sequence of coefficients ai and every exponent p ≥ 2 we have

(∑

i

a2i
)1/2 ≤

(
E
∣∣∑

i

aiXi

∣∣p)1/p ≤ CK
√
p
(∑

i

a2i
)1/2

where C is an absolute constant.

Proof. The lower bound follows by independence and Hölder’s inequality: indeed,
(
E
∣∣∑

i aiXi

∣∣p)1/p ≥
(
E
∣∣∑

i aiXi

∣∣2)1/2 =
(∑

i a
2
i

)1/2
. For the upper bound, we argue as in Proposition 5.10,

but use property (5.11).

5.2.4 Sub-exponential random variables

Although the class of sub-gaussian random variables is natural and quite wide, it leaves
out some useful random variables which have tails heavier than gaussian. One such
example is a standard exponential random variable – a non-negative random variable
with exponential tail decay

P{X ≥ t} = e−t, t ≥ 0. (5.13)

To cover such examples, we consider a class of sub-exponential random variables, those
with at least an exponential tail decay. With appropriate modifications, the basic proper-
ties of sub-gaussian random variables hold for sub-exponentials. In particular, a version
of Lemma 5.5 holds with a similar proof for sub-exponential properties, except for prop-
erty 4 of the moment generating function. Thus for a random variable X the following
properties are equivalent with parameters Ki > 0 differing from each other by at most
an absolute constant factor:

P{|X | > t} ≤ exp(1 − t/K1) for all t ≥ 0; (5.14)

(E|X |p)1/p ≤ K2p for all p ≥ 1; (5.15)

E exp(X/K3) ≤ e. (5.16)

Definition 5.13 (Sub-exponential random variables). A random variable X that satis-
fies one of the equivalent properties (5.14) – (5.16) is called a sub-exponential random
variable. The sub-exponential norm of X, denoted ‖X‖ψ1

, is defined to be the smallest
parameter K2. In other words,

‖X‖ψ1
= sup

p≥1
p−1(E|X |p)1/p.
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Lemma 5.14 (Sub-exponential is sub-gaussian squared). A random variable X is sub-
gaussian if and only if X2 is sub-exponential. Moreover,

‖X‖2ψ2
≤ ‖X2‖ψ1

≤ 2‖X‖2ψ2
.

Proof. This follows easily from the definition.

The moment generating function of a sub-exponential random variable has a similar
upper bound as in the sub-gaussian case (property 4 in Lemma 5.5). The only real
difference is that the bound only holds in a neighborhood of zero rather than on the
whole real line. This is inevitable, as the moment generating function of an exponential
random variable (5.13) does not exist for t ≥ 1.

Lemma 5.15 (Mgf of sub-exponential random variables). Let X be a centered sub-
exponential random variable. Then, for t such that |t| ≤ c/‖X‖ψ1

, one has

E exp(tX) ≤ exp(Ct2‖X‖2ψ1
)

where C, c > 0 are absolute constants.

Proof. The argument is similar to the sub-gaussian case. We can assume that ‖X‖ψ1
= 1

by replacingX withX/‖X‖ψ1
and t with t‖X‖ψ1

. Repeating the proof of the implication
2 ⇒ 4 of Lemma 5.5 and using E|X |p ≤ pp this time, we obtain that E exp(tX) ≤ 1 +∑∞
p=2(e|t|)p. If |t| ≤ 1/2e then the right hand side is bounded by 1+2e2t2 ≤ exp(2e2t2).

This completes the proof.

Sub-exponential random variables satisfy a large deviation inequality similar to the
one for sub-gaussians (Proposition 5.10). The only significant difference is that two tails
have to appear here – a gaussian tail responsible for the central limit theorem, and an
exponential tail coming from the tails of each term.

Proposition 5.16 (Bernstein-type inequality). Let X1, . . . , XN be independent cen-
tered sub-exponential random variables, and K = maxi ‖Xi‖ψ1

. Then for every a =
(a1, . . . , aN ) ∈ RN and every t ≥ 0, we have

P

{∣∣∣
N∑

i=1

aiXi

∣∣∣ ≥ t
}
≤ 2 exp

[
− cmin

( t2

K2‖a‖22
,

t

K‖a‖∞

)]

where c > 0 is an absolute constant.

Proof. Without loss of generality, we assume that K = 1 by replacing Xi with Xi/K
and t with t/K. We use the exponential Markov inequality for the sum S =

∑
i aiXi

and with a parameter λ > 0:

P{S ≥ t} = P{eλS ≥ eλt} ≤ e−λtEeλS = e−λt
∏

i

E exp(λaiXi).

If |λ| ≤ c/‖a‖∞ then |λai| ≤ c for all i, so Lemma 5.15 yields

P{S ≥ t} ≤ e−λt
∏

i

exp(Cλ2a2i ) = exp(−λt+ Cλ2‖a‖22).
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Choosing λ = min(t/2C‖a‖22, c/‖a‖∞), we obtain that

P{S ≥ t} ≤ exp
[
−min

( t2

4C‖a‖22
,

ct

2‖a‖∞

)]
.

Repeating this argument for −Xi instead of Xi, we obtain the same bound for P{−S ≥
t}. A combination of these two bounds completes the proof.

Corollary 5.17. Let X1, . . . , XN be independent centered sub-exponential random vari-
ables, and let K = maxi ‖Xi‖ψ1

. Then, for every ε ≥ 0, we have

P

{∣∣∣
N∑

i=1

Xi

∣∣∣ ≥ εN
}
≤ 2 exp

[
− cmin

( ε2

K2
,
ε

K

)
N
]

where c > 0 is an absolute constant.

Proof. This follows from Proposition 5.16 for ai = 1 and t = εN .

Remark 5.18 (Centering). The definitions of sub-gaussian and sub-exponential random
variables X do not require them to be centered. In any case, one can always center X
using the simple fact that if X is sub-gaussian (or sub-exponential), then so is X −EX .
Moreover,

‖X − EX‖ψ2
≤ 2‖X‖ψ2

, ‖X − EX‖ψ1
≤ 2‖X‖ψ1

.

This follows by triangle inequality ‖X−EX‖ψ2
≤ ‖X‖ψ2

+‖EX‖ψ2
along with ‖EX‖ψ2

=
|EX | ≤ E|X | ≤ ‖X‖ψ2

, and similarly for the sub-exponential norm.

5.2.5 Isotropic random vectors

Now we carry our work over to higher dimensions. We will thus be working with random
vectors X in Rn, or equivalently probability distributions in Rn.

While the concept of the mean µ = EZ of a random variable Z remains the same
in higher dimensions, the second moment EZ2 is replaced by the n× n second moment
matrix of a random vector X , defined as

Σ = Σ(X) = EX ⊗X = EXXT

where ⊗ denotes the outer product of vectors in Rn. Similarly, the concept of variance
Var(Z) = E(Z − µ)2 = EZ2 − µ2 of a random variable is replaced in higher dimensions
with the covariance matrix of a random vector X , defined as

Cov(X) = E(X − µ)⊗ (X − µ) = EX ⊗X − µ⊗ µ

where µ = EX . By translation, many questions can be reduced to the case of centered
random vectors, for which µ = 0 and Cov(X) = Σ(X). We will also need a higher-
dimensional version of unit variance:

Definition 5.19 (Isotropic random vectors). A random vector X in Rn is called isotropic
if Σ(X) = I. Equivalently, X is isotropic if

E〈X, x〉2 = ‖x‖22 for all x ∈ R
n. (5.17)
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Suppose Σ(X) is an invertible matrix, which means that the distribution of X is not
essentially supported on any proper subspace of Rn. Then Σ(X)−1/2X is an isotropic
random vector in R

n. Thus every non-degenerate random vector can be made isotropic
by an appropriate linear transformation.12 This allows us to mostly focus on studying
isotropic random vectors in the future.

Lemma 5.20. Let X,Y be independent isotropic random vectors in Rn. Then E‖X‖22 =
n and E〈X,Y 〉2 = n.

Proof. The first part follows from E‖X‖22 = E tr(X ⊗ X) = tr(EX ⊗ X) = tr(I) = n.
The second part follows by conditioning on Y , using isotropy of X and using the first
part for Y : this way we obtain E〈X,Y 〉2 = E‖Y ‖22 = n.

Example 5.21. 1. (Gaussian): The (standard) Gaussian random vector X in Rn

chosen according to the standard normal distribution N(0, I) is isotropic. The
coordinates of X are independent standard normal random variables.

2. (Bernoulli): A similar example of a discrete isotropic distribution is given by a
Bernoulli random vector X in Rn whose coordinates are independent symmetric
Bernoulli random variables.

3. (Product distributions): More generally, consider a random vector X in Rn

whose coordinates are independent random variables with zero mean and unit
variance. Then clearly X is an isotropic vector in Rn.

4. (Coordinate): Consider a coordinate random vector X , which is uniformly dis-
tributed in the set {√nei}ni=1 where {ei}ni=1 is the canonical basis of Rn. Clearly
X is an isotropic random vector in Rn.13

5. (Frame): This is a more general version of the coordinate random vector. A frame
is a set of vectors {ui}Mi=1 in Rn which obeys an approximate Parseval’s identity,
i.e. there exist numbers A,B > 0 called frame bounds such that

A‖x‖22 ≤
M∑

i=1

〈ui, x〉2 ≤ B‖x‖22 for all x ∈ R
n.

If A = B the set is called a tight frame. Thus, tight frames are generalizations of
orthogonal bases without linear independence. Given a tight frame {ui}Mi=1 with
bounds A = B =M , the random vector X uniformly distributed in the set {ui}Mi=1

is clearly isotropic in Rn.14

12This transformation (usually preceded by centering) is a higher-dimensional version of standardizing
of random variables, which enforces zero mean and unit variance.

13The examples of Gaussian and coordinate random vectors are somewhat opposite – one is very
continuous and the other is very discrete. They may be used as test cases in our study of random
matrices.

14There is clearly a reverse implication, too, which shows that the class of tight frames can be identified
with the class of discrete isotropic random vectors.
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6. (Spherical): Consider a random vector X uniformly distributed on the unit Eu-
clidean sphere in Rn with center at the origin and radius

√
n. Then X is isotropic.

Indeed, by rotation invariance E〈X, x〉2 is proportional to ‖x‖22; the correct nor-
malization

√
n is derived from Lemma 5.20.

7. (Uniform on a convex set): In convex geometry, a convex set K in Rn is
called isotropic if a random vector X chosen uniformly from K according to the
volume is isotropic. As we noted, every full dimensional convex set can be made
into an isotropic one by an affine transformation. Isotropic convex sets look “well
conditioned”, which is advantageous in geometric algorithms (e.g. volume compu-
tations).

We generalize the concepts of sub-gaussian random variables to higher dimensions
using one-dimensional marginals.

Definition 5.22 (Sub-gaussian random vectors). We say that a random vector X in
Rn is sub-gaussian if the one-dimensional marginals 〈X, x〉 are sub-gaussian random
variables for all x ∈ Rn. The sub-gaussian norm of X is defined as

‖X‖ψ2
= sup

x∈Sn−1

‖〈X, x〉‖ψ2
.

Remark 5.23 (Properties of high-dimensional distributions). The definitions of isotropic
and sub-gaussian distributions suggest that more generally, natural properties of high-
dimensional distributions may be defined via one-dimensional marginals. This is a nat-
ural way to generalize properties of random variables to random vectors. For example,
we shall call a random vector sub-exponential if all of its one-dimensional marginals are
sub-exponential random variables, etc.

One simple way to create sub-gaussian distributions in Rn is by taking a product of
n sub-gaussian distributions on the line:

Lemma 5.24 (Product of sub-gaussian distributions). Let X1, . . . , Xn be independent
centered sub-gaussian random variables. Then X = (X1, . . . , Xn) is a centered sub-
gaussian random vector in Rn, and

‖X‖ψ2
≤ Cmax

i≤n
‖Xi‖ψ2

where C is an absolute constant.

Proof. This is a direct consequence of the rotation invariance principle, Lemma 5.9.
Indeed, for every x = (x1, . . . , xn) ∈ Sn−1 we have

‖〈X, x〉‖ψ2
=

∥∥∥
n∑

i=1

xiXi

∥∥∥
ψ2

≤ C
n∑

i=1

x2i ‖Xi‖2ψ2
≤ Cmax

i≤n
‖Xi‖ψ2

where we used that
∑n
i=1 x

2
i = 1. This completes the proof.

Example 5.25. Let us analyze the basic examples of random vectors introduced earlier
in Example 5.21.
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1. (Gaussian, Bernoulli): Gaussian and Bernoulli random vectors are sub-gaussian;
their sub-gaussian norms are bounded by an absolute constant. These are partic-
ular cases of Lemma 5.24.

2. (Spherical): A spherical random vector is also sub-gaussian; its sub-gaussian
norm is bounded by an absolute constant. Unfortunately, this does not follow
from Lemma 5.24 because the coordinates of the spherical vector are not indepen-
dent. Instead, by rotation invariance, the claim clearly follows from the following
geometric fact. For every ε ≥ 0, the spherical cap {x ∈ Sn−1 : x1 > ε} makes
up at most exp(−ε2n/2) proportion of the total area on the sphere.15 This can be
proved directly by integration, and also by elementary geometric considerations [9,
Lemma 2.2].

3. (Coordinate): Although the coordinate random vectorX is formally sub-gaussian
as its support is finite, its sub-gaussian norm is too big: ‖X‖ψ2

=
√
n≫ 1. So we

would not think of X as a sub-gaussian random vector.

4. (Uniform on a convex set): For many isotropic convex setsK (called ψ2 bodies),
a random vectorX uniformly distributed in K is sub-gaussian with ‖X‖ψ2

= O(1).
For example, the cube [−1, 1]n is a ψ2 body by Lemma 5.24, while the appropriately
normalized cross-polytope {x ∈ R

n : ‖x‖1 ≤ M} is not. Nevertheless, Borell’s
lemma (which is a consequence of Brunn-Minkowski inequality) implies a weaker
property, that X is always sub-exponential, and ‖X‖ψ1

= supx∈Sn−1 ‖〈X, x〉‖ψ1
is

bounded by absolute constant. See [33, Section 2.2.b3] for a proof and discussion
of these ideas.

5.2.6 Sums of independent random matrices

In this section, we mention without proof some results of classical probability theory
in which scalars can be replaced by matrices. Such results are useful in particular for
problems on random matrices, since we can view a random matrix as a generalization of
a random variable. One such remarkable generalization is valid for Khintchine inequality,
Corollary 5.12. The scalars ai can be replaced by matrices, and the absolute value by
the Schatten norm. Recall that for 1 ≤ p ≤ ∞, the p-Schatten norm of an n× n matrix
A is defined as the ℓp norm of the sequence of its singular values:

‖A‖Cn
p
= ‖(si(A))ni=1‖p =

( n∑

i=1

si(A)
p
)1/p

.

