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Abstract

We study the regret of an online learner playing a multi-round game in a Banach space
B against an adversary that plays a convex function at each round. We characterize the
minimax regret when the adversary plays linear functions in terms of the Martingale type
of the dual of 8. The cases when the adversary plays bounded and uniformly convex
functions respectively are also considered. Our results connect online convex learning to
the study of the geometry of Banach spaces. We also show that appropriate modifications
of the Mirror Descent algorithm from convex optimization can be used to achieve our regret
upper bounds. Finally, we provide a version of Mirror Descent that adapts to the changing
exponent of uniform convexity of the adversary’s functions. This adaptive mirror descent
strategy provides new algorithms even for the more familiar Hilbert space case where the
loss functions on each round have varying exponents of uniform convexity (curvature).

1 Introduction

Online convex optimization [1, 2, 3] has emerged as an abstraction that allows a unified treatment of a
variety of online learning problems where the underlying loss function is convex. In this abstraction,
a T-round game is played between the learner (or the player) and an adversary. At each round
t € {1,...,T}, the player makes a move w; in some set Y. In the learning context, the set W will
represent some hypothesis space. Once the player has made his choice, the adversary then picks a
convez function ¢; from some set F and the player suffers “loss” ¢;(w;). In the learning context,
the adversary’s move ¢; encodes the data seen at time ¢ and the loss function used to measure the
performance of w; on that data. As with any abstraction, on one hand, we lose contact with the
concrete details of the problem at hand, but on the other hand, we gain the ability to study related
problems from a unified point of view. An added benefit of this abstraction is that it connects online
learning with geometry of convex sets, theory of optimization and game theory.

An important notion in the online setting is that of the cumulative regret incurred by the player
which is the difference between the cumulative loss of the player and the cumulative loss for the best
fixed move in hindsight. The goal of regret minimizing algorithms is to control the growth rate of
the regret as a function of T'. There has been a huge amount of work characterizing the best regret
rates possible under a variety of assumptions on the player’s and adversary’s sets W and F. With
a few exceptions that we mention later, most of the work has been in the setting where these sets
live in some Euclidean space R?. Whenever the results do not explicitly involve the dimensionality
d, they are also usually applicable in any Hilbert space §). There also has been a lot of work dealing
with ¢, spaces for p € [1,2]. But here, the fact exploited is that a strongly convex function, (with
dimension-independent constant of strong convexity) is available in these Banach spaces. There has
been less work dealing with arbitrary Banach spaces (where strongly convex functions might not
exist). Our focus in this paper is to extend the study of optimal regret rates to the case when the
set W lives in a general Banach space B.

Before we explain what our specific contributions are, let us briefly mention two examples to
show why one might want to move beyond Hilbert spaces and consider general Banach spaces. A
first family of examples is ¢, spaces with p > 2. As p grows, the ¢, balls become larger and thus
have better approximation properties. On the other hand, as we show below, the cumulative regret
rate when competing against a fixed size ball in ¢, is O(T'/P). So, there is a trade-off here between



approximation properties and the regret rate (or the estimation error in a stochastic setting). In
high-dimensions, one can easily construct examples where the approximation property dominates
the trade-off and it is advantageous to use p > 2 even though the estimation error suffers (see
appendix for a worked out example). Another example is prediction with squared loss where the
learner is trying to predict a signal y; given input z;. At each step, the learner chooses a function fi
and suffers the loss (y; — fi(7;))%. Here, the viewpoint of considering f; as a “point” in a function
space is very fruitful and it very natural to assume that the space of functions that the learner can
use is a Banach space of functions. For more details, see [4].

In the Hilbert space setting, it is known that the “degree of convexity” or “curvature” of the
functions ¢; played by the adversary has a significant impact on the achievable regret rates. For
example, if the adversary can play arbitrary convex and Lipschitz functions, the best regret possible
is O(\/T ). However, if the adversary is constrained to play strongly convex and Lipschitz functions,
the regret can be brought down to O(log T'). Further, it is also known, via minimax lower bounds [5],
that these are the best possible rates in these situations. In a general Banach space, strongly convex
functions might not even exist. We will, therefore, need a generalization of strong convexity called
q-uniform convezity (strong convexity is 2-uniform convexity). There will, in general, be a number
q* € [2,00) such that ¢*-uniformly convex functions are the “most curved” functions available on 8.
There are, again, two extremes: the adversary can play either arbitrary convex-Lipschitz functions
or ¢g*-uniformly convex functions. We show that the minimax optimal rates in these two situations
are of the order ©*(T"/?") and ©*(T?7") respectively' where p* is the Martingale type of the dual
B* of B. A Hilbert space has p* = ¢* = 2. We also give upper and lower bounds for the intermediate
case when the adversary playes g-uniformly convex functions for ¢ > ¢*. This case, as far as we
know, has not been analyzed even in the Hilbert space setting.

