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1 Introduction

Origami is a type of art first originated from Japan. It is possible to fold
many beautiful shapes in origami. Most amazingly, many astonishing pieces
of origami are produced from a single piece of paper, with no cuttings. Just
like constructions using straight edge and compass, constructions through paper
folding is both mathematically interesting and aesthetic, particularly in origami.
Some of the different categories of origami are presented below:

e Modular Origami

e Origami Tessellation

e Origami Animal




There are many other beautiful shapes that can be constructed through paper
folding. Surprisingly, it turns out that origami is much more powerful than
straight-edge and compass creations, because many things that cannot be cre-
ated using straight-edge and compass, such as the doubling of a cube and tri-
section of an angle, can be created through paper folding [3]. This result turns
out to be quite unexpected, because we can only fold straight lines in origami
due to the fact that curves are completely arbitrary in folding. Since the study
of origami is fairly recent, there is no limit yet to the type of constructions that
can be formed through paper folding.

The focus of this paper will be on deciding what kind of shapes are possible
to construct using origami, and what kind of shapes are not. It will be mainly
based on David Auckly and John Cleveland’s article, “Totally Real Origami and
Impossible Paper Folding”. Since we have yet to discover a boundary in the cre-
ation of origami, Auckly and Cleveland gave a limited definition of origami in
their paper. Although this “limited” definition excludes those properties of
origami that made them exceptionally powerful, Auckly and Cleveland man-
aged to find a way of determining which constructions are possible from the
given points and lines using this new definition. In this paper, we will first take
a look at what is constructible under the definition of origami given by Auckly
and Cleveland, and then inspect those other axioms of origami that make them
powerful.

2 Some Basics in Abstract Algebra

Before getting into origami, we need to develop a set of definitions needed to
understand the algebra in Auckly and Cleveland’s paper.

2.1 Groups

Definition 2.1. A group is a set G together with a multiplication on G which
satisfies three axioms:

a) The multiplication is associative, that is to say (zy)z = x(yz) for any
three (not necessarily distinct) elements from G.

b) There is an element e in G, called an identity element, such that xe =
x = ex for every x in G.

¢) Each element x of G has a (so-called) inverse x=1 which belongs to the

set G and satisfies t ™'z = e = xx L.

Definition 2.2. An abelian group is a group G such that for all x,y € G,
xy = yx. (In this case, xy has an invisible operator, which could either be x +y
or x X y, but not both at the same time).

Definition 2.3. A symmetric group, S,, is the set of the permutations of n
elements {x1,..., T}



Let us look at an example of symmetric group. List notation is used to
describe a set, {[s1],[s2],.--,[Sn]}, Where s1,...,s, are the elements of the
set. Using list notation, we can express the symmetric group of the elements
{z1,x2,x3}:

S3 = {[$1,$2,$3], [xl,.’l,'3,l'2], [anxlax?)]a [.1'2,3}3,1‘1], [1‘3,331,.2?2], [.’1/'3,1}2,1‘1}}

This set is consisting of all permutations of {x1, z2, 23}

2.2 Ring

Definition 2.4. A ring R is a set, whose objects can be added and multiplied,
(i.e. we are given associations (xz,y) — x +y and (x,y) — xy from pairs of
elements of R, into R ), satisfies the following conditions: [4]

a) Under addition, R is an additive, and abelian group.

b) For all z,y,z € R, we have

x(y+z)=zy+xz and (y+2)r=yx+zx

¢) For all z,y,z € R, we have associativity (xy)z = x(yz).

d) There exists an element e € R such that ex = xe = x for all z € R, where
e is the identity element.

An example of a ring is the set of integers, Z, because addition is commu-
tative and associative, and multiplication is associative. For any three integers
x,y, z, we have z(y + z) = 2y + 2z and (y + z)x = yx + zz. In addition, let the
multiplicative identity e = 1, then 1-z =2 -1 =z V x € R. Therefore, the set
of integers form a ring.

