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ABSTRACT

This note is a brief review of on-going work on parallel, adaptive. hp-methods and
on domain decomposition and preconditioning schemes for such methods.

1 INTRODUCTION

For the better part of a decade, we have been working on hp-version finite element
methods with the hope that they could be used to create a significant advance in
computational mechanics which featured a number of lofty goals:

• exponential convergence (thereby giving good answers with orders-of-magnitude
fewer degrees of freedom than conventional FEMs)

• error estimation and control (thereby giving users control of the computa-
tional process and a measure of solutions quality)



2. derivation of rigorous and practical a posteriori error estimators that give
good estimates of elementwise errors in appropriate norms;

.J. development of parallel hp-schemes, which by their nature require \'ery un-
conventional approaches to load balancing and domain decomposition.

1. development of an adaptive strategy that can efficiently produce near opti-
mal hp-meshes to reduce error as rapidly as possible;
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• optimal meshes and very fast solutions

-t. control the stability (conditioning) and computational overhead in hp-mf'lhods.
including memory requirements, which can be orders-of-magnitude more se-
rious than conventional h-version schemes. and

2 THE TEXAS 3-STEP: A PARALLEL hp-
ADAPTIVE STRATEGY

1. production of an efficient data structure that allows h (mesh size) and p
(polynomial order) to be varied as independent elementwise parameters, for
only then can the full power of hp-meshing and the super-algebraic conver-
gence rates be realized;

A more complete account is to appear in [91,which generalizes and extends [8].
The idea is to use both a posteriori and a priori error estimates to choose a
distribution of hand p to arrive at a target error. One begins by equating the
error (say l!elko = lIu - uhPllt.o) to the estimated error () (obtained by an error

One does not have to study such methods very long to appreciate the signif-
icant pitfalls that stand in the way of accomplishing each of these goals, and it
may be that these difficulties have been responsible fot the fact that very few
investigators have attempted to tackle them except for the simplest applications.
The difficulties include

We have worked on all five of these issues and have made some progress in each,
although much remains to be done and significant improvements are certainly
possible. For problem areas 1 and 2, two- and three-dimensional data structures
supporting general hp-approximations on quadrilateral and hexahedral meshes are
discussed in [1,2] and effective techniques for error estimation have been developed
in [3, 4, 5]. The first hp-adaptive strategy was reported in [6] and variants of it
are used in commercial codes [7]. The 3-step scheme, introduced in [8], is perhaps
our preferred approach to date, and extensions of the ideas are reported in a
forthcoming work [9]. Consideration of difficulties 4 and 5 has been the subject of
more recent work; both theoretical and experimental results on two-dimensional
elliptic problems pertain to domain decomposition, parallel adaptive schemes, and
pre-conditioning of hp-matrices and are encouraging.

In the remainder of this note, a summary of some of the results in areas 3. 4.
and 5 are given.
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(2)

3 DOMAIN DECOMPOSITION AND PRE-
CONDITIONING OF hp-MESHES
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(1)

We wish to develop a program of domain decomposition and a preconditioning
scheme in preparation for iterative solvers, that cont.rols the condition number for
hp-schemes while balancing the computational load in a multiprocessor environ-
ment.

In each step of the 3-step adaptive strategy, and particularly the final step, a
non-uniform hp-mesh nhp is obtained over which a discrete solution uhp is sought.
For each such mesh, we seek to partition nhp into P-subdomains ni • P being the
number of processors, and then over each no, we wish to construct an effective
preconditioner to be used, for example, in a preconditioned conjugate-gradient
solver.
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With a few approximations, this goal can be attained in three steps:

Step 1. An initial coarse hp-mesh. n~opo is generated and used to obtain a
cheap initial solution ti~P and estimates of Ilulll.n and Vk. µk are calculated.