For p = ∞, the Schatten norm equals the spectral norm ‖A‖ = maxi≤n si(A). Using
this one can quickly check that already for p = logn the Schatten and spectral norms
are equivalent: ‖A‖Cn

p
≤ ‖A‖ ≤ e‖A‖Cn

p
.

15This fact about spherical caps may seem counter-intuitive. For example, for ε = 0.1 the cap looks
similar to a hemisphere, but the proportion of its area goes to zero very fast as dimension n increases.
This is a starting point of the study of the concentration of measure phenomenon, see [43].
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Theorem 5.26 (Non-commutative Khintchine inequality, see [61] Section 9.8). Let
A1, . . . , AN be self-adjoint n × n matrices and ε1, . . . , εN be independent symmetric
Bernoulli random variables. Then, for every 2 ≤ p <∞, we have

∥∥∥
( N∑

i=1

A2
i

)1/2∥∥∥
Cn

p

≤
(
E

∥∥∥
N∑

i=1

εiAi

∥∥∥
p

Cn
p

)1/p

≤ C
√
p
∥∥∥
( N∑

i=1

A2
i

)1/2∥∥∥
Cn

p

where C is an absolute constant.

Remark 5.27. 1. The scalar case of this result, for n = 1, recovers the classical Khint-
chine inequality, Corollary 5.12, for Xi = εi.

2. By the equivalence of Schatten and spectral norms for p = logn, a version of
non-commutative Khintchine inequality holds for the spectral norm:

E

∥∥∥
N∑

i=1

εiAi

∥∥∥ ≤ C1

√
logn

∥∥∥
( N∑

i=1

A2
i

)1/2∥∥∥ (5.18)

where C1 is an absolute constant. The logarithmic factor is unfortunately essential;
it role will be clear when we discuss applications of this result to random matrices
in the next sections.

Corollary 5.28 (Rudelson’s inequality [65]). Let x1, . . . , xN be vectors in Rn and ε1, . . . , εN
be independent symmetric Bernoulli random variables. Then

E

∥∥∥
N∑

i=1

εixi ⊗ xi

∥∥∥ ≤ C
√
logmin(N,n) ·max

i≤N
‖xi‖2 ·

∥∥∥
N∑

i=1

xi ⊗ xi

∥∥∥
1/2

where C is an absolute constant.

Proof. One can assume that n ≤ N by replacing Rn with the linear span of {x1, . . . , xN}
if necessary. The claim then follows from (5.18), since

∥∥∥
( N∑

i=1

(xi ⊗ xi)
2
)1/2∥∥∥ =

∥∥∥
N∑

i=1

‖xi‖22 xi ⊗ xi

∥∥∥
1/2

≤ max
i≤N

‖xi‖2
∥∥∥

N∑

i=1

xi ⊗ xi

∥∥∥
1/2

.

Ahlswede and Winter [4] pioneered a different approach to matrix-valued inequali-
ties in probability theory, which was based on trace inequalities like Golden-Thompson
inequality. A development of this idea leads to remarkably sharp results. We quote one
such inequality from [77]:

Theorem 5.29 (Non-commutative Bernstein-type inequality [77]). Consider a finite
sequence Xi of independent centered self-adjoint random n × n matrices. Assume we
have for some numbers K and σ that

‖Xi‖ ≤ K almost surely,
∥∥∑

i

EX2
i

∥∥ ≤ σ2.
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Then, for every t ≥ 0 we have

P

{∥∥∑

i

Xi

∥∥ ≥ t
}
≤ 2n · exp

( −t2/2
σ2 +Kt/3

)
. (5.19)

Remark 5.30. This is a direct matrix generalization of a classical Bernstein’s inequality
for bounded random variables. To compare it with our version of Bernstein’s inequal-
ity for sub-exponentials, Proposition 5.16, note that the probability bound in (5.19) is

equivalent to 2n · exp
[
− cmin

(
t2

σ2 ,
t
K

)]
where c > 0 is an absolute constant. In both

results we see a mixture of gaussian and exponential tails.

5.3 Random matrices with independent entries

We are ready to study the extreme singular values of random matrices. In this section,
we consider the classical model of random matrices whose entries are independent and
centered random variables. Later we will study the more difficult models where only the
rows or the columns are independent.

The reader may keep in mind some classical examples of N × n random matrices
with independent entries. The most classical example is the Gaussian random matrix
A whose entries are independent standard normal random variables. In this case, the
n×n symmetric matrix A∗A is called Wishart matrix; it is a higher-dimensional version
of chi-square distributed random variables.

The simplest example of discrete random matrices is the Bernoulli random matrix A
whose entries are independent symmetric Bernoulli random variables. In other words,
Bernoulli random matrices are distributed uniformly in the set of all N × n matrices
with ±1 entries.

5.3.1 Limit laws and Gaussian matrices

Consider an N ×n random matrix A whose entries are independent centered identically
distributed random variables. By now, the limiting behavior of the extreme singular
values of A, as the dimensions N,n→ ∞, is well understood:

Theorem 5.31 (Bai-Yin’s law, see [8]). Let A = AN,n be an N×n random matrix whose
entries are independent copies of a random variable with zero mean, unit variance, and
finite fourth moment. Suppose that the dimensions N and n grow to infinity while the
aspect ratio n/N converges to a constant in [0, 1]. Then

smin(A) =
√
N −√

n+ o(
√
n), smax(A) =

√
N +

√
n+ o(

√
n) almost surely.

As we pointed out in the introduction, our program is to find non-asymptotic versions
of Bai-Yin’s law. There is precisely one model of random matrices, namely Gaussian,
where an exact non-asymptotic result is known:

Theorem 5.32 (Gordon’s theorem for Gaussian matrices). Let A be an N × n matrix
whose entries are independent standard normal random variables. Then

√
N −√

n ≤ Esmin(A) ≤ Esmax(A) ≤
√
N +

√
n.
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The proof of the upper bound, which we borrowed from [21], is based on Slepian’s
comparison inequality for Gaussian processes.16

Lemma 5.33 (Slepian’s inequality, see [45] Section 3.3). Consider two Gaussian pro-
cesses (Xt)t∈T and (Yt)t∈T whose increments satisfy the inequality E|Xs−Xt|2 ≤ E|Ys−
Yt|2 for all s, t ∈ T . Then E supt∈T Xt ≤ E supt∈T Yt.

Proof of Theorem 5.32. We recognize smax(A) = maxu∈Sn−1, v∈SN−1〈Au, v〉 to be the
supremum of the Gaussian processXu,v = 〈Au, v〉 indexed by the pairs of vectors (u, v) ∈
Sn−1 × SN−1. We shall compare this process to the following one whose supremum is
easier to estimate: Yu,v = 〈g, u〉 + 〈h, v〉 where g ∈ R

n and h ∈ R
N are independent

standard Gaussian random vectors. The rotation invariance of Gaussian measures makes
it easy to compare the increments of these processes. For every (u, v), (u′, v′) ∈ Sn−1 ×
SN−1, one can check that

E|Xu,v −Xu′,v′ |2 =

n∑

i=1

N∑

j=1

|uivj − u′iv
′
j |2 ≤ ‖u− u′‖22 + ‖v − v′‖22 = E|Yu,v − Yu′,v′ |2.

Therefore Lemma 5.33 applies, and it yields the required bound

Esmax(A) = Emax
(u,v)

Xu,v ≤ Emax
(u,v)

Yu,v = E‖g‖2 + E‖h‖2 ≤
√
N +

√
n.

Similar ideas are used to estimate Esmin(A) = Emaxv∈SN−1 minu∈Sn−1〈Au, v〉, see [21].
One uses in this case Gordon’s generalization of Slepian’s inequality for minimax of
Gaussian processes [35, 36, 37], see [45, Section 3.3].

While Theorem 5.32 is about the expectation of singular values, it also yields a large
deviation inequality for them. It can be deduced formally by using the concentration of
measure in the Gauss space.

Proposition 5.34 (Concentration in Gauss space, see [43]). Let f be a real valued
Lipschitz function on R

n with Lipschitz constant K, i.e. |f(x)− f(y)| ≤ K‖x− y‖2 for
all x, y ∈ Rn (such functions are also called K-Lipschitz). Let X be the standard normal
random vector in Rn. Then for every t ≥ 0 one has

P{f(X)− Ef(X) > t} ≤ exp(−t2/2K2).

Corollary 5.35 (Gaussian matrices, deviation; see [21]). Let A be an N × n matrix
whose entries are independent standard normal random variables. Then for every t ≥ 0,
with probability at least 1− 2 exp(−t2/2) one has

√
N −√

n− t ≤ smin(A) ≤ smax(A) ≤
√
N +

√
n+ t.

Proof. Note that smin(A), smax(A) are 1-Lipschitz functions of matrices A considered
as vectors in RNn. The conclusion now follows from the estimates on the expectation
(Theorem 5.32) and Gaussian concentration (Proposition 5.34).

16Recall that a Gaussian process (Xt)t∈T is a collection of centered normal random variables Xt on
the same probability space, indexed by points t in an abstract set T .
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Later in these notes, we find it more convenient to work with the n × n positive-
definite symmetric matrix A∗A rather than with the original N × n matrix A. Observe
that the normalized matrix Ā = 1√

N
A is an approximate isometry (which is our goal) if

and only if Ā∗Ā is an approximate identity:

Lemma 5.36 (Approximate isometries). Consider a matrix B that satisfies

‖B∗B − I‖ ≤ max(δ, δ2) (5.20)

for some δ > 0. Then

1− δ ≤ smin(B) ≤ smax(B) ≤ 1 + δ. (5.21)

Conversely, if B satisfies (5.21) for some δ > 0 then ‖B∗B − I‖ ≤ 3max(δ, δ2).

Proof. Inequality (5.20) holds if and only if
∣∣‖Bx‖22 − 1

∣∣ ≤ max(δ, δ2) for all x ∈ Sn−1.

Similarly, (5.21) holds if and only if
∣∣‖Bx‖2 − 1

∣∣ ≤ δ for all x ∈ Sn−1. The conclusion
then follows from the elementary inequality

max(|z − 1|, |z − 1|2) ≤ |z2 − 1| ≤ 3max(|z − 1|, |z − 1|2) for all z ≥ 0.

Lemma 5.36 reduces our task of proving inequalities (5.2) to showing an equivalent
(but often more convenient) bound

∥∥ 1

N
A∗A− I

∥∥ ≤ max(δ, δ2) where δ = O(
√
n/N).

5.3.2 General random matrices with independent entries

Now we pass to a more general model of random matrices whose entries are independent
centered random variables with some general distribution (not necessarily normal). The
largest singular value (the spectral norm) can be estimated by Latala’s theorem for
general random matrices with non-identically distributed entries:

Theorem 5.37 (Latala’s theorem [42]). Let A be a random matrix whose entries aij
are independent centered random variables with finite fourth moment. Then

Esmax(A) ≤ C
[
max
i

(∑

j

Ea2ij
)1/2

+max
j

(∑

i

Ea2ij
)1/2

+
(∑

i,j

Ea4ij
)1/4]

.

If the variance and the fourth moments of the entries are uniformly bounded, then
Latala’s result yields smax(A) = O(

√
N+

√
n). This is slightly weaker than our goal (5.2),

which is smax(A) =
√
N + O(

√
n) but still satisfactory for most applications. Results

of the latter type will appear later in the more general model of random matrices with
independent rows or columns.

Similarly, our goal (5.2) for the smallest singular value is smin(A) ≥
√
N − O(

√
n).

Since the singular values are non-negative anyway, such inequality would only be useful
for sufficiently tall matrices, N ≫ n. For almost square and square matrices, estimating
the smallest singular value (known also as the hard edge of spectrum) is considerably
more difficult. The progress on estimating the hard edge is summarized in [69]. If A
has independent entries, then indeed smin(A) ≥ c(

√
N − √

n), and the following is an
optimal probability bound:
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Theorem 5.38 (Independent entries, hard edge [68]). Let A be an n×n random matrix
whose entries are independent identically distributed subgaussian random variables with
zero mean and unit variance. Then for ε ≥ 0,

P
(
smin(A) ≤ ε(

√
N −

√
n− 1)

)
≤ (Cε)N−n+1 + cN

where C > 0 and c ∈ (0, 1) depend only on the subgaussian norm of the entries.

This result gives an optimal bound for square matrices as well (N = n).

5.4 Random matrices with independent rows

In this section, we focus on a more general model of random matrices, where we only
assume independence of the rows rather than all entries. Such matrices are naturally
generated by high-dimensional distributions. Indeed, given an arbitrary probability dis-
tribution in Rn, one takes a sample of N independent points and arranges them as the
rows of an N × n matrix A. By studying spectral properties of A one should be able to
learn something useful about the underlying distribution. For example, as we will see
in Section 5.4.3, the extreme singular values of A would tell us whether the covariance
matrix of the distribution can be estimated from a sample of size N .

The picture will vary slightly depending on whether the rows of A are sub-gaussian or
have arbitrary distribution. For heavy-tailed distributions, an extra logarithmic factor
has to appear in our desired inequality (5.2). The analysis of sub-gaussian and heavy-
tailed matrices will be completely different.

There is an abundance of examples where the results of this section may be use-
ful. They include all matrices with independent entries, whether sub-gaussian such as
Gaussian and Bernoulli, or completely general distributions with mean zero and unit
variance. In the latter case one is able to surpass the fourth moment assumption which
is necessary in Bai-Yin’s law, Theorem 5.31.

Other examples of interest come from non-product distributions, some of which we
saw in Example 5.21. Sampling from discrete objects (matrices and frames) fits well in
this framework, too. Given a deterministic matrix B, one puts a uniform distribution
on the set of the rows of B and creates a random matrix A as before – by sampling some
N random rows from B. Applications to sampling will be discussed in Section 5.4.4.

5.4.1 Sub-gaussian rows

The following result goes in the direction of our goal (5.2) for random matrices with
independent sub-gaussian rows.