Another natural game that we have not seen analyzed before is the convex-bounded game: here
the adversary plays convex and bounded functions. Of course, being Lipschitz on a bounded domain
implies boundedness but the reverse implication is false: a bounded function can have arbitrarily
bad Lipschitz constant. For the convex-bounded game, we do not have a tight characterization but
we can give non-trivial upper bounds. However, these upper bounds suffice to prove, for example,
that the following three properties of % are equivalent: (1) the convex-bounded game when the
player plays in the unit ball of B has non-trivial (i.e. o(7T")) minimax regret; (2) the corresponding
convex-Lipschitz game has non-trivial minimax regret; and (3) the Banach space % is super-reflexive.

We further describe player strategies that achieve the optimal rates for these convex games. These
strategies are all based on the Mirror Descent algorithm that originated in the convex optimization
literature [6]. Usually Mirror Descent is run with a strongly convex function but it turns out that
it can also be analyzed in our Banach space setting if it is run with a g-uniformly convex function
W. Moreover, with the correct choice of W, it achieves all the upper bounds presented in this paper.
Thus, part of our contribution is also to show the remarkable properties of the Mirror Descent
algorithm.

Our final contribution is an adaptive algorithm, building on previous work, that adapts to the
exponent of uniform convexity in the adversary’s functions. Our results have novel implications even
in a Hilbert space. For example, [7] showed how to adapt to an adversary that mixes linear and
strong convex functions in its moves. We can now allow this mix to also consist of functions with
intermediate degrees of uniform convexity.

Related work The idea of exploiting minimax-maximin duality to analyze optimal regret rates
also appears in the recent work of Abernethy et al. [8]. The earliest papers we know of that explore
the connection of the type of a Banach space to learning theory are those of Donahue et al. [9]
and Gurvits [10]. Mendelson and Schechtman [11] gave estimates of the fat-shattering dimension
of linear functionals on a Banach space in terms of its type. In the context of online regression
with squared loss, Vovk [4] also gives rates worse than O(v/T) when the class of functions one is
competing against is not in a Hilbert space, but in some Banach space. He also mentions “Banach
Learning” as an open problem in his online prediction wiki>. For recent work exploring Banach
spaces for learning applications, see [12, 13, 14]. These papers also give more reasons for considering
general Banach spaces in Learning Theory.

Outline The rest of the paper is organized as follows. In Section 2, we formally define the minimax
and maximin values of the game between a player and an adversary. We also introduce the notions
of Martingale type and uniform convexity from functional analysis. Section 3 considers convex-
Lipschitz and linear games. A key result in that section is Theorem 4 which gives a characterization

'Our informal ©*(-) notation hides factors that are o(7) for every e > 0.
*http://onlineprediction.net/?n=0pen.BanachLearning



of the minimax regret of these games in terms of the type. Convex-bounded games are treated in
Section 4 and the equivalence of super-reflexivity of the space to the existence of player strategies
achieving non-trivial regret guarantees is established (Corollary 6). We next consider the case when
the adversary plays “curved” functions in Section 5. Here the regret depends on the exponent of
uniform convexity of the functions played by the adversary (Theorem 8). In Section 6, we describe
player strategies based on the Mirror Descent algorithm that achieve the upper bounds presented
in Section 3 and Section 4. In Section 7, using the techniques of Bartlett et al. [7], we give a player
strategy that adapts to the exponent of uniform convexity of the functions being played by the
adversary. We conclude in Section 8 by exploring directions for future work including a discussion
on how the ideas in this paper might lead to practical algorithms. All proofs omitted from the main
body of the paper can be found in the appendix.

2 Preliminaries

2.1 Regret and Minimax Value

Our primary objects of study are certain T-round games where the player P makes moves in convex
set W contained in some (real) separable Banach space 8. The adverary A plays bounded continuous
convex functions on W chosen from a fixed function class F. topology induced by the norm ||¢|| :=
Supw ey [(w)]. The game proceeds as follows.
Fort=1toT
e P plays w; € W,
e A plays ¢; € F,
o P suffers £;(wy).
For given sequences wi.r, £1.7, we define the regret of P as,

T T
Reg(wi.r, l1.7) := th(wt) - “}gf/\}zft(w) .
=1 =1

Given the tuple (7,8, W, F), we can define the minimax value of the above game as follows.
Definition 1. Given T > 1 and B, W, F satisfying the conditions above, define the minimaz value,

V W,F):= inf sup--- inf sup Reg(wi.p,l1.7) .
T ( ) w1€W€1€I.;: WTGWéTepf g(wi.r, l1.7)

When T and B are clear from context, we will simply denote the minimax value by V- (W, F). A
player strategy (or P-strategy) W is a sequence (Wi, ..., Wr) of functions such that W; : Ft=1 — W.
For a strategy W, we define the regret as,

T T
Reg(W, b1.r) == > li(Wi(lre—1)) — inf > Li(w) .
t=1 t=1

In terms of player strategies, the minimax value takes a simpler form,

Vr.s W, F) = inf sup Reg(W, l1.7) ,
W ot

where the supremum is over all sequences £1.7 € F*. Let ) denote distributions over F7. We can
define the maximin value,

Urs W, F) = sgp iglvf E¢,.rnq [Reg(W, b))

One has that
Vs W, F) > Urs W, F) . (1)

This inequality will be the starting point for our subsequent analysis. For more about the minimax
and maximin values refer, [15, p. 31].