2.3 Field

Definition 2.5. A commutative ring such that the subset of nonzero elements
form a group under multiplication is called a field. [4}]

A field is essentially a ring that allows multiplication to be commutative, after
removing the zero element. For a field, everything other than the zero element
must have an inverse. Otherwise it is a ring. An example would be that the set
of integers, Z, is not a field, but the set of rationals, Q, is a field. The reason is
that integers do not have multiplicative inverse: 2 - % =1 but % ¢ 7. Matrices
are not a ring or a field, because it is not commutative under multiplication.

2.4 Polynomials

Definition 2.6. A number « is an algebraic number if it is a root of a poly-
nomial with rational coefficients. [2]



Definition 2.7. A polynomial p(z) in any field, F[z], is called irreducible
over F if it is of degree > 1, and given a factorization, p(x) = f(x)g(x), with
fyg € Flz], then deg f or degg =0. [4]

For example, consider the following polynomials:

pi(e) =2 —4 = (v +2)(z - 2)

paa)=a?— =+ 5)z3)

p1 is reducible over Z[z] because both x + 2 and = — 2 are polynomials over
integers as well. However, pa(z) is not reducible over Z[z]. It is, nonetheless,
reducible over Q [z], because both of the factored polynomials are polynomials
over Q.

Remark: Any algebraic number, a, could be expressed as a root of a unique
irreducible polynomial in Q [z], denoted by p,(z). This polynomial p, (x) will
divide any polynomial in Q [z] that has « as a root.

Definition 2.8. The conjugates of a are the roots of the polynomial p,(x).
An algebraic number is totally real if all of its conjugates are real. We denote
the set of totally real numbers by Frr. [2]

To make sense of the previous section, consider the number, /5 + 2v/2. It is an
algebraic number, since it could be expressed as a unique irreducible polynomial

in Q[x]. The other roots of this polynomials are its conjugates: /5 + 21/2.
We can see that these numbers form a unique polynomial in Q:

(o5 2v8) (- 5 2v8) (o5 2v8) (- 5 2v3)

=z — 1022 + 17

which is a polynomial with rational coefficients. Additionally, since all the

conjugates of \/5 + 2v/2 are real, /5 + 2v/2 is totally real. Additionally, the

polynomial above, p = x* — 1022 + 17, is the unique irreducible polynomial,
which will divide any polynomials in Q [z] that contains v/5 + 2v/2 as its root.
On the other hand, the number v/1 + v/2 is not totally real, because two of its
conjugates, +1/1 — /2, are imaginary.

The last topic we will go over is symmetric polynomials. We have already
defined symmetric group. The following is definition for symmetric polynomi-
als:

Definition 2.9. Let R be a ring and let tq,...,t, be algebraically independent
elements over R. Let x be a variable, and let G be a symmetric group on n



letters. Let o be a permutation of integers (ti,...,t,). Given a polynomial
f(@) =R[t1,-..,tn], we define o f to be:

Uf(tla s 7t’n) = f(ta(l)ato(Z)v cee 7t0(n))
A polynomial is called symmetric if of = f for allo € G. [4]

For example, let f(t1,t2) = t? —t3. This is not a symmetric polynomial, because
we can let 0 :t1 — to, 0 ity >ty :

B-t#0 -1 = of#f
However, t7 + t3 is a symmetric polynomial, because t3 + t3 = t3 + t3.

Knowing the definition for symmetric polynomial, let’s take a look at the fol-
lowing polynomial:

plx) = (z—t)(z—t2)---(z —tn)
= 2" —s; 2" 4 (=1)"s,

where each s; is given as:

51 = tittat-+iy

s; = the sum of all products of j distinct ¢;’s

Sp = tl't2"'tn~
The polynomials, s;(t1,...,t,), 1 < j < nare called the elementary symmetric
polynomials of tq,...,¢,. [4]

Another way to express that is:

n

H(x_tk) :Z(_l)jsj(t1,...,tn)xn_j (1)
k=1

7=0
For example, expanding (x — t1)(x — t2)(z — t3), we have:
(,T — t1>($ — tg)(l’ — tg) = :L‘3 - (fl + tg + t3)$2 + (tltz + t2t3 + t1t3) - t1t2t3

All the following polynomials,

81 = t1+ta+13
Sg = titg + tolsz + 113
s3 = tlitats

are elementary symmetric polynomials.