Theorem 5.39 (Sub-gaussian rows). Let A be an N × n matrix whose rows Ai are
independent sub-gaussian isotropic random vectors in R

n. Then for every t ≥ 0, with
probability at least 1− 2 exp(−ct2) one has

√
N − C

√
n− t ≤ smin(A) ≤ smax(A) ≤

√
N + C

√
n+ t. (5.22)

Here C = CK , c = cK > 0 depend only on the subgaussian norm K = maxi ‖Ai‖ψ2
of

the rows.
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This result is a general version of Corollary 5.35 (up to absolute constants); in-
stead of independent Gaussian entries we allow independent sub-gaussian rows. This of
course covers all matrices with independent sub-gaussian entries such as Gaussian and
Bernoulli. It also applies to some natural matrices whose entries are not independent.
One such example is a matrix whose rows are independent spherical random vectors
(Example 5.25).

Proof. The proof is a basic version of a covering argument, and it has three steps. We
need to control ‖Ax‖2 for all vectors x on the unit sphere Sn−1. To this end, we discretize
the sphere using a net N (the approximation step), establish a tight control of ‖Ax‖2
for every fixed vector x ∈ N with high probability (the concentration step), and finish
off by taking a union bound over all x in the net. The concentration step will be based
on the deviation inequality for sub-exponential random variables, Corollary 5.17.

Step 1: Approximation. Recalling Lemma 5.36 for the matrix B = A/
√
N we see

that the conclusion of the theorem is equivalent to

∥∥ 1

N
A∗A− I

∥∥ ≤ max(δ, δ2) =: ε where δ = C

√
n

N
+

t√
N
. (5.23)

Using Lemma 5.4, we can evaluate the operator norm in (5.23) on a 1
4 -net N of the unit

sphere Sn−1:

∥∥ 1

N
A∗A− I

∥∥ ≤ 2max
x∈N

∣∣〈( 1
N
A∗A− I)x, x

〉∣∣ = 2max
x∈N

∣∣ 1
N

‖Ax‖22 − 1
∣∣.

So to complete the proof it suffices to show that, with the required probability,

max
x∈N

∣∣ 1
N

‖Ax‖22 − 1
∣∣ ≤ ε

2
.

By Lemma 5.2, we can choose the net N so that it has cardinality |N | ≤ 9n.
Step 2: Concentration. Let us fix any vector x ∈ Sn−1. We can express ‖Ax‖22 as

a sum of independent random variables

‖Ax‖22 =

N∑

i=1

〈Ai, x〉2 =:

N∑

i=1

Z2
i (5.24)

where Ai denote the rows of the matrix A. By assumption, Zi = 〈Ai, x〉 are indepen-
dent sub-gaussian random variables with EZ2

i = 1 and ‖Zi‖ψ2
≤ K. Therefore, by

Remark 5.18 and Lemma 5.14, Z2
i −1 are independent centered sub-exponential random

variables with ‖Z2
i − 1‖ψ1

≤ 2‖Z2
i ‖ψ1

≤ 4‖Zi‖2ψ2
≤ 4K2.

We can therefore use an exponential deviation inequality, Corollary 5.17, to control
the sum (5.24). Since K ≥ ‖Zi‖ψ2

≥ 1√
2
(E|Zi|2)1/2 = 1√

2
, this gives

P

{∣∣ 1
N

‖Ax‖22 − 1
∣∣ ≥ ε

2

}
= P

{∣∣ 1
N

N∑

i=1

Z2
i − 1

∣∣ ≥ ε

2

}
≤ 2 exp

[
− c1
K4

min(ε2, ε)N
]

= 2 exp
[
− c1
K4

δ2N
]
≤ 2 exp

[
− c1
K4

(C2n+ t2)
]
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where the last inequality follows by the definition of δ and using the inequality (a+b)2 ≥
a2 + b2 for a, b ≥ 0.

Step 3: Union bound. Taking the union bound over all vectors x in the net N of
cardinality |N | ≤ 9n, we obtain

P

{
max
x∈N

∣∣ 1
N

‖Ax‖22 − 1
∣∣ ≥ ε

2

}
≤ 9n · 2 exp

[
− c1
K4

(C2n+ t2)
]
≤ 2 exp

(
− c1t

2

K4

)

where the second inequality follows for C = CK sufficiently large, e.g. C = K2
√
ln 9/c1.

As we noted in Step 1, this completes the proof of the theorem.

Remark 5.40 (Non-isotropic distributions). 1. A version of Theorem 5.39 holds for
general, non-isotropic sub-gaussian distributions. Assume that A is an N × n
matrix whose rows Ai are independent sub-gaussian random vectors in Rn with
second moment matrix Σ. Then for every t ≥ 0, the following inequality holds
with probability at least 1− 2 exp(−ct2):

∥∥ 1

N
A∗A− Σ

∥∥ ≤ max(δ, δ2) where δ = C

√
n

N
+

t√
N
. (5.25)

Here as before C = CK , c = cK > 0 depend only on the subgaussian norm
K = maxi ‖Ai‖ψ2

of the rows. This result is a general version of (5.23). It follows
by a straighforward modification of the argument of Theorem 5.39.

2. A more natural, multiplicative form of (5.25) is the following. Assume that
Σ−1/2Ai are isotropic sub-gaussian random vectors, and let K be the maximum
of their sub-gaussian norms. Then for every t ≥ 0, the following inequality holds
with probability at least 1− 2 exp(−ct2):

∥∥ 1

N
A∗A− Σ

∥∥ ≤ max(δ, δ2) ‖Σ‖ where δ = C

√
n

N
+

t√
N

(5.26)

Here again C = CK , c = cK > 0. This result follows from Theorem 5.39 applied
to the isotropic random vectors Σ−1/2Ai.

5.4.2 Heavy-tailed rows

The class of sub-gaussian random variables in Theorem 5.39 may sometimes be too
restrictive in applications. For example, if the rows of A are independent coordinate
or frame random vectors (Examples 5.21 and 5.25), they are poorly sub-gaussian and
Theorem 5.39 is too weak. In such cases, one would use the following result instead,
which operates in remarkable generality.

Theorem 5.41 (Heavy-tailed rows). Let A be an N × n matrix whose rows Ai are
independent isotropic random vectors in Rn. Let m be a number such that ‖Ai‖2 ≤ √

m
almost surely for all i. Then for every t ≥ 0, one has

√
N − t

√
m ≤ smin(A) ≤ smax(A) ≤

√
N + t

√
m (5.27)

with probability at least 1− 2n · exp(−ct2), where c > 0 is an absolute constant.
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Recall that (E‖Ai‖22)1/2 =
√
n by Lemma 5.20. This indicates that one would typi-

cally use Theorem 5.41 with m = O(n). In this case the result takes the form

√
N − t

√
n ≤ smin(A) ≤ smax(A) ≤

√
N + t

√
n (5.28)

with probability at least 1−2n ·exp(−c′t2). This is a form of our desired inequality (5.2)
for heavy-tailed matrices. We shall discuss this more after the proof.

Proof. We shall use the non-commutative Bernstein’s inequality, Theorem 5.29.

Step 1: Reduction to a sum of independent random matrices. We first note
that m ≥ n ≥ 1 since by Lemma 5.20 we have E‖Ai‖22 = n. Now we start an argument
parallel to Step 1 of Theorem 5.39. Recalling Lemma 5.36 for the matrix B = A/

√
N

we see that the desired inequalities (5.27) are equivalent to

∥∥ 1

N
A∗A− I

∥∥ ≤ max(δ, δ2) =: ε where δ = t

√
m

N
. (5.29)

We express this random matrix as a sum of independent random matrices:

1

N
A∗A− I =

1

N

N∑

i=1

Ai ⊗Ai − I =

N∑

i=1

Xi, where Xi :=
1

N
(Ai ⊗Ai − I);

note that Xi are independent centered n× n random matrices.

Step 2: Estimating the mean, range and variance. We are going to apply the
non-commutative Bernstein inequality, Theorem 5.29, for the sum

∑
iXi. Since Ai are

isotropic random vectors, we have EAi⊗Ai = I which implies that EXi = 0 as required
in the non-commutative Bernstein inequality.

We estimate the range of Xi using that ‖Ai‖2 ≤ √
m and m ≥ 1:

‖Xi‖ ≤ 1

N
(‖Ai ⊗ Ai‖+ 1) =

1

N
(‖Ai‖22 + 1) ≤ 1

N
(m+ 1) ≤ 2m

N
=: K

To estimate the total variance ‖∑i EX
2
i ‖, we first compute

X2
i =

1

N2

[
(Ai ⊗Ai)

2 − 2(Ai ⊗Ai) + I
]
,

so using that the isotropy assumption EAi ⊗Ai = I we obtain

EX2
i =

1

N2

[
E(Ai ⊗Ai)

2 − I
]
. (5.30)

Since (Ai ⊗ Ai)
2 = ‖Ai‖22Ai ⊗ Ai is a positive semi-definite matrix and ‖Ai‖22 ≤ m by

assumption, we have
∥∥E(Ai ⊗Ai)

2
∥∥ ≤ m · ‖EAi ⊗Ai‖ = m. Putting this into (5.30) we

obtain

‖EX2
i ‖ ≤ 1

N2
(m+ 1) ≤ 2m

N2
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where we again used that m ≥ 1. This yields17

∥∥∥
N∑

i=1

EX2
i

∥∥∥ ≤ N ·max
i

‖EX2
i ‖ =

2m

N
=: σ2.

Step 3: Application of the non-commutative Bernstein’s inequality. Ap-
plying Theorem 5.29 (see Remark 5.30) and recalling the definitions of ε and δ in (5.29),
we we bound the probability in question as

P

{∥∥∥ 1

N
A∗A− I

∥∥∥ ≥ ε
}
= P

{∥∥∥
N∑

i=1

Xi

∥∥∥ ≥ ε
}
≤ 2n · exp

[
− cmin

( ε2
σ2
,
ε

K

)]

≤ 2n · exp
[
− cmin(ε2, ε) · N

2m

]
= 2n · exp

(
− cδ2N

2m

)
= 2n · exp(−ct2/2).

This completes the proof.

Theorem 5.41 for heavy-tailed rows is different from Theorem 5.39 for sub-gaussian
rows in two ways: the boundedness assumption18 ‖Ai‖22 ≤ m appears, and the probabil-
ity bound is weaker. We will now comment on both differences.

Remark 5.42 (Boundedness assumption). Observe that some boundendess assumption
on the distribution is needed in Theorem 5.41. Let us see this on the following example.
Choose δ ≥ 0 arbitrarily small, and consider a random vector X = δ−1/2ξY in Rn where
ξ is a {0, 1}-valued random variable with Eξ = δ (a “selector”) and Y is an independent
isotropic random vector in Rn with an arbitrary distribution. Then X is also an isotropic
random vector. Consider an N × n random matrix A whose rows Ai are independent
copies of X . However, if δ ≥ 0 is suitably small then A = 0 with high probability, hence
no nontrivial lower bound on smin(A) is possible.

Inequality (5.28) fits our goal (5.2), but not quite. The reason is that the probability
bound is only non-trivial if t ≥ C

√
log n. Therefore, in reality Theorem 5.41 asserts that

√
N − C

√
n logn ≤ smin(A) ≤ smax(A) ≤

√
N + C

√
n logn (5.31)

with probability, say 0.9. This achieves our goal (5.2) up to a logarithmic factor.

Remark 5.43 (Logarithmic factor). The logarithmic factor can not be removed from
(5.31) for some heavy-tailed distributions. Consider for instance the coordinate distri-
bution introduced in Example 5.21. In order that smin(A) > 0 there must be no zero
columns in A. Equivalently, each coordinate vector e1, . . . , en must be picked at least
once in N independent trials (each row of A picks an independent coordinate vector).
Recalling the classical coupon collector’s problem, one must make at least N ≥ Cn logn
trials to make this occur with high probability. Thus the logarithm is necessary in the
left hand side of (5.31).19

17Here the seemingly crude application of triangle inequality is actually not so loose. If the rows Ai

are identically distributed, then so are X2

i , which makes the triangle inequality above into an equality.
18Going a little ahead, we would like to point out that the almost sure boundedness can be relaxed

to the bound in expectation Emaxi ‖Ai‖22 ≤ m, see Theorem 5.45.
19This argument moreover shows the optimality of the probability bound in Theorem 5.41. For

example, for t =
√
N/2

√
n the conclusion (5.28) implies that A is well conditioned (i.e.

√
N/2 ≤

smin(A) ≤ smax(A) ≤ 2
√
N) with probability 1 − n · exp(−cN/n). On the other hand, by the coupon

collector’s problem we estimate the probability that smin(A) > 0 as 1−n ·(1− 1

n
)N ≈ 1−n ·exp(−N/n).
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A version of Theorem 5.41 holds for general, non-isotropic distributions. It is conve-
nient to state it in terms of the equivalent estimate (5.29):

Theorem 5.44 (Heavy-tailed rows, non-isotropic). Let A be an N × n matrix whose
rows Ai are independent random vectors in R

n with the common second moment matrix
Σ = EAi ⊗Ai. Let m be a number such that ‖Ai‖2 ≤ √

m almost surely for all i. Then
for every t ≥ 0, the following inequality holds with probability at least 1− n · exp(−ct2):

∥∥ 1

N
A∗A− Σ

∥∥ ≤ max(‖Σ‖1/2δ, δ2) where δ = t

√
m

N
. (5.32)

Here c > 0 is an absolute constant. In particular, this inequality yields

‖A‖ ≤ ‖Σ‖1/2
√
N + t

√
m. (5.33)

Proof. We note that m ≥ ‖Σ‖ because ‖Σ‖ = ‖EAi⊗Ai‖ ≤ E‖Ai⊗Ai‖ = E‖Ai‖22 ≤ m.
Then (5.32) follows by a straightforward modification of the argument of Theorem 5.41.
Furthermore, if (5.32) holds then by triangle inequality

1

N
‖A‖2 =

∥∥ 1

N
A∗A

∥∥ ≤ ‖Σ‖+
∥∥ 1

N
A∗A− Σ

∥∥

≤ ‖Σ‖+ ‖Σ‖1/2δ + δ2 ≤ (‖Σ‖1/2 + δ)2.

Taking square roots and multiplying both sides by
√
N , we obtain (5.33).

The almost sure boundedness requirement in Theorem 5.41 may sometimes be too
restrictive in applications, and it can be relaxed to a bound in expectation:

Theorem 5.45 (Heavy-tailed rows; expected singular values). Let A be an N × n
matrix whose rows Ai are independent isotropic random vectors in R

n. Let m :=
Emaxi≤N ‖Ai‖22. Then

Emax
j≤n

|sj(A)−
√
N | ≤ C

√
m logmin(N,n)

where C is an absolute constant.