2.2 Martingale type and Uniform Convexity

One of the goals of this paper is to characterize the minimax value in terms of the geometric
properties of the space %6 and “degree of convexity” inherent in the functions in F. Among the
geometric characteristics of a Banach space B, the most useful for us is the notion of Martingale



type (or M-type) of B. A Banach space B has M-type p if there is some constant C' such that for
any T > 1 and martingale difference sequence di,...,dr with values in B,

T T 1/p
E[ S sc(Zﬂ«:mdtm) . (2)

We also define the best M-type possible for a Banach space,
p*(B) :=sup{p : B has M-type p} . (3)

A Banach space B has M-cotype q if there is some constant C such that for any 7" > 1 and martingale
difference sequence dg,...,dr with values in B,
] : (4)

T 1/q T
(ZE [Ildtllq]> <CE||> d
t=1 t=1

A closely related notion in Banach space theory is that of super-reflexivity. Refer [16] for more
details.

Definition 2. A Banach space B is super-reflexive if no non-reflexive space is finitely representable

in B.

A result of Pisier [16] shows that a Banach space 9B has non-trivial M-type (p* > 1) (or equivalently
non-trivial Martingale co-type) if and only if it is super-reflexive.

To measure the “degree of convexity” of the functions played by the adversary, we need the
notion of uniform convexity. Let || - || be the norm associated with a Banach space 8. A function
£: 9B — R is said to be (C, q)-uniformly convex on B if there is some constant C' > 0 such that, for
any vi,ve € B and any 6 € [0, 1],

(0v1 + (1= B)va) < 0L(v1) + (1 — B)(vy) — 2L

[vi—val* .
If C > 1 we simply say that the function ¢ is g-uniformly convex.

The following remarkable theorem of Pisier [17] shows that the concept of M-types and existence
of uniformly convex functions in the Banach space are intimately connected.

Theorem (Pisier). A Banach space B has M-cotype q iff there exists a g-uniformly convex function
on *B.

Now consider some p € [1,p};;(B*)). Then, by definition, B* has M-type p. It is a fact that B*
has M-type p iff B has M-cotype ppj [16, Chapter 6]. Thus, B has M-cotype p%l. Now, Pisier’s
theorem guarantees the existence of a Iﬁ—uniformly convex function on B.

For a convex function ¢ : 8 — R, its subdifferential at a point v is defined as,
H(V)={AeB* : W, V) >UV)+ AV —V)}
where 8* denotes the dual space of B. This consists of all continuous linear functions on 8 with

norm defined as [|€[|, := Supy,.|w|<1 £(W). If OL(v) is a singleton then we say ¢ is differentiable at v

and denote the unique member of 9¢(v) by V{(v). If £ is differentiable at vy, define the Bregman
divergence associated with ¢ as,

Ay (v1,ve) =4L0(vi) — U(ve) — Vi(ve)(vi — v2) .

Recall that a function ¢ : % — R is L-Lipschitz on some set W € B if for any vi,ve € W, we
have ¢(vy) — £(ve) < L|vi — va||. Given a set W in a Banach space B, we define the following
natural sets of convex functions on W,

lin(W) := {¢ : ¢ is linear and 1-Lipschitz on W} |
cvx(W) :={¢ : {is convex and 1-Lipschitz on W} |
bdd(W) :={¢ : ¢ is convex and bounded by 1 on W} ,
cvxg (W) = {€ : ¢ is g-uniformly convex and L-Lipschitz on W} .
In the following sections, we will analyze the minimax value V' (W, F) when the adversary’s set of

moves is one these 4 sets defined above. For readability, we will drop the dependence of these sets on
W when it is clear from context. For example, we will refer to V- (W, cvx(W)) simply as V (W, cvx).



3 Convex-Lipschitz and Linear Games

Given a Banach space B with a norm || - ||, denote its unit ball by U (B) := {ve B : |v| < 1}.
Consider the case when the P’s set W is the unit ball U (8) for some B. This setting is not as
restrictive as it sounds since any bounded symmetric convex set K in a vector space V gives a
Banach space B = (V| - ||x), where we equip V with the norm,

IVl :=inf{a >0 : veaK} . (5)

Moreover, (the closure of) K is the unit ball of this Banach space.

So, fix B and consider the case W = U (B), F = cvx(W). Theorem 14 given in [5] gives us
VW,cvx) = V (W,lin). We are therefore led to consider the case W = U (B), F = lin(W).
Note that lin()V) is simply the unit ball U (*). The theorem below relates the minimax value
V (U (8B),lin) to the behaviour of martingale difference sequences in B*.

Theorem 3. The minimaz value V (U (B),lin) of the linear game is bounded as,

I}

where the supremum is over distributions M of martingale difference (¢)]_, such that each {; €

U (B).