Now we are done introducing the definitions in abstract algebra that would
occur in this discussion of the paper folding. We can now start looking at some
properties of origami.



3 Properties of Origami

3.1 Basic Constructions

In order to understand origami construction, we will need to understand some
of the most basic folds that can be created. The following is the definition given
by Auckly and Cleveland of origami pair. This definition is the basis of what
we mean by “origami” in this paper:

Definition 3.1. {P, L} is an origami pair if P is a set of points in R? and
L is a collections of lines in R? satisfying:

a) The point of intersection of any two non-parallel lines in L is a point in

P.
b) Given any two distinct points in P, there is a line L going through them.

¢) Given any two distinct points in P, the perpendicular bisector of the line
segment with given end points is a line in L.

d) If Ly and Lo are lines in L, then the line which is equidistant from Ly and
Lo isin L.

e) If Ly and Lo are lines in L, then there exists a line L3 in L such that Ls
18 the mirror reflection of Lo about L.

Some diagrams to illustrate the above five constructions are shown in Figure 1
and 2. The dashed lines are the lines that we are constructing using origami.
They represent creases on our sheet of paper. To see some detailed illustrations
of how to obtain constructions (a)-(e), see [2].

To show that we can construct many things in origami just like construction us-
ing straight-edge and compass, let us look at the following lemma that describes
how to construct parallel lines via origami, using the definitions above:

Lemma. It is possible to construct a line parallel to a given line through any
given point using origami.

Proof. Refer to Figure 3. The line given is L, and the point given is p. We are
trying to find the line parallel to L through p. To do that, pick two points Py, P,
on L. By property (b) in the definition of origami pair, we could construct lines
Ly and Lo, which goes through P;p, Pop respectively. By property (e), we could
reflect Ly and Lo across L to obtain Lg and Ly. By property (a), the intersection
of Ly and L4 is constructible, so we could find the line, Ls, that goes between
that point and p, by property (b). Moreover, the line L5 will intersect L at a
point, according to property (a), so call this point Ps;. Then use property (c) to
construct a perpendicular bisector to pPs. Reflect L across this bisector with
property (e) would give us the resulting line. [2] O
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3.2 Origami Numbers

The objective of this paper, as stated before, is to answer which constructions
are possible using only the five axioms described before. But before getting to
that, let’s look at some definitions:

Definition 3.2. A subset of R?, P, is closed under origami construction if
there exists a collection of lines, L, such that (P, L) is an origami pair. [2]

Definition 3.3. The set of origami constructible points Py is defined as:
Po={P|(0,0), (0,1) € P andP is closed under origami constructions}. [2]

Definition 3.4. Fy = {a € R | 3 v1,v3 € P such that |a| = dist(v1,v2)} is the
set of origami numbers. [2]

It is easy to see that %, i, %, ... are origami numbers, because we can always find

the midpoint of a line through folding. But how about numbers like %, %, L7
We can show through Figure 4 that these are also origami numbers. This is
done by constructing a line parallel to the line created by points (0, %), (1,0)

through the point (0, i) It turns out that the sum, difference, product and

Figure 4: Showing that % is also an origami number

quotient of origami numbers are origami numbers. Another interesting fact is
that, one class of origami numbers could be expressed using right triangles. It
turns out, this class of origami number is the most important one that we will
be discussing. It is as follows:

vV 1+ a2 is an origami number whenever « is an origami number.