The proof of this result is similar to that of Theorem 5.41, except that this time we
will use Rudelson’s Corollary 5.28 instead of matrix Bernstein’s inequality. To this end,
we need a link to symmetric Bernoulli random variables. This is provided by a general
symmetrization argument:

Lemma 5.46 (Symmetrization). Let (Xi) be a finite sequence of independent random
vectors valued in some Banach space, and (εi) be independent symmetric Bernoulli ran-
dom variables. Then

E

∥∥∥
∑

i

(Xi − EXi)
∥∥∥ ≤ 2E

∥∥∥
∑

i

εiXi

∥∥∥. (5.34)
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Proof. We define random variables X̃i = Xi − X ′
i where (X ′

i) is an independent copy
of the sequence (Xi). Then X̃i are independent symmetric random variables, i.e. the
sequence (X̃i) is distributed identically with (−X̃i) and thus also with (εiX̃i). Replacing
EXi by EX ′

i in (5.34) and using Jensen’s inequality, symmetry, and triangle inequality,
we obtain the required inequality

E

∥∥∥
∑

i

(Xi − EXi)
∥∥∥ ≤ E

∥∥∥
∑

i

X̃i

∥∥∥ = E

∥∥∥
∑

i

εiX̃i

∥∥∥

≤ E

∥∥∥
∑

i

εiXi

∥∥∥+ E

∥∥∥
∑

i

εiX
′
i

∥∥∥ = 2E
∥∥∥
∑

i

εiXi

∥∥∥.

We will also need a probabilistic version of Lemma 5.36 on approximate isometries.
The proof of that lemma was based on the elementary inequality |z2 − 1| ≥ max(|z −
1|, |z − 1|2) for z ≥ 0. Here is a probabilistic version:

Lemma 5.47. Let Z be a non-negative random variable. Then E|Z2 − 1| ≥ max(E|Z −
1|, (E|Z − 1|)2).
Proof. Since |Z − 1| ≤ |Z2 − 1| pointwise, we have E|Z − 1| ≤ E|Z2 − 1|. Next, since
|Z−1|2 ≤ |Z2−1| pointwise, taking square roots and expectations we obtain E|Z−1| ≤
E|Z2 − 1|1/2 ≤ (E|Z2 − 1|)1/2, where the last bound follows by Jensen’s inequality.
Squaring both sides completes the proof.

Proof of Theorem 5.45. Step 1: Application of Rudelson’s inequality. As in the
proof of Theorem 5.41, we are going to control

E := E
∥∥ 1

N
A∗A− I

∥∥ = E

∥∥∥ 1

N

N∑

i=1

Ai ⊗Ai − I
∥∥∥ ≤ 2

N
E

∥∥∥
N∑

i=1

εiAi ⊗Ai

∥∥∥

where we used Symmetrization Lemma 5.46 with independent symmetric Bernoulli ran-
dom variables εi (which are independent of A as well). The expectation in the right hand
side is taken both with respect to the random matrix A and the signs (εi). Taking first
the expectation with respect to (εi) (conditionally on A) and afterwards the expectation
with respect to A, we obtain by Rudelson’s inequality (Corollary 5.28) that

E ≤ C
√
l

N
E

(
max
i≤N

‖Ai‖2 ·
∥∥∥

N∑

i=1

Ai ⊗Ai

∥∥∥
1/2)

where l = logmin(N,n). We now apply the Cauchy-Schwarz inequality. Since by the

triangle inequality E
∥∥ 1
N

∑N
i=1 Ai ⊗Ai

∥∥ = E
∥∥ 1
NA

∗A
∥∥ ≤ E + 1, it follows that

E ≤ C

√
ml

N
(E + 1)1/2.

This inequality is easy to solve in E. Indeed, considering the cases E ≤ 1 and E > 1
separately, we conclude that

E = E
∥∥ 1

N
A∗A− I

∥∥ ≤ max(δ, δ2) where δ := C

√
2ml

N
.
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Step 2: Diagonalization. Diagonalizing the matrix A∗A one checks that

∥∥ 1

N
A∗A− I

∥∥ = max
j≤n

∣∣sj(A)
2

N
− 1

∣∣ = max
(∣∣smin(A)

2

N
− 1

∣∣,
∣∣smax(A)

2

N
− 1

∣∣
)
.

It follows that

max
(
E
∣∣smin(A)

2

N
− 1

∣∣,E
∣∣smax(A)

2

N
− 1

∣∣
)
≤ max(δ, δ2).

(we replaced the expectation of maximum by the maximum of expectations). Using
Lemma 5.47 separately for the two terms on the left hand side, we obtain

max
(
E
∣∣smin(A)√

N
− 1

∣∣,E
∣∣smax(A)√

N
− 1

∣∣
)
≤ δ.

Therefore

Emax
j≤n

∣∣sj(A)√
N

− 1
∣∣ = Emax

(∣∣smin(A)√
N

− 1
∣∣,
∣∣∣smax(A)√

N
− 1

∣∣∣
)

≤ E

(∣∣smin(A)√
N

− 1
∣∣+

∣∣smax(A)√
N

− 1
∣∣
)
≤ 2δ.

Multiplying both sides by
√
N completes the proof.

In a way similar to Theorem 5.44 we note that a version of Theorem 5.45 holds for
general, non-isotropic distributions.

Theorem 5.48 (Heavy-tailed rows, non-isotropic, expectation). Let A be an N × n
matrix whose rows Ai are independent random vectors in Rn with the common second
moment matrix Σ = EAi ⊗Ai. Let m := Emaxi≤N ‖Ai‖22. Then

E
∥∥ 1

N
A∗A− Σ

∥∥ ≤ max(‖Σ‖1/2δ, δ2) where δ = C

√
m logmin(N,n)

N
.

Here C is an absolute constant. In particular, this inequality yields

(
E‖A‖2

)1/2 ≤ ‖Σ‖1/2
√
N + C

√
m logmin(N,n).

Proof. The first part follows by a simple modification of the proof of Theorem 5.45. The
second part follows from the first like in Theorem 5.44.

Remark 5.49 (Non-identical second moments). The assumption that the rows Ai have a
common second moment matrix Σ is not essential in Theorems 5.44 and 5.48. The reader
will be able to formulate more general versions of these results. For example, if Ai have
arbitrary second moment matrices Σi = EAi ⊗Ai then the conclusion of Theorem 5.48
holds with Σ = 1

N

∑N
i=1 Σi.
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5.4.3 Applications to estimating covariance matrices

One immediate application of our analysis of random matrices is in statistics, for the
fundamental problem of estimating covariance matrices. Let X be a random vector in
Rn; for simplicity we assume that X is centered,20 EX = 0. Recall that the covariance
matrix of X is the n× n matrix Σ = EX ⊗X , see Section 5.2.5.

The simplest way to estimate Σ is to take some N independent samples Xi from
the distribution and form the sample covariance matrix ΣN = 1

N

∑N
i=1Xi ⊗Xi. By the

law of large numbers, ΣN → Σ almost surely as N → ∞. So, taking sufficiently many
samples we are guaranteed to estimate the covariance matrix as well as we want. This,
however, does not address the quantitative aspect: what is the minimal sample size N
that guarantees approximation with a given accuracy?

The relation of this question to random matrix theory becomes clear when we arrange
the samplesXi =: Ai as rows of the N×n random matrix A. Then the sample covariance
matrix is expressed as ΣN = 1

NA
∗A. Note that A is a matrix with independent rows

but usually not independent entries (unless we sample from a product distribution). We
worked out the analysis of such matrices in Section 5.4, separately for sub-gaussian and
general distributions. As an immediate consequence of Theorem 5.39, we obtain:

Corollary 5.50 (Covariance estimation for sub-gaussian distributions). Consider
a sub-gaussian distribution in Rn with covariance matrix Σ, and let ε ∈ (0, 1), t ≥ 1.
Then with probability at least 1− 2 exp(−t2n) one has

If N ≥ C(t/ε)2n then ‖ΣN − Σ‖ ≤ ε.

Here C = CK depends only on the sub-gaussian norm K = ‖X‖ψ2
of a random vector

taken from this distribution.

Proof. It follows from (5.25) that for every s ≥ 0, with probability at least 1−2 exp(−cs2)
we have ‖ΣN −Σ‖ ≤ max(δ, δ2) where δ = C

√
n/N + s/

√
N . The conclusion follows for

s = C′t
√
n where C′ = C′

K is sufficiently large.

Summarizing, Corollary 5.50 shows that the sample size

N = O(n)

suffices to approximate the covariance matrix of a sub-gaussian distribution in Rn by
the sample covariance matrix.

Remark 5.51 (Multiplicative estimates, Gaussian distributions). A weak point of Corol-
lary 5.50 is that the sub-gaussian norm K may in turn depend on ‖Σ‖.

To overcome this drawback, instead of using (5.25) in the proof of this result one
can use the multiplicative version (5.26). The reader is encouraged to state a general
result that follows from this argument. We just give one special example for arbitrary
centered Gaussian distributions in Rn. For every ε ∈ (0, 1), t ≥ 1, the following holds
with probability at least 1− 2 exp(−t2n):

If N ≥ C(t/ε)2n then ‖ΣN − Σ‖ ≤ ε‖Σ‖.
20More generally, in this section we estimate the second moment matrix EX ⊗ X of an arbitrary

random vector X (not necessarily centered).
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Here C is an absolute constant.

Finally, Theorem 5.44 yields a similar estimation result for arbitrary distributions,
possibly heavy-tailed:

Corollary 5.52 (Covariance estimation for arbitrary distributions). Consider a
distribution in Rn with covariance matrix Σ and supported in some centered Euclidean
ball whose radius we denote

√
m. Let ε ∈ (0, 1) and t ≥ 1. Then the following holds with

probability at least 1− n−t2 :

If N ≥ C(t/ε)2‖Σ‖−1m logn then ‖ΣN − Σ‖ ≤ ε‖Σ‖.

Here C is an absolute constant.

Proof. It follows from Theorem 5.44 that for every s ≥ 0, with probability at least
1−n · exp(−cs2) we have ‖ΣN −Σ‖ ≤ max(‖Σ‖1/2δ, δ2) where δ = s

√
m/N . Therefore,

ifN ≥ (s/ε)2‖Σ‖−1m then ‖ΣN−Σ‖ ≤ ε‖Σ‖. The conclusion follows with s = C′t
√
logn

where C′ is a sufficiently large absolute constant.

Corollary 5.52 is typically used with m = O(‖Σ‖n). Indeed, if X is a random vector
chosen from the distribution in question, then its expected norm is easy to estimate:
E‖X‖22 = tr(Σ) ≤ n‖Σ‖. So, by Markov’s inequality, most of the distribution is sup-
ported in a centered ball of radius

√
m where m = O(n‖Σ‖). If all distribution is

supported there, i.e. if ‖X‖ = O(
√
n‖Σ‖) almost surely, then the conclusion of Corol-

lary 5.52 holds with sample size N ≥ C(t/ε)2n logn.

Remark 5.53 (Low-rank estimation). In certain applications, the distribution in Rn lies
close to a low dimensional subspace. In this case, a smaller sample suffices for covariance
estimation. The intrinsic dimension of the distribution can be measured with the effective
rank of the matrix Σ, defined as

r(Σ) =
tr(Σ)

‖Σ‖ .

One always has r(Σ) ≤ rank(Σ) ≤ n, and this bound is sharp. For example, if X
is an isotropic random vector in Rn then Σ = I and r(Σ) = n. A more interesting
example is where X takes values in some r-dimensional subspace E, and the restriction
of the distribution of X onto E is isotropic. The latter means that Σ = PE , where PE
denotes the orthogonal projection in Rn onto E. Therefore in this case r(Σ) = r. The
effective rank is a stable quantity compared with the usual rank. For distributions that
are approximately low-dimenional, the effective rank is still small.

The effective rank r = r(Σ) always controls the typical norm of X , as E‖X‖22 =
tr(Σ) = r‖Σ‖. It follows by Markov’s inequality that most of the distribution is sup-
ported in a ball of radius

√
m where m = O(r‖Σ‖). Assume that all of the distribution

is supported there, i.e. if ‖X‖ = O(
√
r‖Σ‖) almost surely. Then the conclusion of

Corollary 5.52 holds with sample size N ≥ C(t/ε)2r log n.

We can summarize this discussion in the following way: the sample size

N = O(n log n)
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suffices to approximate the covariance matrix of a general distribution in Rn by the
sample covariance matrix. Furthermore, for distributions that are approximately low-
dimensional, a smaller sample size is sufficient. Namely, if the effective rank of Σ equals
r then a sufficient sample size is

N = O(r logn).

Remark 5.54 (Boundedness assumption). Without the boundedness assumption on the
distribution, Corollary 5.52 may fail. The reasoning is the same as in Remark 5.42: for an
isotropic distribution which is highly concentrated at the origin, the sample covariance
matrix will likely equal 0.

Still, one can weaken the boundedness assumption using Theorem 5.48 instead of The-
orem 5.44 in the proof of Corollary 5.52. The weaker requirement is that Emaxi≤N ‖Xi‖22 ≤
m where Xi denote the sample points. In this case, the covariance estimation will be
guaranteed in expectation rather than with high probability; we leave the details for the
interested reader.

A different way to enforce the boundedness assumption is to reject any sample points
Xi that fall outside the centered ball of radius

√
m. This is equivalent to sampling

from the conditional distribution inside the ball. The conditional distribution satisfies
the boundedness requirement, so the results discussed above provide a good covariance
estimation for it. In many cases, this estimate works even for the original distribution –
namely, if only a small part of the distribution lies outside the ball of radius

√
m. We

leave the details for the interested reader; see e.g. [81].

5.4.4 Applications to random sub-matrices and sub-frames

The absence of any moment hypotheses on the distribution in Section 5.4.2 (except
finite variance) makes these results especially relevant for discrete distributions. One
such situation arises when one wishes to sample entries or rows from a given matrix B,
thereby creating a random sub-matrix A. It is a big program to understand what we can
learn about B by seeing A, see [34, 25, 66]. In other words, we ask – what properties
of B pass onto A? Here we shall only scratch the surface of this problem: we notice
that random sub-matrices of certain size preserve the property of being an approximate
isometry.

Corollary 5.55 (Random sub-matrices). Consider an M × n matrix B such that21

smin(B) = smax(B) =
√
M . Let m be such that all rows Bi of B satisfy ‖Bi‖2 ≤ √

m.
Let A be an N × n matrix obtained by sampling N random rows from B uniformly and
independently. Then for every t ≥ 0, with probability at least 1− 2n · exp(−ct2) one has

√
N − t

√
m ≤ smin(A) ≤ smax(A) ≤

√
N + t

√
m.

Here c > 0 is an absolute constant.