Proof. Recall that we denote a general distribution over A’s sequences by @ and P-strategies by W.
Equation (1) gives us,

T

Db

V(U (3B),lin) > supE
M t=1

V (W,./T) Z sup IIIflVf ]EelzTNQ [Reg(W, El:T)] .
Q
If we define Vg := infy By, .~ [Reg(W, £1.7)] we can succinctly write, V (W, F) = supg Vo.
Now, let us fix a distribution @ and denote the conditional expectation w.r.t. ¢1.; by E;[-] and

the full expectation w.r.t. ¢1.7 by E[]. Substituting the definition of regret and noting that the
infimum in its definition does not depend on the strategy W, we get

Vo > i‘glvf (E lzgt(Wt(glztl))1> - v&reluf/vzft ] : (6)

Let us simplify the infimum over P-strategies as follows,

inf IE
w

t=1 t=1 t=1

Z&(Wt(gl:tl))] lanE Bty [6e(Wi(l14-1))]] = Zivf‘}fE[Etfl [e(Wi(€1:e-1))]]

Substituting this into (6), we get,

Vo > ZE[ inf E 1[et(wt)}] —E wlngzt ]

t=1

—ELE;EEVZ —ly(w ] XT:JE[sup Ee_1[- Et(wt)]] . (7)

=1 wieW

Since the losses ¢; are linear and W is the unit ball, we can re-write the above as
T

Z —Et (W

t=1

VQZE{

) ] — > E[|Bi1 [~C(w)]|]

If we restrict ourselves to only distribution @ such that (¢,...,¢r) are martingale difference se-
quences then clearly E;_q [—f;(w;)] = 0 and so

supVQ > supE l
t=1

a

and so we get the lower bound. O



Given the above result, we can now characterize the minimax value V (U (*8),lin) in terms of
the p*(B*) where B* is the dual space of 8.

Theorem 4. For all p,p’ such that p < p*(B*) < p/, there exists a constant C such that,
Q (TW) =V (U (%B),1in) = V (U (B), cvx) < CTY? . (8)
If the supremum in (3) is achieved, the upper bound also holds for p = p*(B*).

Proof. To prove the lower bound, note that for any finite dimensional Banach space has p*(8*) = 2
with a possibly dimension dependent constant. In this case, the lower bound of /T for the linear
game game is easy: pick some non-zero vector, say ¢ € U (¥8*), and use ¢ or —¢ at random in
Theorem 3 and the lower bound follows. Therefore, assume B is infinite dimensional. The lower
bound in this case is proved using Lemma 12 which in turn is proved using ideas from [16]. Lemma
12 shows that for any p’ > p*(B*),

supy E [Hthzl d,
T1/p

— 0
However we have from Theorem 3 that

T
D _d

t=1

V (U (38B),lin) > supE
M

|

Hence we can conclude that for any p’ > p* asymptotically T'/?" is dominated by V' (U (%), 1in) and
hence the lower bound.

As for the upper bounds, if p*(B*) = 1 then the upper bound is trivial. On the other hand, when
M-type is non-trivial, then M-type p implies M-cotype g = ﬁ. Therefore, for each p € (1, p*(8*)),
B is of M-cotype ¢q. By Theorem (Pisier) , there exists a g-uniformly convex function on 8. Using
this function in the Mirror Descent algorithm, Proposition 9 yields the required upper bound. [

Although we have stated the above theorem for the special case when W = U (B) and F =
lin(U (B)), it actually gives us regret rates when P plays in r U (98) and A plays L-Lipschitz linear
functions via the following equality which is easy to prove from first principles,

V(rU(®B),Llin(U (B)))=r-L-V (U (B),lin(U (B))) . (9)
For the special case when (B, 8*) = ({,,¢,) for 1/p+1/q = 1, the rates given by the theorem above
become O(T'/P) and ©(T"/2) when p € (1,2] and p € [2,00) respectively.
4 Convex-Bounded Games

Another natural game we consider is one in which P plays from some convex set YW and A plays
some convex function bounded by 1. In the following theorem, we bound the value of such a game.

Theorem 5. For all p,p’ such that p < p*(B*) < p/, there is a constant C such that,
Q (TW> <V (U (B),bdd) < CT'/P+1/2 (10)

where ¢ = p%' If the supremum in (3) is achieved, the upper bound also holds for p = p*(B*).
Proof of Theorem 5. Let us actually consider the case W = r U (8) and F = bdd(r U (B)). The
bounds will turn out to be independent of r. Note that we have the inclusion, bdd(r U (B)) 2
11in(U (B)) which implies

V (U (B),bdd(r U (B))) > V <rU(‘B),ilin(U(%))) .

The lower bound is now immediate due to lower bound on linear game on unit ball (Theorem 4)
and property (9).

For the upper bound, note that any convex function bounded by 1 on the scaled ball U (9B) is
% Lipschitz on the ball of radius (1 — €)r [18]. Hence, by upper bound in Theorem 4 and property



(9), we see that there exists a strategy say W whose regret on the ball of radius r(1 — €) is bounded
by %T% for any p € [1,p*(B*). That is

T
> 4(Wy) =  argmin Zet < T”P Vp € [1,p"(B")) (11)
_ wer(l-e)U(®B) ;1

Let w* = argmin Zil £(w). Now we consider two cases, first when w* € (1 — €)r U (9B) In this
werU(B)

case the regret of the strategy on the unit ball is bounded by %Tl/p for all p € [1,p*(B*)). On the

other hand if w* ¢ (1 — €)r U (9B), then define w} = % Note that w} € r(1 —¢)U (%B). In

this case by convexity of Zthl £ (w), we have that

i< A Fwn - (1 57) S

Hence, we have that

im Dt < ("t ‘QZQ (1‘T(|1vv_*|€)>T<2(1‘r(|lvv_*|€)>T

However, since |[w*|| < r we see that Zthl ly(w?) — Zt 1 < 2¢T Combining with (11) we

(W)
see that for any p € [1,p*(B*)), Y1y Le(we) — So/_; be(w*) < STVP 4 2T Choosing € = |/ 525
we get the required upper bound. O]

W
g

Although we have stated the above result for the unit ball, the proof given above shows that the
bounds are independent of the radius of the ball in which the player is playing.
Theorems 4 and 5 imply the following interesting corollary.