This origami number can be expressed as a right triangle, with 1 and « as the
legs of the triangle, and v/1 + a? as the hypotenuse. From this class of origami
number, we obtain the following theorem:

Theorem 3.1. The collection of origami numbers, Fq, is a field closed under
the operation o — /1 + 2. (This means that take any number o, the number
V1 + a? would give us another number o € Fy). [2]

10



For example, if a = 2, then we can construct the number /5 by making a right
triangle with legs 2 and 1. Therefore, /5 is an origami number.

For a proof of the previous theorem, please refer to [2].

Now we have the operation, o — /1 + @2, that would produce origami num-
bers. But in order to know which geometric shapes are constructible and which
are not, we will need to find out if there are more operations that would produce
origami numbers. It turns out that there are not, as we shall see.

Definition 3.5. F 4z is the smallest subfield of C closed under the operation
a— 1+ a2

By Theorem 3.1, it is true that F 4772 € Fo, since the smallest subfield closed

under the operation o — +/1+ a2 obviously should give us a collection of
origami numbers. However, as the below theorem shows, it is actually true
that F 75z = Fo. This means that the collection of origami number is a closed

field under the operation a — v/1 + 2.

Theorem 3.2. Fo =F 1755 [2]

Proof. We have already know that F 477z € Fo, so all we need to show is
that Fo € F 752 This means that we need to show any origami number may

be expressed using the usual field operations and the operation o — /1 + oZ2.
Using the five axioms for origami construction in the section before, we can limit
down to four distinct ways of constructing new origami points from old points
or lines:

a) Fold a line between two existing points, p; and py, which intersect the
given line L at point (x,y).

b) Fold a perpendicular bisector to two points, p; and ps, which intersect the
given line L at point (x,y).

c¢) Reflect a line Ly across line Ly to obtain Lg, which intersects the line L
at point (z,y).

d) Form the angle bisector, L1, which intersect the line L at the point (z,y).

Since the fourth case is already proven in [2], we will prove only the first case
instead. Refer to Figure 5 for a diagram of the first case.

To prove that the case (a) would give us Fo € F 4757, we may assume
that point p; is at the origin, because the point (z,y) can be found by adding
(P12, P1y) to the translated point. Additionally, adding and substracting origami
numbers will give us origami numbers, so this operation still preserves the clo-
sure. Furthermore, we may assume that point ps is on a unit circle, because

11



Figure 5

multiplying the scaled point by \/p3, +p3, = |paz|\/1 + (P2y/P22)? would re-

verse the scaling. Additionally, we can assume that p is the point (1,0) because
we can just apply the rotation matrix on the coordinates of ps to give us the
desired location. These operations would allow us to simplify the problem, and
assume the slope of the line pips is zero. Let the equation of the line L be,
L(z) = az + b, then the line L and pip; will intersect at (z,y) = (—2,0). We
can then apply the rotation, scaling, and translation needed to bring (z,y) back
to its correct location. Within this process of finding (x,y), we have only used
operations of the form addition, multiplication, and the operation a — /1 + 2.
Therefore, Fo = F 1757 O

Now we are ready to prove the final results of origami construction with the
five axioms described before, that is, all origami numbers are totally real. To
obtain this result, we will combine what we know of origami construction in
addition to some abstract algebra, especially the section on polynomials.

4 Possible Origami Constructions

In this section, our goal is to show that the set of totally real numbers form a
field under the operation a — /1 + 2. Obtaining this result would allow us to
define exactly what we could construct using origami. The following theorem
will be essential to the derivation of the final results in this paper.

Theorem 4.1.
Firaz CFrr

Proof. Recall our definition, that F 477z is the smallest subfield of C closed

under the operation o — 1+ a2, and Frg is the set of algebraic numbers
whose conjugates are real. Let a, 3 € Frr. We can show this theorem is true
simply by showing that —c, o~ !, V1+ a2, a + 3, a- 8 € Frg. Showing —a,
o' a+ 8, a-B € Frg is essential because in order to form a field, we need
additive and multiplicative inverses, and commutativity, associativity in the op-
erations “+” and “x”. Otherwise we do not have a field. And if we could show
at the same time that /1 + a2 € Frg, then F /i742, being the smallest subfield

12



closed under the operation a — /1 + a2, must be in Frg.