21The first hypothesis says B∗B = MI. Equivalently, B̄ := 1√
M
B is an isometry, i.e. ‖B̄x‖2 = ‖x‖2

for all x. Equivalently, the columns of B̄ are orthonormal.
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Proof. By assumption, I = 1
MB∗B = 1

M

∑M
i=1Bi ⊗ Bi. Therefore, the uniform dis-

tribution on the set of the rows {B1, . . . , BM} is an isotropic distribution in Rn. The
conclusion then follows from Theorem 5.41.

Note that the conclusion of Corollary 5.55 does not depend on the dimension M of
the ambient matrix B. This happens because this result is a specific version of sampling
from a discrete isotropic distribution (uniform on the rows of B), where size M of the
support of the distribution is irrelevant.

The hypothesis of Corollary 5.55 implies22 that 1
M

∑M
i=1 ‖Bi‖22 = n. Hence by

Markov’s inequality, most of the rows Bi satisfy ‖Bi‖2 = O(
√
n). This indicates that

Corollary 5.55 would be often used with m = O(n). Also, to ensure a positive probability
of success, the useful magnitude of t would be t ∼ √

logn. With this in mind, the ex-
tremal singular values of A will be close to each other (and to

√
N) if N ≫ t2m ∼ n logn.

Summarizing, Corollary 5.55 states that a random O(n log n) × n sub-matrix of an
M × n isometry is an approximate isometry.23

Another application of random matrices with heavy-tailed isotropic rows is for sam-
pling from frames. Recall that frames are generalizations of bases without linear inde-
pendence, see Example 5.21. Consider a tight frame {ui}Mi=1 in Rn, and for the sake
of convenient normalization, assume that it has bounds A = B = M . We are inter-
ested in whether a small random subset of {ui}Mi=1 is still a nice frame in Rn. Such
question arises naturally because frames are used in signal processing to create redun-
dant representations of signals. Indeed, every signal x ∈ Rn admits frame expansion
x = 1

M

∑M
i=1〈ui, x〉ui. Redundancy makes frame representations more robust to errors

and losses than basis representations. Indeed, we will show that if one loses all except
N = O(n logn) random coefficients 〈ui, x〉 one is still able to reconstruct x from the

received coefficients 〈uik , x〉 as x ≈ 1
N

∑N
k=1〈uik , x〉uik . This boils down to showing that

a random subset of size N = O(n log n) of a tight frame in Rn is an approximate tight
frame.

Corollary 5.56 (Random sub-frames, see [80]). Consider a tight frame {ui}Mi=1 in Rn

with frame bounds A = B = M . Let number m be such that all frame elements satisfy
‖ui‖2 ≤ √

m. Let {vi}Ni=1 be a set of vectors obtained by sampling N random elements
from the frame {ui}Mi=1 uniformly and independently. Let ε ∈ (0, 1) and t ≥ 1. Then the

following holds with probability at least 1− 2n−t2 :

If N ≥ C(t/ε)2m logn then {vi}Ni=1 is a frame in R
n

with bounds A = (1− ε)N , B = (1 + ε)N . Here C is an absolute constant.
In particular, if this event holds, then every x ∈ R

n admits an approximate represen-
tation using only the sampled frame elements:

∥∥∥ 1

N

N∑

i=1

〈vi, x〉vi − x
∥∥∥ ≤ ε‖x‖.

22To recall why this is true, take trace of both sides in the identity I = 1

M

∑M
i=1

Bi ⊗ Bi.
23For the purposes of compressed sensing, we shall study the more difficult uniform problem for

random sub-matrices in Section 5.6. There B itself will be chosen as a column sub-matrix of a given
M×M matrix (such as DFT), and one will need to control all such B simultaneously, see Example 5.73.
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Proof. The assumption implies that I = 1
M

∑M
i=1 ui ⊗ ui. Therefore, the uniform dis-

tribution on the set {ui}Mi=1 is an isotropic distribution in Rn. Applying Corollary 5.52

with Σ = I and ΣN = 1
N

∑N
i=1 vi ⊗ vi we conclude that ‖ΣN − I‖ ≤ ε with the required

probability. This clearly completes the proof.

As before, we note that 1
M

∑M
i=1 ‖ui‖22 = n, so Corollary 5.56 would be often used

with m = O(n). This shows, liberally speaking, that a random subset of a frame in Rn

of size N = O(n log n) is again a frame.

Remark 5.57 (Non-uniform sampling). The boundedness assumption ‖ui‖2 ≤ √
m, al-

though needed in Corollary 5.56, can be removed by non-uniform sampling. To this
end, one would sample from the set of normalized vectors ūi :=

√
n ui

‖ui‖2

with proba-

bilities proportional to ‖ui‖22. This defines an isotropic distribution in Rn, and clearly
‖ūi‖2 =

√
n. Therefore, by Theorem 5.56, a random sample of N = O(n logn) vectors

obtained this way forms an almost tight frame in Rn. This result does not require any
bound on ‖ui‖2.

5.5 Random matrices with independent columns

In this section we study the extreme singular values of N × n random matrices A with
independent columns Aj . We are guided by our ideal bounds (5.2) as before. The same
phenomenon occurs in the column independent model as in the row independent model –
sufficiently tall random matrices A are approximate isometries. As before, being tall will
mean N ≫ n for sub-gaussian distributions and N ≫ n logn for arbitrary distributions.

The problem is equivalent to studying Gram matrices G = A∗A = (〈Aj , Ak〉)nj,k=1 of

independent isotropic random vectors A1, . . . , An in R
N . Our results can be interpreted

using Lemma 5.36 as showing that the normalized Gram matrix 1
NG is an approximate

identity for N,n as above.

Let us first try to prove this with a heuristic argument. By Lemma 5.20 we know
that the diagonal entries of 1

NG have mean 1
NE‖Aj‖22 = 1 and off-diagonal ones have

zero mean and standard deviation 1
N (E〈Aj , Ak〉2)1/2 = 1√

N
. If, hypothetically, the

off-diagonal entries were independent, then we could use the results of matrices with
independent entries (or even rows) developed in Section 5.4. The off-diagonal part of
1
NG would have norm O(

√
n
N ) while the diagonal part would approximately equal I.

Hence we would have
∥∥ 1

N
G− I

∥∥ = O
(√ n

N

)
, (5.35)

i.e. 1
NG is an approximate identity for N ≫ n. Equivalently, by Lemma 5.36, (5.35)

would yield the ideal bounds (5.2) on the extreme singular values of A.

Unfortunately, the entries of the Gram matrix G are obviously not independent. To
overcome this obstacle we shall use the decoupling technique of probability theory [22].
We observe that there is still enough independence encoded in G. Consider a principal
sub-matrix (AS)

∗(AT ) of G = A∗A with disjoint index sets S and T . If we condition on
(Ak)k∈T then this sub-matrix has independent rows. Using an elementary decoupling
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technique, we will indeed seek to replace the full Gram matrix G by one such decoupled
S × T matrix with independent rows, and finish off by applying results of Section 5.4.

By transposition one can try to reduce our problem to studying the n × N matrix
A∗. It has independent rows and the same singular values as A, so one can apply results
of Section 5.4. The conclusion would be that, with high probability,

√
n− C

√
N ≤ smin(A) ≤ smax(A) ≤

√
n+ C

√
N.

Such estimate is only good for flat matrices (N ≤ n). For tall matrices (N ≥ n) the
lower bound would be trivial because of the (possibly large) constant C. So, from now
on we can focus on tall matrices (N ≥ n) with independent columns.

5.5.1 Sub-gaussian columns

Here we prove a version of Theorem 5.39 for matrices with independent columns.

Theorem 5.58 (Sub-gaussian columns). Let A be an N × n matrix (N ≥ n) whose
columns Ai are independent sub-gaussian isotropic random vectors in RN with ‖Aj‖2 =√
N a. s. Then for every t ≥ 0, the inequality holds

√
N − C

√
n− t ≤ smin(A) ≤ smax(A) ≤

√
N + C

√
n+ t (5.36)

with probability at least 1− 2 exp(−ct2), where C = C′
K , c = c′K > 0 depend only on the

subgaussian norm K = maxj ‖Aj‖ψ2
of the columns.

The only significant difference between Theorem 5.39 for independent rows and The-
orem 5.58 for independent columns is that the latter requires normalization of columns,
‖Aj‖2 =

√
N almost surely. Recall that by isotropy of Aj (see Lemma 5.20) one always

has (E‖Aj‖22)1/2 =
√
N , but the normalization is a bit stronger requirement. We will

discuss this more after the proof of Theorem 5.58.

Remark 5.59 (Gram matrices are an approximate identity). By Lemma 5.36, the con-
clusion of Theorem 5.58 is equivalent to

∥∥ 1

N
A∗A− I‖ ≤ C

√
n

N
+

t√
N

with the same probability 1 − 2 exp(−ct2). This establishes our ideal inequality (5.35).
In words, the normalized Gram matrix of n independent sub-gaussian isotropic random
vectors in R

N is an approximate identity whenever N ≫ n.

The proof of Theorem 5.58 is based on the decoupling technique [22]. What we will
need here is an elementary decoupling lemma for double arrays. Its statement involves
the notion of a random subset of a given finite set. To be specific, we define a random
set T of [n] with a given average size m ∈ [0, n] as follows. Consider independent
{0, 1} valued random variables δ1, . . . , δn with Eδi = m/n; these are sometimes called
independent selectors. Then we define the random subset T = {i ∈ [n] : δi = 1}. Its
average size equals E|T | = E

∑n
i=1 δi = m.
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Lemma 5.60 (Decoupling). Consider a double array of real numbers (aij)
n
i,j=1 such

that aii = 0 for all i. Then

∑

i,j∈[n]

aij = 4E
∑

i∈T, j∈T c

aij

where T is a random subset of [n] with average size n/2. In particular,

4 min
T⊆[n]

∑

i∈T, j∈T c

aij ≤
∑

i,j∈[n]

aij ≤ 4 max
T⊆[n]

∑

i∈T, j∈T c

aij

where the minimum and maximum are over all subsets T of [n].

Proof. Expressing the random subset as T = {i ∈ [n] : δi = 1} where δi are independent
selectors with Eδi = 1/2, we see that

E

∑

i∈T, j∈T c

aij = E

∑

i,j∈[n]

δi(1− δj)aij =
1

4

∑

i,j∈[n]

aij ,

where we used that Eδi(1 − δj) =
1
4 for i 6= j and the assumption aii = 0. This proves

the first part of the lemma. The second part follows trivially by estimating expectation
by maximum and minimum.

Proof of Theorem 5.58. Step 1: Reductions. Without loss of generality we can as-
sume that the columns Ai have zero mean. Indeed, multiplying each column Ai by ±1
arbitrarily preserves the extreme singular values of A, the isotropy of Ai and the sub-
gaussian norms of Ai. Therefore, by multiplying Ai by independent symmetric Bernoulli
random variables we achieve that Ai have zero mean.

For t = O(
√
N) the conclusion of Theorem 5.58 follows from Theorem 5.39 by trans-

position. Indeed, the n × N random matrix A∗ has independent rows, so for t ≥ 0 we
have

smax(A) = smax(A
∗) ≤ √

n+ CK
√
N + t (5.37)

with probability at least 1 − 2 exp(−cKt2). Here cK > 0 and we can obviously assume
that CK ≥ 1. For t ≥ CK

√
N it follows that smax(A) ≤

√
N +

√
n+2t, which yields the

conclusion of Theorem 5.58 (the left hand side of (5.36) being trivial). So, it suffices to
prove the conclusion for t ≤ CK

√
N . Let us fix such t.

It would be useful to have some a priori control of smax(A) = ‖A‖. We thus consider
the desired event

E :=
{
smax(A) ≤ 3CK

√
N
}
.

Since 3CK
√
N ≥ √

n+ CK
√
N + t, by (5.37) we see that E is likely to occur:

P(Ec) ≤ 2 exp(−cKt2). (5.38)

Step 2: Approximation. This step is parallel to Step 1 in the proof of The-
orem 5.39, except now we shall choose ε := δ. This way we reduce our task to the
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following. Let N be a 1
4 -net of the unit sphere Sn−1 such that |N | ≤ 9n. It suffices to

show that with probability at least 1− 2 exp(−c′Kt2) one has

max
x∈N

∣∣∣ 1
N

‖Ax‖22 − 1
∣∣∣ ≤ δ

2
, where δ = C

√
n

N
+

t√
N
.

By (5.38), it is enough to show that the probability

p := P

{
max
x∈N

∣∣∣ 1
N

‖Ax‖22 − 1
∣∣∣ > δ

2
and E

}
(5.39)

satisfies p ≤ 2 exp(−c′′Kt2), where c′′K > 0 may depend only on K.
Step 3: Decoupling. As in the proof of Theorem 5.39, we will obtain the required

bound for a fixed x ∈ N with high probability, and then take a union bound over x. So
let us fix any x = (x1, . . . , xn) ∈ Sn−1. We expand

‖Ax‖22 =
∥∥∥

n∑

j=1

xjAj

∥∥∥
2

2
=

n∑

j=1

x2j‖Aj‖22 +
∑

j,k∈[n], j 6=k
xjxk〈Aj , Ak〉. (5.40)

Since ‖Aj‖22 = N by assumption and ‖x‖2 = 1, the first sum equals N . Therefore,
subtracting N from both sides and dividing by N , we obtain the bound

∣∣∣ 1
N

‖Ax‖22 − 1
∣∣∣ ≤

∣∣∣ 1
N

∑

j,k∈[n], j 6=k
xjxk〈Aj , Ak〉

∣∣∣.

The sum in the right hand side is 〈G0x, x〉 where G0 is the off-diagonal part of the Gram
matrix G = A∗A. As we indicated in the beginning of Section 5.5, we are going to replace
G0 by its decoupled version whose rows and columns are indexed by disjoint sets. This
is achieved by Decoupling Lemma 5.60: we obtain

∣∣∣ 1
N

‖Ax‖22 − 1
∣∣∣ ≤ 4

N
max
T⊆[n]

|RT (x)|, where RT (x) =
∑

j∈T, k∈T c

xjxk〈Aj , Ak〉.