Corollary 6. The following statements are equivalent :

1. V(U (%B),bdd) = o(T). 3. B* has non-trivial M-type
2. V(U (B),cvx) = o(T). 4. Both B and B* are super-reflexive.

Proof of Corollary 6. The implications 3 = 1 and 3 = 2 follow from the upper bounds in Theo-
rems 4 and 5. The reverse implications 1 = 3 and 2 = 3, in turn, follow from the lower bounds in
those theorems. The equivalence of 3 and 4 is due to deep results of Pisier [19]. O

The convex-Lipschitz games (and g-uniformly convex-Lipschitz games considered below) depend,
by definition, not only on the player’s set VW but also on the norm || - || of the underlying Banach
space 9B. This is because A’s functions are required to be Lipschitz w.r.t. || - ||. However, note
that the convex-bounded game can be defined only in terms of the player set W. Hence, one would
expect the value of the game to be characterized solely by properties of set W. This is what the
following corollary confirms.

Corollary 7. Let W be any symmetric bounded convex subset of a vector space V. The value of the
bounded convex game on W is non-trivial (i.e. o(T)) iff the Banach space (V, |- ||lw) (where || - ||w
is defined as in (5)) is super-reflexive.

5 Uniformly Convex-Lipschitz Games

For any Hilbert space 9, it is known that V (U ($)), cvxa, 1) is much smaller than V (U ($),lin), i.e.
the game is much easier for P if A plays 2-uniformly convex (also called strongly convez) functions. In
fact, it is known that V (U (§),cvxa,z) = ©(L?log T) while V (U (£),lin) = ©(v/T). This suggests
that we should get a rate between log(T") and /T if A plays g-uniformly convex functions in a
Hilbert space $ for some ¢ > 2. As far as we know, there is no characterization of the achievable
rates for these intermediate situations even for Hilbert spaces. Our next result provides upper and
lower bounds for V' (U (*B), cvxy, 1) in a Banach space, when the exponent of A’s uniform convexity
lies in an intermediate range between its minimum possible value ¢* and its maximum value oco. It
is easy to see that the minimum possible value ¢* is p*(B*)/(p*(B*) — 1).



*

Theorem 8. Let ¢* = % and q € (¢*,00). Let p = q/(q—1) be the dual exponent of q. Then,
as long as cvxg 1, is non-empty, there exists K that depends on L such that for all p' > p*(B*),

1\1, 1 12 . (o
Q ((1 - L) ];Tl pw) <V (U (B),cvx, ) < KTmn2-p /P (B0} (12)
Proof. We start by proving the lower bound. To this end note that if cvx,  is non-empty, then

the adversary plays L-Lipschitz, g-uniformly convex loss functions. Note that given such a function,
there exists a norm |-| such that |-| < ||-|| < L|-| (ie. an equivalent norm) and % |-|* is a g-uniformly

convex function [20]. Given this we consider a game where adversary plays only functions from

1
lincvx, (W) := {{(w) = (w,x) + p lw|?:|z| <L-1}

Note that since the above is L-Lipschitz w.r.t. |-|, it is automatically L-Lipchitz w.r.t. |-||. Hence
linevx, r, C cvxg 1, and so we have that V (U (B), lincvx, 1) <V (U (B), cvxy, ) However note that
V(U (8),lincvxg 1) > i‘?vf supE¢,..~p Reg(W, {1.7) (13)
P
Also note that
S [wi” S [wl°
Reg(W, 41.7) = X¢, W +) inf (x,w +)
;i) = 37 (v + 0 ) =it 3 (6w + 5
T q T q
1
=Z<<xt,wt>+| ! )+T swp (S ww ) - L
P weU(®) T~ q
T T
[[we | 1 [l
> <<Xt, )+ +T" sup —m )XW ) —
; L wel () T ; q

_1NT
|wm>+THTZM&*
q

Where the last step is by definition of convex dual of w. Now note that since we have a supremum
over distribution in (13), and so we can lower bound the value by picking distribution such that

dy,...,dr are martingale difference sequences and d; € %U (%B*). Thus we see that
_ . . v
V(U (%) linc ) > su 1anE i <<d W > + ”thlq) N TP H_thl dtH*
) VX s - )
q,L Mp W 2 t, Wi Lq D
_ _ T p
o], T2l
=sup{ in
M| W L p
1— T P 1— T P
| >y W W G | =T N
= sup x > * (14)
M p p

where the first equality is because w; is only dependent on the history and so the conditional
expectations over d; are 0 and the last step is due to Jensen’s inequality. Now note that using
Lemma 12 we see that for any p’ > p* we have that