Let {a;}"; be the conjugates of o and {3;}"_; be the conjugates of 5. We
will prove the theorem by considering the following five polynomials:

Galt) = if[l<t+ai> )
() = @(t—a;l)) ([[a> ®)
pp— ﬁ(t2—1—a?> )
dorslt) = }jjﬁ(t—ai—m 6)
ws® = TIIIC -0t ©)

%

Il
_
~
Il
i

Our goal is to show that for each of the five polynomial ¢(t), all the roots of
its minimal polynomial, p(t), must be real. Let us first consider equation (4),
because this is the most important equation of the five listed above. Expanding
out equation (4) using polynomial notations mentioned before, we have:

n
¢raz(t) = [ —1-ad)
=1
= ) (~1sj(1+on, ..., 1+ ap)t"
=0

It is clear that the coefficients of the t* will be symmetric polynomials in the a;.
Therefore, by Definition 2.6 and 2.8, the polynomial ¢(¢) may be expressed as
some rational polynomial with the elementary symmetric polynomials of the o;
as its coefficients. Let p(t) be the minimal polynomial of this particular polyno-
mial ¢(t). Since (—1)7s;(a) will be the coefficients of ¢(t) for «, we may conclude
that ¢ 1752(t) € Q[t]. It is obvious that v/1 4 a? is a root of q ;742(t), there-
fore p 1752(t) divides g, /;75=(t). This also means that all the roots in p, q75=(t)
will be the roots of q 175=(t), while the converse is not necessarily true. Since
« is totally real, this mens all its conjugates, «;, must be real. Thus, 1 + a2
are all real and positive, so £1/1 4 a7 are all real as well = all of the roots of
4174z (t) are all real. But out of all the roots for (), only some of them will
be roots of q 175=(t), and these roots are precisely the conjugates of V1 + a?.

Since all of the roots of p(t) are real as well, we now conclude that /1 + a2 is
totally real.

13



We have proved that F 4752 C Frg is a true statement for the operation

a — 1+ a2. Proving the other four equations would be similar. After show-
ing that all five of the following operations, & — —a, a — a1, a — V1 + a2,
(a,8) —» a+ 3, (a,8) — a- B € Frr by considering the five polynomials, we
would have finished proving this theorem. O

The result above gives us a way of deciding which shapes are constructible
using origami, and which are not. We have concluded that all those points that
could be constructed have to be totally real. For example, it is not possible
to construct a cube that has twice the volume as the given cube, because if
this construction was possible, then 2'/3 must be an origami number, therefore
totally real. However, the conjugates of 21/3 are 21/3(—1 & éz) and 2'/3, and
the first two conjugates are not real. Since 2!/3 is not an origami number, it is
not constructible under origami operations, which makes doubling the volume
of a cube impossible to construct through origami.

It turns out that using the five axioms of origami defined previously, we can
derive an interesting connection between this kind of origami construction and
the construction using straight-edge and compass. That is:

Corollary. FEverything which is constructible with origami is constructible with
a compass and straight edge, but the converse is not true.

To see a proof of the previous Corollary, see [2].

It is the case that under the definition of origami using only the axioms de-
fined in Definition 3.1, origami seems a lot less powerful compared to straight-
edge and compass methods. There are three famous problems that occurred in
straight-edge and compass construction: doubling the area of a circle, trisection
of an angle, and doubling the volume of a cube. All three problems have been
proven to be unsolvable using straight-edge and compass centuries after people
first attempted to solve them. Nonetheless, under that particular definition of
origami, none of these three problems could be solved either.

