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ABSTRACT problem of the following form
Compressive Sensing (CS) is an emerging area which uses min ||z, subjectto y = ®Tz. 1)

a relatively small number of non-traditional samples in the

form of randomized projections to reconstruct sparse or-confvhich can be solved efficiently with linear programming.
pressible signals. This paper considers the directioardfal We use abasis-pursuittrategy to formulate the DOA es-
(DOA) estimation problem with an array of sensors using CStimation problem as a dictionary selection problem wheee th
We show that by using random projections of the sensor datélictionary entries are produced by discretizing the angges
along with a full waveform recording on one reference senso@nd then synthesizing the sensor signals for each disanete a
a sparse angle space scenario can be reconstructed, giging fle. Sparseness in angle space implies that only a few of the
number of sources and their DOAs. The number of projec.dictionary entries will be needed to match the measurements
tions can be very small, proportional to the number sourced\ccording to the results of CS, it should be possible to re-
We provide simulations to demonstrate the performance angPnstruct the sparse dictionary-selector vector frafhcom-

the advantages of oeompressivieamformer algorithm. pressive measurements. Note that we do not take compressive
measurements (random projections) of the angle spacervecto

' directly. Instead, we can only take random projections ef th
received signals at the sensors, but we have a model for these
as delayed and weighted combinations of multiple source sig

1. INTRODUCTION nals coming from different angles.
When the source signals are known, e.g., in active radar, it

The problem of direction-of-arrival (DOA) estimation is-ex g possible to directly create the dictionary entries byaglieig

tensively studied in array signal processing, sensor mé8Y¥0  the known reference signals [3]. When the source signals are

remote sensing, etc. To determine a DOA using multiple senynknown and incoherent, we show that we can eliminate the
sors, generalized cross correlation (GCC), minimum vasan high-rate samplers from all but one of the array elements by
distortionless response (MVDR), and multiple signal dfass using CS to perform the beamforming calculation. We must
cation (MUSIC) algorithms are commonly used [1]. By con-geyote one sensor to acquiring a reference signal, and this
struction, all of these methods require Nyquist-rate samgpl gperation must be done at a high rate, i.e., Nyquist-rate sam
of received signals to estimate a small number of DOA' inyjing; the other sensors only need to do compressive sensing
angle space, which is very expensive in some applicationgy ysing the data from the reference sensor, we show that one
such as radar or radio astronomy. As an example, the Allepan relate the compressive measurements at all other sensor

Telescope Array northeast of San Fransisco has a frequengy the angle space vectérinearly, because we assume that

coverage from 0.5 to 11.2 GHz for scientific studies. In thisthe |ocations of the sensors with respect to the reference se

paper, we propose a method that takes a very small set of igpr are known. This enables us to find the sparse dictionary
formative measurements that still allow us to estimate BOA' se|ector vector by solving al minimization problem, which

Recent results in Compressive Sensing (CS) state thf getailed in Section 2.

it is possible to reconstruct &-sparse signak = ¥s of Our compressive beamforming approach base] onin-
length N from O(K'log N) measurements [2]. CS takes jmjzation is substantially different from approaches ie lit-
non-traditional linear measuremengs= ®, in the form of  gratyre, such as GCC, MVDR, and MUSIC which require
randomized projections. A signal which has a sparse repre- Nyquist sampling at the sensors. In addition, we do not have
sentation in a transform domai, can be reconstructed from Gayssian source assumptions, such as GCC, nor have any as-
M = C (p*(®,¥)log N) K compressive measurement ex- symptions about the source signals being narrow or wide-
This work is supported under the MURI by the U.S. Army Research@/€ other convex optimization apprOQChe_S to determine mul-
Office under contract number DAAD19-02-1-0252. tiple source DOA's, based on regularization [4,5]. However
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the common theme of these methods is that they still requirethereF, is the sampling frequency, is the appropriate ini-
Nyquist-rate sampling, followed by conventional beamform tial time, andV; is the number of data samples. In (4), jhth
ing at a small number of angles. Regularized construction onolumn of ¥; corresponds to the time shift of the source sig-
the angle space is then done to constrain the calculatidreof t nal s(¢) corresponding to thg-th index of the sparsity pattern
conventional beamformer output. vectorb, which indicates the proper time shift corresponding
to the angle pairr;:
2. THEORY: CS FOR DOA ESTIMATION T
We consider cases where the source signal is known or un- (6)
known, as well as cases with one source, multiple sourcesyheret’ = t — R/c. The matrix®; is the dictionary (or,
and additive noise. sparsity basis) corresponding to all discretized anglesjiai
at thei-th sensor.
2.1. DOA Estimation of a Known Source Signal In CS, rather than sampling at its Nyquist rate, which
would enable recovery of(t), we measure linear projections

Assume that we know the source signed) and we want to  with 1/ random vectors which can be written in matrix form
determine the DOA of this source, using an array.eensors  fgor thei-th sensor:

with an arbitrary geometry. The sensor positions are asgsume

known and are given by; = [z;, ¥, z]T. When the source B; = ¢,C; = d,¥;b, (7
is in the far-field of the array, sensbsimply receives a time-
delayed and attenuated version of this source whereg, is anM x N, matrix, whose rows are random vec-
R tors selected to have minimum mutual correlation wih
Gi(t) = ws (t + Aj(mg) — C) , (2)  Then the sparsity pattern vectbrcan be found from the set

of compressive samples from all the sens@fs,.; by the
wherew is the attenuationzrs = (s, ¢s) is the angle pair solving the following¢; minimization problem
consisting of the unknown azimuth and elevation angles of . ) )
the sourceR is the range to the source, add(ms) is the b=argmin|bll;  subjectto Ab=0,  (8)
relative time delay (or advance) at th#h sensor for a source T T .