1-p+ B
; T
V(U (B),lincvx, ) = Q ((1 — %) 5 L ) (15)
(the 1 — 1/L term above comes from the fact that the martingale differences come from ball of
radius 1 —1/L while Lemma 12 is over unit ball). Note that the above lower bound becomes 0 when
L =1 but however in that case it means that the adversary is forced to play 1-Lipschitz, g-uniformly
convex function. However since from each g-uniformly convex L-Lipschitz convex function we can



build an equivalent norm with distortion 1/L, this means that the function the adversary plays can
be used to construct the original norm itself. From the construction in [20] it becomes clear that
the functions the adversary can play can be merely the norm plus some constant and so the lower
bound of 0 is real.

Now we turn to proving the upper bound. Consider the regret of the mirror descent algorithm
when we run it using a ¢*-uniformly convex function ¥ that is C-Lipschitz on the unit ball. Here,
for simplicity, we assume that the supremum is achieved in (3) (otherwise we can pick a ¥ that is
¢’-uniformly convex for ¢’ = p’/(p’ — 1) where p’ = p*(B*) — 1/log T and pay a constant factor).
Note that in the case when g > ¢* + 1, we have that each o} = 0 and so by Theorem 10,

T p* T p*2—p*
Reg(wi.r,f1.7) <2 min Z (LJF—C)*_l 4+ 22 AC < 2min % +2T)\C
Mo Ar 4 (Z /\.>P po b AP
- J<t 77 -
Using A\ = Wg)lm we see that Reg(wi.r, l1.7) < 8(20)1/q*(L + C)Tl/”* On the other hand
when ¢ < g* + 1, using the upper bound in the theorem with A\; = 0 for all £ we see that since all
¢ = q and all o7 =1 and L; = L we find that the regret of the adaptive algorithm is bounded as

T

Reg(wir, i) <3 (2(L LS/ C/h s CW) S ATy C)pflT L

tp—1 tp*—1 — tp—1 tp—1

Hence we see that for p < p*(B*) < 2, Reg(wir,lir) < %T%p. Since the re-
gret of the adaptive algorithm bounds the value of the game, we see that by picking constant
K = max{%, 8(2C)"9" (L + C)} we get the required upper bound. O

The upper and lower bounds do not match in general and it is an interesting open problem to
remove this gap. Note that the upper and lower bounds do match for the two extreme cases ¢ — ¢*
and ¢ — co. When ¢ — ¢*, then both lower and upper bound exponents tend to 2 — p*(8*). On
the other hand, when g — oo, both exponents tend to 1/p*(5*).

6 Strategy for the Player

In this section, we provide a strategy known as Mirror Descent and is given as Algorithm 1 below
which uses uniformly convex function ¥ as internal regularizer and is guaranteed to achieve low
regret.

Algorithm 1 Mirror Descent (Parameters : 7 > 0, ¥ : 8 — R which is uniformly convex)

fort=1to T do
Play w; and receive ¢;
Wi — VI (VU (w,) —nA;) where Xy € 04y(wy)
Update w41 < argmin Ay (W, W) 4)
wew

end for

Example : As a more concrete example for the above strategy, if we consider the case where the

player plays from the unit ball of a d dimensional ¢, space. In this case ¥(w) = %”W”g/ where
¢’ = q whenever ¢ > 2 and ¢’ = 2 otherwise. The corresponding dual then is U*(x) = %Hng where

p' =pif ¢ > 2 and p’ = 2 otherwise. Correspondingly we get
VU (w) = [wl]|? 79 (signwy)|wi[97Y, ... sign(wa)[wg|?")  and

VI*(x) = ||x||q1_q (sign(xl)\xﬂq_l, o 7sign(xd)|xd|q_1)

We can use this to update w;_; and get a concrete algorithm from the above strategy.
The following proposition gives a regret bound for Mirror Descent.

Proposition 9. Suppose W C B is such that ||w| < B. Let MD denote the P-strategy obtained by
running Mirror Descent with a function VU that is q-uniformly convex on B and C-Lipschitz on W,
and the learning rate n = (BC/T)Y/? - (1/L). Here, p = q/(q — 1) is the dual exponent of q. Then,
for all sequences £1.7 such that ¢; is L-Lipschitz on W, we have,

Reg(MD, {1.7) = O ((BC)l/q L. Tl/p)



Proof. For A € B*,w € B we denote the pairing A(w) by (A, w) where (-,-) : B* x B — R. This
pairing is bilinear but not symmetric. We will first show that, for any w € W,

D
n{Ae, we —w) < Ag (W, wy) — Ay (W, Wipq) + %H)\tﬂf ; (16)

where p = ¢/(q — 1). We have,

N (A, W — W) = (NAg, Wy — Wip1 + W1 — W)
= (A, Wi — Wip1) + (A + VU (Wyp) — VI (W), Wi — W)

S1 S2

+ <V\I/(Wt) — V\I/(Wt+1), Wiyl — W> (17)

53

Now, by definition of the dual norm and the fact that ab < %p + % for any a,b > 0, we get

1 1
s1S lltwe = wipa)l[ - Al < Zllwe = weal| + ZlinAdli

By the definition of the update, w; 1 minimizes (nA; — V¥ (w;), w)+¥(w) over w € W. Therefore,
s9 < 0. Using simple algebraic manipulations, we get

53 = Ay (W, W) — Ay (W, Wip1) — Ay (Wip1, Wy) .