5 The Complete Axioms of Origami

It turns out that origami construction are actually a lot more powerful than
straight-edge and compass construction. This, however, does not contradict the
result we derived previously, since we had only defined origami construction
using the set of operations allowed in Definition 3.1. This set of operations, on
the other hand, do not cover every possible construction in origami. As we shall
see, although we can only fold straight lines (since curves are more arbitrary),
some constructions that are impossible using the traditional straight-edge and
compass methods, could be achieved through origami. Two of which are the
trisection of an angle, and the doubling of a cube.

14



The following shows a visual representation of how to trisect an acute angle
using origami:

\9

B C
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o - - F - F
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(b)
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B C
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G H— H

B C

(d)
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The reason that origami is so much more powerful than given in Definition 3.1,
was that it allows the construction of folding two points onto two different lines.
The following list is the complete axioms of origami, developed by Huzita in
1992 (except for the last one, which was discovered by Hatori in 2002): [1]

a

o o

(ol

)
)
)
)

g)

Given two points, p; and ps, we can fold a line connecting them.
Given two points, p; and ps, we can fold p; onto ps.
Given two lines, [; and [, we can fold I; onto [s.

Given a point p; and a line [, we can make a fold perpendicular to [y
passing through the point p;.

Given two points p; and p; and a line /3, we can make a fold that places
p1 onto l; and passes through the point ps.

Given two points p; and ps and two lines [; and lo, we can make a fold
that places p; onto line [; and places ps onto line 5.

Given a point p; and two lines [; and [, we can make a fold perpendicular
to Iy that places p; onto line /4.

The five axioms that were mentioned in [2], which were the same axioms as in
Definition 3.1, covered only the top five of these seven axioms above. The last
two, which were not discussed by Auckly and Cleveland, are what made origami
powerful, and enabled paper folding to create what straight-edge and compass

16



cannot create. Looking at the previous figure, we can see that one of the steps
require axiom (f), which is not a legal operation defined in Definition 3.1.

The reason for such result is that straight-edge and compass method can only
create things that are solutions to quadratic equations, or other equations with
the exponent of the unknown no larger than two. For example, given a set of
lines with certain lengths, we can use straight-edge and compass to construct
any linear combination of those lines, multiply, or square root of those lengths.
Thus, the quadratic equation is the highest order of equation that straight-edge
and compass is able to solve. As a result, we cannot trisect an angle or double
the volume of a cube, since those would require solving a cubic equation, some-
thing that straight-edge and compass construction cannot do. On top of that,
doubling the area of a circle would require the construction of length 7, which
cannot even be written as a root of a polynomial with finite number of terms. [3]

However, the cubic equation can be solved using origami, through the axiom
(f). By allowing the simultaneous alignment of two different points onto two
different lines, we can solve the trisection of an angle and the doubling of a cube
problem. For details on the mathematical reasoning behind this, refer to [3]. As
a result, origami construction is more powerful in comparison to straight-edge
compass construction.

6 Conclusion

Considering that origami construction is so powerful, one might wonder why
would the authors, Auckly and Cleveland, define origami using only five of the
seven axioms, which made it seem so much less powerful? One possible expla-
nation is that we have yet to find a limit to what could be constructed through
origami. Since we have the definition of origami number, which is closed under
a — V14 a2, we can draw some similarities between that and straight-edge
and compass construction, which can carry through the operation o — +/a.
Both of these involve only solving quadratic equations. As a result, an “upper
bound” in origami construction is found. Since origami is a fairly new topic,
people have yet to find its limit in construction. For example, as mentioned
before, Humiaki Huzita, a Japanese-Italian mathematician and origami artist,
discovered six of the seven axioms of origami in 1992, but ten years later, Ha-
tori summarized another axiom. It is possible that the seven axioms mentioned
previously are not complete. New properties could always be unearthed.

In addition to these intriguing constructional properties, origami is worth study-
ing and exploring in other math related fields. For example, there is a connection
between origami and topology, even to graph theory, something that we don’t
usually assume origami would associate with. Even beyond its mathematical
properties, they are practically useful and artistically pleasing.
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