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ABSTRACT

Compressive Sensing (CS) is an emerging area which uses
a relatively small number of non-traditional samples in the
form of randomized projections to reconstruct sparse or com-
pressible signals. This paper considers the direction-of-arrival
(DOA) estimation problem with an array of sensors using CS.
We show that by using random projections of the sensor data,
along with a full waveform recording on one reference sensor,
a sparse angle space scenario can be reconstructed, giving the
number of sources and their DOA’s. The number of projec-
tions can be very small, proportional to the number sources.
We provide simulations to demonstrate the performance and
the advantages of ourcompressivebeamformer algorithm.

Index Terms— Compressive Sensing, DOA Estimation,
Acoustic, Basis pursuit, Convex optimization.

1. INTRODUCTION

The problem of direction-of-arrival (DOA) estimation is ex-
tensively studied in array signal processing, sensor networks,
remote sensing, etc. To determine a DOA using multiple sen-
sors, generalized cross correlation (GCC), minimum variance
distortionless response (MVDR), and multiple signal classifi-
cation (MUSIC) algorithms are commonly used [1]. By con-
struction, all of these methods require Nyquist-rate sampling
of received signals to estimate a small number of DOA’s in
angle space, which is very expensive in some applications
such as radar or radio astronomy. As an example, the Allen
Telescope Array northeast of San Fransisco has a frequency
coverage from 0.5 to 11.2 GHz for scientific studies. In this
paper, we propose a method that takes a very small set of in-
formative measurements that still allow us to estimate DOA’s.

Recent results in Compressive Sensing (CS) state that
it is possible to reconstruct aK-sparse signalx = Ψs of
length N from O(K log N) measurements [2]. CS takes
non-traditional linear measurements,y = Φx, in the form of
randomized projections. A signalx, which has a sparse repre-
sentation in a transform domainΨ, can be reconstructed from
M = C

(

µ2(Φ,Ψ) log N
)

K compressive measurement ex-
actly with high probability by solving a convex optimization
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problem of the following form

min ‖x‖1, subject to y = ΦΨx. (1)

which can be solved efficiently with linear programming.
We use abasis-pursuitstrategy to formulate the DOA es-

timation problem as a dictionary selection problem where the
dictionary entries are produced by discretizing the angle space
and then synthesizing the sensor signals for each discrete an-
gle. Sparseness in angle space implies that only a few of the
dictionary entries will be needed to match the measurements.
According to the results of CS, it should be possible to re-
construct the sparse dictionary-selector vector fromM com-
pressive measurements. Note that we do not take compressive
measurements (random projections) of the angle space vector
directly. Instead, we can only take random projections of the
received signals at the sensors, but we have a model for these
as delayed and weighted combinations of multiple source sig-
nals coming from different angles.

When the source signals are known, e.g., in active radar, it
is possible to directly create the dictionary entries by delaying
the known reference signals [3]. When the source signals are
unknown and incoherent, we show that we can eliminate the
high-rate samplers from all but one of the array elements by
using CS to perform the beamforming calculation. We must
devote one sensor to acquiring a reference signal, and this
operation must be done at a high rate, i.e., Nyquist-rate sam-
pling; the other sensors only need to do compressive sensing.
By using the data from the reference sensor, we show that one
can relate the compressive measurements at all other sensors
to the angle space vectorθ linearly, because we assume that
the locations of the sensors with respect to the reference sen-
sor are known. This enables us to find the sparse dictionary
selector vector by solving anℓ1 minimization problem, which
is detailed in Section 2.

Our compressive beamforming approach based onℓ1 min-
imization is substantially different from approaches in the lit-
erature, such as GCC, MVDR, and MUSIC which require
Nyquist sampling at the sensors. In addition, we do not have
Gaussian source assumptions, such as GCC, nor have any as-
sumptions about the source signals being narrow or wide-
band, such as MVDR and MUSIC. In the literature, there
are other convex optimization approaches to determine mul-
tiple source DOA’s, based on regularization [4, 5]. However,



the common theme of these methods is that they still require
Nyquist-rate sampling, followed by conventional beamform-
ing at a small number of angles. Regularized construction on
the angle space is then done to constrain the calculation of the
conventional beamformer output.