Plugging this into (17), we get

P 1
N{Ae, we —w) < Ay (W, wy) — Ag (W, Wipg) + %H)\tHf + 5||Wt w7 — Ay (Wip1, we)

S4

Using that ¥ is g-uniformly convex on B implies that s4 < 0. So, we get (16).
We can now bound the regret as follows. For any w € W, since A\; € 0 (w,), we have,
li(wy) — Ly (w) < (A, Wy —w) . Combining this with (16) and summing over ¢ gives,

T T
A , —A , p—1
Z(ft(wt) _y(w)) < B (w,w1) : v (W, Wri1) " 77p ZH)\tHf '
t=1 t=1

Now, Ay (W,wry1) > 0 and Ay (w,wy) < 2BC. Further | A||s < L since ¢ is L-Lipschitz.
Plugging these above and optimizing over 7 gives the required upper bound. O

Note that all the above algorithm needed to achieve low regret was a uniformly convex function

V. Theorem (Pisier) [16] gives us exactly this, it guarantees existence of a ~E7-uniformly convex
function on a given Banach space for any p € [1,p*(28*)) thus making sure that the above mirror

descent algorithm with this choice of ¥ gives us the optimal rate for convex lipschitz games.

7 Adaptive Player Strategy

A natural extension of the g-uniformly convex lipschitz game is a game where at round ¢, A plays
¢¢ uniformly convex functions. In this section, we give an adaptive player strategy for such games
that achieves the upper bound in Theorem 8 whenever the adversary plays only g-uniformly convex
functions on all rounds and in general gets intermediate rates when the modulus of convexity on
each round is different.

Now for the sake of readability, we assume that the supremum in (3) is achieved. The following
theorem states that the same adaptive algorithm achieves the upper bound suggested in Theorem 8
for various g-uniformly convex games. Further the algorithm adjusts itself to the scenario when A
plays a different (o, ¢;)-uniformly convex function at each round ¢. To see thislet, o = 011y, <g 13-
In the above algorithm we set at each round A; that satisfies,

o

Ml

20)%:2 - T 77 + - 1)\‘ 27T s
e W )

* g >
j<t| My M{ MEJ M;z*

(18)

where My = L;+C'. The following theorem which upper bounds the regret of the adaptive algorithm.



Algorithm 2 Adaptive Mirror Descent (Parameters : ¥ : 8 — R which is ¢*-uniformly convex)

C « Lipschitz constant of ¥ on U (B), wy < 0, &1 «— 0
fort=1to T do
Play w; and receive ¢; which is L;-Lipschitz and (o, ¢;)-uniformly convex
Pick \; that satisfies (18)
Dy — O+ 4+ NP
Wi — VO (VOi(wy))

Update w41 < argmin Ag,,, (W, W}, ;)
wew

end for

Theorem 10. Let W = U (®B). Let AMD denote the P-strategy obtained by running Adaptive
Mirror Descent with a ¥ which is ¢~ = % uniformly convex. Then, for all sequences {y.7

such that ¢y is Ly-Lipschitz and (o, q)-uniformly convez, we have,

T 207
a4
Reg(AMD, t1.7) < mlnz > M = | + — 2 ——1 +2\C
t=1 i<t<2[ 4 AJ}D ( [Uj. —7*)
=\l Mt M el M g

Proof. Note that f; = ¢ + A\ ¥, U is ¢*-uniformly convex and ¢; is (o, ¢¢)-uniformly convex. Hence,
. N .
g, (Wi We) = T [why — Wil + 2wl — w|s
Where o} = 0 4, <q+41)- Now since @41 =) ., f;, we see that

A<1>t+1 (Wt»W;-H) = <V<I)t+1(wt) - V‘I’Hl(wéﬂ),wt - W;+1> - A<1>t+1 (W;+17Wt)

= <Vft(Wt)7Wt - W;+1> - A<I>t+1 (W1/5+1:Wt)
t t
* ; *
<AV fe(we), We = Wip) — E T llwis — wil|™ — E 2 wign — wi|?

=1 =1

Now consider any arbitrary sequence f31, ..., B2¢ of non-negative numbers such that ZZ 1 Bi=1.In
this case note that by Fenchel-Young inequahty7
2t t O"-k t )\ .
Ap,y (We,wipg) < Z (BiV fe(we), We — Wig1) — Z j\|W§+1 —wi||* — Z q—zHW;_H —wil|?
i=1 i=1 ** i=1
Bl IIVft (w2 B IV felwe) |2 6”’ Lt +OP B (L + O
<Z < *)pi/ai + PP */a* <Z ¥ypi/ai + PP */a*

In the above we used the fact that since ¢; is L;-Lipschitz and ¥ is C—Llpschitz so that, |V fi(wy)||, <
(Lt + C) (we were able to get rid of the A\; because we use Ay < 1 and so L; + \;C < L; + C). Now