We substitute this into (5.39) and take union bound over all choices of x ∈ N and
T ⊆ [n]. As we know, |N | ≤ 9n, and there are 2n subsets T in [n]. This gives

p ≤ P

{
max

x∈N , T⊆[n]
|RT (x)| >

δN

8
and E

}

≤ 9n · 2n · max
x∈N , T⊆[n]

P

{
|RT (x)| >

δN

8
and E

}
. (5.41)

Step 4: Conditioning and concentration. To estimate the probability in (5.41),
we fix a vector x ∈ N and a subset T ⊆ [n] and we condition on a realization of random
vectors (Ak)k∈T c . We express

RT (x) =
∑

j∈T
xj〈Aj , z〉 where z =

∑

k∈T c

xkAk. (5.42)
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Under our conditioning z is a fixed vector, so RT (x) is a sum of independent random
variables. Moreover, if event E holds then z is nicely bounded:

‖z‖2 ≤ ‖A‖‖x‖2 ≤ 3CK
√
N. (5.43)

If in turn (5.43) holds then the terms 〈Aj , z〉 in (5.42) are independent centered sub-

gaussian random variables with ‖〈Aj , z〉‖ψ2
≤ 3KCK

√
N . By Lemma 5.9, their linear

combination RT (x) is also a sub-gaussian random variable with

‖RT (x)‖ψ2
≤ C1

(∑

j∈T
x2j‖〈Aj , z〉‖2ψ2

)1/2

≤ ĈK
√
N (5.44)

where ĈK depends only on K.
We can summarize these observations as follows. Denoting the conditional probability

by PT = P{ · |(Ak)k∈T c} and the expectation with respect to (Ak)k∈T c by ET c , we obtain
by (5.43) and (5.44) that

P

{
|RT (x)| >

δN

8
and E

}
≤ ET cPT

{
|RT (x)| >

δN

8
and ‖z‖2 ≤ 3CK

√
N
}

≤ 2 exp
[
− c1

( δN/8

ĈK
√
N

)2]
= 2 exp

(
− c2δ

2N

Ĉ2
K

)
≤ 2 exp

(
− c2C

2n

Ĉ2
K

− c2t
2

Ĉ2
K

)
.

The second inequality follows because RT (x) is a sub-gaussian random variable (5.44)
whose tail decay is given by (5.10). Here c1, c2 > 0 are absolute constants. The last
inequality follows from the definition of δ. Substituting this into (5.41) and choosing C

sufficiently large (so that ln 36 ≤ c2C
2/Ĉ2

K), we conclude that

p ≤ 2 exp
(
− c2t

2/Ĉ2
K

)
.

This proves an estimate that we desired in Step 2. The proof is complete.

Remark 5.61 (Normalization assumption). Some a priori control of the norms of the
columns ‖Aj‖2 is necessary for estimating the extreme singular values, since

smin(A) ≤ min
i≤n

‖Aj‖2 ≤ max
i≤n

‖Aj‖2 ≤ smax(A).

With this in mind, it is easy to construct an example showing that a normalization
assumption ‖Ai‖2 =

√
N is essential in Theorem 5.58; it can not even be replaced by a

boundedness assumption ‖Ai‖2 = O(
√
N).

Indeed, consider a random vectorX =
√
2ξY in RN where ξ is a {0, 1}-valued random

variable with Eξ = 1/2 (a “selector”) and X is an independent spherical random vector
in Rn (see Example 5.25). Let A be a random matrix whose columns Aj are independent
copies of X . Then Aj are independent centered sub-gaussian isotropic random vectors

in Rn with ‖Aj‖ψ2
= O(1) and ‖Aj‖2 ≤

√
2N a.s. So all assumptions of Theorem 5.58

except normalization are satisfied. On the other hand P{X = 0} = 1/2, so matrix A has
a zero column with overwhelming probability 1 − 2−n. This implies that smin(A) = 0
with this probability, so the lower estimate in (5.36) is false for all nontrivial N,n, t.
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5.5.2 Heavy-tailed columns

Here we prove a version of Theorem 5.45 for independent heavy-tailed columns.

We thus considerN×n random matrices A with independent columns Aj . In addition

to the normalization assumption ‖Aj‖2 =
√
N already present in Theorem 5.58 for sub-

gaussian columns, our new result must also require an a priori control of the off-diagonal
part of the Gram matrix G = A∗A = (〈Aj , Ak〉)nj,k=1.

Theorem 5.62 (Heavy-tailed columns). Let A be an N × n matrix (N ≥ n) whose
columns Aj are independent isotropic random vectors in RN with ‖Aj‖2 =

√
N a. s.

Consider the incoherence parameter

m :=
1

N
Emax
j≤n

∑

k∈[n], k 6=j
〈Aj , Ak〉2.

Then E
∥∥ 1
NA

∗A− I
∥∥ ≤ C0

√
m log n
N . In particular,

Emax
j≤n

|sj(A)−
√
N | ≤ C

√
m logn. (5.45)

Let us briefly clarify the role of the incoherence parameter m, which controls the
lengths of the rows of the off-diagonal part of G. After the proof we will see that a
control of m is essential in Theorem 5.41. But for now, let us get a feel of the typical
size of m. We have E〈Aj , Ak〉2 = N by Lemma 5.20, so for every row j we see that
1
N

∑
k∈[n], k 6=j〈Aj , Ak〉2 = n− 1. This indicates that Theorem 5.62 would be often used

with m = O(n).

In this case, Theorem 5.41 establishes our ideal inequality (5.35) up to a logarithmic
factor. In words, the normalized Gram matrix of n independent isotropic random vectors
in RN is an approximate identity whenever N ≫ n logn.

Our proof of Theorem 5.62 will be based on decoupling, symmetrization and an
application of Theorem 5.48 for a decoupled Gram matrix with independent rows. The
decoupling is done similarly to Theorem 5.58. However, this time we will benefit from
formalizing the decoupling inequality for Gram matrices:

Lemma 5.63 (Matrix decoupling). Let B be a N ×n random matrix whose columns Bj
satisfy ‖Bj‖2 = 1. Then

E‖B∗B − I‖ ≤ 4 max
T⊆[n]

E‖(BT )∗BT c‖.

Proof. We first note that ‖B∗B−I‖ = supx∈Sn−1

∣∣‖Bx‖22−1
∣∣. We fix x = (x1, . . . , xn) ∈

Sn−1 and, expanding as in (5.40), observe that

‖Bx‖22 =

n∑

j=1

x2j‖Bj‖22 +
∑

j,k∈[n], j 6=k
xjxk〈Bj , Bk〉.
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The first sum equals 1 since ‖Bj‖2 = ‖x‖2 = 1. So by Decoupling Lemma 5.60, a random
subset T of [n] with average cardinality n/2 satisfies

‖Bx‖22 − 1 = 4ET
∑

j∈T,k∈T c

xjxk〈Bj , Bk〉.

Let us denote by ET and EB the expectations with respect to the random set T and the
random matrix B respectively. Using Jensen’s inequality we obtain

EB‖B∗B − I‖ = EB sup
x∈Sn−1

∣∣‖Bx‖22 − 1
∣∣

≤ 4EBET sup
x∈Sn−1

∣∣∣
∑

j∈T,k∈T c

xjxk〈Bj , Bk〉
∣∣∣ = 4ETEB‖(BT )∗BT c‖.

The conclusion follows by replacing the expectation by the maximum over T .

Proof of Theorem 5.62. Step 1: Reductions and decoupling. It would be useful to
have an a priori bound on smax(A) = ‖A‖. We can obtain this by transposing A and
applying one of the results of Section 5.4. Indeed, the random n × N matrix A∗ has
independent rows A∗

i which by our assumption are normalized as ‖A∗
i ‖2 = ‖Ai‖2 =

√
N .

Applying Theorem 5.45 with the roles of n and N switched, we obtain by the triangle
inequality that

E‖A‖ = E‖A∗‖ = Esmax(A
∗) ≤ √

n+ C
√
N logn ≤ C

√
N logn. (5.46)

Observe that n ≤ m since by Lemma 5.20 we have 1
NE〈Aj , Ak〉2 = 1 for j 6= k.

We use Matrix Decoupling Lemma 5.63 for B = 1√
N
A and obtain

E ≤ 4

N
max
T⊆[n]

E‖(AT )∗AT c‖ =
4

N
max
T⊆[n]

E‖Γ‖ (5.47)

where Γ = Γ(T ) denotes the decoupled Gram matrix

Γ = (AT )
∗AT c =

(
〈Aj , Ak〉

)
j∈T,k∈T c .

Let us fix T ; our problem then reduces to bounding the expected norm of Γ.

Step 2: The rows of the decoupled Gram matrix. For a subset S ⊆ [n], we
denote by EAS

the conditional expectation given ASc , i.e. with respect to AS = (Aj)j∈S .
Hence E = EATcEAT

.

Let us condition onAT c . Treating (Ak)k∈T c as fixed vectors we see that, conditionally,
the random matrix Γ has independent rows

Γj =
(
〈Aj , Ak〉

)
k∈T c , j ∈ T.

So we are going to use Theorem 5.48 to bound the norm of Γ. To do this we need
estimates on (a) the norms and (b) the second moment matrices of the rows Γj .
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(a) Since for j ∈ T , Γj is a random vector valued in RT
c

, we estimate its second
moment matrix by choosing x ∈ RT

c

and evaluating the scalar second moment

EAT
〈Γj , x〉2 = EAT

( ∑

k∈T c

〈Aj , Ak〉xk
)2

= EAT

〈
Aj ,

∑

k∈T c

xkAk

〉2

=
∥∥∥
∑

k∈T c

xkAk

∥∥∥
2

= ‖AT cx‖22 ≤ ‖AT c‖22‖x‖22.

In the third equality we used isotropy of Aj . Taking maximum over all j ∈ T and
x ∈ RT

c

, we see that the second moment matrix Σ(Γj) = EAT
Γj ⊗ Γj satisfies

max
j∈T

‖Σ(Γj)‖ ≤ ‖AT c‖2. (5.48)

(b) To evaluate the norms of Γj , j ∈ T , note that ‖Γj‖22 =
∑

k∈T c〈Aj , Ak〉2. This is
easy to bound, because the assumption says that the random variable

M :=
1

N
max
j∈[n]

∑

k∈[n], k 6=j
〈Aj , Ak〉2 satisfies EM = m.

This produces the bound Emaxj∈T ‖Γj‖22 ≤ N · EM = Nm. But at this moment we
need to work conditionally on AT c , so for now we will be satisfied with

EAT
max
j∈T

‖Γj‖22 ≤ N · EAT
M. (5.49)

Step 3: The norm of the decoupled Gram matrix. We bound the norm of the
random T×T c Grammatrix Γ with (conditionally) independent rows using Theorem 5.48
and Remark 5.49. Since by (5.48) we have

∥∥ 1
|T |

∑
j∈T Σ(Γj)

∥∥ ≤ 1
|T |

∑
j∈T ‖Σ(Γj)‖ ≤

‖AT c‖2, we obtain using (5.49) that

EAT
‖Γ‖ ≤ (EAT

‖Γ‖2)1/2 ≤ ‖AT c‖
√
|T |+ C

√
N · EAT

(M) log |T c|
≤ ‖AT c‖√n+ C

√
N · EAT

(M) logn. (5.50)

Let us take expectation of both sides with respect to AT c . The left side becomes the
quantity we seek to bound, E‖Γ‖. The right side will contain the term which we can
estimate by (5.46):

EATc‖AT c‖ = E‖AT c‖ ≤ E‖A‖ ≤ C
√
N logn.

The other term that will appear in the expectation of (5.50) is

EATc

√
EAT

(M) ≤
√
EATcEAT

(M) ≤
√
EM =

√
m.

So, taking the expectation in (5.50) and using these bounds, we obtain

E‖Γ‖ = EATcEAT
‖Γ‖ ≤ C

√
N logn

√
n+ C

√
Nm logn ≤ 2C

√
Nm logn
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where we used that n ≤ m. Finally, using this estimate in (5.47) we conclude

E ≤ 8C

√
m logn

N
.

This establishes the first part of Theorem 5.62. The second part follow by the diagonal-
ization argument as in Step 2 of the proof of Theorem 5.45.

Remark 5.64 (Incoherence). A priori control on the incoherence is essential in Theo-
rem 5.62. Consider for instance an N × n random matrix A whose columns are inde-
pendent coordinate random vectors in RN . Clearly smax(A) ≥ maxj ‖Ai‖2 =

√
N . On

the other hand, if the matrix is not too tall, n≫
√
N , then A has two identical columns

with high probability, which yields smin(A) = 0.

5.6 Restricted isometries

In this section we consider an application of the non-asymptotic random matrix theory
in compressed sensing. For a thorough introduction to compressed sensing, see the
introductory chapter of this book and [28, 20].

In this area, m × n matrices A are considered as measurement devices, taking as
input a signal x ∈ Rn and returning its measurement y = Ax ∈ Rm. One would like
to take measurements economically, thus keeping m as small as possible, and still to be
able to recover the signal x from its measurement y.

The interesting regime for compressed sensing is where we take very few measure-
ments,m≪ n. Such matricesA are not one-to-one, so recovery of x from y is not possible
for all signals x. But in practical applications, the amount of “information” contained
in the signal is often small. Mathematically this is expressed as sparsity of x. In the
simplest case, one assumes that x has few non-zero coordinates, say | supp(x)| ≤ k ≪ n.
In this case, using any non-degenerate matrix A one can check that x can be recovered
whenever m > 2k using the optimization problem min{| supp(x)| : Ax = y}.

This optimization problem is highly non-convex and generally NP-complete. So in-
stead one considers a convex relaxation of this problem, min{‖x‖1 : Ax = y}. A basic
result in compressed sensing, due to Candès and Tao [17, 16], is that for sparse signals
| supp(x)| ≤ k, the convex problem recovers the signal x from its measurement y exactly,
provided that the measurement matrix A is quantitatively non-degenerate. Precisely,
the non-degeneracy of A means that it satisfies the following restricted isometry property
with δ2k(A) ≤ 0.1.

Definition (Restricted isometries). An m×n matrix A satisfies the restricted isometry
property of order k ≥ 1 if there exists δk ≥ 0 such that the inequality

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22 (5.51)

holds for all x ∈ Rn with | supp(x)| ≤ k. The smallest number δk = δk(A) is called the
restricted isometry constant of A.
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In words, A has a restricted isometry property if A acts as an approximate isometry
on all sparse vectors. Clearly,

δk(A) = max
|T |≤k

‖A∗
TAT − IRT ‖ = max

|T |=⌊k⌋
‖A∗

TAT − IRT ‖ (5.52)

where the maximum is over all subsets T ⊆ [n] with |T | ≤ k or |T | = ⌊k⌋.
The concept of restricted isometry can also be expressed via extreme singular values,

which brings us to the topic we studied in the previous sections. A is a restricted isometry
if and only if all m× k sub-matrices AT of A (obtained by selecting arbitrary k columns
from A) are approximate isometries. Indeed, for every δ ≥ 0, Lemma 5.36 shows that
the following two inequalities are equivalent up to an absolute constant:

δk(A) ≤ max(δ, δ2); (5.53)

1− δ ≤ smin(AT ) ≤ smax(AT ) ≤ 1 + δ for all |T | ≤ k. (5.54)

More precisely, (5.53) implies (5.54) and (5.54) implies δk(A) ≤ 3max(δ, δ2).