2. THEORY: CS FOR DOA ESTIMATION

We consider cases where the source signal is known or un-
known, as well as cases with one source, multiple sources,
and additive noise.

2.1. DOA Estimation of a Known Source Signal

Assume that we know the source signals(t) and we want to
determine the DOA of this source, using an array ofL sensors
with an arbitrary geometry. The sensor positions are assumed
known and are given byηi = [xi, yi, zi]

T . When the source
is in the far-field of the array, sensori simply receives a time-
delayed and attenuated version of this source

ζi(t) = ws

(

t + ∆i(πS) − R

c

)

, (2)

wherew is the attenuation,πS = (θS , φS) is the angle pair
consisting of the unknown azimuth and elevation angles of
the source,R is the range to the source, and∆i(πS) is the
relative time delay (or advance) at thei-th sensor for a source
with bearingπS with respect to the origin of the array.

Finding the DOA is equivalent to finding the relative time
delay, so we ignore the attenuation and assume that theR/c
term is known, or constant across the array. The time delay
∆i in (2) can be determined from geometry:

∆i(πS) =
1

c
ηT

i





cos θS sin φS

sin θS sinφS

cos φS



 , (3)

wherec is the speed of the propagating wave in the medium.
The source angle pairπS lies in the product of space

[0, 2π)θ × [0, π)φ, which must be discretized to form the an-
gle dictionary, i.e., we enumerate a finite set of angles for
both azimuth and elevation to generate the set of angle pairs
B = {π1,π2, . . . ,πN}, whereN determines our resolution.
Letb denote the sparsity pattern which selects members of the
discretized angle-pair setB, i.e., a non-zero positive value at
indexj of b selects a target at the az-el pair forπj . When we
have only one source, we expect the sparsity pattern vectorb

to have only one non-zero entry, i.e., maximal sparseness.
We can relate the bearing sparsity pattern vectorb linearly

to the received signal vector at thei-th sensor as follows:

ζi = Ψib, (4)

ζi =

[

ζi (t0) , ζi

(

t0 +
1

Fs

)

, . . . , ζi

(

t0 +
Nt − 1

Fs

)]T

,

(5)

whereFs is the sampling frequency,t0 is the appropriate ini-
tial time, andNt is the number of data samples. In (4), thej-th
column ofΨi corresponds to the time shift of the source sig-
nals(t) corresponding to thej-th index of the sparsity pattern
vectorb, which indicates the proper time shift corresponding
to the angle pairπj :

[Ψi]j =
[

s (t′
0

+ ∆i(πj)) , . . . , s
(

t′K−1
+ ∆i(πj)

)]T
,
(6)

wheret′ = t − R/c. The matrixΨi is the dictionary (or,
sparsity basis) corresponding to all discretized angle pairsB
at thei-th sensor.

In CS, rather than samplingζi at its Nyquist rate, which
would enable recovery ofs(t), we measure linear projections
with M random vectors which can be written in matrix form
for thei-th sensor:

βi = φiζi = φiΨib, (7)

whereφi is anM × Nt matrix, whose rows are random vec-
tors selected to have minimum mutual correlation withΨi.
Then the sparsity pattern vectorb can be found from the set
of compressive samples from all the sensorsβi=1:L by the
solving the followingℓ1 minimization problem

b̂ = arg min ||b||1 subject to Ab = β, (8)

where β = [βT
1
, . . . ,βT

L]T , and A = ΦΨ with Ψ =
[ΨT

1
, . . . ,ΨT

L]T , and Φ the block diagonal matrix of size
LM × LNt formed with theφi’s along its diagonal.

2.2. DOA Estimation of an Unknown Source Signal

In passive sensing problems, the source signals(t) is not
known and is often estimated jointly with the source angle
pairπS . Whens(t) is unknown, we cannot constructΨ in the
ℓ1 minimization problem (8) to determine the sparsity pattern
vectorb. One alternative is to use the received signal at one
sensor (sampled at the Nyquist rate) as the presumed source
signal; the rest of the sensors can still collect the compressive
samples. We call this sensor thereference sensor(RS).