3 ; , of : , A .
choosing Vi < t, 3; Tro)T and Vit < i < 2t, B; « Trrcye We see that
t o N
L+C)% Li+C)a*
A S (Wt7W;+1) < Z (U: ) 1 77 T ( ! ) o
1 O e e 5 s s
J=1 \(L+C) % (L¢+C)a p =1 \ T r )T (Li+CYa~
L Ai _|_ O’:
(L++C)% (L¢+C)9* (L:+C)%i

* Pi + * *
- (Zt ( G )) t o; Aj P
=L\ (Le+O)Y T (Le+C)a” 2 =1 Tor0)T T Tro

gt

94

. .
(Z (Li+C)% ) + 1
o7 X Pi . o A pr—1
=t <Z ((Lt+C)qJ T Tror )) (ijl ((LHLJO)QJ' t Tror >>

where in the first step we used the fact that p*, p; > 1 to remove them from the denominator. Thus
using Lemma 13 we conclude that

«
9

T+ Oy 1

t a;‘ Aj Pi + + o A p*—1
J J
! (Zi:l ((Lt+0)"j + (Le+C)7* )) (ijl ((LH—C)‘IJ' + (Le+C)T™ >>

Since we choose A\’s that satisfy Equation 18, using Lemma 14 we get the required statement. [J

+ 2C\¢

M-

Reg(wi.r, b1.7) < Z

t=1

<
1




Using the above regret bound we get the following corollary showing that the Adaptive Mirror
Descent algorithm can be used to achieve all upper bounds on the regret presented in the paper.

Corollary 11. There exists a ¥ which is ¢*-uniformly convex function, and using this function with
the Adaptive Mirror Descent (AMD) algorithm, we have the following.

1. Regret of AMD for convex-Lipschitz game matches upper bound in (8).

2. Regret of AMD for qg-uniformly convex game matches upper bound in (12).

8. For the bounded conver game, there exists a C > 0 such that using AMD on 1 — CT ™7 ball
achieves the upper bound in (10) for the game played on the unit ball.

Proof. Claim 2 is shown in the constructive proof of the upper bound of Theorem 8. As for claim 1,
note that this is the case of linear functions and so it is the same as adversary picking each oy = 0.
Regret in this case again can be found in the proof of the upper bound of Theorem 8 and so claim
1 also holds. As for the last claim, given claim 1, it is evident from proof of Theorem 5. O

When g1, ..., gr = 2, AMD enjoys the same guarantee as Algorithm 4 in [7] (see Theorem 4.2).

8 Discussion

In future work, we also plan to convert the player strategies given here into implementable algo-
rithms. Online learning algorithms can be implemented in infinite dimensional reproducing kernel
Hilbert spaces [21] by exploiting the representer theorem and duality. We can, therefore, hope to
implement online learning algorithms in infinite dimensional Banach spaces where some analogue of
the representer theorem is available. Der and Lee [12] have made progress in this direction using
the notion of semi-inner products. For L,(), ) spaces with g even, they showed how the problem of
finding a maximum margin linear classifier can be reduced to a finite dimensional convex program
using “moment functions”. The types (and their associated constants) of L, spaces are well known
from classical Banach space theory. So, we can use their ideas to get online algorithms in these
spaces with provable regret guarantees. Vovk [4] also defines “Banach kernels” for certain Banach
spaces of real valued functions and gives an implementable algorithm assuming the Banach kernel
is efficiently computable. His interest is in prediction with the squared loss. It will be interesting to
explore the connection of his ideas with the setting of this paper.

Using online-to-batch conversions, our results also imply error bounds for the estimation error
in the batch setting. If p*(B*) < 2 then we get a rate worse than O(T~'/2). However, we get the
ability to work with richer function classes. This can decrease the approximation error. The study
of this trade-off can be helpful.

We would also like to improve our lower and/or upper bounds where they do not match. In this
regard, we should mention that the upper bound for the convex-bounded game given in Theorem 5
is not tight for a Hilbert space. Our upper bound is O(7%/4) but it can be shown that using the
self-concordant barrier log(1 — ||w||?) for the unit ball, we get an upper bound of O(T?/3).
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Appendix
Lemma 12. For any Banach space B* and any p’ > p*(B*) we have that

supy B[22, |
T1/p
as T — oo, where M refers to distributions over martingale difference sequences (d¢)i_, such that
each d; € U (98*)

Lemma 13. For the Adaptive Mirror Descent Algorithm we have that
T
Reg(wi.r, l1.17) < Z (As,,, (Wi, wiyy) 4+ 2)0C)

t=1

— OO

Lemma 14. Define for any sequence A1, ..., As of any size S,

t o

ﬁ 1
051, ds) = 0 [ Y0 | = e + — +20N,

. o; j pi t or A P*
= (ijl ((Ltﬁcw + (Lt+10>q*)) (ijl ((LH-C)"" + (Lt+c>q*))

Then as long as we pick \; that satisfies FEquation 18, we have that for any T
OT()\].) ceey AT) S 2 min O{)\l, ceey AT}
Ay AT

For proofs of the above two lemma’s refer to a longer version of this paper at [22].