. : . . hered = [B1,...,8;]7, and A = ¥ with ¥ =
with bearin with respect to the origin of the array. w Loee o PLL . . .

grs ’ g y (@l ..., ®T)T and ® the block diagonal matrix of size

Finding the DOA is equivalent to finding the relative time ; . N
delay, so we ignore the attenuation and assume thak flae LM x LN, formed with theg,’s along its diagonal.

term is known, or constant across the array. The time delay

A, in (2) can be determined from geometry: 2.2. DOA Estimation of an Unknown Source Signal
cosfg sin g In passive sensing problems, the source sigfial is not
Ai(ms) = —nl' | sinfssings |, (3) known and is often estimated jointly with the source angle
¢ Cos ¢g pairms. Whens(t) is unknown, we cannot construdtin the

£1 minimization problem (8) to determine the sparsity pattern

X e vectorb. One alternative is to use the received signal at one
The source angle pairs lies in the product of space gonsqr (sampled at the Nyquist rate) as the presumed source

[0, 2m)9 x [0, )4, which must be discretized to form the an- signal; the rest of the sensors can still collect the congives

gle dictionary, i.e., we enumerate a finite set of angles foEampIes We call this sensor trederence sensdiRS)
both azimuth and elevation to generate the set of angle pairs The reference sensor records the signdt) at a high

B = {my,ms,...,my}, whereN determines our resolution. sampling rate. We can calculate the time shift for serisor
Let b denote the sparsity pattern which selects members of tnﬁith respect to the RS using (5). Thus, the data at seifsor
Qiscretized angle-pair s&, i.e., a non-zero positive value at an unknown source at bearing; is ¢; () = Co(t + Ay (rs)).
index; of b selects a target at the az-el palr'fo;. When we The sparsity basis matri#; for sensor; can be constructed
have only one source, we expect the sparsity pattern vé)ctorusing proper shifts of(t) for eachrr; in B. Hence, not

to have only one non-zero entry, i.e., maximal sparseness. knowing the source signal incurs a cost of Nyquist rate sam-

r\]Ne can relgltg thelbeanng sp?hgty pattern vfelznlmee}rly pling at one of the sensors, but high data sampling rates from
to the received signal vector at thh sensor as follows: the rest of the array elements are still avoided.

Ci = ‘Ilibv (4)

wherec is the speed of the propagating wave in the medium,

2.3. Effects of Additive Sensor Noises

=Gt t ot N1 '
Ci= |G (to), Gi{to+ F ) Gi{fot F., ’ Ingeneral, the-th sensor receives a noisy version of the RS
(5) signal (or the source signal) 88t) = (o(t + Ai(0s, ds)) +




n;(t). Then the compressive measuremejtat thei-th sen- We make two assumptions: first, that the cross correla-

sor have the following form: tion is small—this is the incoherence assumption; second,
that the signals decorrelate at small lags, i.e., the autoco

Bi=iCi = ¥ib+u ©) relations are peaked at zero lag. Then we can examine

whereu;, = ¢;n; ~ N(0,02) and n; is the concate- the constraint in (10), and observe that in order to make

nation of the noise samples at the sengowhich is as- A’ 8 — A_TAb small we should make sure that the large
sumed to be\N'(0,02) Since ¢, is deterministic, we have elements in the vectad™ 3 are cancelled by the large terms
1Y n (3 ' . T . .
o2 = (Zgil $%)o2. Hence, if we constrain the norm of the N ATAb. With our assumptions, the two largest elements
&, vectors to be one, ther? = 2. in A* 3 occur whenr,, = w; andw,, = m,, because these
’ With the construction o8 angA in Sect. 2.1, the sparsity aré cases where we have peaks in the autocorrelations, i.e.,

pattern vectob can be recovered using the Dantzig selectort11(28i(m1), A(m1)) and Raz (A, (m2), A(mrz)). When we
[6] convex optimization problem: cancel the elemen®,;(A;(m1), A(w)), we use the row of

A AT Ab corresponding tar,, = m, So the vectolb must
b=argmin|bll; st [[AT(B—Ab)|. <eno. (10)  select the column where, = ;. Likewise, to cancel the