Step 2. An intermediate mesh. with target error index 'II = VITI-, ~ .10)
is generated by purely h-refinements keeping the initial p-distributions fixed. but
choosing the intermediate mesh sizes hI to roughly equidistrihute the error. and
then,

Step 3. keeping the intermediate hrdistribution fixed. compute a non-uniform
distribution of orders Pk needed to produce the target error '1T·

This process can be remarkably accurate for two-dimensional linear elliptic
problems and computed target errors often agree closely with those specified. If
there is significant deviation, the process is repeated. Parallel versions have been
developed and implemented successfully on a 32-processor Intel iPSC/860. For
hyperbolic problems, a 4-step variation of the scheme has also been implemented
[10].

estimator effective for hp-methods) and then equating this to the error bound in
an a priori estimate:

No hI"
o ~ Ilellt.n ~ L Ik-*

k=1 Pk

Here No is the number of elements nk in an initial mesh, Ak = Gliullr.n., hk =
dia (nk), Pk = polynomial degree of shape functions over element nk, µk = min(pk, r-

l),vk=r-l.
Equipped with a reliable error estimator, we inquire if it is possible to deter-

mine the quantities Ak, hk, Pk (and µk, Vk) on a series of meshes in order to attain
a target error index '
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Pre-Conditioners for hp-Meshes

hp-Domain Decomposition

Suppose 0, , i = 1,2,' .. ,ND, is a subdomain obtained using the preconditioning
scheme described above. Let
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(3)H, = dia(O,)

C( 1 + logp;)( 1 + log H;p;/ hi)

h; = max h~, p; = min PI.
l:Sk:SN, l:Sk:SN,

where

2) a recursive bisection scheme is then implemented on the Hilbert-Peano curve
which partitions the mesh so as to equidistribute load measured by either
degrees-of-freedom, estimated element error, or a comparable measure.

This is a quite reasonable control of condition numbers and leads to effective
iterative methods for each subdomain. Moreover, the preconditioning process is
parallelizable.

For an hp-mesh on a subdomain n; such as is shown in Fig. 1, the degrees of
freedom are partitioned into 5 classes: N (nodes on the boundary an; that support
piecewise linear functions), S (nodes on sides on an; that support polynomials of
higher degree, V (interior vertices that support linear or bilinear shape functions),
E (interior edges with p-shape functions) and B (interior bubble shape functions

1) given nhp, a Hilbert-Peano curve is generated which connects the centroids
of each element into an unbroken path over the mesh in which each element
is traversed only once

n, =U~IW;'

where w~ are the elements making up 0;. Denote

h~ = dia (w1) , p~ = minimum degree of complete polynomial defined on w1
(6)

Then it can be proved [11] that a systematic partial orthogonalization scheme can
be implemented which permits the condition number to grow no faster that

and suppose

We have developed a new domain decomposition scheme based on what we call
the RLBBO (the Recursive Load Based Balance of Ordering) for hp-meshes. The
idea is based on two operations:

This process produces a well-balanced decomposition of the mesh with minimal
or small interfaces, meaning low communication costs between processors.
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Figure I: A load-balanced hp-mesh with non-uniform hp-distributions
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Among preconditioners are the submatrix,

that vanish on element boundaries). Symbolically, the stnIcture of the matrix fo;'
the subdomain is of the following form:
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Other choices are possible. Numerical experiments indicate that such procedures
are not excessively expensive, since they are parallelizable, and that they result
in well-conditioned systems.

Figure 2 contains results of applying the RLBBO scheme to a complex hp-mesh
generated on a non-convex domain. The method leads to a clean decomposition
of the domain into four subdomains with a minimal interface, no domain splitting,
and a roughly balanced load.

Figure 3 shows an adapted hp mesh for a Poisson problem on a square subdo-
main n, with an irregular solution. The model had 568 degrees of freedom with
a maximum p of p = 4. The preconditioned matrix had a condition number of
only 3.67 (compared with 27.65 for a Jacobi preconditioner and 0(104) with no
preconditioning). The PCG scheme converged in 5 iterations. Further details can
be found in [11).
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Figure 3: hp Adaptive Mesh (dof=568)
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