The reference sensor records the signalζ0(t) at a high
sampling rate. We can calculate the time shift for sensori
with respect to the RS using (5). Thus, the data at sensori for
an unknown source at bearingπS is ζi(t) = ζ0(t + ∆i(πS)).
The sparsity basis matrixΨi for sensori can be constructed
using proper shifts ofζ0(t) for eachπj in B. Hence, not
knowing the source signal incurs a cost of Nyquist rate sam-
pling at one of the sensors, but high data sampling rates from
the rest of the array elements are still avoided.

2.3. Effects of Additive Sensor Noises

In general, thei-th sensor receives a noisy version of the RS
signal (or the source signal) asζi(t) = ζ0(t + ∆i(θS , φS)) +



ni(t). Then the compressive measurementsβi at thei-th sen-
sor have the following form:

βi = φiζi = φiΨib + ui (9)

where ui = φini ∼ N (0, σ2) and ni is the concate-
nation of the noise samples at the sensori, which is as-
sumed to beN (0, σ2

n) Sinceφi is deterministic, we have
σ2 = (

∑Ns

n=1
φ2

il)σ
2

n. Hence, if we constrain the norm of the
φi vectors to be one, thenσ2 = σ2

n.
With the construction ofβ andA in Sect. 2.1, the sparsity

pattern vectorb can be recovered using the Dantzig selector
[6] convex optimization problem:

b̂ = arg min ‖b‖1 s.t. ‖AT (β−Ab)‖∞ < ǫNσ. (10)

SelectingǫN =
√

2 log N makes the trueb feasible with high
probability. The optimization problems in (8) and (10) both
minimize convex functionals, a global optimum is guaran-
teed.

2.4. DOA Estimation of multiple unknown sources

Now assume we have another sources2(t) impinging on the
array at the bearingπ2. If s2(t) is non-coherent withs1(t)
we can show that its effect is similar to additive noise when
we are looking in the direction of the first source signal. In
order to show that this additive noise behavior is a correct
interpretation, we examine the constraint in (10) which yields
a sparse solution forb even in the presence of noise.

The recorded RS signal is

ζ0(t) = s1(t) + s2(t) (11)

assuming equal amplitude signals. The shifted RS signal at
thei-th sensor is

ζ0(t + ∆i(πn)) = s1(t + ∆i(πn)) + s2(t + ∆i(πn)) (12)

when the assumed bearing isπn, and this signal is used to
populate then-th column of theA matrix. On the other hand,
the true received signal at thei-th sensor is

ζi(t) = s1(t + ∆i(π1)) + s2(t + ∆i(π2)) (13)

where we have different time shifts for the two signals.
The terms in the Dantzig Selector (10) constraint,AT β

andAT A are actually auto- and cross-correlations. ForAT β

we get a column vector whosen-th element is

R11(∆i(πn),∆(π1)) + R12(∆i(πn),∆(π2))+ (14)

R12(∆i(πn),∆(π1)) + R22(∆i(πn),∆(π2)) (15)

whereR11 is the autocorrelation of signals1(t), R22 the au-
tocorrelation ofs2(t), andR12 the crosscorrelation. For the
matrixAT A, the element in then-th row andr-th column is

R11(∆i(πn),∆(πr)) + R12(∆i(πn),∆(πr))+ (16)

R12(∆i(πn),∆(πr)) + R22(∆i(πn),∆(πr)) (17)

We make two assumptions: first, that the cross correla-
tion is small—this is the incoherence assumption; second,
that the signals decorrelate at small lags, i.e., the autocor-
relations are peaked at zero lag. Then we can examine
the constraint in (10), and observe that in order to make
AT β − AT Ab small we should make sure that the large
elements in the vectorAT β are cancelled by the large terms
in AT Ab. With our assumptions, the two largest elements
in AT β occur whenπn = π1 andπn = π2, because these
are cases where we have peaks in the autocorrelations, i.e.,
R11(∆i(π1),∆(π1)) andR22(∆i(π2),∆(π2)). When we
cancel the elementR11(∆i(π1),∆(π1)), we use the row of
AT Ab corresponding toπn = π1, so the vectorb must
select the column whereπr = π1. Likewise, to cancel the
elementR22(∆i(π2),∆(π2)), we use theπn = π2 row and
theπr = π2 column. Our assumptions say that all the other
elements will be relatively small.