Our goal is thus to find matrices that are good restricted isometries. What good
means is clear from the goals of compressed sensing described above. First, we need to
keep the restricted isometry constant δk(A) below some small absolute constant, say 0.1.
Most importantly, we would like the number of measurements m to be small, ideally
proportional to the sparsity k ≪ n.

This is where non-asymptotic random matrix theory enters. We shall indeed show
that, with high probability, m× n random matrices A are good restricted isometries of
order k with m = O∗(k). Here the O∗ notation hides some logarithmic factors of n.
Specifically, in Theorem 5.65 we will show that

m = O(k log(n/k))

for sub-gaussian random matrices A (with independent rows or columns). This is due to
the strong concentration properties of such matrices. A general observation of this kind
is Proposition 5.66. It says that if for a given x, a random matrix A (taken from any
distribution) satisfies inequality (5.51) with high probability, then A is a good restricted
isometry.

In Theorem 5.71 we will extend these results to random matrices without concentra-
tion properties. Using a uniform extension of Rudelson’s inequality, Corollary 5.28, we
shall show that

m = O(k log4 n) (5.55)

for heavy-tailed random matrices A (with independent rows). This includes the impor-
tant example of random Fourier matrices.

5.6.1 Sub-gaussian restricted isometries

In this section we show that m× n sub-gaussian random matrices A are good restricted
isometries. We have in mind either of the following two models, which we analyzed in
Sections 5.4.1 and 5.5.1 respectively:
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Row-independent model: the rows of A are independent sub-gaussian isotropic ran-
dom vectors in Rn;

Column-independent model: the columns Ai of A are independent sub-gaussian
isotropic random vectors in Rm with ‖Ai‖2 =

√
m a.s.

Recall that these models cover many natural examples, including Gaussian and Bernoulli
matrices (whose entries are independent standard normal or symmetric Bernoulli ran-
dom variables), general sub-gaussian random matrices (whose entries are independent
sub-gaussian random variables with mean zero and unit variance), “column spherical”
matrices whose columns are independent vectors uniformly distributed on the centered
Euclidean sphere in R

m with radius
√
m, “row spherical” matrices whose rows are in-

dependent vectors uniformly distributed on the centered Euclidean sphere in Rd with
radius

√
d, etc.

Theorem 5.65 (Sub-gaussian restricted isometries). Let A be an m × n sub-gaussian
random matrix with independent rows or columns, which follows either of the two models
above. Then the normalized matrix Ā = 1√

m
A satisfies the following for every sparsity

level 1 ≤ k ≤ n and every number δ ∈ (0, 1):

if m ≥ Cδ−2k log(en/k) then δk(Ā) ≤ δ

with probability at least 1 − 2 exp(−cδ2m). Here C = CK , c = cK > 0 depend only on
the subgaussian norm K = maxi ‖Ai‖ψ2

of the rows or columns of A.

Proof. Let us check that the conclusion follows from Theorem 5.39 for the row-independent
model, and from Theorem 5.58 for the column-independent model. We shall control the
restricted isometry constant using its equivalent description (5.52). We can clearly as-
sume that k is a positive integer.

Let us fix a subset T ⊆ [n], |T | = k and consider the m × k random matrix AT . If
A folows the row-independent model, then the rows of AT are orthogonal projections
of the rows of A onto RT , so they are still independent sub-gaussian isotropic random
vectors in R

T . If alternatively, A follows the column-independent model, then trivially
the columns of AT satisfy the same assumptions as the columns of A. In either case,
Theorem 5.39 or Theorem 5.58 applies to AT . Hence for every s ≥ 0, with probability
at least 1− 2 exp(−cs2) one has

√
m− C0

√
k − s ≤ smin(AT ) ≤ smax(AT ) ≤

√
m+ C0

√
k + s. (5.56)

Using Lemma 5.36 for ĀT = 1√
m
AT , we see that (5.56) implies that

‖Ā∗
T ĀT − IRT ‖ ≤ 3max(δ0, δ

2
0) where δ0 = C0

√
k

m
+

s√
m
.

Now we take a union bound over all subsets T ⊂ [n], |T | = k. Since there are(
n
k

)
≤ (en/k)k ways to choose T , we conclude that

max
|T |=k

‖Ā∗
T ĀT − IRT ‖ ≤ 3max(δ0, δ

2
0)
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with probability at least 1 −
(
n
k

)
· 2 exp(−cs2) ≥ 1 − 2 exp

(
k log(en/k) − cs2). Then,

once we choose ε > 0 arbitrarily and let s = C1

√
k log(en/k) + ε

√
m, we conclude with

probability at least 1− 2 exp(−cε2m) that

δk(Ā) ≤ 3max(δ0, δ
2
0) where δ0 = C0

√
k

m
+ C1

√
k log(en/k)

m
+ ε.

Finally, we apply this statement for ε := δ/6. By choosing constant C in the state-
ment of the theorem sufficiently large, we make m large enough so that δ0 ≤ δ/3, which
yields 3max(δ0, δ

2
0) ≤ δ. The proof is complete.

The main reason Theorem 5.65 holds is that the random matrix A has a strong con-
centration property, i.e. that ‖Āx‖2 ≈ ‖x‖2 with high probability for every fixed sparse
vector x. This concentration property alone implies the restricted isometry property,
regardless of the specific random matrix model:

Proposition 5.66 (Concentration implies restricted isometry, see [10]). Let A be an
m× n random matrix, and let k ≥ 1, δ ≥ 0, ε > 0. Assume that for every fixed x ∈ Rn,
| supp(x)| ≤ k, the inequality

(1 − δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22
holds with probability at least 1− exp(−εm). Then we have the following:

if m ≥ Cε−1k log(en/k) then δk(Ā) ≤ 2δ

with probability at least 1− exp(−εm/2). Here C is an absolute constant.

In words, the restricted isometry property can be checked on each individual vector
x with high probability.

Proof. We shall use the expression (5.52) to estimate the restricted isometry constant.
We can clearly assume that k is an integer, and focus on the sets T ⊆ [n], |T | = k.
By Lemma 5.2, we can find a net NT of the unit sphere Sn−1 ∩ RT with cardinality
|NT | ≤ 9k. By Lemma 5.4, we estimate the operator norm as

∥∥A∗
TAT − IRT

∥∥ ≤ 2 max
x∈NT

∣∣〈(A∗
TAT − IRT )x, x

〉∣∣ = 2 max
x∈NT

∣∣‖Ax‖22 − 1
∣∣.

Taking maximum over all subsets T ⊆ [n], |T | = k, we conclude that

δk(A) ≤ 2 max
|T |=k

max
x∈NT

∣∣‖Ax‖22 − 1
∣∣.

On the other hand, by assumption we have for every x ∈ NT that

P
{∣∣‖Ax‖22 − 1

∣∣ > δ
}
≤ exp(−εm).

Therefore, taking a union bound over
(
n
k

)
≤ (en/k)k choices of the set T and over 9k

elements x ∈ NT , we obtain that

P{δk(A) > 2δ} ≤
(
n

k

)
9k exp(−εm) ≤ exp

(
k ln(en/k) + k ln 9− εm

)

≤ exp(−εm/2)
where the last line follows by the assumption on m. The proof is complete.
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5.6.2 Heavy-tailed restricted isometries

In this section we show that m × n random matrices A with independent heavy-tailed
rows (and uniformly bounded coefficients) are good restricted isometries. This result will
be established in Theorem 5.71. As before, we will prove this by controlling the extreme
singular values of all m× k sub-matrices AT . For each individual subset T , this can be
achieved using Theorem 5.41: one has

√
m− t

√
k ≤ smin(AT ) ≤ smax(AT ) ≤

√
m+ t

√
k (5.57)

with probability at least 1− 2k · exp(−ct2). Although this optimal probability estimate
has optimal order, it is too weak to allow for a union bound over all

(
n
k

)
= (O(1)n/k)k

choices of the subset T . Indeed, in order that 1−
(
n
k

)
2k · exp(−ct2) > 0 one would need

to take t >
√
k log(n/k). So in order to achieve a nontrivial lower bound in (5.57), one

would be forced to take m ≥ k2. This is too many measurements; recall that our hope
is m = O∗(k).

This observation suggests that instead of controlling each sub-matrix AT separately,
we should learn how to control all AT at once. This is indeed possible with the following
uniform version of Theorem 5.45:

Theorem 5.67 (Heavy-tailed rows; uniform). Let A = (aij) be an N × d matrix (1 <
N ≤ d) whose rows Ai are independent isotropic random vectors in Rd. Let K be a
number such that all entries |aij | ≤ K almost surely. Then for every 1 < n ≤ d, we have

E max
|T |≤n

max
j≤|T |

|sj(AT )−
√
N | ≤ Cl

√
n

where l = log(n)
√
log d

√
logN and where C = CK may depend on K only. The maxi-

mum is, as usual, over all subsets T ⊆ [d], |T | ≤ n.

The non-uniform prototype of this result, Theorem 5.45, was based on Rudelson’s
inequality, Corollary 5.28. In a very similar way, Theorem 5.67 is based on the following
uniform version of Rudelon’s inequality.

Proposition 5.68 (Uniform Rudelson’s inequality [67]). Let x1, . . . , xN be vectors in
Rd, 1 < N ≤ d, and let K be a number such that all ‖xi‖∞ ≤ K. Let ε1, . . . , εN be
independent symmetric Bernoulli random variables. Then for every 1 < n ≤ d one has

E max
|T |≤n

∥∥∥
N∑

i=1

εi(xi)T ⊗ (xi)T

∥∥∥ ≤ Cl
√
n · max

|T |≤n

∥∥∥
N∑

i=1

(xi)T ⊗ (xi)T

∥∥∥
1/2

where l = log(n)
√
log d

√
logN and where C = CK may depend on K only.

The non-uniform Rudelson’s inequality (Corollary 5.28) was a consequence of a non-
commutative Khintchine inequality. Unfortunately, there does not seem to exist a way to
deduce Proposition 5.68 from any known result. Instead, this proposition is proved using
Dudley’s integral inequality for Gaussian processes and estimates of covering numbers
going back to Carl, see [67]. It is known however that such usage of Dudley’s inequality
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is not optimal (see e.g. [75]). As a result, the logarithmic factors in Proposition 5.68 are
probably not optimal.

In contrast to these difficulties with Rudelson’s inequality, proving uniform versions
of the other two ingredients of Theorem 5.45 – the deviation Lemma 5.47 and Sym-
metrization Lemma 5.46 – is straightforward.

Lemma 5.69. Let (Zt)t∈T be a stochastic process24 such that all Zt ≥ 0. Then
E supt∈T |Z2

t − 1| ≥ max(E supt∈T |Zt − 1|, (E supt∈T |Zt − 1|)2).

Proof. The argument is entirely parallel to that of Lemma 5.47.

Lemma 5.70 (Symmetrization for stochastic processes). Let Xit, 1 ≤ i ≤ N , t ∈ T , be
random vectors valued in some Banach space B, where T is a finite index set. Assume
that the random vectors Xi = (Xti)t∈T (valued in the product space BT ) are independent.
Let ε1, . . . , εN be independent symmetric Bernoulli random variables. Then

E sup
t∈T

∥∥∥
N∑

i=1

(Xit − EXit)
∥∥∥ ≤ 2E sup

t∈T

∥∥∥
N∑

i=1

εiXit

∥∥∥.

Proof. The conclusion follows from Lemma 5.46 applied to random vectors Xi valued in
the product Banach space BT equipped with the norm |||(Zt)t∈T ||| = supt∈T ‖Zt‖. The
reader should also be able to prove the result directly, following the proof of Lemma 5.46.

Proof of Theorem 5.67. Since the random vectors Ai are isotropic in Rd, for every fixed
subset T ⊆ [d] the random vectors (Ai)T are also isotropic in RT , so E(Ai)T ⊗ (Ai)T =
IRT . As in the proof of Theorem 5.45, we are going to control

E := E max
|T |≤n

∥∥ 1

N
A∗
TAT − IRT

∥∥ = E max
|T |≤n

∥∥∥ 1

N

N∑

i=1

(Ai)T ⊗ (Ai)T − IRT

∥∥∥

≤ 2

N
E max

|T |≤n

∥∥∥
N∑

i=1

εi(Ai)T ⊗ (Ai)T

∥∥∥

where we used Symmetrization Lemma 5.70 with independent symmetric Bernoulli ran-
dom variables ε1, . . . , εN . The expectation in the right hand side is taken both with
respect to the random matrix A and the signs (εi). First taking the expectation with
respect to (εi) (conditionally on A) and afterwards the expectation with respect to A,
we obtain by Proposition 5.68 that

E ≤ CK l
√
n

N
E max

|T |≤n

∥∥∥
N∑

i=1

(Ai)T ⊗ (Ai)T

∥∥∥
1/2

=
CK l

√
n√

N
E max

|T |≤n

∥∥ 1

N
A∗
TAT

∥∥1/2

24A stochastic process (Zt) is simply a collection of random variables on a common probability space
indexed by elements t of some abstract set T . In our particular application, T will consist of all subsets
T ⊆ [d], |T | ≤ n.
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By the triangle inequality, Emax|T |≤n
∥∥ 1
NA

∗
TAT

∥∥ ≤ E + 1. Hence we obtain

E ≤ CK l

√
n

N
(E + 1)1/2

by Hölder’s inequality. Solving this inequality in E we conclude that

E = E max
|T |≤n

∥∥ 1

N
A∗
TAT − IRT

∥∥ ≤ max(δ, δ2) where δ = CK l

√
2n

N
. (5.58)

The proof is completed by a diagonalization argument similar to Step 2 in the proof
of Theorem 5.45. One uses there a uniform version of deviation inequality given in
Lemma 5.69 for stochastic processes indexed by the sets |T | ≤ n. We leave the details
to the reader.

Theorem 5.71 (Heavy-tailed restricted isometries). Let A = (aij) be an m× n matrix
whose rows Ai are independent isotropic random vectors in Rn. Let K be a number such
that all entries |aij | ≤ K almost surely. Then the normalized matrix Ā = 1√

m
A satisfies

the following for m ≤ n, for every sparsity level 1 < k ≤ n and every number δ ∈ (0, 1):

if m ≥ Cδ−2k logn log2(k) log(δ−2k logn log2 k) then Eδk(Ā) ≤ δ. (5.59)

Here C = CK > 0 may depend only on K.