. : I elementRqz(A;(m2), A(wz)), we use ther,, = w5 row and
Selectingsy = v/21log N makes the trué feasible with high = ! .
probability. The optimization problems in (8) and (10) boththem = > column. Our assumptions say that all the other

minimize convex functionals, a global optimum is uaran-aememS will be relatively small.
teed - adg P 9 The bottom line of this analysis is that the Dantzig Selec-

tor constraint, with a well-chosen will allow the matching

of the two signals at their true bearings. Then themini-
mization of the selector vectdérwill tend to pick the signals
Now assume we have another soussé) impinging on the whose autocorrelation is large. The preceding analysidean
array at the bearingr,. If s5(t) is non-coherent withs, (¢) ~ Modified for the case where the signals have different ampli-
we can show that its effect is similar to additive noise wherfudes, but when the relative amplitudes become too difteren
we are looking in the direction of the first source signal. InWe expect that thé; minimization would pick the larger of
order to show that this additive noise behavior is a correcthe two.

2.4. DOA Estimation of multiple unknown sources

interpretation, we examine the constraint in (10) whichdge This same reasoning can be extended to the caseRvith
a sparse solution fdr even in the presence of noise. unknown sources at bearing®, ¢1), (62, ¢2), ..., (0p, p),
The recorded RS signal is impinging on the array of sources. A possible scenario is
shown in Fig. 1. Sensarreceives a delayed combination of
Co(t) = s1(t) + s2(t) (11)
assuming equal amplitude signals. The shifted RS signal at , b
thei-th sensor is ' /Source‘l
Source 2
Co(t+Ai(mn)) = s1(t+ Ai(my)) + s2(t + Ai(mn)) (12)
when the assumed bearing7s,, and this signal is used to [ P
populate thea-th column of theA matrix. On the other hand, ® ®
the true received signal at thi¢h sensor is | | . @
Gi(t) = s1(t+ Ay(my)) + sa(t + Ay(m2)) (13) i {"‘,\ i'l \J i & \\‘\\\\Ii’eference
Random Matrix ; Sensor
where we have different time shifts for the two signals. for this node Compressive
The terms in the Dantzig Selector (10) constraiat, 3 CS measurements ~ Sensor
andA” A are actually auto- and cross-correlations. Adr3
we get a column vector whoseth element is Fig. 1. Sensor setup for compressive beamforming

Ri1(Ai(my), A(1)) + Ria(Ai(my), A(me))+  (14)
Ria(Ai(my), A1) + Raa(Ai(my,), Amrs)) (15)

where Ry, is the autocorrelation of signal (¢), Rs2 the au- N A . 1
tocorrelation ofss(t), and Ry, the crosscorrelation. For the G(t) = Z st + Ai(0s, 85)) + mi(t)- (18)
matrix A” A, the element in the-th row andr-th column is
‘ _ If the non-coherency between sources is satisfied then we can
Rua(Ai(ma), Alme)) + Fao(Ai(ma), Almr))+ - (16) extend the two-source analysis above to fh@ource case,
Rip(Ai(mn), A(mr)) + Roa(Ai(mn), Alr,)) (17)  and claim that the Dantzig Selector constraint will favae th

source signals as

p=1



correct source bearings. Thus, theminimization problem
in (10) will reconstruct the appropriate selector vedtérom
one RS signal and — 1 compressed sensor outputs.

3. SIMULATIONS

Finally, a test example is shown to illustrate the ideas pre-
sented in the previous section.

Two synthetic speech sources are taken and placed in the
far field of a linear array of 11 sensors placed on ‘thaxis
uniformly with 0.25 m spacing. The middle sensor is selected
as the reference sensor which is taken to be at the origin.
The two sources are placed at angdg8s and78°. The two
sources are WAV files that we assume are unknown. The first
source reads “Houston we have a problem,” and the second
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reads “Remember. The force will be with you. Always.” The Fig- 2. (a) Source signals, (b) Noisy compressive measure-
source signals used in our simulation are shown in Fig. 2(ajnents from all sensors, (c) MVDR result, (d) Compressive
The RS signal is the sum of the two source signals. beamformer result.

Segments of lengthv, = 8000 are extracted from the

source signals witlty = 5000 to be used in the processing. works where arrays would be formed from distributed sen-
Each sensor takes only 15 compressive measurements whighys [7].

makes a total of 165 measurements. Therefore, the total mea-
surement number is much less than the standard time sample
numbers of the signalsy;. This is because we are not trying

to reconstruct the signals. We are only reconstructing DOAﬁ]
in 6 space, which has a resolution16fand length ofi81 for

this example. The entries of the random measurement ma-
trices for each sensor is drawn randomly fraf0, 1) inde-  [2]
pendently. WGN is added to the compressive measurements
with signal-to-noise ratio (SNR) equal$) dB. Figure 2(b)
shows the compressive measuremeptsfrom all sensors.
These measurements are the only information we have about
the sources along with the RS data. For the Dantzig Selectd?
constraint, we use = 3/2log No = 0.98 for this exam-

ple. Solution of th¢; minimization problem in (10) gives the [4] J. J. Fuchs

result in Fig. 2(d).
If all the sensors had samples of their received signals at a
high sampling frequency we can apply MVDR and we would
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