The bottom line of this analysis is that the Dantzig Selec-
tor constraint, with a well-chosenǫ, will allow the matching
of the two signals at their true bearings. Then theℓ1 mini-
mization of the selector vectorb will tend to pick the signals
whose autocorrelation is large. The preceding analysis canbe
modified for the case where the signals have different ampli-
tudes, but when the relative amplitudes become too different
we expect that theℓ1 minimization would pick the larger of
the two.

This same reasoning can be extended to the case withP
unknown sources at bearings(θ1, φ1), (θ2, φ2), ..., (θP , φP ),
impinging on the array of sources. A possible scenario is
shown in Fig. 1. Sensori receives a delayed combination of

Fig. 1. Sensor setup for compressive beamforming

source signals as

ζi(t) =

P
∑

p=1

s(t + ∆i(θS , φS)) + ni(t). (18)

If the non-coherency between sources is satisfied then we can
extend the two-source analysis above to theP source case,
and claim that the Dantzig Selector constraint will favor the



correct source bearings. Thus, theℓ1 minimization problem
in (10) will reconstruct the appropriate selector vectorb from
one RS signal andL − 1 compressed sensor outputs.

3. SIMULATIONS

Finally, a test example is shown to illustrate the ideas pre-
sented in the previous section.

Two synthetic speech sources are taken and placed in the
far field of a linear array of 11 sensors placed on thex-axis
uniformly with 0.25 m spacing. The middle sensor is selected
as the reference sensor which is taken to be at the origin.
The two sources are placed at angles33◦ and78◦. The two
sources are WAV files that we assume are unknown. The first
source reads “Houston we have a problem,” and the second
reads “Remember. The force will be with you. Always.” The
source signals used in our simulation are shown in Fig. 2(a).
The RS signal is the sum of the two source signals.

Segments of lengthNt = 8000 are extracted from the
source signals witht0 = 5000 to be used in the processing.
Each sensor takes only 15 compressive measurements which
makes a total of 165 measurements. Therefore, the total mea-
surement number is much less than the standard time sample
numbers of the signals,Nt. This is because we are not trying
to reconstruct the signals. We are only reconstructing DOAs
in θ space, which has a resolution of1◦ and length of181 for
this example. The entries of the random measurement ma-
trices for each sensor is drawn randomly fromN (0, 1) inde-
pendently. WGN is added to the compressive measurements
with signal-to-noise ratio (SNR) equals10 dB. Figure 2(b)
shows the compressive measurements,y, from all sensors.
These measurements are the only information we have about
the sources along with the RS data. For the Dantzig Selector
constraint, we useǫ = 3

√
2 log Nσ = 0.98 for this exam-

ple. Solution of theℓ1 minimization problem in (10) gives the
result in Fig. 2(d).

If all the sensors had samples of their received signals at a
high sampling frequency we can apply MVDR and we would
obtain the response in Fig. 2(c). The MVDR processing is
done atf = 500 Hz which is a peak in the FFT of the sig-
nals. The number of snapshots was 40, and the length of each
snapshot 200 samples. Even though the MVDR shows two
significant peaks at the true source bearings we were able to
obtain a much sparser result with CS while using many fewer
measurements than from standard sampling.

4. SUMMARY

This paper gives a method for using compressive sensing for
DOA estimation of multiple targets. The fact that all but
one of the array sensors uses compressed measurements will
reduce the amount of data that must be communicated be-
tween sensors, which has potential in wireless sensor net-
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Fig. 2. (a) Source signals, (b) Noisy compressive measure-
ments from all sensors, (c) MVDR result, (d) Compressive
beamformer result.

works where arrays would be formed from distributed sen-
sors [7].
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