Proof. The result follows from Theorem 5.67, more precisely from its equivalent state-
ment (5.58). In our notation, it says that

Eδk(Ā) ≤ max(δ, δ2) where δ = CK l

√
k

m
= CK

√
k logm

m
log(k)

√
logn.

The conclusion of the theorem easily follows.

In the interesting sparsity range k ≥ logn and k ≥ δ−2, the condition in Theorem 5.71
clearly reduces to

m ≥ Cδ−2k log(n) log3 k.

Remark 5.72 (Boundedness requirement). The boundedness assumption on the entries
of A is essential in Theorem 5.71. Indeed, if the rows of A are independent coordinate
vectors in Rn, then A necessarily has a zero column (in fact n−m of them). This clearly
contradicts the restricted isometry property.

Example 5.73. 1. (Random Fourier measurements): An important example for
Theorem 5.41 is where A realizes random Fourier measurements. Consider the
n× n Discrete Fourier Transform (DFT) matrix W with entries

Wω,t = exp
(
− 2πiωt

n

)
, ω, t ∈ {0, . . . , n− 1}.

Consider a random vector X in Cn which picks a random row of W (with uniform
distribution). It follows from Parseval’s inequality that X is isotropic.25 Therefore

25For convenience we have developed the theory over R, while this example is over C. As we noted
earlier, all our definitions and results can be carried over to the complex numbers. So in this example
we use the obvious complex versions of the notion of isotropy and of Theorem 5.71.
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the m× n random matrix A whose rows are independent copies of X satisfies the
assumptions of Theorem 5.41 with K = 1. Algebraically, we can view A as a
random row sub-matrix of the DFT matrix.

In compressed sensing, such matrix A has a remarkable meaning – it realizes m
random Fourier measurements of a signal x ∈ Rn. Indeed, y = Ax is the DFT
of x evaluated at m random points; in words, y consists of m random frequencies
of x. Recall that in compressed sensing, we would like to guarantee that with
high probability every sparse signal x ∈ Rn (say, | supp(x)| ≤ k) can be effectively
recovered from its m random frequencies y = Ax. Theorem 5.71 together with
Candès-Tao’s result (recalled in the beginning of Section 5.6) imply that an exact
recovery is given by the convex optimization problem min{‖x‖1 : Ax = y} provided
that we observe slightly more frequencies than the sparsity of a signal: m &≥
Cδ−2k log(n) log3 k.

2. (Random sub-matrices of orthogonal matrices): In a similar way, Theo-
rem 5.71 applies to a random row sub-matrix A of an arbitrary bounded orthogonal
matrix W . Precisely, A may consist of m randomly chosen rows, uniformly and
without replacement,26 from an arbitrary n × n matrix W = (wij) such that
W ∗W = nI and with uniformly bounded coefficients, maxij |wij | = O(1). The
examples of such W include the class of Hadamard matrices – orthogonal matrices
in which all entries equal ±1.

5.7 Notes

For Section 5.1 We work with two kinds of moment assumptions for random matri-
ces: sub-gaussian and heavy-tailed. These are the two extremes. By the central limit
theorem, the sub-gaussian tail decay is the strongest condition one can demand from
an isotropic distribution. In contrast, our heavy-tailed model is completely general –
no moment assumptions (except the variance) are required. It would be interesting to
analyze random matrices with independent rows or columns in the intermediate regime,
between sub-gaussian and heavy-tailed moment assumptions. We hope that for distribu-
tions with an appropriate finite moment (say, (2+ ε)th or 4th), the results should be the
same as for sub-gaussian distributions, i.e. no logn factors should occur. In particular,
tall random matrices (N ≫ n) should still be approximate isometries. This indeed holds
for sub-exponential distributions [2]; see [82] for an attempt to go down to finite moment
assumptions.

For Section 5.2 The material presented here is well known. The volume argument
presented in Lemma 5.2 is quite flexible. It easily generalizes to covering numbers of
more general metric spaces, including convex bodies in Banach spaces. See [60, Lemma
4.16] and other parts of [60] for various methods to control covering numbers.

26Since in the interesting regime very few rows are selected, m ≪ n, sampling with or without
replacement are formally equivalent. For example, see [67] which deals with the model of sampling
without replacement.
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For Section 5.2.3 The concept of sub-gaussian random variables is due to Kahane [39].
His definition was based on the moment generating function (Property 4 in Lemma 5.5),
which automatically required sub-gaussian random variables to be centered. We found
it more convenient to use the equivalent Property 3 instead. The characterization of
sub-gaussian random variables in terms of tail decay and moment growth in Lemma 5.5
also goes back to [39].

The rotation invariance of sub-gaussian random variables (Lemma 5.9) is an old
observation [15]. Its consequence, Proposition 5.10, is a general form of Hoeffding’s
inequality, which is usually stated for bounded random variables. For more on large
deviation inequalities, see also notes for Section 5.2.4.

Khintchine inequality is usually stated for the particular case of symmetric Bernoulli
random variables. It can be extended for 0 < p < 2 using a simple extrapolation
argument based on Hölder’s inequality, see [45, Lemma 4.1].

For Section 5.2.4 Sub-gaussian and sub-exponential random variables can be studied
together in a general framework. For a given exponent 0 < α < ∞, one defines general
ψα random variables, those with moment growth (E|X |p)1/p = O(p1/α). Sub-gaussian
random variables correspond to α = 2 and sub-exponentials to α = 1. The reader is
encouraged to extend the results of Sections 5.2.3 and 5.2.4 to this general class.

Proposition 5.16 is a form of Bernstein’s inequality, which is usually stated for
bounded random variables in the literature. These forms of Hoeffding’s and Bernstein’s
inequalities (Propositions 5.10 and 5.16) are partial cases of a large deviation inequality
for general ψα norms, which can be found in [72, Corollary 2.10] with a similar proof. For
a thorough introduction to large deviation inequalities for sums of independent random
variables (and more), see the books [59, 45, 24] and the tutorial [11].

For Section 5.2.5 Sub-gaussian distributions in Rn are well studied in geometric
functional analysis; see [53] for a link with compressed sensing. General ψα distributions
in Rn are discussed e.g. in [32].

Isotropic distributions on convex bodies, and more generally isotropic log-concave
distributions, are central to asymptotic convex geometry (see [31, 57]) and computational
geometry [78]. A completely different way in which isotropic distributions appear in
convex geometry is from John’s decompositions for contact points of convex bodies, see
[9, 63, 79]. Such distributions are finitely supported and therefore are usually heavy-
tailed.

For an introduction to the concept of frames (Example 5.21), see [41, 19].

For Section 5.2.6 The non-commutative Khintchine inequality, Theorem 5.26, was
first proved by Lust-Piquard [48] with an unspecified constant Bp in place of C

√
p. The

optimal value of Bp was computed by Buchholz [13, 14]; see [62, Section 6.5] for an
thorough introduction to Buchholz’s argument. For the complementary range 1 ≤ p ≤
2, a corresponding version of non-commutative Khintchine inequality was obtained by
Lust-Piquard and Pisier [47]. By a duality argument implicitly contained in [47] and
independently observed by Marius Junge, this latter inequality also implies the optimal
order Bp = O(

√
p), see [65] and [61, Section 9.8].
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Rudelson’s Corollary 5.28 was initially proved using a majorizing measure technique;
our proof follows Pisier’s argument from [65] based on the non-commutative Khintchine
inequality.

For Section 5.3 The “Bai-Yin law” (Theorem 5.31) was established for smax(A) by
Geman [30] and Yin, Bai and Krishnaiah [84]. The part for smin(A) is due to Silverstein
[70] for Gaussian random matrices. Bai and Yin [8] gave a unified treatment of both
extreme singular values for general distributions. The fourth moment assumption in
Bai-Yin’s law is known to be necessary [7].

Theorem 5.32 and its argument is due to Gordon [35, 36, 37]. Our exposition of this
result and of Corollary 5.35 follows [21].

Proposition 5.34 is just a tip of an iceberg called concentration of measure phe-
nomenon. We do not discuss it here because there are many excellent sources, some of
which were mentioned in Section 5.1. Instead we give just one example related to Corol-
lary 5.35. For a general random matrix A with independent centered entries bounded
by 1, one can use Talagrand’s concentration inequality for convex Lipschitz functions on
the cube [73, 74]. Since smax(A) = ‖A‖ is a convex function of A, Talagrand’s concen-

tration inequality implies P
{
|smax(A)−Median(smax(A))| ≥ t

}
≤ 2e−ct

2

. Although the
precise value of the median may be unknown, integration of this inequality shows that
|Esmax(A)−Median(smax(A))| ≤ C.

For the recent developments related to the hard edge problem for almost square and
square matrices (including Theorem 5.38) see the survey [69].

For Section 5.4 Theorem 5.39 on random matrices with sub-gaussian rows, as well as
its proof by a covering argument, is a folklore in geometric functional analysis. The use
of covering arguments in a similar context goes back to Milman’s proof of Dvoretzky’s
theorem [55]; see e.g. [9] and [60, Chapter 4] for an introduction. In the more narrow
context of extreme singular values of random matrices, this type of argument appears
recently e.g. in [2].

The breakthrough work on heavy-tailed isotropic distributions is due to Rudelson [65].
He used Corollary 5.28 in the way we described in the proof of Theorem 5.45 to show
that 1

NA
∗A is an approximate isometry. Probably Theorem 5.41 can also be deduced

by a modification of this argument; however it is simpler to use the non-commutative
Bernstein’s inequality.

The symmetrization technique is well known. For a slightly more general two-sided
inequality than Lemma 5.46, see [45, Lemma 6.3].

The problem of estimating covariance matrices described in Section 5.4.3 is a basic
problem in statistics, see e.g. [38]. However, most work in the statistical literature is
focused on the normal distribution or general product distributions (up to linear trans-
formations), which corresponds to studying random matrices with independent entries.
For non-product distributions, an interesting example is for uniform distributions on con-
vex sets [40]. As we mentioned in Example 5.25, such distributions are sub-exponential
but not necessarily sub-gaussian, so Corollary 5.50 does not apply. Still, the sample
size N = O(n) suffices to estimate the covariance matrix in this case [2]. It is conjec-
tured that the same should hold for general distributions with finite (e. g. 4th) moment
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assumption [82].
Corollary 5.55 on random sub-matrices is a variant of the Rudelson’s result from

[64]. The study of random sub-matrices was continued in [66]. Random sub-frames were
studied in [80] where a variant of Corollary 5.56 was proved.

For Section 5.5 Theorem 5.58 for sub-gaussian columns seems to be new. However,
historically the efforts of geometric functional analysts were immediately focused on
the more difficult case of sub-exponential tail decay (given by uniform distributions on
convex bodies). An indication to prove results like Theorem 5.58 by decoupling and
covering is present in [12] and is followed in [32, 2].

The normalization condition ‖Aj‖2 =
√
N in Theorem 5.58 can not be dropped but

can be relaxed. Namely, consider the random variable δ := maxi≤n
∣∣‖Aj‖2

2

N − 1
∣∣. Then

the conclusion of Theorem 5.58 holds with (5.36) replaced by

(1− δ)
√
N − C

√
n− t ≤ smin(A) ≤ smax(A) ≤ (1 + δ)

√
N + C

√
n+ t.

Theorem 5.62 for heavy-tailed columns also seems to be new. The incoherence pa-
rameter m is meant to prevent collisions of the columns of A in a quantitative way. It is
not clear whether the logarithmic factor is needed in the conclusion of Theorem 5.62, or
whether the incoherence parameter alone takes care of the logarithmic factors whenever
they appear. The same question can be raised for all other results for heavy-tailed ma-
trices in Section 5.4.2 and their applications – can we replace the logarithmic factors by
more sensitive quantities (e.g. the logarithm of the incoherence parameter)?

For Section 5.6 For a mathematical introduction to compressed sensing, see the in-
troductory chapter of this book and [28, 20].

A version of Theorem 5.65 was proved in [54] for the row-independent model; an
extension from sub-gaussian to sub-exponential distributions is given in [3]. A general
framework of stochastic processes with sub-exponential tails is discussed in [52]. For the
column-independent model, Theorem 5.65 seems to be new.

Proposition 5.66 that formalizes a simple approach to restricted isometry property
based on concentration is taken from [10]. Like Theorem 5.65, it can also be used to
show that Gaussian and Bernoulli random matrices are restricted isometries. Indeed, it
is not difficult to check that these matrices satisfy a concentration inequality as required
in Proposition 5.66 [1].

Section 5.6.2 on heavy-tailed restricted isometries is an exposition of the results
from [67]. Using concentration of measure techniques, one can prove a version of The-

orem 5.71 with high probability 1 − n−c log3 k rather than in expectation [62]. Earlier,
Candes and Tao [18] proved a similar result for random Fourier matrices, although with
a slightly higher exponent in the logarithm for the number of measurements in (5.55),
m = O(k log6 n). The survey [62] offers a thorough exposition of the material presented
in Section 5.6.2 and more.
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Rätsch, G. Springer, pp. 208–240.

54



55

[12] Bourgain, J. (1999). Random points in isotropic convex sets, in: Convex geometric
analysis (Berkeley, CA, 1996), pp. 53–58. Math. Sci. Res. Inst. Publ., 34. Cambridge:
Cambridge University Press.

[13] Buchholz, A. (2001). Operator Khintchine inequality in non-commutative probabil-
ity, Math. Ann., 319, 1–16.

[14] Buchholz, A. (2005). Optimal constants in Khintchine type inequalities for fermions,
Rademachers and q-Gaussian operators, Bull. Pol. Acad. Sci. Math., 53, 315–321.

[15] Buldygin, V. V. and Kozachenko, Ju. V. (1980). Sub-Gaussian random variables,
Ukrainian Mathematical Journal, 32, 483–489.

[16] Candès, E. The restricted isometry property and its implications for compressed
sensing, Compte Rendus de l’Academie des Sciences, Paris, Serie I, 346, 589–592.

[17] Candès, E. and Tao, T. (2005). Decoding by linear programming, IEEE Trans.
Inform. Theory, 51, 4203–4215.

[18] Candès, E. and Tao, T. (2006). Near-optimal signal recovery from random projec-
tions: universal encoding strategies? IEEE Trans. Inform. Theory, 52, 5406–5425.

[19] Christensen, O. (2008). Frames and bases. An introductory course. Applied and
Numerical Harmonic Analysis. Boston, MA: Birkhäuser Boston, Inc.
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